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Abstract. A multi-scale modeling ensemble chain has been assembled as a first step towards an Air Quality forecasting system

for Latin America. Two global and three regional models were tested and compared over a shared domain (120W-28W, 60S-

30N) to simulate January and July of 2015. Observations from local air quality monitoring networks in Colombia, Chile, Brazil,

México, Ecuador and Peru were used for model evaluation. The models generally agreed with observations in large cities such

as México City and São Paulo, whereas representing smaller urban areas, such as Bogotá and Santiago, was more challenging.5

For instance, in Santiago, during wintertime, the simulations showed large discrepancies with observations. No single model

had the best performance among pollutants and sites available. Ozone and NO2 were reproduced better than other pollutants

across sites whereas SO2 was the most difficult. The ensemble, created from the median value of the individual models, was

evaluated as well. In some cases, the ensemble showed better results over the individual models and mitigated the extreme

over- or underestimation of certain models, demonstrating the potential to establish an analysis and forecast system for Latin10

America. This study identified certain limitations in the models and global emissions inventories, which should be addressed

with the involvement and experience of local researchers.

1 Introduction

Latin America has some of the most populated urban areas in the world, notably, México City and São Paulo have populations

exceeding 20 million, while Lima, Bogotá, Rio de Janeiro, and Buenos Aires have more than 10 million inhabitants each15
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(Nations, 2018). These densely populated regions often experience air pollution events due to large emission sources and due

to atmospheric conditions. Other major cities, such as Santiago and Medellin, with a population of ∼7 and ∼3.5 million,

respectively, are also affected by poor air quality. This urban air pollution not only has long lasting effects on the health of the

population but also has a significant negative impact on the environment (Busch et al., 2023; Gouveia et al., 2018; Rodríguez-

Villamizar et al., 2018; Romieu et al., 2012).20

To better understand the causes of air pollution events in Latin America, it is important to consider the local emission

sources. In addition to the usual urban pollution sources (e.g., industrial facilities, residential heating, energy production,

and transportation sectors), plumes from biomass burning and long-range dust transport can occasionally reach major cities. In

northern South America, increased pollution levels in the dry season have been associated with wildfires (Ballesteros-Gonzalez

et al., 2020; Casallas et al., 2023; Mendez-Espinosa et al., 2019) and dust from the Sahara Desert (Mendez-Espinosa et al.,25

2020). The latter source also affects the Caribbean and central México in early spring (Kramer and Kirtman, 2021; Ramírez-

Romero et al., 2021).

Air quality management in Latin America and the Caribbean (LAC) has been traditionally focused on surveillance and

building emission inventories (Franco et al., 2019). Modeling activities for LAC are less frequent than North America, Europe,

or Asia, mainly due to limited computing resources and scarce information of emission sources. Furthermore, LAC has other30

challenges: complex terrain where cities are situated in the valleys and canyons of the Andes, varying meteorological conditions

due to their proximity to mountains and coastlines, deep convection in the tropics, extensive biomass burning in the Orinoco

and Amazonian basins, and the presence of densely populated megacities and urban areas, among others. Despite limitations

for applying air quality models in LAC, regional models in the literature have been successfully implemented.

The coupled Aerosol and Tracer Transport model to the Brazilian development of the Regional Atmospheric Modeling35

System (CCATT-BRAMS) was developed in the region (Longo et al., 2013) to investigate the impact of the Amazonian

wildfires on air quality in major Brazilian cities (Pereira et al., 2011; Freitas et al., 2011). The North American Community

Multiscale Air Quality Model (CMAQ), coupled with the Weather Research and Forecasting (WRF) meteorological model,

has been used in Colombia and Brazil to predict pollutant concentrations and assess reduction strategies (Albuquerque et al.,

2019; East et al., 2021; Perez-Peña et al., 2017; Nedbor-Gross et al., 2018; Pachon et al., 2018). The WRF model coupled with40

Chemistry (WRF-Chem) online has been actively used to study the impact of regional sources on air quality in urban centers

across Colombia (Ballesteros-Gonzalez et al., 2020, 2022; Casallas et al., 2024; Mendez-Espinosa et al., 2019; Gonzalez

et al., 2018) and São Paulo (Gavidia-Calderon et al., 2024). CHIMERE has been applied in Chile to assess pollutant chemical

transformation and dispersion as well as emission reduction strategies (Lapere, 2018; Lapere et al., 2021; Mailler et al., 2017).

Additionally, CAMS reanalysis data has been compared against air quality observations, observing well-captured temporal45

trends for PM10, PM2.5 and SO2 but not for NOX (Casallas et al., 2024).

This work presents the first model intercomparison and ensemble construction for Latin America, which was assembled

under the Prediction of Air Pollutants in Latin America (PAPILA project (https://papila-h2020.eu/papila). The aim of the

project was to develop an air quality analysis and forecast system for the region with increasing capabilities in major cities.
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This work is the first step towards such a system and seeks to examine the differences between the models in diagnostic mode50

to get an improved forecasting set-up.

2 Methodology

The model intercomparison and construction of the ensemble required relevant activities, such as: the execution of global and

regional models in a common domain, harmonization of the model output, ensemble construction, collection of air quality

observations, analysis of temporal and spatial variability, and model evaluation.55

2.1 Description of the models and modeling set-up

For the model intercomparison, two global models (CAMS and SILAM) and three regional models (CHIMERE, WRF-Chem,

EMEP MSC-W) were selected based on the expertise of the research groups working on the PAPILA project (Table 1). WRF-

Chem was implemented by two different groups, the Max Planck Institute for Meteorology (MPIM) in Germany and the

University of São Paulo (USP) in Brazil, with different set-ups. The different models are briefly described in the following60

paragraphs.

The Copernicus Atmosphere Monitoring Service (CAMS) provides state-of-the-art global atmospheric composition data

based on the IFS (Integrated Forecasting System) model of the European Centre for Medium-Range Weather Forecasts

(ECMWF) (Inness et al., 2019). The chemical mechanism of IFS is an extended version of the Carbon Bond 2005 (CB05)

and complements the aerosol module (Flemming et al., 2017). The CAMS reanalysis data used for this project is a combi-65

nation of satellite observations of atmospheric composition and the IFS modeling setup. Anthropogenic emissions from the

MACC/CityZen (MACCity) inventory and biomass burning emissions from the Global Fire Assimilation System (GFAS) were

used in the simulations (Table 1). The biogenic emissions were simulated off-line by the MEGAN2.1 model (Guenther et al.,

2006). CAMS has been extensively evaluated against ozone sondings, aircraft profiles, surface observations, and global satellite

retrievals (Flemming et al., 2015).70

The system for Integrated modelling of Atmospheric composition (SILAM, http://silam.fmi.fi) is a chemical transport model

for global-to-local simulations of atmospheric composition and air quality developed at Finish Meteorological Institute (FMI)

(Sofiev, 2002; Kouznetsov and Sofiev, 2012; Sofiev et al., 2010, 2006, 2015). For PAPILA, the SILAM simulations were

driven by the meteorological IFS model of ECMWF. Anthropogenic emissions were adopted from the CAMS global emission

inventory, whereas the biomass burning emissions were generated by the Integrated Monitoring and Modeling System for75

Wildland fires (IS4FIRES) (Sofiev et al., 2009; Soares and Sofiev, 2014). The biogenic emissions were simulated off-line by

the MEGAN2.1 model (Guenther et al., 2006) (Table 1). The model has been extensively evaluated in numerous international

retrospective studies (Marecal et al., 2015; Kukkonen et al., 2012; Blechschmidt et al., 2020; Petersen et al., 2019) and real-

time operational applications. SILAM is included in the regional European forecasting system provided by CAMS together

with CHIMERE, EMEP MSC-W and eight other models (Colette et al., 2020).80
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Table 1. Description of the models included in the ensemble.

Abbreviations: FMI – Finnish Meteorological Institute, ECMWF – European Center for Weather and Modeling Forecast, LMD – Laboratoire de Météorologie Dynamique, MPIM

– Max Planck Institute for Meteorology, UCL – University of Chile, USP – University of São Paulo

CHIMERE is a Eulerian chemistry-transport model (CTM) and multi-scale from hemispheric to urban resolutions (Menut

et al., 2021; Mailler et al., 2017). The model can be used in offline or online mode and has meteorology forcing from the

IFS model by the ECMWF data sets. The biogenic emissions were simulated off-line by the MEGAN2.1 model (Guenther

et al., 2006). The model is used in research institutes and in operational centers for forecasting mainly in France and other

European countries. In Latin America, CHIMERE has been widely used in Chile to assess pollutant chemical transformation85

and dispersion as well as emission reduction strategies (Lapere et al., 2021; Mailler et al., 2017; Lapere, 2018). As previously

discussed, CHIMERE is also included in the CAMS forecasting ensemble.

The EMEP MSC-W model (‘EMEP model’ hereafter) is an offline chemical transport model developed at the Norwegian

Meteorological Institute (MET Norway). It is used to simulate photo-oxidants as well as organic and inorganic aerosols in scales

ranging from local to global scales (Simpson et al., 2012). This model also has meteorological forcing from the IFS model90

of the ECMWF. Emissions from forest and vegetation fires are taken from the FINN module (Wiedinmyer et al., 2011). The

EMEP model has for several decades been the main tool for underpinning air quality policies under the UN ECE convention

on long-range trans-boundary air pollution and it is also included in the CAMS regional ensemble. However, it should be noted

that the runs for this study were the very first EMEP model simulations ever conducted on a regional scale for LAC and should
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thus be considered only as a first demonstration of model capabilities. For PAPILA, the EMEP model was run by the modeling95

team at the University of Chile in Santiago with some support by MET Norway.

The WRF-Chem is the Weather Research and Forecasting (WRF) model coupled with Chemistry, developed at the National

Center for Atmospheric Research (NCAR) with the purpose of simulating urban- to regional-scale fields of trace gasses and

particulates. The air quality and meteorological components share the same transport and physics scheme, as well as horizontal

and vertical grid (Fast et al., 2006; Grell et al., 2005).100

CHIMERE, IFS, EMEP, WRF-Chem, LOTOS-EUROS and SILAM models are used in an ensemble mode to configure the

MarcoPolo-Panda prediction system in Asia (Brasseur et al., 2019; Petersen et al., 2019) It has been observed that, under spe-

cific circumstances, a model ensemble can outperform individual models, demonstrating the potential benefits of this approach.

With the desire to replicate the experience in Latin America, the selected models were applied in a common domain, defined

by the south-eastern corner at 119°54’W 59°54’S, and the north-eastern corner at 28°6’W 29°54’N. The models were run at a105

spatial resolution of ∼0.2°x 0.2°(∼20x20km). Input meteorology and emissions were up to the modeling group (Table 1). The

simulation period covers January (southern hemisphere summer) and July (southern hemisphere winter) of 2015.

2.2 Model Evaluation

The models’ performance was assessed by comparing the simulated concentrations with the average of the observations for

each available city, pollutant, and considered period. For every city and pollutant, the simulated concentration was estimated as110

the weighted average of the modeled grid cells that intersected with a city’s polygon that encompasses the geographical bound-

aries. The weights were based on the area of the modeled grid cell that overlapped with the city’s polygon. The observation’s

average was constructed by computing the arithmetic mean of all air quality stations available in the network within the city’s

polygon. This approach was chosen given the objective to assess model performance in cities, rather than for each air quality

station. The model evaluation was focused on nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO), Sulphur dioxide115

(SO2), and particulate matter less than 2.5 microns (PM2.5).

For each period, pollutant and city, the model evaluation included the following metrics: Model/Observations ratio, mean bias

(BIAS), modified normalized bias (MNBIAS), root mean square error (RMSE), fractional gross error (FGE) and correlation

coefficient (R). The formulas were replicated from the MarcoPolo-Panda project (Petersen et al., 2019) and are presented in

Table A1. These evaluation metrics were computed for all models and the ensemble.120

2.3 Air quality monitoring networks in Latin America

Several air quality monitoring networks (AQMN) are available throughout Latin America, especially in major cities. However,

worldwide access to the datasets can be difficult due to language barriers and the lack of a centralized platform. A compre-

hensive list of AQMN in Latin America was assembled for the PAPILA project (https://papila-h2020.eu/observations). For the

year 2015, we collected air quality data for 12 cities in México, Colombia, Ecuador, Perú, Chile, Brazil, and Uruguay. For all125

AQMN, a filter ensuring 75% completeness of the air quality database was applied before selecting a site and calculating the

city average of the observations, resulting in eight cities with enough data to use for this study. We focus in this study on the
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four major cities (from North to South): México City, Bogotá, São Paulo and Santiago. However, data of all available cities

were used in the model evaluation.The location of air quality stations in each city is shown in Figure 1.

3 Results130

Simulated concentrations of all pollutants from all models were compared against observations from every city and for both

periods (January and July) in 2015. In this section, we present results from the model evaluation, the spatial and temporal

variability of simulate fields and the impact of large versus small urban areas in the model intercomparison.

3.1 Model evaluation

The following results are presented for every pollutant: analysis of observations from AQMN, simulated concentrations by the135

models, comparison of evaluation metrics, discussion of model performance and analysis of model inter-variability.

3.1.1 Nitrogen dioxide - NO2

Observations

The number of stations per city recording NO2 is available in Appendix B. In all cities the data availability was 100%. The

highest daily average concentration of NO2 is observed in Santiago during winter at around 40 ppb (Figure 2). This can be at-140

tributed to adverse meteorological conditions and emissions from transportation and residential combustion in the surrounding

municipalities (Mazzeo et al., 2018; Saide et al., 2016). whereas in the summer NO2 levels fall to 11 ppb. The second largest

values are shown in México City and São Paulo with a daily average NO2 levels of 24 and 20 ppb respectively, due to the

heavy use of fossil fuels in transportation and power generation. The lowest levels of NO2 are measured in Bogotá with 15 ppb

on average.145

Model performance

In Bogotá and Santiago, NO2 is underestimated by the models (Figure 2). In Santiago, the mean of the models is 7.3 ppb in

summer and 17.7 ppb in winter, much lower than the mean of the observations. Similarly, in Bogotá the mean of the modeled

values is 5.5 ppb. In contrast, in São Paulo and México City, the model fields are above and below the observed concentrations

and the average of the modeled values (19.5 ppb and 27 ppb respectively) are in the same order of magnitude of observations.150

In São Paulo and México City, the Model/Observations ratios for NO2 varied from 0.13 to 1.7, indicating that some models

overestimate the observations while others show underestimations. These cities exhibit the lowest MNBIAS, FGE and RMSE

values (Table A2).The correlation between the models and observations hovers around 0.7, which is larger than the goal

benchmark proposed for this pollutant (r ≥ 0.6) (Zhai et al., 2024). The adequate performance in São Paulo and México City

may be attributed to an accurate portrayal of the temporal and spatial variability that is achieved in large urban areas like these155

(>3500 km2) which encompass at least nine model cells (20 kmx20 km).

In Santiago, Model/Observations ratios range from 0.1 to 0.9. The MNBIAS is consistently negative during both seasons for

all models; however, the degree of which the models are underestimating the observations is notably higher in the winter than
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Figure 1. Location of air quality stations in major Latin American cities (Santiago, Bogotá, México City, São Paulo) alongside the city’s

definition for computing the modeled city average. © OpenStreetMap contributors 2024. Distributed under the Open Data Commons Open

Database License (ODbL) v1.0.
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Figure 2. Observed (black) and simulated NO2 daily mean concentrations in Santiago, (top) Bogotá, México City, São Paulo (bottom) for

January (left) and July (right) 2015.

in summer and with a larger error (Table A2). The correlation between the median of the models and observations in Santiago

ranges from 0.5 to 0.7.160

In Bogotá the Model/Observations ratios ranged between 0.1 and 0.5, indicating that only 50% of the NO2 is reproduced

by the models. The MNBIAS values are large and negative and the FGE varies between 63% and 161% (Table A2). Despite

these lower scores, the correlation between observations and models are moderate from 0.45 in July to 0.70 in January, meeting

criteria goals (Zhai et al., 2024) and demonstrate that certain models can successfully replicate the temporal variations but not

the magnitude of the pollutant.165

The lower simulated NO2 levels in Bogotá likely stems from an underestimation of emissions. A study by (Rojas et al.,

2023) utilized local data to estimate on-road emissions in Colombia and revealed substantial underestimation of NOX emis-

sions by global inventories such as EDGAR 6.1, CAMS, and the Community Emissions Data System (CEDS). Their findings

recommend adjustments to the emission factors used for NOX, particularly for heavy-duty and passenger vehicles, followed
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by a recalculation of the resulting emissions. The underestimation of NO2 can also be noted in other cities such as Medellin,170

Guadalajara, Lima, and Quito (Figure 8). These cities, along with Bogotá, possess urban areas ranging from 235 to 890 km2

and are confined within one or two cells of the models (20km x 20km). It is possible that the average of observations is heavily

influenced by local sources, in which case a finer modeling resolution is required to accurately capture the spatial variability of

air pollution.

Model intercomparison175

For NO2, both CAMS and SILAM underestimate the observations in the four cities, with CAMS displaying larger MNBIAS

and FGE than SILAM. In general, SILAM reproduces at least 80% of the NO2 levels, with the exception in Bogotá where only

40% is simulated. The correlation coefficient is better for SILAM (R ∼0.6) than for CAMS (R ∼0.3). The results from global

models suggest that SILAM has a better performance for NO2 in LAC than CAMS.

The results from regional models are very diverse. In general, WRF-MPI, CHIMERE and EMEP have lower values of180

MNBIAS and FGE for NO2 in São Paulo and México City (Table A2). In São Paulo, except for WRF-USP, regional models

tend to overestimate NO2 with MNBIAS between 20% and 50%. WRF-USP reproduces about 60% of NO2 concentrations. In

México City, the tendency of regional models is to overestimate the NO2 levels (MNBIAS: 20 to 50%). In Santiago, CHIMERE

achieves the lowest MNBIAS (8%) in January but not in July (-99%). In Bogotá, the MNBIAS in regional models remains

consistently negative.185

From Figure 2 is visible the model inter-variability as the dispersion between models. In Santiago in winter the range of

NO2 values is 30 ppb, which corresponds to a coefficient of variation (C.V.) of 57% (Table A8), this contrasts with the range

in summer of 6.3 ppb (C.V.=33%). Other large dispersion is observed in São Paulo in January (range 26 ppb, C.V. 56%) and

México City in July (range 31 ppb, C.V. 47%). On the other hand, lower dispersion is found in January in Bogotá and México

City (C.V. 24 and 31% respectively). It’s interesting to note the case of Bogotá where all models consistently underestimate190

NO2, but the dispersion in the models is the lowest.

3.1.2 Ozone - O3

Observations

The number of stations per city recording O3 is available in Appendix B. In January in México City, data availability was 97%.

The rest of the cities were 100%. Ozone pollution is particularly significant in México City during the July with an average195

concentration of 32 ppb. The warm and dry weather creates the ideal conditions for ozone formation, leading to this period

being referred to as the “ozone season” (Silva-Quiroz et al., 2019)

The second largest ozone value occurs in São Paulo during January with daily averages of 21 ppb. This is probably due to an

abundance of ozone precursors, in particular, volatile organic compounds (VOC) from the use of bio-fuels in the transportation

sector (de Fatima Andrade et al., 2017; Gavidia-Calderon et al., 2024). Santiago displays a strong seasonal pattern of ozone200

concentrations, with summer values of approximately 22 ppb and winter concentrations around 3.3 ppb. In Bogotá, ozone

concentrations are the lowest and below 13 ppb.

Model performance
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Figure 3. Observed (black) and simulated O3 daily mean concentrations in Santiago, (top) Bogotá, México City, São Paulo (bottom) for

January (left) and July (right) 2015.

In the four cities, simulations of O3 are mainly overestimated (Figure 3). In the summer in São Paulo and México City,

simulations can reach up to 120 ppb, which is significantly above the observations. In Santiago in the winter, the mean of205

models (∼ 20 ppb) is significantly larger than observations, indicating that the models have difficulty reproducing low values

of this secondary pollutant. In Bogotá, models estimate an average of 17 ppb with maximum values of 30 ppb.

For O3, the Model/Observations ratios vary between 0.3 and 2.8, except in Santiago in July where Model/Observations

ratio can be almost 10 (Table A3) and MNBIAS and FGE for most models are larger than 100%. The overestimation of O3

in Santiago might be related to the underestimation of NO2 previously described and the inadequate titration of ozone. This210

situation is also observed in Bogotá where most models overestimate O3 with MNBIAS between +40% and +93%. In general,

correlation coefficients for O3 are very low (R < 0.3), especially in São Paulo and México City, indicating the challenge to

adequately reproduce the time variability of this pollutant. Only in Santiago in January, the criteria benchmark for O3 (R > 0.5)

is achieved by some models (Emery et al., 2017).
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Model intercomparison215

In the case of global models, CAMS generally underestimates O3 except Santiago during winter, where the Model/Observations

ratio reaches about 6.0. Additionally, CAMS tends to have low correlation levels along with large bias and errors. On the other

hand, SILAM’s O3 estimates show more variability, ranging between Model/Observations ratios of 0.7 and 1.4 while also

maintaining lower bias and errors compared to CAMS. However, just like with CAMS, SILAM significantly overestimates

O3 levels in Santiago during the winter, with a Model/Observations ratio reaching around 7.0. In Bogotá, SILAM accurately220

simulates ozone levels with Model/Observations ratios ranging from 0.7 to 1.0 and presenting the lowest MNBIAS and RMSE.

In São Paulo, daytime concentrations of ozone are generally overestimated by most models (except for CAMS). The largest

overprediction of O3 (MNBIAS from 30 to 90%) is associated with overestimation of NO2, especially for MPI, EMEP and

CHIMERE models. For the models with NO2 levels in reasonable agreement with observations (SILAM, USP) the ozone over-

prediction is lower (MNBIAS <25%). Among the regional models, EMEP and WRF-MPI consistently overestimate O3 levels225

in all cities, with relatively high MNBIAS and FGE. In contrast, WRF-USP proves particularly suitable for São Paulo, achiev-

ing a Model/Observations ratio of approximately 1.0. CHIMERE also performs well in Santiago, with a Model/Observations

ratio of around 0.9, likely owing to local adjustments and parameterizations tailored to these specific cities.

Figure 3 shows a relatively large model intervariability for ozone. The largest ozone dispersion is shown in México City

in summertime with a range of 74 ppb and a C.V. of 72% (Table A8). This wide variability is caused by the simulation of230

the EMEP model (84 ppb) and CAMS (9.8 ppb), that represent the extreme cases of over and underestimation. In a similar

manner, in Bogotá, São Paulo and Santiago, the C.V. are approximately 62%, 57% and 50% respectively, explained by the

strong underestimation of CAMS and severe overestimation by EMEP and WRF-MPI.

3.1.3 Carbon monoxide - CO

Observations235

The number of stations per city recording CO is available in Appendix B. In January in México City, data availability was

97%. The rest of the cities were 100%. CO levels are generally low in Latin America and daily averages are below 1.5 ppm

for all cities. However, during July there are a few instances where values surpass the 1.5 ppm mark in Santiago due to a

combination of adverse meteorological conditions and emissions from the transportation sector and residential combustion,

commonly employed for heating in neighboring municipalities (Saide et al., 2016; Gallardo et al., 2012).240

There is a slight increase of CO in São Paulo in July with respect to January, due to the atmospheric conditions where lower

winds and lower boundary layer increased primary pollutant concentration during winter. On the other hand, biomass burning

from wildfires which begin in July and peak in August and September for the southern part of the Amazon rainforest (Marlier

et al., 2020). Likewise, larger CO concentrations in Bogotá in January are part of the wildfire season in northern South America

lasting from the end of December until April (Mendez-Espinosa et al., 2019).245

Model performance

México City records the largest simulation of CO with a mean of 1.0 ppm and peak values of 3.0 ppm (Figure 4). Similarly,

Santiago during July shows an average of 0.88 ppm and peak values over 3.0 ppm. During the summer in Santiago, CO is
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Figure 4. Observed (black) and simulated CO daily mean concentrations in Santiago, (top) Bogotá, México City, São Paulo (bottom) for

January (left) and July (right) 2015.

about 0.2 ppm, overestimated by most models. São Paulo displays intermediate values with an average of 0.5ppm, and Bogotá

has the lowest modeled values with an average of 0.27 ppm. In general, simulations are underestimated, particularly in Bogotá250

where only 40% of the concentration is reproducible.

CO simulations in Santiago, São Paulo, and México City, are above and below the observations (Table A4). In Santiago in

winter, the MNBIAS ranges from -2 to -157% and the FGE vary from 20 to 157%, considerably more pronounced than in

summer with bias from -67 to 69% and errors from 21 to 69%. This situation could be explained by emissions, synoptic or

the models’ simulation of the boundary layer (Mazzeo et al., 2018). In Bogotá, all models consistently underestimate the CO,255

with Model/Observations ratios ranging from 0.2 to 0.6. The correlation between models and observations for CO are within

goal (R > 0.4) and criteria (R > 0.6) benchmarks (Zhai et al., 2024) in several cases, demonstrating the model’s capability to

reproduce the time variability of this pollutant, even if the levels are under or overestimated.
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The underestimation in Bogotá is similar to that observed for NO2, which we attributed to a shortfall in emissions. According

to the local inventory, CO emissions are predominantly attributed to mobile sources (99%), with motorcycles contributing to260

45% of these emissions, automobiles accounting for 36%, and the remainder originating from other vehicles (SDA -Secretaria

Distrital de Ambiente, 2018). Notably, it has been identified that motorcycle emissions are underestimated in Colombia (Rojas

et al., 2023). The significant rise in the number of motorcycles in the country and their declining condition is not accurately

reflected in global emission inventories, such as EDGAR 6.1.

Observed CO mixing ratios are also underestimated in cities such as Medellin, Guadalajara, Quito, and Lima (Figure 8),265

which might be explained by the coarse resolution of the model not capturing the local characteristics. It is possible that issues

with CO emissions in global inventories or excess of OH radicals in the photo-chemistry also contribute to this trend. In São

Paulo, five out of six models slightly underestimate CO with a relatively high correlation coefficient. The simulated concentra-

tions for daily values range from 0.1 to 2.0 ppm, similar to that found in other studies (Deroubaix et al., 2024). Nevertheless,

concentrations exceeding 1.2 ppm are simulated only for certain days (Jan. 13 and July. 30) and are probably due to wood270

burning (Figure C1).

Model intercomparison

Global models, particularly CAMS, tend to underestimate CO levels in Bogotá, São Paulo, and México City, with Model/Ob-

servations ratios around 0.4. In Santiago, CAMS reproduces CO levels with a Model/Observations ratio of about 1.0, MNBIAS

(< ± 10%) and FGE (<20%). The correlation coefficient achieves the criteria benchmark (R > 0.4) proposed by (Zhai et al.,275

2024). SILAM underestimates CO in Bogotá (Model/Observations∼0.6) and overestimates it in Santiago (Model/Observations

∼2.0), while it performs relatively well in São Paulo and México City (Model/Observations ∼1.1) and correlation coefficients

meeting the goal benchmark (R > 0.6) proposed by (Zhai et al., 2024).

When it comes to regional models, WRF-USP consistently underestimates CO levels with Model/Observations ratios ranging

from 0.1 to 0.5 with large bias and errors. WRF-MPI consistently underestimates CO in all cities, with Model/Observations280

ratios from 0.3 to 0.8 relative to observations, and 1.0 for São Paulo for both periods with correlation coefficients within the

goal benchmark (Zhai et al., 2024). EMEP and CHIMERE both largely overestimate observations in México City with values

between 4.0 and 6.0ppm, while in São Paulo they closely match observations with ratios around 0.9 and low MNBIAS and

FGE. In Santiago, these models tend to overestimate CO in the summer and underestimate it during the winter.

The largest model variability is observed in Santiago during wintertime with a range of 2.1ppm and C.V. of 86% (Table A8).285

México City shows C.V. of 54% (January) and 63% (July). Bogotá and São Paulo present more consistency between model

results with C.V. between 33% and 42%.

3.1.4 Sulfur dioxide - SO2

Observations

The number of stations per city recording SO2 is available in Appendix B. In January in México City, data availability was290

97%. The rest of the cities were 100%. The largest concentration of SO2 is observed in México City with values between 3.0

ppb (July) and 4.6 ppb (January) due to the heavy consumption of coal in power generation and cement production, especially
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Figure 5. Observed (black) and simulated SO2 daily mean concentrations in Santiago, (top) Bogotá, México City, São Paulo (bottom) for

January (left) and July (right) 2015

in the proximity of the “Tula-Vito-Apasco” industrial area (SEMARNAT and INECC, 2020). On the other hand, SO2 in Bo-

gotá, Santiago and São Paulo are lower with concentrations ranging from 1.0 to 1.8 ppb.

Model performance295

The largest simulation is shown in México City with an average of 10 ppb SO2, followed by São Paulo, with a mean concentra-

tion of 6.0 ppb. In Santiago, winter values are around 4.5 ppb and summer values around 3.6 ppb. The lowest modeled values

are found in Bogotá with an average of 0.76 ppb.

The models’ simulated SO2 exhibits significant discrepancies when compared to the observations, with severe overestimation

in Santiago, México City, and São Paulo (Figure 5), with MNBIAS reaching up to 190% and errors up to 200% (Table A5).300

On the contrary, for Bogotá the predicted SO2 values are in reasonable alignment with the observations (Model/Observations

ratio around 0.9), except for the WRF-Chem USP simulation, which drastically underestimates SO2 (MNBIAS -200%) (Table

A5).
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The overestimation of SO2 levels could stem from issues within global emission inventories. In fact, an overestimation of

SO2 emissions in CAMS was observed for Buenos Aires and Santiago when compared to the PAPILA inventory (Castesana305

et al., 2022). These emissions primarily originate from the energy and industrial sectors, where the sulfur content in coal

appears to be significantly contributing to this overestimation.

The good performance in Bogotá might be related to less SO2 emissions apportioned in the city. In fact, the vast majority

of SO2 emissions (∼90%) in Colombia originate from the industrial and energy production sectors (IDEAM, 2020). However,

these facilities are typically located outside major urban areas. Bogotá contributes only 1.5% of the total national SO2 emissions310

(de Ambiente, 2018).

Model intercomparison

With respect to global models, CAMS severely overestimates SO2 in México City and Santiago with MNBIAS and FGE larger

than 160%. In São Paulo, the bias and errors are lower but still significant (from 90 to 125%). Similarly, SILAM overestimation

for these three cities is also large, with MNBIAS and FGE between 86% and 154%. For Bogotá, SILAM demonstrates good315

performance in the simulation of SO2 with MNBIAS between -5% (January) and 4% (July), FGE between 14% and 27% and

correlation coefficients that meet the criteria benchmark (R > 0.35) suggested by (Zhai et al., 2024).

The performance of regional models for SO2 is quite diverse. WRF-USP severely underestimates SO2 in all cities (MNBIAS

close to -200%). In Santiago, México City and São Paulo the models overestimate SO2 in a similar fashion than global models.

In Bogotá, EMEP shows one of the lowest MNBIAS (from 10 to 17%).320

The largest model variability for SO2 is found in México City where the range of models reach 180 ppb, and the C.V. is

larger than 150% (Table A8). In Santiago in January the C.V. is 130%. São Paulo and Bogotá present intermediate values of

the C.V. between 64% and 88%.

3.1.5 Fine particulate matter - PM2.5

Observations325

The number of stations per city recording PM2.5 is available in Appendix B. In January in México City, data availability

was 97%. The rest of the cities were 100%. The largest PM2.5 concentrations are found in Santiago during the southern

hemispheric winter with values around 60 µgm−3. This can be attributed to adverse meteorological conditions and emissions

from transportation and residential combustion in the surrounding municipalities (Mazzeo et al., 2018; Saide et al., 2016). The

second largest values are shown in México City with an average of 21 µgm−3 due to local emission sources. In São Paulo,330

PM2.5 levels are larger in July (18 µgm−3) than January (15 µgm−3), due to the impact of wildfires from the Amazon basis and

sugarcane burning (de Fatima Andrade et al., 2017). In Bogotá, PM2.5 concentrations are the lowest in July (13 µgm−3) due

to the influence of the trade winds (Pachon et al., 2018) but with larger values in January (18 µgm−3) due to biomass burning

events and frequent thermal inversions (Ramírez et al., 2018).

Model performance335

In Santiago in wintertime, the mean of the models is close to the observation, but with a large standard deviation (62.6 ± 85

µgm−3). In January, the simulation mean is 65% the observation. In São Paulo, simulated values are approximately double
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Figure 6. Observed (black) and simulated PM2.5 daily mean concentrations in Santiago, (top) Bogotá, México City, São Paulo (bottom) for

January (left) and July (right) 2015.

the observation. In México City, simulated values are above and below the observation. In Bogotá, most of the simulations are

below the observation (Figure 6).

In Santiago, Bogotá, and México City, some models overestimate and others underestimate PM2.5 (Table A6). The MNBIAS340

and FGE are, in general, within the goal or criteria benchmarks suggested by (Boylan and Russell, 2006). In São Paulo,

overestimation is observed in all models and may be linked to an excess of fire emissions, as suggested by other studies

(Deroubaix et al., 2024). The Model/Observations ratios range from 1.3 to 4.5, and MNBIAS values vary from 25% to 117%

except for WRF-USP, whose MNBIAS is -0.8%. The correlation coefficients for PM2.5 are in some cases larger than the goal

(R > 0.7) or criteria (R > 0.4) benchmarks proposed by (Emery et al., 2017). It’s worth noting the case of México City in345

January and São Paulo in July, where most models achieve the goal metric. In smaller urban areas like Medellin, Lima, and

Quito (Figure 8), most models tend to underestimate observations, potentially due to the coarse resolution of the models.
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Hourly simulations of PM2.5 are useful to understand the discrepancies between model and observations. In Figure C2, we

show the hourly data and model outputs. In São Paulo, the highest PM2.5 concentrations are simulated by SILAM in January

13 (> 320 µgm−3) and July 30 (> 400 µgm−3), which corresponds to days with high simulated CO values as well (Figure C1)350

and may indicate an overestimation of biomass burning by the IS4FIRES module in SILAM. From Jan 15 to 30 there is also

an excess of PM2.5 from SILAM.

In México City, the highest PM2.5 concentrations are simulated by the CAMS model with about 250 µgm−3 in January and

160 µgm−3 in July (Figure C3) which are severely overestimated. The large PM2.5 values are distributed in the whole period

rather than specific days and do not correspond with high CO concentrations to suspect the influence of fires. This situation355

might indicate a local and continuous source of PM2.5.

Model intercomparison

Both global models consistently overestimate PM2.5 in Santiago, São Paulo and México City, but they behave differently in

Bogotá. CAMS generally has a greater overestimation than SILAM throughout the cities, reaching Model/Observations values

between 1.5 to 5 while SILAM ranges between 2 to 4 (Table A6). For Bogotá, CAMS displays an overestimation of around 1.5360

times the observed values with a poor correlation coefficient, while SILAM slightly underestimates with a Model/Observations

ratio of 0.8 but with a correlation coefficient that meets the criteria benchmark suggested by (Emery et al., 2017).

Among the regional models, EMEP typically shows Model/Observations ratios below 0.2, except for São Paulo where it

overestimates by 1.5 times with a correlation coefficient that meets the goal benchmark by (Emery et al., 2017) in July. WRF-

USP heavily underestimates in Bogotá and Santiago, at 0.3 times the observations, but performs well in São Paulo with the365

lowest errors. This difference in behavior might be explained by a good adaptation of the model’s inputs to the city. The

WRF-MPI model meets goal benchmarks for MNBIAS and FGE in Bogotá and México City.

In general, global models achieve more benchmarks (goal or criteria) for PM2.5 than regional models.

The largest model intervariability is observed in México City and Santiago during wintertime with a C.V. greater than 100%

(Table A8). Santiago in summer and Bogotá present intermediate values (C.V. 65 to 78%), whereas São Paulo shows the least370

dispersion between models (C.V. 50% to 59%).

3.2 Median Ensemble

In this section, we present the results of the model ensemble based on the median value for every pollutant.

3.2.1 Nitrogen dioxide - NO2

As it was previously described, NO2 is underestimated by all models in Santiago and Bogotá. Therefore, the median ensemble375

also underestimates NO2 concentration and does not represent any improvement in the evaluation metrics (Table A2). On

the contrary, in São Paulo, the ensemble median outperforms individual models for NO2. In both summer and winter, the

ensemble median presents the lowest RMSE and FGE, with a Model/Observations ratio close to 1.0, a correlation coefficient

R=0.7, and MNBIAS between -3% (summer) to -12% (winter). The median ensemble also provided adequate statistics in a

higher resolution modeling domain in São Paulo (Deroubaix et al., 2024). In México City, the ensemble adequately simulates380
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NO2 (Model/Observations ∼0.9) with lower error and bias than most of the individual models. In January, the correlation

coefficient meets the goal benchmark for this pollutant (R>0.6) in all cities, whereas in July the goal benchmark is achieved

for São Paulo and the criteria target (R>0.5) for Santiago and México City.

3.2.2 Ozone - O3

In Santiago in January, the median ensemble showed one of the lowest biases (MNBIAS) and errors (FGE, RMSE), surpassed385

by only one model (Table A3), and achieved the goal benchmark for this pollutant (R>0.75) (Emery et al., 2017). In July, the

overestimation of ozone by most models impacts the performance of the ensemble, which also overestimates O3 concentrations.

In Bogotá, the ensemble has the second lowest MBIAS and FGE, both in January and July, and represents an intermediate value

between all models. In São Paulo, in wintertime, the ensemble has superior metrics (Model/Observations ratio∼1.0, MNBIAS

∼-2%) compared to any individual model, while in the summer the ensemble overestimates the observations (Model/Obser-390

vations ratio ∼1.5) as most models do. In México City, the ensemble median performs better than all individual models with

MNBIAS between 7% (summer) and 13% (winter) and FGE less than 30%. Similar to the individual models, for most of the

cases, the correlation coefficient for the ensemble does not meet any of the benchmarks (Emery et al., 2017).

3.2.3 Carbon monoxide - CO

In the summer in Santiago, the median ensemble outperforms individual models for CO, with MNBIAS of 6% and FGE of395

11less than any other model (Table A4). In winter in Santiago and Bogotá in both periods the ensemble follows the underes-

timation pattern of all models. In São Paulo, there are models with better performance than the ensemble, but the ensemble

results are reasonable with Model/Observations ratio ∼0.7, MNBIAS ∼-30% and R ∼0.7. In México City, the overestimation

of CO by the EMEP and CHIMERE models (MNBIAS>45%) is reduced in the ensemble (MNBIAS -5% in January and of

3% in July).400

3.2.4 Sulfur dioxide - SO2

In México City, Santiago and São Paulo, SO2 is overestimated by all models, except USP. Therefore, the median ensemble also

overestimates SO2 concentration and does not represent any improvement in the evaluation metrics (Table A5). In Bogotá, the

ensemble does not display the best metrics, but MNBIAS and FGE are relatively low.

3.2.5 Particulate matter - PM2.5405

The median ensemble for Bogotá and Santiago does not represent any improvement in the evaluation metrics (Table A6). For

São Paulo, all models tend to overestimate PM2.5, so it follows that the ensemble presents the same behavior with Model/Ob-

servations ∼ 1.9 and MNBIAS 64%. However, the correlation coefficient meets the goal benchmark (R>0.7) in July and the

criteria target (R>0.4) in January. In México City the severe overestimation of PM2.5 by CAMS (MNBIAS>125%) and SILAM
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(MNBIAS>50%) is softened by the construction of the ensemble, resulting in a MNBIAS of -30% and 6% in January and July,410

respectively. The correlation coefficient meets the goal benchmark (R>0.7) in January.

3.3 Spatial seasonal variability of predictions

For all pollutants, models and periods, maps of mean concentrations were constructed to visualize the spatial differences

(Appendix D). In order to summarize the results, other spatial plots were also prepared: median ensemble (Figure 7), median

absolute deviation (Figure E1), mean standard deviation (Figure E2). In Figure 7, hot pollution spots are clearly visible around415

major urban areas, in particular, São Paulo in the southeastern coast and México City in the northwestern part of the continent.

São Paulo and México City each cover a significant area, of approximately 3600 km2, spanning at least nine modeling cells

(400 km2 each). This extensive coverage offers some spatial representation of the physical and chemical atmospheric processes.

Other regions highlighted on the maps include Lima and Santiago on the Pacific coast, Buenos Aires along the southern shore

of the Río de la Plata, and cities in the northern part of South America like Quito, Bogotá, Medellín, and Caracas. However,420

most of these cities are encompassed by three or fewer modeling cells, limiting the potential for significant spatial variation.

The temporal seasonality can also be observed in Figure 7. The left and right panels show results for January and July,

corresponding to the southern hemisphere summer and winter respectively. For SO2, major hot spots appear in México City

and surrounding areas, and the Pacific coast in Chile. The SO2 concentrations are associated with coal use in power generation,

cement production and copper smelting that are active in both summer and winter (Huneeus et al., 2006; SEMARNAT and425

INECC, 2020). Similarly, NO2 hotspots are in major urban areas due to the major emission source being transportation.

In January, the median ensemble shows high concentrations of PM10 in several areas. In the south of Argentina, the con-

centrations are primarily due to dust from the Patagonia desertic areas (Gasso and Torres, 2019). In the north of Brazil and the

Guianas, increased PM10 levels are most likely associated with fires in the Orinoco basin during the dry season (Hernandez

et al., 2019). In a similar manner, PM2.5 concentrations across LAC show similar behavior than PM10, with an increase in the430

northern part of Brazil due to wildfires. Large concentrations of PM2.5 in São Paulo in both January and July are probably

caused by overestimation of fires, as previously discussed. During the austral summer, São Paulo presents large concentrations

of ozone that were simulated by the regional models WRF-Chem, WRF-MPI and EMEP (Figure D3). In January, there is a

maximum of CO in the area between north of Argentina, south of Bolivia, Paraguay and south of Brazil, probably related to

fires.435

In July, concentrations of CO, PM2.5 and PM10 are significant in Santiago due to transportation and residential heating

emissions under adverse meteorological conditions in the austral winter. PM10 concentrations are large in the Caribbean and

central México, primarily due to the transport of Saharan dust into these urban areas (Kramer and Kirtman, 2021; Ramírez-

Romero et al., 2021). Similarly, along the Pacific coast between Chile and Peru, increased PM10 is probably explained by

anthropogenic emissions of copper smelters in connection with strong eastern wind events (Huneeus et al., 2006). Large440

concentrations of O3 are visible in México and in the Andes mountains between northern Chile and central Peru. Ozone is also

large in the São Paulo metropolitan area in January.
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Figure 7. Spatial variability of simulated PM10, PM2.5, O3, CO in LAC for January and July 2015 (based on the median of the models)
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Figure 8. MNBIAS estimated for large and small urban areas.

The median absolute deviation maps (Figure E1) and the standard deviation maps (Figure E2), display spatial differences

between model simulations. In particular, for particulate matter (PM10 and PM2.5) notorious dissimilarity is observed in north-

ern Brazil in January, Venezuela in July, and the south of Argentina in both periods. The reason for this disagreement is the445

simulation of the WRF-MPI model, which contributes with significant PM mass in the mentioned zones, probably due to an

overestimation of fires in the northern part of the continent and dust in the southern areas.

3.4 Large versus small urban areas

The coarse resolution used in the modeling systems (0.2°x 0.2°) poses challenges in adequately representing the intricate

topography and diverse meteorological conditions of the different cities in LAC. Capturing these physical phenomena can450

be very difficult and requires a finer scale with much greater computational demand. In the last years, emission inventories

for LAC at high spatial and temporal resolution have been constructed (Castesana et al., 2022; Alamos et al., 2022; Puliafito

et al., 2015, 2017; Rojas et al., 2023) and it’s expected they will complement existing global emission inventories at coarse

resolution. We observe that, in large urban areas (> 3500 km2) the models tend in general to have lower and positive MNBIAS

compared to medium size (600 < area < 3600 km2) or small (area <600 km2) cities (Figure 8). For example, for México City455

and São Paulo, the two largest cities in LAC, the models show the lowest MNBIAS and FGE for CO (-27% to 29%) and

NO2 (-6% to 6%), while in other cities they display larger and negative MNBIAS and FGE (Table A2 and A4). This trend

suggests that models typically underestimates CO and NO2 in medium and small urban areas. The discrepancies in NO2 have a

corresponding impact in the overestimation of O3. For particulate matter, a similar pattern is observed, with positive MNBIAS

for larger urban areas and negative MNBIAS for medium and small cities. Ideally, we would have access to more cities of460

21

https://doi.org/10.5194/egusphere-2024-815
Preprint. Discussion started: 25 April 2024
c© Author(s) 2024. CC BY 4.0 License.



various sizes to make this determination with more certainty, unfortunately, local measured data was only available for the

cities we considered.

4 Conclusions and future developments

This study performed the first intercomparison and model evaluation in Latin America with interesting and insightful findings

for the region. Several challenges were faced and partially overcome. In addition to the intricate topography and diverse465

meteorological conditions of cities in LAC, some of the individual models were still in an early phase of regional modeling.

Limitations in model inputs exist on anthropogenic emissions, spatial and temporal profiles, land use and vegetation types, as

well as other data that is relevant for the calculation of biogenic fluxes and wildfires. The latter emission source is crucial for

the region, and more relevant under a climate change scenario, for which an adequate parametrization of biomass burning is

necessary. The models´ boundary condition can be improved, which may be relevant for longer-lived species such as CO and470

ozone.

Despite the above limitations and the coarse resolution (0.2°x 0.2°) adopted in this work, most models could reproduce air

quality observations with the best performance observed for nitrogen dioxide in México City and São Paulo. These enormous

urban areas (> 3500 km2) outperformed Bogotá and Santiago, cities between 500 and 1000 km2. This suggests an accurate

portrayal of the temporal and spatial variability in large cities and the need for a finer resolution in smaller cities. During475

wintertime simulations in Santiago, some pollutants displayed large discrepancies with observations, especially for NO2, O3

and PM2.5. In Bogotá, all models systematically underestimate CO and NO2. The discrepancies in NO2 had a corresponding

impact in the overestimation of O3. Most models overestimate SO2 concentrations in all cities, except Bogotá, due to the high

sulfur content in solid and liquid fuels attributed to the region.

Global and regional models provided different results. The SILAM model showed a better performance for NO2 than CAMS.480

In Bogotá, SILAM presents low bias for ozone concentrations, while CAMS severely underestimated this pollutant. This

underestimation was also observed in São Paulo and Santiago. Regional models that have been previously implemented in

the cities showed lower bias, such as CHIMERE in Santiago for NO2 and WRF-Chem in São Paulo for NO2 and O3. Global

models show an overestimation of biomass burning emissions, which may explain the overestimation of PM2.5 in São Paulo.

The ensemble median offered a promising avenue for establishing a regional analysis and forecasting system. While certain485

individual models outperformed the ensemble for specific pollutants and cities, the ensemble provides a useful tool to mitigate

the extreme over or underestimation of certain models. In São Paulo, the ensemble median performed better than any model

for NO2. In México City, the creation of the ensemble softened large overestimation of PM2.5 by global models. In Santiago

in the summer, the median ensemble shows one of the lowest biases (MNBIAS) and errors (FGE, RMSE). In México City,

the ensemble median for O3 performed better than all individual models. In the summer in Santiago, the median ensemble490

outperformed individual models for CO.

This study aimed to assemble a multi-scale ensemble chain as a first step towards an Air Quality forecasting system for Latin

America. Before such a prototype can be operative, a thorough analysis of one entire annual cycle with sufficient spin-up time
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should be conducted. This work only looked at two months (one in summer and one in winter). More AQ observations should

also be included for model calibration and evaluation. For 2015, only eight cities in LAC had data that complied with quality495

and completeness criteria. In recent years, more AQ networks have been implemented and data is more publicly available.

Code and data availability. All model data analyzed in the intercomparison is archived at https://doi.org/10.5281/zenodo.10934490. The
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Appendix A: Evaluation scores715
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Table A1. Metrics used for model evaluation.

With Od and md being the observation and modeled value for each day. m the mean of the models for each month and O the mean of the observations for each city. σm the

standard deviation for each model. N is the number of model-observation pairs available for each month.
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Table A2. NO2 model evaluation scores (January / July)

*Median: ensemble based on the median value of the models; CAMS: Copernicus Atmosphere Monitoring Service’s (CAMS); MPI: WRF-Chem executed by MPIM; EMEP:

European Monitoring and Evaluation Programme; CHIM: CHIMERE transport model; SILAM: System for Integrated modeling of Atmospheric composition; USP: WRF-Chem

executed by University of São Paulo.

Table A3. O3 model evaluation scores (January / July)

*Median: ensemble based on the median value of the models; CAMS: Copernicus Atmosphere Monitoring Service’s (CAMS); MPI: WRF-Chem executed by MPIM; EMEP:

European Monitoring and Evaluation Programme; CHIM: CHIMERE transport model; SILAM: System for Integrated modeling of Atmospheric composition; USP: WRF-Chem

executed by University of São Paulo.
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Table A4. CO model evaluation scores (January / July)

*Median: ensemble based on the median value of the models; CAMS: Copernicus Atmosphere Monitoring Service’s (CAMS); MPI: WRF-Chem executed by MPIM; EMEP:

European Monitoring and Evaluation Programme; CHIM: CHIMERE transport model; SILAM: System for Integrated modeling of Atmospheric composition; USP: WRF-Chem

executed by University of São Paulo.

Table A5. SO2 model evaluation scores (January / July)

*Median: ensemble based on the median value of the models; CAMS: Copernicus Atmosphere Monitoring Service’s (CAMS); MPI: WRF-Chem executed by MPIM; EMEP:

European Monitoring and Evaluation Programme; CHIM: CHIMERE transport model; SILAM: System for Integrated modeling of Atmospheric composition; USP: WRF-Chem

executed by University of São Paulo.
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Table A6. PM2.5 model evaluation scores (January / July)

*Median: ensemble based on the median value of the models; CAMS: Copernicus Atmosphere Monitoring Service’s (CAMS); MPI: WRF-Chem executed by MPIM; EMEP:

European Monitoring and Evaluation Programme; CHIM: CHIMERE transport model; SILAM: System for Integrated modeling of Atmospheric composition; USP: WRF-Chem

executed by University of São Paulo.

Table A7. PM10 model evaluation scores (January / July)

ENSEMBLE: ensemble based on the median value of the models; CAMS: Copernicus Atmosphere Monitoring Service’s (CAMS); MPI: WRF-Chem executed by MPIM; EMEP:

European Monitoring and Evaluation Programme; CHIM: CHIMERE transport model; SILAM: System for Integrated modeling of Atmospheric composition; USP: WRF-Chem

executed by University of São Paulo.
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Table A8. Coefficient of Variation (CV) per city during January and July
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Appendix B: Air quality observations

Table B1. Stations availability and location for México.
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Table B2. Stations availability and location for Bogotá
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Table B3. Stations availability and location for Santiago
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Table B4. Stations availability and location for São Paulo
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Appendix C: Particular hourly simulations

Figure C1. Hourly CO simulations in São Paulo for January and July of 2015

Figure C2. Hourly PM2.5 simulations in São Paulo for January and July of 2015

Figure C3. Hourly PM2.5 simulations in México City for January and July of 2015
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Appendix D: Simulation of all models

Figure D1. NO2 simulations of January 2015 for all models

Figure D2. NO2 simulations of July 2015 for all models

41

https://doi.org/10.5194/egusphere-2024-815
Preprint. Discussion started: 25 April 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure D3. O3 simulations of January 2015 for all models

Figure D4. O3 simulations of July 2015 for all models
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Figure D5. CO simulations of January 2015 for all models

Figure D6. CO simulations of July 2015 for all models
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Figure D7. SO2 simulations of January 2015 for all models

Figure D8. SO2 simulations of July 2015 for all models
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Figure D9. PM2.5 simulations of January 2015 for all models

Figure D10. PM2.5 simulations of July 2015 for all models

45

https://doi.org/10.5194/egusphere-2024-815
Preprint. Discussion started: 25 April 2024
c© Author(s) 2024. CC BY 4.0 License.



Appendix E: Model deviations

Figure E1. Median absolute deviation of the models with respect to the ensemble for PM10, PM2.5, O3, CO, SO2 and NO2 in LAC for

January and July 2015
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Figure E2. Standard deviation of the models with respect to their mean for PM10, PM2.5, O3, CO, SO2 and NO2 in LAC for January and

July 2015
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