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Abstract. A multi-scale modeling ensemble chain has been assembled as a first step towards an Air Quality analysis and

forecasting (AQF) system for Latin America. Two global and three regional models were tested and compared in retrospective

mode over a shared domain (120W-28W, 60S-30N) for the months of January and July 2015. The objective of this experiment

was to understand their performance and characterize their errors. Observations from local air quality monitoring networks

in Colombia, Chile, Brazil, México, Ecuador and Perú were used for model evaluation. The models generally agreed with5

observations in large cities such as México City and São Paulo, whereas representing smaller urban areas, such as Bogotá

and Santiago, was more challenging. For instance, in Santiago during wintertime, the simulations showed large discrepancies

with observations. No single model demonstrated superior performance over others or among pollutants and sites available. In

general, ozone and NO2 exhibited the lowest bias and errors, especially in São Paulo and Mexico City. For SO2, the bias and

error were close to 200%, except for Bogotá. The ensemble, created from the median value of all models, was evaluated as well.10

In some cases, the ensemble outperformed the individual models and mitigated extreme over- or underestimation. However,

more research is needed before concluding that the ensemble is the path for an AQF system in Latin America. This study

identified certain limitations in the models and global emissions inventories, which should be addressed with the involvement

and experience of local researchers.
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1 Introduction15

Latin America has some of the most populated urban areas in the world, notably, México City and São Paulo have populations

exceeding 20 million, while Lima, Bogotá, Rio de Janeiro, and Buenos Aires have more than 10 million inhabitants each

(Nations, 2018). These densely populated regions often experience air pollution events due to large emission sources and due

to atmospheric conditions. Other major cities, such as Santiago and Medellin, with a population of ∼7 and ∼3.5 million,

respectively, are also affected by poor air quality. This urban air pollution not only has long lasting effects on the health of the20

population but also has a significant negative impact on the environment, and possibly the regional climate (Busch et al., 2023;

Gouveia et al., 2018; Molina et al., 2015; Rodríguez-Villamizar et al., 2018; Romieu et al., 2012). Latin America could greatly

benefit from an air quality forecasting (AFC) system that informs the public about air pollution episodes and supports policy

actions.

To better understand the causes of air pollution events in Latin America, it’s important to consider the local emission sources.25

In addition to the usual urban pollution sources (e.g., industrial facilities, residential heating, energy production, and transporta-

tion sectors), plumes from biomass burning and long-range dust transport can occasionally reach major cities. In northern South

America, increased pollution levels in the dry season have been associated with biomass burning (Ballesteros-González et al.,

2020; Casallas et al., 2023; Mendez-Espinosa et al., 2019) and dust from the Sahara Desert (Mendez-Espinosa et al., 2020).

The latter source also affects the Caribbean and central México in early spring (Kramer and Kirtman, 2021; Ramírez-Romero30

et al., 2021). Also, in the context of climate and land-use change, wildfires are a recurrent phenomenon in southern South

America (Resquin et al., 2018; de la Barrera et al., 2018; Sarricolea et al., 2020). The Amazon is the largest forest in the world

and a significant source of biogenic volatile organic compounds (BVOCs), precursors of CO, ozone and secondary aerosols

(Nascimento et al., 2022; Zimmerman et al., 1988).

Air quality management in Latin America and the Caribbean (LAC) has been traditionally focused on surveillance and35

building emission inventories (Franco et al., 2019). Modeling activities for LAC are less frequent than North America, Europe,

or Asia, mainly due to limited computing resources and scarce information of emission sources. Of more than 30 regional

AQF systems identified worldwide only one exists in Latin America (Zhang et al., 2012). In addition to the restrictions already

mentioned, LAC has other challenges: complex terrain where cities are situated in the valleys and canyons of the Andes, varying

meteorological conditions due to their proximity to mountains and coastlines, deep convection in the tropics, extensive biomass40

burning in the Orinoco and Amazonian basins, and the presence of densely populated megacities and urban areas, among others.

Despite limitations for applying air quality models in LAC, regional models have been successfully implemented since 2000.

The coupled Aerosol and Tracer Transport model to the Brazilian development of the Regional Atmospheric Modeling

System (CCATT-BRAMS) was developed in the region (Longo et al., 2013) to investigate the impact of the Amazonian

wildfires on air quality in major Brazilian cities (Pereira et al., 2011; Freitas et al., 2011). The North American Community45

Multiscale Air Quality Model (CMAQ), coupled with the Weather Research and Forecasting (WRF) meteorological model,

has been used in Colombia and Brazil to predict pollutant concentrations and assess reduction strategies (Albuquerque et al.,

2019; East et al., 2021; Pérez-Peña et al., 2017; Nedbor-Gross et al., 2018; Pachón et al., 2018). The WRF model coupled with
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Chemistry (WRF-Chem) online has been actively used to study the impact of regional sources on air quality in urban centers

across Colombia (Ballesteros-González et al., 2020, 2022; Casallas et al., 2024; González et al., 2018; Mendez-Espinosa et al.,50

2019), Chile (Saide et al., 2016) and São Paulo (Gavidia-Calderón et al., 2024). CHIMERE (Menut et al., 2013) and MATCH

(Andersson et al., 2015) have been applied in Chile to assess pollutant chemical transformation and dispersion as well as

emission reduction strategies (Gallardo et al., 2002; Lapere, 2018; Lapere et al., 2021; Mailler et al., 2017). Additionally,

CAMS reanalysis data has been compared against air quality observations, observing well-captured temporal trends for PM10,

PM2.5 and SO2 but not for NOX (Casallas et al., 2024).55

This work conducts the first model inter-comparison effort and ensemble construction for Latin America, which was assem-

bled under the Prediction of Air Pollutants in Latin America (PAPILA) project (https://papila-h2020.eu/papila). The aim of

PAPILA was to develop an AQF system for the region with increasing capabilities in major cities. This objective is in line with

the WMO GAFIS initiative that supports the implementation of AQF systems, especially in countries and regions where they

do not exist, such as Africa and South America (WMO, 2022) This manuscript presents a retrospective (hindcast) analysis and60

it’s organized as follows: Sect. 2 presents model descriptions, emission inventories utilized in the models, and observations

employed for model evaluation. In Sect. 3 we analyze the model performance and conduct inter-comparisons for each pollu-

tant (NO2, O3, CO, SO2, PM2.5). We also discuss the season variability of predictions and the analysis of large vs small urban

areas. Finally, Sect. 4 summarizes our findings and outlines directions for future development.

2 Methodology65

The model inter-comparison and construction of the ensemble required relevant activities, such as: the execution of global and

regional models in a common domain, harmonization of the model output, ensemble construction, collection of air quality

observations, analysis of temporal and spatial variability, and model evaluation.

2.1 Description of the models and modeling set-up

For the model inter-comparison, two global models (CAMS and SILAM) and three regional models (CHIMERE, WRF-Chem,70

EMEP MSC-W) were selected based on the expertise of the research groups working on the PAPILA project (Table 1). WRF-

Chem was implemented by two different groups, the Max Planck Institute for Meteorology (MPIM) in Germany and the

University of São Paulo (USP) in Brazil, with different set-ups. The simulations analyzed hereby correspond to early simulation

results that do not represent the best performance of each model in the LAC region or over individual urban areas. The different

models are briefly described in the following paragraphs.75

The Copernicus Atmosphere Monitoring Service (CAMS) provides state-of-the-art global atmospheric composition data

based on the IFS (Integrated Forecasting System) model of the European Centre for Medium-Range Weather Forecasts

(ECMWF) (Inness et al., 2019). The chemical mechanism of IFS is an extended version of the Carbon Bond 2005 (CB05)

and complements the MACC aerosol module (Flemming et al., 2017; Morcrette et al., 2009). The CAMS reanalysis data used

for this project is a combination of satellite observations of atmospheric composition and the IFS modeling setup. Anthro-80
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Table 1. Description of the models included in the ensemble.

Abbreviations: FMI – Finnish Meteorological Institute, ECMWF – European Center for Weather and Modeling Forecast, LMD – Laboratoire de Météorologie Dynamique, MPIM

– Max Planck Institute for Meteorology, UCL – University of Chile, USP – University of São Paulo

pogenic emissions from the MACC/CityZen (MACCity) inventory (Granier et al., 2011) and biomass burning emissions from

the Global Fire Assimilation System GFASv1.2 (Kaiser et al., 2012) were used in the simulations (Table 1). The biogenic emis-

sions were simulated off-line by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.1 model

(Guenther et al., 2006) using an offline emission inventory (ECCAD, 2021). CAMS has been extensively evaluated against

ozone sondings, aircraft profiles, surface observations, and global satellite retrievals (Flemming et al., 2015).85

The system for Integrated modelling of Atmospheric composition (SILAM, http://silam.fmi.fi) is a chemical transport model

for global-to-local simulations of atmospheric composition and air quality developed at Finish Meteorological Institute (FMI)

(Sofiev, 2002; Kouznetsov and Sofiev, 2012; Sofiev et al., 2010, 2006, 2015). Briefly, SILAM employs the CBM-IV mechanism

for gas-phase chemistry (Gery et al., 1989). For further details on the model characteristics, refer to (METEO-FRANCE, 2020).

For this work, the SILAM simulations were driven by the meteorological IFS model of ECMWF. Anthropogenic emissions90

were adopted from the CAMS global emission inventory v2.1, whereas the biomass burning emissions were generated by the

Integrated Monitoring and Modeling System for Wildland fires (IS4FIRES) (http://is4fires.fmi.fi, last access: 03 July 2024),

(Sofiev et al., 2009; Soares and Sofiev, 2014). The biogenic emissions were simulated off-line by the MEGAN v2.1 model

(Guenther et al., 2006), particularly, isoprene and monoterpene emissions computed for the year 2010, as found on the MEGAN
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website (Table 1). The model has been extensively evaluated in numerous international retrospective studies (Marécal et al.,95

2015; Kukkonen et al., 2012; Blechschmidt et al., 2020; Petersen et al., 2019) and real-time operational applications. SILAM

is included in the regional European forecasting system provided by CAMS together with CHIMERE, EMEP MSC-W and

eight other models (Colette et al., 2020).

CHIMERE is a Eulerian chemistry-transport model (CTM). It’s able to perform simulations from urban to hemispheric

scale (Lapere, 2018; Lapere et al., 2021; Mailler et al., 2017; Menut et al., 2021). The model can be used online (with WRF100

only) or offline (with several meteorological models). The model characteristics are published elsewhere (METEO-FRANCE,

2020). For this study, the meteorological forcing is the IFS global simulation provided by ECMWF. The biogenic emissions

are online calculated using the MEGAN v2.1 model (Guenther et al., 2006) using the 30s horizontal resolution database. Fire

emissions are those of CAMS (Kaiser et al., 2012) and reformatted for CHIMERE using the dedicated preprocessor (Menut

et al., 2021). The mineral dust is calculated online using the (Alfaro and Gomes, 2001) scheme and the sea-salt emissions105

are also calculated online using the (Monahan, 1986) scheme. NOx by lightning are calculated using the scheme described in

(Menut et al., 2020). CHIMERE is used for analysis and forecast in tens of countries around the world and at various spatial

scales, including the CAMS forecast. More specifically for Latin-America, it was used for several studies about anthropogenic

emissions, deposition of black carbon on snow, indirect effects and impact of megafires fires on clouds formation (Lapere et al.,

2021; Mailler et al., 2017; Lapere, 2018). For this exercise, CHIMERE were run for the 31 days of January and July of 2015,110

however due to problems in the output files 15 days were missing (5 days from January 14th to 18th and 10 days from July

11th to 19th and July 9th).

The EMEP MSC-W model (‘EMEP model’ hereafter) is an offline chemical transport model developed at the Norwegian

Meteorological Institute (MET Norway). It’s used to simulate photo-oxidants as well as organic and inorganic aerosols in

scales ranging from local to global scales (Simpson et al., 2012). Details regarding the model characteristics can be found115

in (METEO-FRANCE, 2020). For this study the model was driven by meteorological data from the IFS model of ECMWF.

Gas phase chemistry from the “EMEP scheme”, comprising 70 species and 140 reactions (Andersson-Sköld and Simpson,

1999; Simpson et al., 2012), inorganics from the MARS equilibrium module (Binkowski and Shankar, 1995) and organics

from the CBM-Z mechanism (Zaveri and Peters, 1999). Emissions from forest and vegetation fires are taken from the Fire

INventory from NCAR (FINN v1.0) (Wiedinmyer et al., 2011). Biogenic emissions of isoprene and (if required) monoterpenes120

are calculated in the model for every grid-cell (Simpson et al., 2012). The EMEP model has for several decades been the main

tool for underpinning air quality policies under the UNECE convention on long-range transboundary air pollution. However,

it should be noted that the runs for this study were the very first EMEP model simulations ever conducted on a regional scale

for LAC and should thus be considered only as a first demonstration of model capabilities. For PAPILA, the EMEP model was

run by the modeling team at the University of Chile in Santiago with some support by MET Norway.125

The WRF-Chem is the Weather Research and Forecasting (WRF) model coupled with Chemistry, developed at the National

Center for Atmospheric Research (NCAR) with the purpose of simulating urban- to regional-scale fields of trace gases and

particulates. The air quality and meteorological components share the same transport and physics scheme, as well as horizontal

and vertical grid (Fast et al., 2006; Grell et al., 2005). The MPIM WRF-Chem uses version 3.6.1 to simulate meteorology

5



and chemistry simultaneously online in South America at ∼20 km horizontal resolution and 36 vertical levels extending130

from the surface to 21 km altitude. The gas-phase chemistry is represented by the Model for Ozone and Related Chemical

Tracers (MOZART-4) chemical scheme (Emmons et al., 2010). The Goddard Chemistry Aerosol Radiation and Transport

(GOCART) bulk aerosol module coupled with MOZART is used in this study to consider the aerosol processes (Chin et al.,

2002; Ginoux et al., 2001). Boundary and initial conditions for the meteorology were set up from GFS, and for the chemical

species concentrations from CAM-Chem. The anthropogenic emissions were from CAMS-GLOB-ANT v4.2, which consists135

of 0.1°x 0.1°grid maps of several species including CO, SO2, NO, NMVOC, NH3, BC and OC. Daily varying emissions of

trace species from biomass burning were taken from the (FINN v1.5) dataset (Wiedinmyer et al., 2011). Biogenic emissions of

trace species from terrestrial ecosystems are calculated online using the MEGAN model v2.04 (Guenther et al., 2006). Further

details on the MPIM WRF-chem model settings can be found in (Bouarar et al., 2019).

The WRF-Chem run by USP (version 3.9.1) uses similar characteristics as previously described with a horizontal resolution140

∼22 km and 35 vertical layers. Some differences from the MPIM configuration are the version of global emissions CAMS-

GLOB-ANT v5.3 (ECCAD, 2020), the speciation of the chemical boundary condition from the CAM-Chem model (Buchholz

et al., 2019; Emmons et al., 2010) and the speciation of FINN v1.5 emissions which are suitable for simulation over São Paulo.

For this exercise, WRF-Chem did not include Mexico City in the modeling domain.

CHIMERE, IFS, EMEP, WRF-Chem, LOTOS-EUROS and SILAM models are used in an ensemble mode to configure the145

MarcoPolo-Panda prediction system in Asia (Brasseur et al., 2019; Petersen et al., 2019) It has been observed that, under spe-

cific circumstances, a model ensemble can outperform individual models, demonstrating the potential benefits of this approach.

With the desire to replicate the experience in Latin America, the selected models were applied in a common domain, defined

by the south-eastern corner at 119°54’W 59°54’S, and the north-eastern corner at 28°6’W 29°54’N. The models were run at a

spatial resolution of ∼0.2°x 0.2°(∼20x20km). Input meteorology and emissions were up to the modeling group (Table 1). The150

simulation period covers January (southern hemisphere summer) and July (southern hemisphere winter) of 2015.

2.2 Model Evaluation

The performance of the models was assessed by comparing the simulated concentrations with the average of the observations

for each available city, pollutant, and considered period. The observation’s average was constructed by computing the arith-

metic mean of all air quality stations available in the network within the city’s polygon. On the other hand, the simulated155

concentrations for the models were estimated as the average of the models’ closest grid point to the location of each station

that is within the city’s polygon for every city and pollutant considered in this study. This results in a weighted average of the

model where the weight is given by the number of stations that measure the pollutant closest to each grid point, resulting in

the same geographical sampling for the observations and the models, thus reducing any potential station’s sampling bias to the

best of our abilities. This approach was chosen with the objective of assessing the model performance in cities, rather than for160

each air quality station separately. It’s outside the scope of this work to conduct an intra-urban variability study of the model

performance given the chosen resolution of 0.2 degrees. The model evaluation was focused on nitrogen dioxide (NO2), ozone
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(O3), carbon monoxide (CO), sulphur dioxide (SO2), and particulate matter less than 2.5 micrometers (PM2.5) and less than

10 micrometers (PM10).

For each period, pollutant and city, the model evaluation included the following metrics: Model/Observations ratio, mean bias165

(BIAS), modified normalized bias (MNBIAS), root mean square error (RMSE), fractional gross error (FGE) and correlation

coefficient (R). The formulas were replicated from the MarcoPolo-Panda project (Petersen et al., 2019) and are presented in

Table A1. These evaluation metrics were computed for all models and the ensemble.

2.3 Air quality monitoring networks in Latin America

Several air quality monitoring networks (AQMN) are available throughout Latin America, especially in major cities. However,170

worldwide access to the datasets can be difficult due to language barriers and the lack of a centralized platform. A compre-

hensive list of AQMN in Latin America was assembled for the PAPILA project (https://papila-h2020.eu/observations). For the

year 2015, we collected air quality data for 12 cities in México, Colombia, Ecuador, Perú, Chile, Brazil, and Uruguay. Only

stations with a minimum of 75% data completeness were considered when calculating the city average of the observations,

resulting in eight cities with enough data to use for this study. This data completeness requirement considers a minimum of175

75% of days available for each period, as well as a minimum of 75% of hourly data to construct their daily average. We focus

in this study on the four major cities (from North to South): México City, Bogotá, São Paulo and Santiago (Figure 1). However,

data of all available cities were used in the model evaluation (Tables B1 through B8).

3 Results

Simulated concentrations of all pollutants from all models were compared against observations from every city and for both180

periods (January and July) in 2015. In this section, we present results from the model evaluation, the spatial and temporal

variability of simulate fields and the impact of large versus small urban areas in the model inter-comparison.

3.1 Model evaluation

The following results are presented for every pollutant: analysis of observations from AQMN, simulated concentrations by

the models, comparison of evaluation metrics, discussion of model performance including the ensemble and analysis of model185

variation.

3.1.1 Nitrogen dioxide - NO2

Observations

The number of stations per city recording NO2 during January and July of 2015 varies between 7 in Bogotá and 24 in Mexico

City (Appendix B). The highest daily average concentration of NO2 is observed in Santiago during winter at around 30 ppb190

(Figure 2). This can be attributed to adverse meteorological conditions and emissions from transportation and residential

combustion in the surrounding municipalities (Mazzeo et al., 2018; Saide et al., 2016) whereas in the summer NO2 levels fall

7
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Figure 1. Location of air quality stations in major Latin American cities (Santiago, Bogotá, México City, São Paulo) alongside the city’s

definition for computing the modeled city average. © OpenStreetMap contributors 2024. Distributed under the Open Data Commons Open

Database License (ODbL) v1.0.
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Figure 2. Observed (black) and simulated NO2 daily mean concentrations in Santiago, (top) Bogotá, México City, São Paulo (bottom) for

January (left) and July (right) 2015.

to 11 ppb. The second largest values are shown in México City and São Paulo with a daily average NO2 levels of 27 and 20

ppb respectively, due to the heavy use of fossil fuels in transportation and power generation. The lowest levels of NO2 are

measured in Bogotá with 16.4 ppb on average.195

Model performance

In Bogotá and Santiago, NO2 is underestimated by the ensemble members (Figure 2). In Santiago, the mean of the models

is 10.3 ppb in summer and 22.1 ppb in winter, lower than the mean of the observations. Similarly, in Bogotá the mean of the

modeled values is 6.6 ppb, much lower than observations. In contrast, in São Paulo and México City, the models both over and

under predict the ambient concentrations and the average of the modeled fields (23.6 ppb and 30.3 ppb respectively) are in the200

same order of magnitude of observations.
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São Paulo and México City exhibit the lowest MNBIAS and FGE for NO2 (Table A2).The correlation between the models

and observations hovers around 0.7, which is larger than the goal benchmark proposed for this pollutant (r ≥ 0.6) (Zhai et al.,

2024).

In Santiago, the MNBIAS is mostly negative during both seasons except the SILAM and EMEP models that resulted in205

a positive bias. The degree of which the models are underestimating the observations is notably higher in the winter than in

summer and with a larger FGE (Table A2). The correlation between models and observations in Santiago is larger in summer

than in winter, with some models achieving the criteria benchmark (r > 0.5, (Zhai et al., 2024). In Bogotá, the MNBIAS

are large and consistently negative and the FGE varies between 50% and 156% (Table A2). Despite these lower scores, the

correlation between observations and models are moderate around 0.6 in January meeting criteria benchmarks and demonstrate210

that certain models can successfully replicate the temporal variations but not the magnitude of the pollutant.

The adequate performance in São Paulo and México City may be attributed to an accurate portrayal of the temporal and

spatial variability that is achieved in large urban areas like these (>3500 km2) which encompass at least nine model cells (20

kmx20 km). The lower simulated NO2 levels in Bogotá likely stems from an underestimation of emissions. A study by (Rojas

et al., 2023) utilized local data to estimate on-road emissions in Colombia and revealed substantial underestimation of NOX215

emissions by global inventories such as EDGAR 6.1, CAMS, and the Community Emissions Data System (CEDS). Their

findings recommend adjustments to the emission factors used for NOX, particularly for heavy-duty and passenger vehicles,

followed by a recalculation of the resulting emissions. The underestimation of NO2 can also be noted in other cities such as

Medellin, Guadalajara, Lima, and Quito (Figure 8). These cities, along with Bogotá, possess urban areas ranging from 235 to

890 km2 and are confined within one or two cells of the models (20km x 20km). It’s possible that the average of observations220

is heavily influenced by local sources, in which case a finer modeling resolution is required to accurately capture the spatial

variability of air pollution.

Model intercomparison

For NO2, CAMS underestimates the observations in the four cities whereas SILAM underestimates this pollutant in Bogotá,

Mexico City and São Paulo (only in July) and overestimates the observations in Santiago and in San Paulo (in January). CAMS225

displayed larger MNBIAS and FGE than SILAM. In general, SILAM reproduces at least 80% of the NO2 levels, with the

exception in Bogotá where only 30% is simulated. The correlation coefficient is better for SILAM (R ∼0.6) than for CAMS

(R ∼0.3).

The results from regional models are very diverse. In general, WRF-MPI, CHIMERE and EMEP have lower values of

MNBIAS and FGE for NO2 in São Paulo and México City (Table A2). In São Paulo, except for WRF-USP, regional models230

tend to overestimate NO2 with MNBIAS between 20% and 70%. WRF-USP reproduces about 76% of NO2 concentrations. In

México City, the tendency of regional models is to overestimate the NO2 levels (MNBIAS: 10 to 75%). In Santiago, CHIMERE

achieves the lowest MNBIAS (-2%) in January but not in July (-119%). In Bogotá, the MNBIAS in regional models remains

consistently negative.

From Figure 2 is visible the model variation. In Santiago in winter the range of NO2 values is 48 ppb, which corresponds to235

a coefficient of variation (C.V.) of 71% (Table A8), this contrasts with the range in summer of 15 ppb (C.V.=49%). Other large
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variations are observed in México City in July (range 54 ppb, C.V. 57%) and São Paulo (range 32 ppb, C.V. 46 to 58%). It’s

interesting to note the case of Bogotá where all models consistently underestimate NO2, but the model variation is the lowest

(8ppm with C.V. 39 and 56%).

Median ensemble performance240

The median ensemble underestimates NO2 concentrations in Bogotá and in a lesser extent in Santiago. This is consistent with

the underestimation trend by most of the models. The ensemble in these two cities has some of the lowest MNBIAS, FGE

and R, but not always better than individual models (Table A2). On the contrary, in Mexico City and São Paulo, the ensemble

median outperforms the models for NO2. In summer and winter, the ensemble presents the lowest FGE in both cities. The

correlation coefficient range between 0.5 and 0.8 within the criteria benchmark R>0.5 (Zhai et al., 2024). The MNBIAS are245

also the lowest (-2.9 to 17.7%).

3.1.2 Ozone - O3

Observations

The number of stations per city recording O3 during January and July of 2015 varies between 9 in Santiago and 29 in Mexico

City (Appendix B). The highest observed ozone concentration was in México City in July with an average of 31 ppb. However,250

this value is significantly lower than the surface ozone concentrations reported in the MAM (March-April-May) season with

values larger than 70 ppb (Barrett and Raga, 2016; Silva-Quiroz et al., 2019). The second largest ozone value occurs in São

Paulo during January with daily averages of 24 ppb. This is probably due to an abundance of ozone precursors, in particular,

volatile organic compounds (VOC) from the use of biofuels in the transportation sector (de Fatima Andrade et al., 2017;

Gavidia-Calderón et al., 2024) and biogenic VOCS (Martins et al., 2006). Santiago experiences a marked seasonal cycle of255

ozone concentrations with summer values of approximately 22 ppb and winter concentrations around 3.6 ppb. This seasonal

difference has been observed in other studies (Seguel et al., 2024). In Bogotá, ozone concentrations are the lowest and below

13 ppb.

Model performance

In the four cities, simulations of O3 are mainly overestimated (Figure 3). In the summer in São Paulo and México City,260

simulations can reach up to 100 ppb, which is significantly above the observations. In Santiago in the winter, the mean of

models (∼ 20 ppb) is significantly larger than observations, indicating that the models have difficulty reproducing low values

of this secondary pollutant. In the summer, ozone estimates are much closer to observations. Similarly, in Bogotá, models

estimate an average of 17 ppb which is in the same order of magnitude as the observations.

The overestimation of O3 in Santiago might be related to the underestimation of NO2 previously described and the inade-265

quate titration of ozone. Ozone formation in Santiago has been found VOC-limited (Seguel et al., 2020). This situation is also

observed in Bogotá where most models overestimate O3 with MNBIAS between 25% and 80% (Table A3). In contrast, in

Mexico and São Paulo, the models that overestimate NO2 are also overestimating O3. This complex situation is explained by

the non-linearities in the formation of ozone (Grewe, 2004). In general, correlation coefficients for O3 are very low (R < 0.3),

especially in São Paulo and México City, indicating the challenge to adequately reproduce the spatial and time variability of270
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Figure 3. Observed (black) and simulated O3 daily mean concentrations in Santiago, (top) Bogotá, México City, São Paulo (bottom) for

January (left) and July (right) 2015.

this pollutant. Only in Santiago in January, the criteria benchmark for O3 (R > 0.5) is achieved by some models (Emery et al.,

2017).

Model intercomparison

In the case of global models, CAMS underestimates O3 in the four cities except in Santiago during winter. Additionally,

CAMS tends to have low correlation levels along with large bias and errors (Table A3). SILAM displays lower bias and errors275

compared to CAMS. However, just like with CAMS, SILAM significantly overestimates O3 levels in Santiago during the

winter. In Bogotá, SILAM underestimates O3 to a lesser extent than CAMS, with a larger FGE in July (74%) than in January

(22%).

In São Paulo, daytime concentrations of ozone are generally overestimated by most models (except for CAMS). The largest

overprediction of O3 (MNBIAS from 30 to 90%) is associated with overestimation of NO2, especially for MPI, EMEP and280

CHIMERE models. For the models with NO2 levels in reasonable agreement with observations (SILAM, USP) the ozone
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overprediction is lower (MNBIAS <25%). Among the regional models, EMEP and WRF-MPI consistently overestimate O3

levels in all cities, with relatively high MNBIAS and FGE. In contrast, WRF-USP proves particularly suitable for São Paulo,

achieving some of the lowest FGE. CHIMERE also performs well in Santiago in the summer, likely owing to local adjustments

and parameterizations tailored to these specific cities.285

Figure 3 shows a relatively large model variation for ozone. The largest ozone dispersion is shown in México City in

summertime with a range of 62 ppb and a C.V. of 72% (Table A8). This wide variability is caused by the simulation of the

EMEP model (71 ppb) and CAMS (9.6 ppb), that represent the extreme cases of over and underestimation. In a similar manner,

in Bogotá, São Paulo and Santiago, the C.V. are 61%, 49% and 47% respectively, explained by the strong underestimation of

CAMS and severe overestimation by EMEP and WRF-MPI.290

Median ensemble performance

In Santiago in January, the median ensemble showed one of the lowest MNBIAS and FGE, surpassed only by CHIMERE

(Table A3), and achieved the goal benchmark for this pollutant (R>0.75) (Emery et al., 2017). In July, the overestimation of

ozone by most models impacts the performance of the ensemble, which also overestimates O3 concentrations. In Bogotá, the

ensemble has some of the best scores for NMBIAS and FGE and represents an intermediate value between all models. In295

São Paulo, in wintertime, the ensemble has superior metrics (MNBIAS -2%) compared to any individual model, while in

the summer the ensemble overestimates the observations as most models do. In México City, the ensemble median performs

better than all individual models with MNBIAS between 4% (summer) and 13% (winter) and FGE less than 32%. Similar to

the individual models, for most of the cases, the correlation coefficient for the ensemble does not meet any of the benchmarks

(Emery et al., 2017).300

3.1.3 Carbon monoxide - CO

Observations

The number of stations per city recording CO during January and July of 2015 varies between 7 in Bogotá and 24 in Mexico

City (Appendix B). CO levels are generally below 1.0 ppm for all cities (Figure 4). However, in Santiago during winter some

values surpass 1.5 ppm due to a combination of adverse meteorological conditions and emissions from the transportation sector305

and residential combustion, commonly employed for heating in neighboring municipalities (Saide et al., 2016; Gallardo et al.,

2012).

There is a slight increase of CO in São Paulo in July with respect to January, due to the atmospheric conditions where lower

winds and lower boundary layer increased primary pollutant concentration during winter. Additionally, biomass burning from

wildfires which begin in July and peak in August and September for the southern part of the Amazon rainforest can bring more310

CO (Marlier et al., 2020). Likewise, larger CO concentrations in Bogotá in January are part of the wildfire season in northern

South America lasting from the end of December until April (Mendez-Espinosa et al., 2019).

Model performance

Santiago records the largest simulated value of CO in winter with peak of 5.0 ppm (Figure 4). The second largest values are315
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Figure 4. Observed (black) and simulated CO daily mean concentrations in Santiago, (top) Bogotá, México City, São Paulo (bottom) for

January (left) and July (right) 2015.

observed in Mexico City with values around 3.0 ppm. In both cases, model estimates severely overestimate the observations

with some NMBIAS larger than 100% (Table A4). São Paulo displays intermediate values with an average CO of 0.5ppm, and

Bogotá has the lowest modeled values with an average of 0.27 ppm.

CO simulations in Santiago, São Paulo, and México City, are both over and underpredicting observations (Figure 4). How-

erver, in Santiago in winter only the SILAM model overpredicts CO values (MNBIAS 98%), the other models underpredict320

(MNBIAS between -152 and -1%). This situation could be explained by emissions, synoptic or the models’ simulation of the

boundary layer (Mazzeo et al., 2018). In Bogotá, all models consistently underestimate the CO with MNBIAS between -50

and -131% (Table A4). In January correlation coefficients for CO hover around 0.6 achieving benchmarks (R > 0.4) (Zhai

et al., 2024). This result demonstrates the model’s capability to reproduce the time variability of this pollutant in Bogotá, even

if the levels are under or overestimated. The same situation is observed in Mexico City and São Paulo, where goal (R>0.6) and325

criteria (R>0.4) benchmarks are often achieved (Zhai et al., 2024).
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The underestimation in Bogotá is similar to that observed for NO2, which we attributed to a shortfall in emissions. According

to the local inventory, CO emissions are predominantly attributed to mobile sources (99%), with motorcycles contributing to

45% of these emissions, automobiles accounting for 36%, and the remainder originating from other vehicles (SDA -Secretaria

Distrital de Ambiente, 2018). Notably, it has been identified that motorcycle emissions are underestimated in Colombia (Rojas330

et al., 2023). The significant rise in the number of motorcycles in the country and their declining condition is not accurately

reflected in global emission inventories, such as EDGAR 6.1.

Observed CO mixing ratios are also underestimated in cities such as Medellin, Guadalajara, Quito, and Lima (Figure 8),

which might be explained by the coarse resolution of the model not capturing the local characteristics. It’s possible that issues

with CO emissions in global inventories or excess of OH radicals in photochemistry also contribute to this trend. In addition,335

a major source of atmospheric CO is the oxidation of BVOCs (Worden et al., 2019), which are significantly underestimated in

the Southern Hemisphere (Zeng et al., 2015).

In São Paulo, five out of six models slightly underestimate CO with a relatively high correlation coefficient. The simulated

concentrations for daily values range from 0.1 to 2.0 ppm, similar to that found in other studies (Deroubaix et al., 2024).

Nevertheless, concentrations exceeding 1.2 ppm are simulated only for certain days (Jan. 13 and July. 30) and are probably due340

to wood burning (Figure C1).

Model intercomparison

Global models, particularly CAMS, tend to underestimate CO levels in Bogotá, São Paulo, and México City with MNBIAS

< -50%. In Santiago, CAMS adequately simulates CO levels with MNBIAS (< ± 2.5%) and FGE (<25%). The correlation

coefficient achieves the criteria benchmark (R > 0.4) proposed by (Zhai et al., 2024). SILAM underestimates CO in Bogotá345

(Model/Observations ∼0.6) and overestimates it in Santiago, while it performs relatively well in São Paulo and México City

(MNBIAS < 22%) and correlation coefficients meeting the criteria and goal benchmarks (R > 0.4 and R>0.6) proposed by

(Zhai et al., 2024).

When it comes to regional models, WRF-USP consistently underestimates CO levels with large bias (MNBIAS < -60%) and

errors (FGE > 60%). WRF-MPI has better performance especially in São Paulo and Mexico City (MNBIAS < ± 15%) and350

correlation coefficients within the goal benchmark (Zhai et al., 2024). EMEP and CHIMERE largely overestimate observations

in México City while in São Paulo they closely match observations. In Santiago, these models tend to overpredict CO in the

summer and underpredict it during the winter.

The largest model variation is observed in Santiago during wintertime with a range of 3.2 ppm and C.V. of 106% (Table

A8). México City also shows large variation in summer (C.V. 72%) and winter (C.V. 56%). Bogotá and São Paulo present less355

variation between model results.

Ensemble performance

In winter in Santiago and Bogotá in both periods the ensemble follows the underestimation pattern of all models (Table A4). In

São Paulo there are models with better performance than the ensemble, but the ensemble results are reasonable with MNBIAS

close to -15% and R approximately 0.7. In México City, the overestimation of CO by the EMEP and CHIMERE models360

(MNBIAS > 60%) is reduced in the ensemble (MNBIAS ∼15%).
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3.1.4 Sulfur dioxide - SO2

Observations

The number of stations per city recording SO2 during January and July of 2015 varies between 4 in Santiago and 26 in Mexico

City (Appendix B). The largest concentration of SO2 is observed in México City with values between 3.0 ppb (January) and365

4.4 ppb (July) due to volcanic emissions (de Foy et al., 2009) and the heavy consumption of coal in power generation and

cement production, especially in the proximity of the “Tula-Vito-Apasco” industrial area (SEMARNAT and INECC, 2020).

On the other hand, SO2 in Bogotá, Santiago and São Paulo are lower with concentrations ranging from 1.0 to 1.8 ppb (Figure 5).

Model performance370

The largest simulation is shown in México City with an average of 45 ppb SO2, followed by São Paulo, with a mean concentra-

tion of 8.5 ppb. In Santiago, the average SO2 value is 8.5ppb. The lowest modeled values are found in Bogotá with an average

of 0.97ppb (Table A5).

The models’ simulated SO2 exhibits significant discrepancies when compared to the observations, with severe overestimation

in Santiago, México City, and São Paulo (Figure 5), with MNBIAS reaching up to 190% and FGE up to 200% (Table A5). On375

the contrary, for Bogotá the predicted SO2 values are in reasonable alignment with the observations, except for the WRF-Chem

USP simulation, which drastically underestimates SO2 (MNBIAS -200%) (Table A5).

The overestimation of SO2 levels could stem from issues within global emission inventories. In fact, an overestimation of

SO2 emissions in CAMS was observed for Buenos Aires and Santiago when compared to the PAPILA inventory (Castesana

et al., 2022). These emissions primarily originate from the energy and industrial sectors, where the sulfur content in coal380

appears to be significantly contributing to this overestimation.

The good performance in Bogotá might be related to less SO2 emissions apportioned in the city. In fact, the vast majority

of SO2 emissions (∼90%) in Colombia originate from the industrial and energy production sectors (IDEAM, 2020). However,

these facilities are typically located outside major urban areas. Bogotá contributes only 1.5% of the total national SO2 emissions

(de Ambiente, 2018).385

Model intercomparison

CAMS and SILAM severely overestimate SO2 in México City, São Paulo and Santiago with MNBIAS and FGE larger than

100%. In Bogotá, both global models underestimate SO2 concentrations (MNBIAS from -56 to -80%) but with lower FGE (<

80%) than CAMS. In January, correlation coefficients met the criteria benchmark (R > 0.35) suggested by (Zhai et al., 2024).

The performance of regional models for SO2 is quite diverse. WRF-USP severely underestimates SO2 in all cities (MNBIAS390

close to -200%). In Santiago, México City and São Paulo the models overestimate SO2 in a similar fashion than global models.

In Bogotá, EMEP and WRF-MPI show the lowest MNBIAS (< 16%).

The largest model variation for SO2 is found in México City where the range of models is 200 ppb, and the C.V. is larger

than 150% (Table A8). In Santiago and São Paulo, the model variation is close to C.V. 95%. In Bogotá, the variation is the

lowest (C.V. ∼75%).395
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Figure 5. Observed (black) and simulated SO2 daily mean concentrations in Santiago, (top) Bogotá, México City, São Paulo (bottom) for

January (left) and July (right) 2015

Ensemble performance

In México City, Santiago and São Paulo, SO2 is overestimated by all models, except USP. Therefore, the median ensemble also

overestimates SO2 concentration and does not represent any improvement in the evaluation metrics (Table A5). In Bogotá, the

ensemble tends to underestimate the concentrations (MNBIAS ∼ -55%) to a lesser extent than individual models.

3.1.5 Fine particulate matter - PM2.5400

Observations

The number of stations per city recording PM2.5 during January and July of 2015 varies between 9 in Bogotá and 16 in Mexico

City (Appendix B). The largest PM2.5 concentrations are found in Santiago during the southern hemispheric winter with daily

values around 56 µgm−3. This can be attributed to adverse meteorological conditions and emissions from transportation and

residential combustion in the surrounding municipalities (Mazzeo et al., 2018; Saide et al., 2016). The second largest values405
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Figure 6. Observed (black) and simulated PM2.5 daily mean concentrations in Santiago, (top) Bogotá, México City, São Paulo (bottom) for

January (left) and July (right) 2015.

are shown in México City with an average of 23 µgm−3 due to local emission sources. In São Paulo, PM2.5 levels are larger

in July (19 µgm−3) than January (16 µgm−3), due to the impact of wildfires from the Amazon basis and sugarcane burning

(de Fatima Andrade et al., 2017). In Bogotá, PM2.5 concentrations are the lowest in July (13 µgm−3) due to the influence of

the trade winds (Pachón et al., 2018) but with larger values in January (19 µgm−3) due to biomass burning events and frequent

thermal inversions (Ramírez et al., 2018).410

Model performance

In Santiago in wintertime, the mean of the models is larger than observation whereas in summer the simulations are mostly

below observations. In Mexico City, simulated values are approximately double the observations. In São Paulo, PM2.5 is under

and overpredicted by the models. In Bogotá, most of the simulations are below the observations (Figure 6).

In Santiago, Bogotá, and México City, models over and underpredict PM2.5 (Table A6). In São Paulo, overestimation is415

observed in all models with exception WRF-USP and may be linked to an excess of fire emissions, as suggested by other
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studies (Deroubaix et al., 2024). The MNBIAS vary from 39% to 120% except for WRF-USP whose MNBIAS is negative

(Table A6). The correlation coefficients for PM2.5 are in some cases larger than the goal (R > 0.7) or criteria (R > 0.4)

benchmarks proposed by (Emery et al., 2017). It’s worth noting the case of México City in January and São Paulo in July,

where most models achieve the goal metric. In smaller urban areas like Medellin, Lima, and Quito (Figure 8), most models420

tend to underestimate observations, potentially due to the coarse resolution of the models.

Hourly simulations of PM2.5 are useful to understand the discrepancies between model and observations. In Figure C2, we

show the hourly data and model outputs. In São Paulo, the highest PM2.5 concentrations are simulated by SILAM in January

13 (> 320 µgm−3) and July 30 (> 400 µgm−3), which corresponds to days with high simulated CO values as well (Figure C1)

and may indicate an overestimation of biomass burning by the IS4FIRES module in SILAM. From Jan 15 to 30 there is also425

an excess of PM2.5 from SILAM.

In México City, the highest PM2.5 concentrations are simulated by the CAMS model with about 250 µgm−3 in January and

160 µgm−3 in July (Figure C3) which are severely overestimated. The large PM2.5 values are distributed in the whole period

rather than specific days and do not correspond with high CO concentrations to suspect the influence of fires. This situation

might indicate a local and continuous source of PM2.5.430

Model intercomparison

Both global models consistently overestimate PM2.5 in Santiago, São Paulo and México City, but they behave differently in

Bogotá. In Mexico City, CAMS has a greater overestimation than SILAM but in São Paulo and Santiago SILAM values are

larger (Figure 6). In Bogotá, CAMS overestimates PM2.5 (MNBIAS 37%) whereas SILAM underestimates it (MNBIAS

-85%). SILAM correlation coefficient meets the criteria benchmark suggested by (Emery et al., 2017).435

Among the regional models, EMEP shows the largest underestimation (MNBIAS < -110%) in all cites, except in São Paulo

where the model overestimates PM2.5, but within the criteria benchmark (MNBIAS < ±60%) (Boylan and Russell, 2006) and

with a correlation coefficient (R >0.4) that meets the criteria benchmark by (Emery et al., 2017) in July (Table A6). WRF-

USP heavily underestimates in Bogotá and Santiago, but performs well in São Paulo with the lowest errors. This difference

in behavior might be explained by a good adaptation of the model’s inputs to the city. The WRF-MPI model meets goal440

benchmarks for MNBIAS and FGE in Bogotá and México City.

The largest model variation is observed in México City and Santiago during wintertime with a C.V. greater than 100%

(Table A8). Santiago in summer and Bogotá present intermediate values (C.V. 70 to 80%), whereas São Paulo shows the least

dispersion between models (C.V. < 56%).

Ensemble performance445

Considering the large underestimation of most models in Bogotá and Santiago the ensemble displays less bias and errors than

some of the individual models (Table A6). In Mexico City, the ensemble outperforms models with a MNBIAS of -5% in

January and +30% in July, achieving the goal benchmark suggested by (Boylan and Russell, 2006), as well as the correlation

coefficient (R>0.8) in January. For São Paulo, all models tend to overestimate PM2.5, so it follows that the ensemble presents

the same behavior with MNBIAS > 67%. The correlation coefficient meets the criteria benchmark (R>0.4) in both periods450

(Emery et al., 2017).
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3.2 Spatial seasonal variability of predictions

For all pollutants, models and periods, maps of mean concentrations were constructed to visualize the spatial differences

(Appendix D). In order to summarize the results, other spatial plots were also prepared: median ensemble (Figure 7), median

absolute deviation (Figure E1), mean standard deviation (Figure E2). In Figure 7, pollution hot spots are clearly visible around455

major urban areas, in particular, São Paulo in the southeastern coast and México City in the northwestern part of the continent.

São Paulo and México City each cover a significant area, of approximately 3600 km2, spanning at least nine modeling cells

(400 km2 each). This extensive coverage offers some spatial representation of the physical and chemical atmospheric processes.

Other regions highlighted on the maps include Lima and Santiago on the Pacific coast, Buenos Aires along the southern shore

of the Río de la Plata, and cities in the northern part of South America like Quito, Bogotá, Medellín, and Caracas. However,460

most of these cities are encompassed by six or fewer modeling cells, limiting the potential for significant spatial variation.

The temporal seasonality can also be observed in Figure 7. The left and right panels show results for January and July,

corresponding to the southern hemisphere summer and winter respectively. For SO2, major hot spots appear in México City,

São Paulo and surrounding areas, and the Pacific coast in Chile. The SO2 concentrations are associated with with volcanic

emissions and the use of coal in power generation, cement production and copper smelting that are active in both summer and465

winter (Huneeus et al., 2006; SEMARNAT and INECC, 2020). Similarly, NO2 hotspots are common in major urban areas due

to transportation emissions.

In January, the median ensemble shows high concentrations of PM10 in several areas. In the south of Argentina, the con-

centrations are primarily due to dust from the Patagonia desertic areas (Gassó and Torres, 2019). In the north of Brazil and the

Guianas, increased PM10 levels are most likely associated with fires in the Orinoco basin during the dry season (Hernandez470

et al., 2019). In a similar manner, PM2.5 concentrations show an increase in the northern part of Brazil due to biomass burn-

ing. Large concentrations of PM2.5 in São Paulo in both January and July are probably caused by overestimation of fires, as

previously discussed.

During the austral summer, the southeastern part of Brazil (including São Paulo) displays large concentrations of ozone that

were simulated mainly by the regional models WRF-Chem, EMEP and the global SILAM (Figure D3). Several studies have475

shown the influence of urban plumes of NO2 into the Amazon rainforest, rich in BVOCs, with the consequent generation of

ozone (Rafee et al., 2017; Nascimento et al., 2022). In January, simulated O3 concentrations are also large in Mexico City

during winter, a situation that has been observed in other studies (Barrett and Raga, 2016). There is a maximum of CO in the

area between north of Argentina, south of Bolivia, Paraguay and south of Brazil, probably related to fires and the abundance

of BVOCs.480

In July, during the austral winter, concentrations of CO, PM2.5 and PM10 are significant in Santiago due to transportation

and residential heating emissions under adverse meteorological conditions. PM10 concentrations are large in the Caribbean and

central México, primarily due to the transport of Saharan dust into these urban areas (Kramer and Kirtman, 2021; Ramírez-

Romero et al., 2021). Similarly, along the Pacific coast between Chile and Peru, increased PM10 is probably explained by

anthropogenic emissions of copper smelters in connection with strong eastern wind events (Huneeus et al., 2006). Large485
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Figure 7. Spatial variability of simulated PM10, PM2.5, O3, CO in LAC for January and July 2015 (based on the median of the models)
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Figure 8. MNBIAS estimated for large and small urban areas.

concentrations of O3 are visible in México City associated with clear skies under high-pressure atmospheric conditions (Barrett

and Raga, 2016). Elevated O3 values in the Andes mountains between northern Chile and central Peru might be explained by

the abundance of VOCs from metropolitan regions and industrial zones (Seguel et al., 2020).

The median absolute deviation maps (Figure E1) and the standard deviation maps (Figure E2), display spatial differences

between model simulations. In particular, for particulate matter (PM10 and PM2.5) notorious dissimilarity is observed in north-490

ern Brazil in January, Venezuela in July, and the south of Argentina in both periods. The reason for this disagreement is the

simulation of the WRF-MPI model, which contributes with significant PM mass in the mentioned zones, probably due to an

overestimation of fires in the northern part of the continent and dust in the southern areas. In July, CO showed large differences

in the Colombian and Peruvian Amazon, mostly driven by the EMEP model. This situation might be related to an incorrect

estimation of BVOCs emissions as precursors of CO in forested areas. The inadequate simulation of NO2 by the CAMS model,495

explained in section 3.1.1, is the cause of the large standard deviation of model results for this pollutant.

3.3 Large versus small urban areas

The coarse resolution used in the modeling systems (0.2°x 0.2°) poses challenges in adequately representing the intricate

topography and diverse meteorological conditions of the different cities in LAC. Capturing these physical phenomena can

be very difficult and requires a finer scale with much greater computational demand. In the last years, emission inventories500

for LAC at high spatial and temporal resolution have been constructed (Castesana et al., 2022; Alamos et al., 2022; Puliafito

et al., 2015, 2017; Rojas et al., 2023) and it’s expected they will complement existing global emission inventories at coarse

resolution. We observe that, in large urban areas (> 3500 km2) the models tend in general to have lower and positive MNBIAS

compared to medium size (600 < area < 3600 km2) or small (area <600 km2) cities (Figure 8). For example, for México City
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and São Paulo, the two largest cities in LAC, the mean of the models show the lowest MNBIAS and FGE for CO (-27% to505

29%) and NO2 (-6% to 6%), while in other cities they display larger and negative MNBIAS and FGE (Table A2 and A4).

The discrepancies in NO2 have a corresponding impact in the overestimation of O3. For particulate matter, a similar pattern is

observed, with positive MNBIAS for larger urban areas and negative MNBIAS for medium and small cities. High-resolution

simulations are necessary to resolve the spatial variation, but unfortunately global models at high performance are scarce in the

Southern Hemisphere (Zhang et al., 2023).510

Although the size of cities can influence the performance of the models at coarse resolution, other challenging features for

models exist. For instance, Bogotá and Santiago have several challenges in terms of topography and meteorology (Mazzeo

et al., 2018; Nedbor-Gross et al., 2017; Reboredo et al., 2015) and local emissions not always accounted in global inventories

(Castesana et al., 2022; Huneeus et al., 2020; Osses et al., 2022; Rojas et al., 2023). Ideally, we would have access to more

cities of various sizes to make this determination with more certainty, unfortunately, local measured data was only available515

for the cities we considered.

4 Conclusions and future developments

This study performed the first inter-comparison and model evaluation effort in Latin America with the idea to develop an AQF

system that can inform the public about air pollution episodes and support policy actions. Despite the limitations of air quality

and emissions data, as well as computing resources, the scientific community in Latin America, with international support, has520

achieved significant progress in air quality modeling and in understanding the fate and transport of pollutants in the region. For

instance, the impact of Saharan dust, biomass burning from the Orinoco and the Amazon basis, biogenic VOCs of the Amazon

rainforest, are becoming better understood through modeling.

Several challenges still exist. In addition to the intricate topography and diverse meteorological conditions, limitations are

found in anthropogenic, volcanic and biogenic emissions, spatial and temporal profiles, land use and vegetation types, as well525

as other data that are relevant for the calculation of wildfire emissions. This last source is crucial in the region under a climate

change scenario, for which adequate parametrization of biomass burning is necessary. The boundary conditions of the models

can be improved, which are especially important for long-lived species. The experience of local researchers who have been

implementing air quality models for several years can greatly benefit international efforts such as global emissions inventories

and the recently-launched WMO GAFIS initiative.530

At this first stage of development, interesting and insightful findings were identified for the region. Despite the fact that some

of the models were still in an early phase for regional implementation, most models could adequately reproduce air quality

observations with the best performance observed for nitrogen dioxide in México City and São Paulo. These enormous urban

areas (> 3500 km2) outperformed Bogotá and Santiago, which are cities between 500 and 1000 km2. This suggests an accurate

portrayal of the temporal and spatial variability in large cities with the current model resolution (0.2°x 0.2°) and the need for535

a finer model domain in smaller cities that could capture circulation and emission features. At the moment, high-resolution

global simulations in the Global South remain rare.
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The ensemble median was evaluated on its potential to outperform individual models. In certain periods and cities, the

ensemble performed better than any individual models, for example, when the errors of the models compensate for each other,

but not when the errors are recurring in all the models. The results varied per city, pollutant and period. Before defining540

whether the ensemble is the correct approximation for an AQF system, more research is necessary. This work only looked at

two months (one in summer and one in winter), a thorough analysis of one entire annual cycle with sufficient spin-up time

should be conducted. More observations should also be included for model calibration and evaluation. For 2015, only eight

cities in LAC had data that complied with quality and completeness criteria. In recent years, more AQ networks have been

implemented and data is more publicly available.545
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Appendix A: Evaluation scores885
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Table A1. Metrics used for model evaluation.

with Od and md being the observation and modeled value for each day. m the mean of the models for each month and O the mean of the observations for each city. σm the

standard deviation for each model. N is the number of model-observation pairs available for each month.
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Table A2. NO2 model evaluation scores (January / July)

*ENSEMBLE: based on the median value of the models; MEAN: arithmetic mean of the models; CAMS: Copernicus Atmosphere Monitoring Service’s (CAMS); MPI:

WRF-Chem executed by MPIM; EMEP: European Monitoring and Evaluation Programme; CHIM: CHIMERE transport model; SILAM: System for Integrated modeling of

Atmospheric composition; USP: WRF-Chem executed by University of São Paulo.

Table A3. O3 model evaluation scores (January / July)

*ENSEMBLE: based on the median value of the models; MEAN: arithmetic mean of the models; CAMS: Copernicus Atmosphere Monitoring Service’s (CAMS); MPI:

WRF-Chem executed by MPIM; EMEP: European Monitoring and Evaluation Programme; CHIM: CHIMERE transport model; SILAM: System for Integrated modeling of

Atmospheric composition; USP: WRF-Chem executed by University of São Paulo.
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Table A4. CO model evaluation scores (January / July)

*ENSEMBLE: based on the median value of the models; MEAN: arithmetic mean of the models; CAMS: Copernicus Atmosphere Monitoring Service’s (CAMS); MPI:

WRF-Chem executed by MPIM; EMEP: European Monitoring and Evaluation Programme; CHIM: CHIMERE transport model; SILAM: System for Integrated modeling of

Atmospheric composition; USP: WRF-Chem executed by University of São Paulo.

Table A5. SO2 model evaluation scores (January / July)

*ENSEMBLE: based on the median value of the models; MEAN: arithmetic mean of the models; CAMS: Copernicus Atmosphere Monitoring Service’s (CAMS); MPI:

WRF-Chem executed by MPIM; EMEP: European Monitoring and Evaluation Programme; CHIM: CHIMERE transport model; SILAM: System for Integrated modeling of

Atmospheric composition; USP: WRF-Chem executed by University of São Paulo.
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Table A6. PM2.5 model evaluation scores (January / July)

*ENSEMBLE: based on the median value of the models; MEAN: arithmetic mean of the models; CAMS: Copernicus Atmosphere Monitoring Service’s (CAMS); MPI:

WRF-Chem executed by MPIM; EMEP: European Monitoring and Evaluation Programme; CHIM: CHIMERE transport model; SILAM: System for Integrated modeling of

Atmospheric composition; USP: WRF-Chem executed by University of São Paulo.

Table A7. PM10 model evaluation scores (January / July)

ENSEMBLE: based on the median value of the models; MEAN: arithmetic mean of the models; CAMS: Copernicus Atmosphere Monitoring Service’s (CAMS); MPI: WRF-Chem

executed by MPIM; EMEP: European Monitoring and Evaluation Programme; CHIM: CHIMERE transport model; SILAM: System for Integrated modeling of Atmospheric

composition; USP: WRF-Chem executed by University of São Paulo.
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Table A8. Coefficient of Variation (CV) per city during January and July
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Appendix B: Air quality observations

Table B1. Stations availability and location for México City.

The observations availability refers to the percentage of days in each period when at least one station records enough data to construct their daily average (minimum of 18 hours).

Additionally, only stations that maintain at least 75% of daily availability throughout the entire period are considered (at least 23 days with 18 hours minimum). The model

availability refers to the percentage of days for which we have modeled data, being CHIMERE the only one with missing days, and USP missing information for México given their

simulation domain did not include it.

40



Table B2. Stations availability and location for Bogotá

The observations availability refers to the percentage of days in each period when at least one station records enough data to construct their daily average (minimum of 18 hours).

Additionally, only stations that maintain at least 75% of daily availability throughout the entire period are considered (at least 23 days with 18 hours minimum). The model

availability refers to the percentage of days for which we have modeled data, being CHIMERE the only one with missing days, and USP missing information for México given their

simulation domain did not include it.
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Table B3. Stations availability and location for Santiago

The observations availability refers to the percentage of days in each period when at least one station records enough data to construct their daily average (minimum of 18 hours).

Additionally, only stations that maintain at least 75% of daily availability throughout the entire period are considered (at least 23 days with 18 hours minimum). The model

availability refers to the percentage of days for which we have modeled data, being CHIMERE the only one with missing days, and USP missing information for México given their

simulation domain did not include it.
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Table B4. Stations availability and location for São Paulo

The observations availability refers to the percentage of days in each period when at least one station records enough data to construct their daily average (minimum of 18 hours).

Additionally, only stations that maintain at least 75% of daily availability throughout the entire period are considered (at least 23 days with 18 hours minimum). The model

availability refers to the percentage of days for which we have modeled data, being CHIMERE the only one with missing days, and USP missing information for México given their

simulation domain did not include it.
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Table B5. Stations availability and location for Quito

The observations availability refers to the percentage of days in each period when at least one station records enough data to construct their daily average (minimum of 18 hours).

Additionally, only stations that maintain at least 75% of daily availability throughout the entire period are considered (at least 23 days with 18 hours minimum). The model

availability refers to the percentage of days for which we have modeled data, being CHIMERE the only one with missing days, and USP missing information for México given their

simulation domain did not include it.
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Table B6. Stations availability and location for Medellín

The observations availability refers to the percentage of days in each period when at least one station records enough data to construct their daily average (minimum of 18 hours).

Additionally, only stations that maintain at least 75% of daily availability throughout the entire period are considered (at least 23 days with 18 hours minimum). The model

availability refers to the percentage of days for which we have modeled data, being CHIMERE the only one with missing days, and USP missing information for México given their

simulation domain did not include it.
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Table B7. Stations availability and location for Lima

The observations availability refers to the percentage of days in each period when at least one station records enough data to construct their daily average (minimum of 18 hours).

Additionally, only stations that maintain at least 75% of daily availability throughout the entire period are considered (at least 23 days with 18 hours minimum). The model

availability refers to the percentage of days for which we have modeled data, being CHIMERE the only one with missing days, and USP missing information for México given their

simulation domain did not include it.
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Table B8. Stations availability and location for Guadalajara

The observations availability refers to the percentage of days in each period when at least one station records enough data to construct their daily average (minimum of 18 hours).

Additionally, only stations that maintain at least 75% of daily availability throughout the entire period are considered (at least 23 days with 18 hours minimum). The model

availability refers to the percentage of days for which we have modeled data, being CHIMERE the only one with missing days, and USP missing information for México given their

simulation domain did not include it.
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Appendix C: Particular hourly simulations

Figure C1. Hourly CO simulations in São Paulo for January and July of 2015

Figure C2. Hourly PM2.5 simulations in São Paulo for January and July of 2015

Figure C3. Hourly PM2.5 simulations in México City for January and July of 2015
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Appendix D: Simulation of all models

Figure D1. NO2 simulations of January 2015 for all models

Figure D2. NO2 simulations of July 2015 for all models
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Figure D3. O3 simulations of January 2015 for all models

Figure D4. O3 simulations of July 2015 for all models
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Figure D5. CO simulations of January 2015 for all models

Figure D6. CO simulations of July 2015 for all models
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Figure D7. SO2 simulations of January 2015 for all models

Figure D8. SO2 simulations of July 2015 for all models
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Figure D9. PM2.5 simulations of January 2015 for all models

Figure D10. PM2.5 simulations of July 2015 for all models
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Appendix E: Model deviations

Figure E1. Median absolute deviation of the models with respect to the ensemble for PM10, PM2.5, O3, CO, SO2 and NO2 in LAC for

January and July 2015
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Figure E2. Standard deviation of the models with respect to their mean for PM10, PM2.5, O3, CO, SO2 and NO2 in LAC for January and

July 2015
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