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Abstract. The plan-form geometry of branching drainage networks controls the topography of landscapes as well as their

geomorphic, hydrologic, and ecologic functionality. The complexity of networks’ geometry shows significant variability, from

simple, straight channels that flow along the regional topographic gradient to intricate, tortuous flow patterns. This variability

in complexity presents an enigma, as models show that it emerges independently of any heterogeneity in the environmental

conditions. We propose to quantify networks’ complexity based on the distribution of lengthwise asymmetry between paired5

flow pathways that diverge from a divide and rejoin at a junction. Using the lengthwise asymmetry definition, we show that the

channel concavity index, describing downstream changes in channel slope, has a primary control on the plan-form complexity

of natural drainage networks. An analytic model based on geomorphic scaling relations and optimal channel network simula-

tions employing an energy minimization principle reveal that landscapes with low concavity channels attain stable plan-form

configuration only through simple geometry. In contrast, landscapes with high-concavity channels achieve plan-form stabil-10

ity with various degrees of network complexity, including extremely complex geometries. Landscape evolution simulations

demonstrate that the concavity index and its effect on the multiplicity of available geometries control the tendency of networks

to preserve the legacy of former environmental conditions. Consistent with previous findings showing that channel concavity

correlates with climate aridity, we find a significant empirical correlation between aridity and network complexity, suggesting

a climatic signature embedded in the large-scale plan-form geometry of landscapes.15

1 Introduction

The plan-form structure of branching fluvial drainage networks has far-reaching implications for the geomorphic, hydrologic,

and ecologic functionality of landscapes (Horton, 1945; Sharp and Malin, 1975; Perron et al., 2006; Willett et al., 2018; Pelletier

et al., 2018; Stokes and Perron, 2020; Freund et al., 2023; Liu et al., 2024). This structure, which can be expressed based on

its geometric and topologic attributes, exhibits significant variation across different regions. In some cases, networks exhibit20

simple flow paths (Fig. 1a) that generally follow the regional topographic gradient. These flow paths define main drainage

basins, draining the main water divide to the mountain front, that are overall similar in shape and size and have a symmetric

basin shape with respect to their main trunk (sensu Ramsey et al., 2007). Other networks appear more intricate. These complex

networks display tortuous flow paths, asymmetric basin shapes, and varying sizes and shapes of the main basins (Fig. 1b).
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Differences in network plan-form complexity directly control the landscape’s 3D topography. For the same total relief,25

longer and more tortuous flow paths have diverse slope aspects and shallower channel slopes, resulting in lower local reliefs

(DiBiase et al., 2010) and longer channel segments per elevation range and associated ecoclimatic zone within individual main

basins. Conversely, shorter and simpler flow paths that conform to the regional gradient feature a narrower distribution of slope

aspects and greater local fluvial relief, such that each main basin is expected to have shorter channel segments within any

given elevation range. These characteristics affect water runoff, sediment transport capacity, rate and pattern of erosion, and30

the distribution of ecological niches (Rodríguez-Iturbe and Valdés, 1979; Whipple and Tucker, 2002; Badgley et al., 2017;

Pelletier et al., 2018; Khosh Bin Ghomash et al., 2019; Beeson et al., 2021; Stokes and Perron, 2020)

Some of the variability in network complexity could be attributed to the level of heterogeneity in the environmental and

boundary conditions affecting the landscape. Spatial gradients in tectonics (Castelltort et al., 2012; Goren et al., 2015, 2014;

Habousha et al., 2023; Cowie et al., 2006; Braun et al., 2013; Mudd et al., 2022), climate (Caylor et al., 2005; Thomas et al.,35

2011), and lithology (including fabric and fracture density) (Strong et al., 2019; Ward, 2019; Mudd et al., 2022) and discrete

geologic structures (Hamawi et al., 2022; Scott and Wohl, 2019) are likely linked to more complex network geometry. However,

numerical studies of landscape evolution (Shelef and Hilley, 2014; Tucker and Whipple, 2002; Howard, 1994; Rinaldo et al.,

1992; Sun et al., 1994b; Howard, 1990) show that variabilities in complexity emerge even when environmental and boundary

conditions are spatially uniform. This means that drainage complexity could emerge from autogenic network dynamics and be40

independent of any heterogeneity in the applied forcings.

The same modeling studies (Shelef and Hilley, 2014; Tucker and Whipple, 2002; Howard, 1994; Sun et al., 1994b; Howard,

1990) found that changing the channel concavity index leads to variations in numerical network complexity, where drainages

that are characterized by a higher concavity index are more complex. However, a similar relation was not reported in natural

drainage networks, and the reasoning behind it remained elusive. The concavity index, θ, emerges as the exponent of the45

globally documented empirical power law relation between the drainage area, A, and slope, S, known as Flint’s law (Flint,

1974; Howard, 1971; Whipple and Tucker, 1999; Willgoose et al., 1991):

S = KsA
−θ, (1)

where Ks is referred to as the steepness index. The concavity index describes changes in the inclination of the river channel

along its longitudinal profile as it accumulates drainage area downstream. Empirical studies have found that the concavity index50

ranges between 0.1-1, with values between 0.3-0.7 being more common (Tucker and Whipple, 2002). A sub-linear profile is

characterized by concavity values close to zero, where the channel slope is mostly independent of the drainage area. In contrast,

high θ values, closer to 1, indicate that most of the elevation gain occurs at higher elevations and small drainage areas (Whipple

and Tucker, 1999). Channel concavity was shown to vary with channel formative processes (Whipple and Tucker, 1999; Stock

and Dietrich, 2006) and as a reflection of spatial gradients in tectonic uplift (Seybold et al., 2021). Notably, several recent55

studies identified links between channel concavity and prevailing climatic conditions, particularly aridity. These studies have

consistently indicated that arid regions tend to exhibit lower concavity indices (Zaprowski et al., 2005; Chen et al., 2019;

Getraer and Maloof, 2021; Michaelides et al., 2022).
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(a) Simple network. Sierra Nevada, Spain
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(b) Complex network. Sierra Madre del Sur, Mexico (c) Schematic of paired flowpathways

Figure 1. Variability of complexity. Examples and schematic representations of paired flow pathways (light blue) originating from two

channel heads (yellow squares), diverging from a common divide, and merging at a downstream junction (red square). Hillshade topographies

with drainage networks colored in white are displayed in (a) and (b). (a) Shows an example from Sierra Nevada, Spain, where a simple

network with sub-parallel trunk streams flows down the main topographic gradient. The median lengthwise asymmetry, ∆L over all paired

flow pathways in this mountain range is 0.19. (b) Displays an example from Sierra Madre del Sur, Mexico, showcasing a complex drainage

network with tortuous flow paths. The median ∆L over all paired flow paths in this mountain range is 1.00. (c) A schematic basin with the

same components as in panels a and b. Lij and Lji, used for calculating ∆L of paired flow paths, are measured along the two paired flow

paths (light blue) from channel heads, chi and chj (yellow squares), respectively, to their common junction (red square). ∆χ is determined

by measuring the χ values of the channel heads starting at the junction where they merge.

3

https://doi.org/10.5194/egusphere-2024-808
Preprint. Discussion started: 2 April 2024
c© Author(s) 2024. CC BY 4.0 License.



The relationship between channel concavity and network complexity is intriguing because it suggests that the concavity

index, θ, which characterizes the channel longitudinal profiles (Whipple and Tucker, 1999), controls the plan-form properties60

of entire branching drainage networks. One potential way in which θ may affect the plan-form geometry of drainage basins

is through its hypothesized influence on junction branching angles (Howard, 1971, 1990; Sólyom and Tucker, 2007; Strong

and Mudd, 2022). Larger θ values are associated with larger branching angles, potentially leading to wider basins, while lower

θ values are associated with smaller junction angles and narrower basins. However, consistent changes in the local metric

of junction branching angle, despite their potential effect on basin scaling (Yi et al., 2018), do not necessarily correspond to65

variations in the multi-scale property of drainage complexity.

An alternative effect relates the concavity index to the lengthwise asymmetry between paired flow pathways that diverge

from a single divide and rejoin at a junction or a common base level (Shelef and Hilley, 2014) (Fig. 1c). The degree of

lengthwise asymmetry, capturing the multi-scale network geometry, is highly consequential for drainage complexity. Extremely

tortuous and complex networks are linked to large lengthwise asymmetry (Fig. 1b), as one tortuous flow pathway can be70

meaningfully longer than its across-divide pair. Conversely, simple geometry is linked to small asymmetry (Fig. 1a). Here, we

explore the associations between the concavity index and the network complexity as reflected by lengthwise asymmetry. We

target observations from natural drainage networks and process-based rationale to quantify and better understand a climate-

dependent, first-order control on the 3D geometry of landscapes and the river networks that drain them.

2 Quantifying the complexity and stability of branching drainage networks75

Drainage divides delineate drainage basins, and consequently, the plan-form geometry of a drainage network is closely tied to

the associated drainage divide network (Shelef, 2018; Scherler and Schwanghart, 2020b; Habousha et al., 2023). The stability

of the drainage network plan-form geometry is, therefore, tied to the stability of the divide network. When the divides shift

or jump, the drainage basin’s geometry changes, and the network geometry is not steady. In contrast, as long as the divides

remain stationary, the plan-form geometry of the drainage system is stable, and the network topology is fixed. The stability of80

drainage divides can be assessed using the gradient of the parameter χ in between channel heads across divides (Willett et al.,

2014), where χ is proportional to the expected steady-state elevation and is defined as: (Perron and Royden, 2013)

χ(x) =

x∫

xb

(
A0

A(x′)

)θ

dx′. (2)

In equation (2), x is the spatial coordinates measured upstream the channel, xb represents the base level, x′ is the integration

parameter, and A0 is a reference drainage area introduced to ensure that the dimensions of χ [L] are independent of the value85

of θ.

Considering the χ values of channel heads (Fig. 1c), when the environmental conditions are spatially uniform, a zero or

sufficiently small (Shelef and Goren, 2021) ∆χ across divide indicates that the divide is stable (Willett et al., 2014; Shelef

and Hilley, 2014), while a large ∆χ across a divide could indicate a migrating divide (Willett et al., 2014; Beeson et al., 2017;

Habousha et al., 2023). To compare the stability of divides and drainages of different scales, a normalized χ difference (referred90
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to as χ difference) across divide is defined for paired flow pathways, which originate from two channel heads, i and j, across

a single divide that join at a downstream junction or base level (Fig. 1c):

∆χij = ∆χji =
2|χij −χji|
χij + χji

. (3)

where χij (χji) is the χ value at channel head i (j), where χ is computed between the channel head and the common junction

of flow pathways i and j.95

A formal quantification of network complexity is defined in a similar manner as a measure of normalized lengthwise asym-

metry between paired flow pathways (Fig. 1c):

∆Lij = ∆Lji =
2|Lij −Lji|
Lij + Lji

(4)

where Lij and Lji are the along-flow distances from the two channel heads to their common junction or base level.

The dependency of χ on θ and its definition as an integral along flow paths hint at the role of θ in controlling the complexity100

of stable plan-form drainage networks. In the extreme case of θ = 0, χij = Lij , and χ difference across divide reduces to

lengthwise asymmetry (Shelef and Hilley, 2014). In this case, stable plan-form configurations with ∆χij = 0 for all i and j

reduce to ∆Lij = 0 for all i and j. Consequently, for θ = 0, the only stable branching network is one with a perfect lengthwise

symmetry, the simplest possible network. As θ increases, the drainage area distribution along the flow pathways, equation (2),

plays a growing role, such that equal χ across divides could also be achieved when ∆Lij ̸= 0, as long as the drainage area105

distribution compensates for the lengthwise asymmetry.

3 Methods

We explore correlations between landscapes’ channel concavity indices and their fluvial branching network complexity while

accounting for the networks’ stability. The analysis targets natural drainage networks, numerical networks generated using the

surface process model DAC (Goren et al., 2014), and numerical optimal channel network simulations (Rinaldo et al., 1992).110

3.1 Elongated natural mountain ranges

To explore the correlation between channel concavity and drainage network complexity in natural fluvial drainage networks,

we independently quantify θ, ∆L, and ∆χ along 18 elongated mountain ranges across the globe. We choose to focus on

elongated ranges (rather than study general networks) because (i) such ranges represent topographic units, whose base level

boundaries are relatively well-defined, (ii) each of the ranges is relatively simple in terms of its tectonic setting, where the main115

faults bound the range rather than transect it, and (iii) for each range, θ and ∆L are quantified over a relatively large domain

with an along range length between 10s-100s km. We further note that the ranges we choose are situated in both extensional

and compressional settings, and accordingly, some are bounded by normal and others by reverse faults. Detailed information

about the elongated ranges is listed in Appendix A.

The selection of elongated mountain ranges for the current analysis adhered to specific criteria: (i) The elongated range has120

a single main divide from which basins drain to two opposite base levels. (ii) There should be a minimum of four basins on
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each flank, with the basins’ outlets determined by a common elevation contour surrounding the range. (iii) The range should

be free from prevalent volcanic characteristics or systematic structural control on the internal drainage pattern.

The analysis of the natural elongated mountain ranges is based on the SRTM 3 arc-seconds Digital Elevation Model (DEM)

(Global, 2013) using the TopoToolbox topography analysis package (Schwanghart and Scherler, 2014; Scherler and Schwang-125

hart, 2020a). The boundaries of each range were defined based on a minimum elevation threshold, chosen visually to eliminate

alluvial fans and focus on bedrock rivers. Then, interstitial basins were excluded from the analyzed area, such that the analysis

was based only on the main basins, draining the main divide to the boundary contour. The drainage network was extracted

based on a predefined drainage area threshold, and we explore the sensitivity of the results to the drainage area threshold in

Appendix B.130

The concavity index values, θ, for the elongated mountain ranges were determined for the extracted drainage network using

the disorder scheme (Gailleton et al., 2021; Hergarten et al., 2016). This method assesses the extent to which the elevation-

based order of channel pixels aligns with their order by their χ value. It involves computing a normalized disorder measure,

referred to as D∗(θ) (Gailleton et al., 2021), for predefined discrete values of θ. The most probable θ value (referred to as

the best-suited θ) is the one that minimizes the D∗(θ) metric. The uncertainty in θ is derived based on the uncertainty in D∗135

following Gailleton et al. (2021). To evaluate the latter uncertainty, a set of D∗(θ) values was generated through bootstrapping

iterations, with the number of iterations being 1.5 times the number of main basins in each range. In each iteration, D∗(θ) was

computed based on the drainage network of a random selection of 90% of the main basins. The specific parameters used in the

bootstrapping iterations were chosen heuristically for their relatively consistent results.

∆L and ∆χ were computed for all divide points with distance from divide endpoints exceeding 1000 (Scherler and Schwang-140

hart, 2020a). For each of these divide points, ∆L and ∆χ were calculated based on the L and χ values of the two opposing

(across the divide point) nearest drainage network pixels along the D8 flow routing raster, and the L and χ values of the junc-

tion (or base level) of the two opposing pathways. To eliminate the influence of overall range asymmetry (which could stem

from orographic effects on climate, tectonic advection, or tectonic tilting), divide points from which flow diverges to the two

opposite base levels of the elongated range were excluded from the analysis. The calculation of χ values employed the most145

probable θ value of the range. In cases where the two nearest network pixels were not at the same elevation, a correction was

applied to ∆L and ∆χ. This correction adds the values of Aθ
0∆zij/Ks and ∆zij/KsA

−θ
i to the χ and L of the lower pixel,

respectively. Here, ∆zij represents the elevation difference between the two nearest network pixels, Ks is the best-fit steepness

index (derived from the slope of the χ-z data of the range), and Ai denotes the drainage area at the lower nearest network pixel

(assuming it is labeled as i).150

3.2 DAC simulations

The DAC landscape evolution model is a processed-based model presented in (Goren et al., 2014). DAC implements an implicit

solver of the stream power incision model (Howard, 1994; Whipple and Tucker, 1999): E = K(PA)mSn, where E [L/T] is

erosion rate, K [L(1−3m)/T(1−m)] is erodibility coefficient, P [L/T] is precipitation rate, A [L2] is drainage area, S [L/L] is

channel gradient, and m and n are positive exponents. Upon identifying Ks = (E/KPm)1/n and θ = m/n, the stream power155
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model can be shown to reduce to equation (1). The solver is built upon a triangular, sparse, dynamically adjusting grid. Unlike

previous implementations (Goren et al., 2014, 2015; Habousha et al., 2023) that solved for the divide location and identified

captures following divide breaching, the DAC implementation used here assumes a strict steepest descent algorithm for flow

routing. This choice allows better preservation of the initial conditions (starting with a random subdued topography between

0-1 m) and facilitates the comparison of drainage network complexity across concavity values.160

For the current analysis, we ran simulations over a domain size of 200 km× 60 km, producing elongated numerical mountain

ranges with a single main water divide. The simulations apply a precipitation rate of P=1 m/yr, uplift rate of U = 0.5 mm/yr,

and a slope exponent, n, of 1, such that the concavity index, θ, calculated as θ = m/n, is adjusted by varying the value of

the area exponent, m. To maintain a consistent global relief despite the changes in θ, the erodibility coefficient K is adjusted

across the simulations. Table C1 lists the values of K.165

The simulations run for 100 million years, ensuring topologic stability by verifying that no alterations in flow routing

occurred during the final 10 million years of each simulation. To ensure that the observed effects are indeed related to θ and

not influenced by K, Figure C1 replicates a subset of the analysis while keeping K constant.

In the DAC simulations, the calculation ∆L and ∆χ across divides accounts for all grid-based channel head pairs that share

a divide, except for heads located at the base level. When a pair of channel heads does not have the same elevation, a similar170

correction to the one described for the natural elongated mountain ranges was used with the applied steepness index, Ks.

3.3 Optimal Channel Network simulations

Optimal Channel Network (OCN) theory (Rodriguez-Iturbe and Rinaldo, 2001; Rinaldo et al., 1992; Molnár and Ramírez,

1998; Banavar et al., 2001) suggests that natural drainage networks self-organize in a way that minimizes global energy expen-

diture during water flow down the network. In this general view of landscape organization, the energy is evaluated based on175

the network’s topology, represented as sets of nodes and edges, where edges represent the channel connections between nodes.

Each internal node has a unique path leading to an outlet node, and the flow paths are loopless. The total energy expenditure,

denoted as P , for any network defined over the node set is determined by the sum of the local energy expenditures, Pi, along

each edge, i (Sun et al., 1994b):

P =
∑

i

Pi ∝
∑

i

QiSili ∝
∑

i

Aγ
i li = Peq. (5)180

Si is the slope across edge i, Ai is the upstream drainage area (proxy for discharge Q) of node i from which edge i originates,

and li is the length of edge i. The term on the right-hand side of equation (5) is referred to as the energy equivalent, Peq .

The area exponent, γ, is expected to correlate inversely with θ, the concavity index (equation 1) (Strong and Mudd, 2022).

However, the interdependence of these two exponents as a function of environmental conditions and network hydrology, and

their consequent functional relation, remains debated (Strong and Mudd, 2022). Here, we follow the formulation of (Sun et al.,185

1994b) and define γ = 1− θ.

Natural drainage networks were found to resemble numerically generated networks in a state of a local energy minimum

(Rodriguez-Iturbe and Rinaldo, 2001; Colaiori et al., 1997). A commonly used criterion to identify and construct such networks
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is to ensure that the total energy (i.e., equation 5) is not reduced by a single-edge flip. An edge flip is an operation that redirects

an edge that emerges from node i and used to end at node j, an immediate neighbor of i, to one of its other immediate neighbors,190

k ̸= j, without creating loops. A network configuration where any edge flip will only increase its total energy content defines

a local energy minimum and corresponds to a topologically stable configuration.

We perform simulations using an iterative greedy algorithm to explore the effect of θ on networks’ evolution toward local

energy minimum and the topology of the emerging stable networks. The algorithm starts from a random network configuration,

attempts a random edge flip in each iteration, and accepts the new configuration only if the edge flip reduces the total energy.195

Note that this approach differs from the simulated annealing algorithm (e.g. Sun et al., 1994a, b) that defines a temperature-

dependent probability to accept edge flips that increase the total energy as a means to exit local minima and identify a global

minimum configuration. Here, we use the greedy approach to eliminate probability-dependent changes that obscure the topo-

logical relation between stable networks generated with different θ values from the same initial random state.

The greedy optimal channel network (OCN) simulations use the computational infrastructure of the TopoToolbox package200

(Schwanghart and Scherler, 2014). In each iteration, a randomly attempted edge flip is accepted only if it reduces the network’s

energy. Optimizations with different θ are initiated from the same random network with a domain size of 200 over 60 nodes.

Each node in the domain can drain to one of its eight neighbors, leading edges to be longer in the diagonal than in the rook

directions. The nodes along the domain boundary are defined as outlets. Each simulation performed an optimization with a

predefined θ value. The OCN approach lacks a hillslope domain, resulting in a high drainage density. Therefore, to avoid signal205

overwhelming by channel head pairs that merge at a single node downstream, ∆L and ∆χ are calculated only for neighboring

channel head pairs that drain to different outlets (boundary nodes). Each simulation was run for 3.6×106 iterations.

4 Results

4.1 Concavity correlates with lengthwise asymmetry in natural and numerical mountain ranges

Among the 18 natural elongated mountain ranges studied, a larger θ is shown to correlate with a higher median ∆L (Fig. 2a blue210

squares) and a wider spread of ∆L values (Fig. 2a blue bars, denoting the 25th and 75th percentiles of the ∆L distribution in

each range). Though the correlation is not necessarily linear, we quantify it through Pearson’s linear correlation. The correlation

coefficient between the best-suited θ and the median ∆L is 0.92 (with a slope of 2.16 and P-value of 4.22×10−8), and the

correlation coefficient between the best-suited θ and the difference between the 75 and 25 percentiles of the ∆L distribution is

0.81 (with a slope of 1.30 and P-value of 5.54×10−5). These trends indicate that those natural networks that are characterized215

by a higher value of θ are more complex (with larger median ∆L) and show greater variability in their level of complexity. In

contrast, low θ natural networks have lower complexity and complexity variation.

To explore the relation between plan-form stability and θ, figure 2a also shows the correlation between ∆χ and θ (green

symbols and bars). The Pearson’s linear correlation coefficient between the best-suited θ and the median ∆χ is 0.58 (with a

slope of 0.33 and P-value of 0.01). The correlation coefficient relating θ to the difference between the 75 and 25 percentiles220

of the ∆χ distribution is 0.61 (with a slope of 0.43 and P-value of 0.007). Therefore, the association and sensitivity (i.e.,
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Figure 2. Complexity and concavity index. (a) Relations between lengthwise asymmetry, ∆L (blue) and ∆χ (green), and the concavity

index θ. The data represent 18 elongated mountain ranges, visualized as circles on the right-hand side of the map. The circles are color-coded

by the logarithm of the Aridity Index (AI) (Zomer et al., 2022), with yellower colors corresponding to more arid conditions. (b) Relations

between ∆L, ∆χ, and the concavity index θ for numerical ranges from the DAC process model (Goren et al., 2014). (c) Relations between

∆L, ∆χ, and the concavity index θ for numerical ranges derived from simulations using an optimal channel network model. In all panels, the

squares display median values, and the vertical error bars indicate the 25 and 75 percentiles. The horizontal error bars in panel (a) represent

the uncertainty in θ, where the square is located at the best-suited θ value. A relatively high regression slope and significant correlation

is observed between θ and ∆L, as well as between θ and the spread of ∆L in the natural ranges and simulations. A weaker (a and c) or

nonexistent (b) correlation is observed between ∆χ and θ.

correlation and slope) between ∆χ and its spread to θ are weaker than those between ∆L and its spread and θ. Consequently,

the degree of network instability, as quantified by ∆χ, cannot be invoked as a main driver of the variability in complexity for

the analyzed ranges.

We cannot fully exclude the possibility that heterogeneity in the environmental condition across the analyzed mountain225

ranges affects both θ and ∆L. To address this possibility, we apply a similar analysis over two types of synthetic, steady-state
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landscapes of uniform environmental conditions generated using (i) the DAC process-based landscape evolution model (Goren

et al., 2014) and (ii) the process-independent, greedy OCN model. In both models, we run simulations with pre-defined θ

values and measured ∆χ and ∆L over the emerging drainage networks after they have achieved topologic stability. For ∆L,

models’ results, figures 2b and 2c (blue), show similar trends as those documented for the natural elongated mountain ranges.230

The median and the spread of ∆L increase with increasing θ. For ∆χ (blue), model results show constant and infinitesimal

values, independent of θ in the DAC simulations and weak dependency on θ in the OCN simulations. Notably, while the range

of ∆L has the same order of magnitude in the natural elongated ranges (Fig. 2a) and the numerical drainages (Fig. 2b&c), the

∆L values in the simulations are mostly smaller than the natural ∆L for the higher θ values, potentially revealing the effect of

environmental heterogeneity on the natural terrains complexity, consistent with the higher values of ∆χ for these ranges.235

5 Discussion

5.1 Hack’s law explains the relation between θ and ∆L

To explain the observed correlation between θ and landscape complexity as quantified by ∆L, we turn to an analysis of

idealized channels. We set two coordinate systems, x, that follow paired flow paths from their common junction or base

level to their common divide, such that x = 0 is at the junction, and x = Li (x = Lj) is the common divide when measured240

along channel i (j) (Fig. 1c). We assume that the channels obey Hack’s law (Rigon et al., 1996), such that the drainage area

distribution along the sub-basins whose outlet is the common junction are expressed as follows:

Ai(x) = kai
(Li−x)hi for 0≤ x≤ Li−xc = Lij (6)

Aj(x) = kaj
(Lj −x)hj for 0≤ x≤ Lj −xc = Lji

where kai
and kaj

are Hack’s coefficients and hi and hj are Hack’s exponents. The hillslope length, xc, measured between the245

divide and the channel heads, is assumed uniform. We further assume that the channels obey a power-low relation between the

slope and the drainage area with a concavity index θ, equation (1), and consequently, the χ values at the channel heads could

be defined by combining equations (6) and (2):

χi(Li−xc) =

x′=Li−xc∫

x′=0

Aθ
0dx′

Ai(x′)θ
=





Aθ
0

(1−hiθ)kθ
ai

(
L1−hiθ

i −x1−hiθ
c

)
for hiθ ̸= 1

Aθ
0

kθ
ai

ln
(

Li

xc

)
for hiθ = 1

(7)

χj(Lj −xc) =

x′=Lj−xc∫

x′=0

Aθ
0dx′

Aj(x)θ
=





Aθ
0

(1−hjθ)kθ
aj

(
L

1−hjθ
j −x

1−hjθ
c

)
for hjθ ̸= 1

Aθ
0

kθ
aj

ln
(

Lj

xc

)
forhjθ = 1

(8)250

Requiring the channels to be in a topologic steady-state (stable divide and stable plan-form configuration), the channel heads

χ values across the divide must be equal. For generality and simplicity, we consider the case where hiθ ̸= 1 and hjθ ̸= 1 and

write the divide stability criterion, equating χi(Li−xc) to χj(Lj −xc):
1

(1−hiθ)kθ
ai

(
L1−hiθ

i −x1−hiθ
c

)
=

1
(1−hjθ)kθ

aj

(
L

1−hjθ
j −x1−hjθ

c

)
(9)
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Figure 3. Changes in lengthwise asymmetry, ∆L as a function of concavity index, θ with differing Hack’s law parameters, equation (6).

∆L is calculated for idealized sub-basins along paired flow pathways, i and j, sharing a stable divide (Fig. 1c). (a) The color map represents

the logarithm of Hack’s coefficients’ ratio, assuming that Hack’s exponents are identical, hi = hj = 2. (b) The color map represents the

difference between Hack’s exponents, assuming Hack’s coefficients are identical and hi = 2. In both panels Li = 50 km, Lj ≤ Li, and

xc = 0.25 km. The black and gray curves represent fitted power laws to the ∆L-θ trends based on the natural elongated mountain ranges

shown in figure 2a. For the median ∆L the fit is ∆L= 2.12θ1.60 (black curves); for the 75 percentile the fit is ∆L= 2.49θ1.23 (upper gray

curves); for the 25 percentile the fit is ∆L= 1.54θ2.14 (lower gray curves).

If Hack’s coefficients and exponents are identical for the two sub-basins, i.e., kai
= kaj

and hi = hj then the only solution to255

equation (9), is lengthwise symmetry, Li = Lj and ∆L= 0 for all values of θ.

To explore the possibility of stable topologic configurations that respect equal χ across divide while permitting ∆L ̸= 0, we

relax the restricting assumption of identical Hack’s coefficient or exponent. First, we consider the case where kai
/kaj

is not

necessarily 1 whereas hi = hj = h. Figure 3a shows the value of kai
/kaj

needed to ensure equal χ across divide, equation

(9), as a function of θ and ∆L. Without loss of generality, we assume that Lj < Li, and consider values of kai
/kaj

< 10,260

approximately a factor of three larger than the range of reported natural values (Montgomery and Dietrich, 1992; Mueller,

1972; Willemin, 2000; Dodds and Rothman, 2000; Shen et al., 2017; Sassolas-Serrayet et al., 2018). Considering a fixed ∆L,

the figure shows that for low values of θ, there are no kai/kaj values within the range for which Li ̸= Lj . As θ increases,

∆L ̸= 0 could be achieved with high kai
/kaj

values. As θ further increases, the kai
/kaj

values ensuring stable configurations

with any particular ∆L become smaller. This analysis reveals that for small θ values, stable topologies can be achieved only265

with small ∆L, but as θ increases, small differences in Hack’s coefficients permit stable topological configuration with large

lengthwise asymmetry.

Next, we consider the case where hi ̸= hj whereas kai = kaj = ka. Here, equation (9) becomes independent of ka, and for

a fixed value of hi, the value of hj for different ∆L can be solved only implicitly. Figure 3b shows the value of the difference

hi−hj as a function of θ and ∆L, for hi = 2. The difference is used rather than the ratio, as with ka (Fig. 3a), because the270

h exponents vary by a factor, whereas the ka coefficients can vary by orders of magnitude. We only consider solutions where

0 < hi−hj < 0.5, again representing a difference larger by a factor of approximately three with respect to the range of h
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exponents reported for natural terrains. Here, as well, for low values of θ, a solution exists only for very small ∆L, and as θ

increases, smaller differences in the Hack’s exponents allow for a stable configuration with a large lengthwise asymmetry.

This analysis reveals that the widely documented geomorphic relationships of Hack’s law, equation (6), and Flint’s law,275

equation (1), are consistent with and can explain natural and numerical observations (Fig. 2) of the relations between θ and

∆L. More specifically, the analysis shows that when θ is large, stable configurations with zero ∆χ across divides can be

achieved even when ∆L≫ 0, by exploiting small variations in Hack’s exponent and coefficient. When θ is small, topological

stability necessitates high lengthwise symmetry (small ∆L).

The curves that overly figure 3 show the best-fit power law relation between the best-suited θ and the median (black curve)280

and 25 and 75 (gray curves) percentile of ∆L based on the elongated mountain ranges shown in figure 2a. The relation

between the curves and the colormap that underlies them reveals that high θ natural networks achieve large ∆L by exploiting

small variations in Hack’s exponent or coefficient. In contrast, low θ networks require greater variability in Hack’s parameters

to achieve a much smaller ∆L.

5.2 Optimal Channel Networks (OCN) perspective285

Whereas Hack’s law-based analysis, section 5.1, explains the observed correlation between concavity and complexity from a

geomorphic scaling relations standpoint, the OCN framework helps conceptualize this correlation based on energy considera-

tions. Figure 4a shows the evolution of the normalized energy equivalent, Peq/Peqinit
as a function of iteration number during

the energy optimization process under different values of θ and starting from the same initial random network, with equivalent

energy Peqinit
. The figure shows that as θ decreases, the normalized energy equivalent reduction is greater. Figure 4b shows290

the evolution of the median ∆L during the optimization procedure, displaying a similar trend to that of the normalized en-

ergy equivalent, with a greater reduction in ∆L with decreasing θ. Notably, while the greedy algorithm ensures a monotonous

energy reduction with an increasing number of iterations (Fig. 4a), the ∆L trends are non-monotonous (Fig. 4b). The ∆L
values of the final energy minimum networks are depicted in figure 2c. Appendix D discusses the trend of ∆χ through the

optimization iterations.295

Examples of network topology optimized using the greedy algorithm with different values of θ are shown in figure 5. High

θ values result in complex, tortuous networks that do not significantly differ from the random initial conditions, consistent

with the low number of accepted edge flip operations (Fig. 4c). As θ decreases, the networks become less complex, and the

legacy of the initial conditions is gradually erased (Figs. 5c and d). A similar behavior was recorded in surface process model

simulations (Shelef and Hilley, 2014; Kwang and Parker, 2019; Howard, 1994).300

The reduction in the minimum normalized energy equivalent and network complexity observed in figures 4a and 4b, and the

gradual deviation from the random initial network with decreasing θ (seen in figure 5) could be rationalized analytically. In the

limit of θ = 0 and when the edge length is uniform, the energy equivalent, equation (5),
∑
i

A1−θ
i li, becomes proportional to

∑
i

Li (here, li is the length of a single edge and Li represents the distance to the outlet node) (Colaiori et al., 1997). In this case,

the global minimum is attained when each node drains to an outlet along the shortest path, contributing its local area to the305

minimal number of nodes. This ensures that in the limit of θ→ 0, the emerging topology is such that each Li is minimal and
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Figure 4. Optimal Channel Network (OCN) dynamics as a function of concavity index. Transient response and steady-state values from

OCN simulations (see Method section for details) showing the effect of the concavity index, θ on the reduction trends of the (a) Normalized

energy equivalent, Peq/Peqinit , equation (5), (b) Median ∆L, and (c) The acceptance ratio of edge flip operations that reduce the total

energy. I.e., the quotient of edge flips and the total number of iterations.
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Random Initial Conditions

θ = 0.9

θ = 0.7

θ = 0.5

θ = 0.3

θ = 0.1

Figure 5. Topologies emerging from OCN simulations with different concavity index. Random initial conditions (top) and final, steady

optimal channel networks following the application of the greedy algorithm with different θ values. Note the great complexity and the

similarity to the initial conditions of the high θ networks relative to the simple geometry of the low θ networks that significantly differ from

the initial conditions. Edges are plotted only for drainage area > 5 nodes, and edge width scales with the number of draining nodes.

therefore equal across all divides and ∆L→ 0. Such an optimal network exhibits an exceptionally simple geometry that differs

significantly from any random network, explaining the low-complexity configurations that characterize low θ OCNs (Fig. 5),
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the many edge flips needed to achieve such configurations, and the associated large normalized energy equivalent reduction

(Figs. 4a and 2c).310

In the θ→ 1 limit, the energy equivalent becomes independent of the drainage area. Assuming uniform li, the energy

equivalent is a function of the number of nodes in the domain and is independent of the specific drainage configuration.

Consequently, all networks, including any random initial complex network, have the same minimal energy. This, in turn,

explains the low number of edge flips when θ→ 1, the small reduction in normalized energy equivalent, and the similarity of

the final optimal OCN to the initial random network.315

For 0 < θ < 1, our analysis reveals monotonous relation between θ to the normalized energy equivalent reduction (Fig. 4a),

the final ∆L (Fig. 2c) and the acceptance ratio of edge flips (Fig. 4c). Overall, the OCN analysis indicates that θ determines

the multiplicity of stable topologies. Networks with a high θ value can achieve stability across a wide range of ∆L values,

allowing for many possible stable topologies. This includes the formation of complex networks with large ∆L values, similar

to random networks. In contrast, to attain stability, networks with a low θ value are restricted to simple topologies with smaller320

∆L values.

5.3 Climate aridity controls network complexity

Large data compilations of river profiles revealed that channel concavity correlates with climatic and hydrologic factors. More

specifically, mean annual rainfall and rainfall intensities correlate positively with the concavity index (Zaprowski et al., 2005).

Likewise, the degree of aridity as quantified by the aridity index, the quotient of precipitation and evapotranspiration potential325

(Zomer et al., 2022), correlates with channel concavity, such that in arid regions (with low aridity index) rivers are less concave

(Chen et al., 2019; Getraer and Maloof, 2021). Combining these established relations between climate and concavity index

and the correlation identified here between the concavity index and drainage complexity implies that the climatic conditions

at which drainage networks develop could be encoded in their complexity and, thus, in the large-scale plan-form geometry

of landscapes. Consequently, arid climates, characterized by low channel profile concavity, likely favor the development of330

low-complexity networks, whereas a more humid climate, characterized by high-conavity channels, is expected to result in

variable complexity, including high-complexity drainage networks.

We examine the relationship between the complexity, ∆L, and the aridity index across the elongated natural mountain

ranges. The Aridity Index for each elongated range is calculated based on pixel statistics of the Global Aridity Index raster

(Zomer et al., 2022). A mask based on the analyzed area in each elongated range is used to extract the relevant pixels from the335

AI raster. The median and 25 and 75 percentile of the pixel values within each such mask are used in the analysis.

Figure 6 shows a positive correlation between climate aridity index (AI) and network complexity for the elongated mountain

ranges. The Spearman’s rank correlation coefficient for this correlation is 0.59 with a P-value of 0.01, indicating that higher

complexity tends to be associated with higher AI, representing more humid climates. It’s worth noting the significance of this

correlation, considering that our dataset comprises only 18 mountain ranges. This finding is surprising because previous studies340

that explored the link between aridity and concavity relied on much larger datasets, often including several hundred thousand

data points, to identify a signal out of the background noise (Chen et al., 2019; Getraer and Maloof, 2021). This could be seen
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Figure 6. Complexity and Aridity. The relation between drainage complexity, ∆L, and Aridity Index, the quotient of precipitation and

evapotranspiration potential (Zomer et al., 2022), for the 18 elongated mountain ranges analyzed in figure 2a. The box symbols represent the

median values, and the bars show the 25 and 75 percentiles. A significant correlation (P = 0.01) with a Spearman rank correlation coefficient

of 0.59 indicates that more complex networks (high ∆L) are associated with more humid climatic conditions and their corresponding

hydrology.

as another support for the strong link between the network plan-form complexity and the formative concavity index (equation

1), which is expected to strongly depend on the hydrologic conditions (Whipple and Tucker, 1999; Freund et al., 2023).

5.4 Concavity controls plan-form landscape evolution345

The results so far reveal that high-concavity landscapes can achieve topologic stability with variable complexity, whereas

the stability of low-concavity landscapes is conditioned by low complexity. These findings are consequential for landscape

evolution, which we further investigate and quantify using landscape evolution simulations in DAC.

5.4.1 Changing climate

A first simulation set is designed to examine how the drainage network adjusts to changes in the concavity index, reflecting350

changing climatic, hydrologic, and geomorphic conditions. Previous studies have linked the concavity index to channel-forming

processes, where debris flow channels typically exhibit lower concavity compared to fluvial channels (Stock and Dietrich,

2006). Therefore, a decrease in the concavity index can represent aridification or a transition to a debris-dominated landscape,

while an increase in concavity may indicate a transition to a more humid climate or a fluvial-dominated regime.

The simulation set starts with a topologically stable landscape of high concavity (θ = 0.9) and high complexity (brown355

frame in figure 7). We then gradually decrease the concavity index by increments of 0.1. Following each increment, we let

the landscape re-equilibrate until no further topological changes are observed. We measure the median value of ∆L for this
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Figure 7. The effect of changing concavity on network complexity. Simulation results from the DAC process model (Goren et al., 2014)

showing the relation between the complexity, ∆L and concavity index, θ during a two-stage scenario. First, the concavity is gradually

decreased by steps of 0.1 (left pointing arrow), and second, the concavity increases in steps of 0.1 (right-pointing arrows). The network and

topography of the initial, θ = 0.9 conditions are depicted in the brown framed topography, the θ = 0.1 landscapes, corresponding to the end

of the first stage and beginning of the second stage is shown with a black framed topography, and the final θ = 0.9 landscape is shown with

a purple framed topography. Note (i) the hysteresis response of ∆L, showing different trends depending on the directional change in the

concavity index, and (ii) the difference in topographic complexity between the two θ = 0.9 maps. For the current analysis, ∆L is calculated

only for channel heads that drain to different outlets, such that the shared junction is the base level. Measuring ∆L over this longer length

scale emphasizes the hysteresis signal.

equilibrated landscape and then use this landscape as the initial condition for the next increment. The procedure continues until

reaching a low concavity value of θ = 0.1. Subsequently, we gradually increase the concavity index by 0.1, following the same

re-equilibration procedure, until returning to the initial concavity value of θ = 0.9.360

Figure 7 shows that during the decreasing concavity stage, the median ∆L gradually decreases, consistent with the results

shown in figure 2b. However, in the increasing concavity stage, a hysteresis response is observed. The median ∆L in the

increasing concavity stage is lower than that of the same concavity value in the decreasing concavity stage and overall shows

only a slight increase compared to the median ∆L of the landscape with θ = 0.1 (black frame in figure 7). Consequently, when

the concavity index returns to its initial value of θ = 0.9 (purple frame in figure 7), the median ∆L of the landscape is smaller365

by a factor of 2.4 with respect to the median ∆L of the initial conditions with the same concavity index.
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The dynamics depicted in figure 7 suggest that when aridification or a transition to a debris flow-dominated regime takes

place, there is a significant autogenic reorganization of the drainage network towards a lower complexity configuration. In

contrast, when transitioning to a more humid climate or a fluvially dominated regime, minimal reorganization is expected, and

the resulting landscape may retain the complexity of the antecedent, more arid or debris-flow-dominated state. This implies370

that the complexity of a given landscape, as reflected by ∆L, is influenced by the lowermost concavity experienced by this

landscape. For example, a low complexity landscape, currently located in a humid climate (and exhibiting high concavity),

might suggest a formation or modification history under drier (i.e., low concavity) conditions. Differences in past aridity can,

therefore, be invoked to explain the variability in ∆L with aridity (Fig. 6), as well as the increased variability in ∆L with

concavity in the elongated mountain ranges (Fig. 2a).375

5.4.2 Fingerprints of antecedent lithologic conditions

To explore another scenario in which the complexity records the legacy of past conditions, we focus on the effect of lithology

in a second set of simulations. Here, drainage networks evolve from a subdued, random topography, similar to the simulations

depicted in Figure 2b. However, in this case, a narrow, one-kilometer-wide slab protrudes into the surrounding rocks. The slab

extends down to a depth of five kilometers into the crust and is positioned midway between the center of the domain and the380

southern base level of the evolving range, as shown in Figure 8. The slab’s erodibility is higher by a factor of 100 compared

to that of the surrounding rocks. This high erodibility slab can be conceptualized as a fault zone containing crushed, more

erodible rocks.

During the initial period of approximately 10 Myr (with an imposed uplift rate of 5×10−4 m/yr) the developing channel

networks incise into the layers of rock protruded by the higher erodibility slab. Once the slab is fully removed by erosional385

exhumation of five kilometers, the networks continue to incise into rocks with a uniform erodibility.

The simulation results reveal distinct behaviors of the drainage networks over time, depending on the concavity index and

the presence of a high-erodibility slab. In the first 10 Myr, south-draining channel segments favor the high-erodibility slab,

resulting in channel segments parallel to the southern edge of the mountain range (Duvall et al., 2020). However, beyond this

period, after the high-erodibility slab has been eroded, the response of the drainage networks diverges based on the concavity390

index.

To quantitatively assess this response, we analyze the number of longitudinal channel segments whose orientation is within

10 degrees of the slab’s orientation, where a segment connects two neighboring numerical nodes. Figure 8 illustrates the ratio

of longitudinal segments after 100 Myr (post-slab removal by erosion) to the number of longitudinal segments at 10 Myr, prior

to the complete exhumation of the slab, for south draining basins. As the concavity index increases, a greater preservation of395

horizontal segments is observed, although the slab is completely eroded. In the case of a landscape with θ = 0.9 (right-hand

side of Figure 8), the drainage pattern predominantly retains the legacy of the high-erodibility slab, resulting in a preservation

ratio of longitudinal segments close to 1. Conversely, a landscape with θ = 0.2 (left-hand side of Figure 8) is characterized by

lower preservation of longitudinal segments after the removal of the high-erodibility slab, leading to a low preservation ratio.

18

https://doi.org/10.5194/egusphere-2024-808
Preprint. Discussion started: 2 April 2024
c© Author(s) 2024. CC BY 4.0 License.



0

0.2

0.4

0.6

0.8

1.2

R
a

n
g

e
-p

a
ra

lle
l 
e

d
g

e
 p

re
s
e

rv
a

ti
o

n
 r

a
ti
o

1

0.4 0.5 0.6 0.7 0.8 0.9 10.1 0.2 0.3

θ = 0.2 θ = 0.9

south

north

10 Myr

Total exhumation < 5 km

100 Myr

Total exhumation > 5 km

10 Myr

Total exhumation < 5 km

100 Myr

Total exhumation > 5 km

Location of the high erodibility slab

south

north

south

north

south

north

Location of the high erodibility slab

6
0

 k
m

Figure 8. Preservation of antecedent conditions as a function of concavity index in a DAC (Goren et al., 2014) process model simulation

series. In these simulations, drainage networks evolve primarily through the incision of spatially uniform rocks, except for a narrow, elongated

slab with a higher erodibility (100 times greater), a width of one kilometer, and a depth that extends from the surface to 5 km into the crust. The

slab is located 15 kilometers from the southern base level. The south-draining basins originally incise into the slab-containing rocks, and the

drainage network locally aligns with the high erodibility slab, forming longitudinal channels regardless of the concavity index (topographies

at the top of the figure). Following a 5-kilometer exhumation, the slab is fully eroded away, and rivers incise into uniformly erodible strata.

Drainage network response to the removal of the slab depends on the concavity index. In simulations of low concavity (topographic maps on

the left), significant drainage reorganization removes the longitudinal segments(topography at the bottom left). In contrast, high concavity

landscapes (topographic maps to the right) preserve the antecedent longitudinal segments after the slab is eroded (topography at the bottom

right). The central graph presents the preservation ratio by counting the number of longitudinal segments at 100 Myr (after slab removal

by erosion) and dividing it by the number of longitudinal segments at 10 Myr (while the high-erodibility slab is still present) for all south

draining basins.

The slab simulation set reveals that environmental conditions promoting sustained high concavity over long timescales result400

in drainage networks that record the cumulative effect of spatially varying heterogeneities (e.g., lithology) even long after these

heterogeneities were removed. In contrast, environmental conditions associated with low concavities might eliminate traces of

past spatial heterogeneities.

The two simulation sets indicate that landscapes with high concavity indexes are less sensitive to variations in exogenic

forcing. As a result, high concavity index landscapes can preserve the original drainage patterns (Kwang and Parker, 2019),405

their specific complexity, and the legacy of the environmental conditions in which these landscapes initially formed. Conversely,

networks with low concavity indexes undergo reorganization to attain a configuration of lower complexity in response to any

environmental, climatic, and tectonic changes. Consequently, they possess a limited capacity to retain the legacy of the previous

environmental conditions.
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6 Conclusions410

The current analysis reveals that channel concavity index, θ, reflecting the channel longitudinal profile, sets a first-order control

on the plan-form complexity of drainage networks as quantified by the statistics of asymmetry in the length of paired flow path-

ways, ∆L. Variability of concavity indices, thus, explains the observed variability in complexity across the globe. Specifically,

θ controls the multiplicity of stable plan-form configurations available to a drainage network. When θ is small, the number of

stable configurations is small, and they are all characterized by high lengthwise symmetry, producing simple-looking drainage415

networks. When θ is large, the number of stable plan-form configurations increases, and they include configurations with a

large degree of lengthwise asymmetry, producing complex geometry. Consequently, high θ drainages can be found in topolog-

ical stable configurations that are characterized by high lengthwise asymmetry (i.e., high complexity), whereas the stability of

low θ drainages is conditioned by a smaller lengthwise asymmetry (i.e., low complexity). These findings can be theoretically

explained based on an energy minimization principle or by combining two empirical power laws that are readily documented420

across the globe: Hack’s law, equation (6), and Flint’s law, equation (1), describing the relation between drainage area to chan-

nel length and channel slope, respectively. The multiplicity of steady configurations of high θ landscapes further means that

the planform geometry of these networks more readily preserves the legacy of former conditions (Kwang and Parker, 2019).

Drainage network complexity of elongated mountain ranges correlates with the aridity index, a measure of climate dryness.

The correlation emerges despite the relatively small number of natural ranges we analyzed and is intuit through the effect of425

climate on channel formative concavity (Whipple and Tucker, 1999). Therefore, the geometric complexity of drainage networks

over entire mountain ranges records information about prevailing climatic conditions.

Code availability. The code used for the (i) analysis of the elongated mountain range, (ii) production and analysis of the DAC numerical

landscapes, (iii) production and analysis of the greedy OCN landscapes, and (iv) the Hack’s law based analysis is available at

https://github.com/gorenl/ConcavityControlsComplexity.430

Data availability. Appendix A and Table A1 lists information about the 18 elongated mountain ranges analyzed here

.

Appendix A: Elongated mountain ranges

Comprehensive details of the 18 elongated mountain ranges and the data utilized for generating figures 2a and 6 is listed in

Table A1. The ranges’ relief and drainage network are depicted in figure A1.435
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Figure A1. Relief and drainage networks of the 18 elongated mountain ranges used in the analysis of figures 2a and 6 in the main text.
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Appendix B: θ - ∆L insensitivity to threshold drainage area in natural mountain ranges

Figure 1a shows the relation between θ and ∆L for 18 elongated mountain ranges across the globe. The figure is based on

drainage network extraction using a drainage area threshold of 145 pixels, corresponding to ≈1 km2. Figure B1 shows that

when the drainage network is defined based on different thresholds, the distributions of θ, ∆L, and ∆χ varies, but the emerging

trends between these parameters are generally independent of the threshold drainage area.440
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Figure B1. The effect of threshold drainage area, A0 used for the extraction of the drainage network on the relations between ∆L or ∆χ and

the concavity index, θ. The choice of A0 affects the calculated values, but the positive relation between ∆L and θ and the less significant

correlation between ∆χ and θ are reproduced in all cases. The three panels show data for the same elongated ranges, except the Taiwanese

central mountain range, which is omitted from the left panel because the concavity estimation with A0 ≈ 0.34km2 produced a bi-modal

distribution of values.

Appendix C: θ - ∆L and the erodibility in the numerical DAC simulaitons

The erodibility coefficients used in the DAC simulations, as shown in Figure 2b, were varied along with the value of θ to

maintain an approximately equal range relief (Willett, 2010). These values are listed in Table C1.

To ensure that the erodibility itself does not control ∆L, we repeat a subset of the simulations, where the concavity index

varies, and the erodibility is kept constant, resulting in numerical ranges of drastically different relief. Figure C1 shows the445

same trend as in figure 2b in the main text, indicating that this trend is independent of changing the erodibility index.

Appendix D: The evolution of ∆χ during OCN simulations

The main text shows the evolution of the normalized energy equivalent and ∆L as functions of iteration number during the

greedy OCN optimization application. Here, the behavior of ∆χ is reviewed. Figure D1 shows that the energy minimization

process also decreases the median ∆χ. However, compared to the normalized energy equivalent and the ∆L trends (Figures450

4a and 4b in the main text), the ∆χ decrease is more uniform across values of θ, as also seen in figure 2c in the main text.

Furthermore, the decrease in ∆χ is non-monotonous.
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Table C1. Concavity index and Erodibility in the DAC simulations 1

θ K[L(1−3m)/T(1−m) ]

0.1 9.2828d-4

0.2 1.5273d-4

0.3 2.5936d-5

0.4 4.562d-6

0.5 8.3312d-7

0.6 1.5811d-7

0.7 3.1152d-8

0.8 6.3577d-9

0.9 1.3392d-9
1 Parameters used in the simulations

depicted in figure 2b.
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Figure C1. Relation between ∆L (blue) and ∆χ (green) and the concavity index, θ for a subject of θ values. Here, the concavity index, K

is maintained constant. Yet, the relations observed in figure 2b remain the same.
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OCNs can be linked to drainage network evolution over topography (Banavar et al., 2001). Banavar et al. (2001) found that

any edge flip resulting in a reduction of the network’s total energy indicates that the flip occurred towards a steeper immediate

neighbor. While such a flip aligns with a decrease in ∆χ between the pre- and post-flip channel heads, the non-monotonic455

trends of ∆χ depicted in Figure D1 indicate that the median ∆χ of the network, encompassing the entire model domain, does

not necessarily decrease following an edge flip. This is likely because a single flip changes the drainage area distribution along

the two affected basins, which can also change the ∆χ across other channel head pairs.
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Figure D1. Evolution of median ∆χ during the optimal channel network (OCN) simulations (see Method section in the main text) for

different values of the concavity index θ.
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