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Abstract. The planform geometry of branching drainage networks controls the topography of landscapes as well as their ge-

omorphic, hydrologic, and ecologic functionality. The complexity of networks’ geometry shows significant variability, from

simple, straight channels that flow along the regional topographic gradient to intricate, tortuous flow patterns. This variability

in complexity presents an enigma, as models show that it emerges independently of any heterogeneity in the environmental

conditions. We propose to quantify networks’ complexity based on the distribution of lengthwise asymmetry between paired5

flow pathways that diverge from a divide and rejoin at a junction. Using the lengthwise asymmetry definition, we show that the

channel concavity index, describing downstream changes in channel slope, has a primary control on the planform complexity

of natural drainage networks. An analytic model and optimal channel network simulations employing an energy minimization

principle reveal that landscapes with low concavity channels attain planform stability only with simple network geometry. In

contrast, landscapes with high concavity channels can achieve planform stability with various configurations, displaying dif-10

ferent degrees of network complexity, including extremely complex geometries. Consequently, landscapes with high concavity

index channels can preserve the legacy of former environmental conditions, whereas landscapes with low concavity index

channels reorganize in response to environmental changes, erasing the former conditions. Consistent with previous findings

showing that channel concavity correlates with climate aridity, we find a significant empirical correlation between aridity and

network complexity, suggesting a climatic signature embedded in the large-scale planform geometry of landscapes.15

1 Introduction

The planform structure of branching fluvial drainage networks has far-reaching implications for the geomorphic, hydrologic,

and ecologic functionality of landscapes (Horton, 1945; Sharp and Malin, 1975; Perron et al., 2006; Willett et al., 2018; Pelletier

et al., 2018; Stokes and Perron, 2020; Freund et al., 2023; Liu et al., 2024). This structure, which can be expressed based on

its geometric and topologic attributes, exhibits significant variation across different regions. In some cases, networks exhibit20

simple flow paths (Fig. 1a) that generally follow the regional topographic gradient. These flow paths define main drainage

basins, draining the main water divide to the mountain front, that are overall similar in shape and size and have a symmetric

basin shape with respect to their main trunk (sensu Ramsey et al., 2007). Other networks appear more intricate. These complex

networks display tortuous flow paths, asymmetric basin shapes, and varying sizes and shapes of the main basins (Fig. 1b).
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Differences in network planform complexity directly control the landscape's 3D topography. For the same total relief, longer25

and more tortuous �ow paths have diverse slope aspects and shallower channel slopes, resulting in lower local reliefs (DiBiase

et al., 2010) and longer channel segments per elevation range and associated ecoclimatic zone within individual main basins.

Conversely, shorter and simpler �ow paths that conform to the regional gradient feature a narrower distribution of slope aspects

and greater local �uvial relief, such that each main basin is expected to have shorter channel segments within any given

elevation range. These characteristics affect water runoff, sediment transport capacity, rate and pattern of erosion, and the30

distribution of ecological niches (Rodríguez-Iturbe and Valdés, 1979; Whipple and Tucker, 2002; Badgley et al., 2017; Pelletier

et al., 2018; Khosh Bin Ghomash et al., 2019; Beeson et al., 2021; Stokes and Perron, 2020)

Some of the variability in network complexity could be attributed to the level of heterogeneity in the environmental and

boundary conditions affecting the landscape. Spatial gradients in tectonics (Castelltort et al., 2012; Goren et al., 2015, 2014;

Habousha et al., 2023; Cowie et al., 2006; Braun et al., 2013; Mudd et al., 2022), climate (Caylor et al., 2005; Thomas et al.,35

2011; Abed-Elmdoust et al., 2016), and lithology (including fabric and fracture density) (Strong et al., 2019; Ward, 2019;

Mudd et al., 2022) and discrete geologic structures (Hamawi et al., 2022; Scott and Wohl, 2019) are likely linked to more

complex network geometry (e.g. Abed-Elmdoust et al., 2016). However, numerical studies of landscape evolution (Shelef and

Hilley, 2014; Tucker and Whipple, 2002; Howard, 1994; Rinaldo et al., 1992; Sun et al., 1994b; Howard, 1990) show that

variabilities in complexity emerge even when environmental and boundary conditions are spatially uniform. This means that40

drainage complexity could emerge from autogenic network dynamics and be independent of any heterogeneity in the applied

forcings.

The same modeling studies (Shelef and Hilley, 2014; Tucker and Whipple, 2002; Howard, 1994; Sun et al., 1994b; Howard,

1990) found that changing the channel concavity index leads to variations in numerical network complexity, where drainages

that are characterized by a higher concavity index are more complex. However, a similar relation was not reported in natural45

drainage networks, and the reasoning behind it remained elusive. The concavity index,� , emerges as the exponent of the

globally documented empirical power law relation between the drainage area,A, and slope,S, known as Flint's law (Flint,

1974; Howard, 1971; Whipple and Tucker, 1999; Willgoose et al., 1991):

S = K sA � � ; (1)

whereK s is referred to as the steepness index. The concavity index describes changes in the slope of the river channel along50

its longitudinal pro�le as it accumulates drainage area downstream. Empirical studies have found that the concavity index

ranges between 0.1-1, with values between 0.3-0.7 being more common (Tucker and Whipple, 2002). A sub-linear pro�le

is characterized by concavity values close to zero, where the channel slope is mostly independent of the drainage area. In

contrast, high� values, closer to 1, indicate that most of the elevation gain occurs at higher elevations and small drainage

areas (Whipple and Tucker, 1999). Channel concavity has been shown to vary with formative processes, which are primarily55

in�uenced by hydrologic conditions, i.e., the relationship between precipitation, discharge, and channel width (Whipple and

Tucker, 1999; Stock and Dietrich, 2006), as well as by spatial gradients in tectonic uplift (Seybold et al., 2021) and climatic

conditions (Roe et al., 2002). Notably, several recent studies identi�ed links between channel concavity and prevailing climatic
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Figure 1. Variability of complexity. Examples and schematic representations of paired �ow pathways (light blue) originating from two

channel heads (yellow squares), diverging from a common divide, and merging at a downstream junction (red square). Hillshade topographies

with drainage networks colored in white are displayed in (a) and (b). (a) Shows an example from Sierra Nevada, Spain, where a simple

network with sub-parallel trunk streams �ows down the main topographic gradient. The median lengthwise asymmetry,� L over all paired

�ow pathways in this mountain range is 0.19. The map projection is UTM zone 30S. (b) Displays an example from Sierra Madre del Sur,

Mexico, showcasing a complex drainage network with tortuous �ow paths. The median� L over all paired �ow paths in this mountain range

is 1.00. The map projection is UTM zone 14Q. (c) A schematic basin with the same components as in panels a and b.L ij andL ji , used

for calculating� L of paired �ow paths, are measured along the two paired �ow paths (light blue) from channel heads, chi and chj (yellow

squares), respectively, to their common junction (red square).� � is determined by measuring the� values of the channel heads starting at

the junction where they merge.
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conditions, particularly aridity. These studies have consistently indicated that arid regions tend to exhibit lower concavity

indices (Zaprowski et al., 2005; Chen et al., 2019; Getraer and Maloof, 2021; Michaelides et al., 2022).60

The relationship between channel concavity and network complexity is intriguing because it suggests that the concavity

index, � , which characterizes the channel longitudinal pro�les, controls the planform properties of entire branching drainage

networks. One potential way in which� may affect the planform geometry of drainage basins is through its hypothesized

in�uence on junction branching angles (Howard, 1971, 1990; Sólyom and Tucker, 2007; Hooshyar et al., 2017; Strong and

Mudd, 2022). Larger� values are associated with larger branching angles, potentially leading to wider basins, while lower65

� values are associated with smaller junction angles and narrower basins. However, consistent changes in the local metric

of junction branching angle, despite their potential effect on basin scaling (Yi et al., 2018), do not necessarily correspond to

variations in drainage complexity.

To proceed, it is essential to establish a formal de�nition of drainage network complexity. The term complexity has been

used in association with drainage networks referring to various metrics and geometric properties including, for example, chan-70

nel branching angle (Devauchelle et al., 2012) and Horton-Strahler order (De Bartolo et al., 2016). A formal mathematical

de�nition has been proposed by Ranjbar et al. (2020), who used an entropy measure applied to series that describe the width

and incremental area functions within a basin (Ranjbar et al., 2020, and references therein). These functions capture the vari-

ability in drainage density (channel pixels) and incremental contributing area along the catchment, from the furthest drainage

divide to the outlet. However, by reducing the two-dimensional geometry of the drainage network to one-dimensional functions75

(Gangodagamage et al., 2014), these measures cannot account for internal basin asymmetry and the overall degree of channel

tortuosity.

Ranjbar et al. (2020) further identi�ed a signi�cant correlation between their complexity measure and the drainage network

topology, de�ned by the c-parameter of the self-similar Tokunaga tree constructed based on the drainage network (Pelletier

and Turcotte, 2000; Zanardo et al., 2013) and describing the properties of side branching. This suggests that a topological80

description based on the Tokunaga tree might also be informative for network complexity. Nevertheless, the Tokunaga tree

properties rely on average side branching by order, which overlooks internal basin asymmetry. Additionally, the Tokunaga-

derived c-parameter assumes topologically self-similar basins, a potentially restrictive assumption.

Here, we adopt an alternative approach for de�ning and quantifying network complexity based on the lengthwise asymmetry

between paired �ow pathways that diverge from a single divide and rejoin at a junction or a common base level following85

Shelef and Hilley (2014) (Fig. 1c). The link between lengthwise asymmetry, capturing the multi-scale network geometry, and

drainage complexity can be understood by considering two end-members. Extremely tortuous and complex networks are linked

to large lengthwise asymmetry (Fig. 1b), as one tortuous �ow pathway can be meaningfully longer than its across-divide pair.

Conversely, simple geometry is linked to small asymmetry (Fig. 1a). Following this de�nition, we explore the associations

between the concavity index and the network complexity as re�ected by lengthwise asymmetry. We target observations from90

natural drainage networks and process-based rationale to quantify and better understand a climate-dependent, �rst-order control

on the 3D geometry of landscapes and the river networks that drain them.
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2 Quantifying the complexity and stability of branching drainage networks

Drainage divides delineate drainage basins, and consequently, the planform geometry of a drainage network is closely tied to

the associated drainage divide network (Shelef, 2018; Scherler and Schwanghart, 2020b; Habousha et al., 2023). The stability95

of the drainage network planform geometry is, therefore, tied to the stability of the divide network. When the divides shift or

jump, the drainage basin's geometry changes, and the network geometry is not steady. In contrast, as long as the divides remain

stationary, the planform geometry of the drainage system is stable, and the network topology is �xed. The stability of drainage

divides can be assessed using the gradient of the parameter� in between channel heads across divides (Willett et al., 2014),

where� is proportional to the expected steady-state elevation and is de�ned as: (Perron and Royden, 2013)100

� (x) =

xZ

x b

�
A0

A(x0)

� �

dx0: (2)

In equation (2),x is the spatial coordinates measured upstream the channel,xb represents the base level,x0 is the integration

parameter, andA0 is a reference drainage area introduced to ensure that the dimension of� [L] is independent of the value of

� .

Considering the� values of channel heads (Fig. 1c), when the environmental conditions are spatially uniform, a zero or105

suf�ciently small (Shelef and Goren, 2021)� � across divide indicates that the divide is stable (Willett et al., 2014; Shelef

and Hilley, 2014), while a large� � across a divide could indicate a migrating divide (Willett et al., 2014; Beeson et al., 2017;

Habousha et al., 2023). To compare the stability of divides and drainages of different scales, a normalized� difference (referred

to as� difference) across divide is de�ned for paired �ow pathways, which originate from two channel heads,i andj , across

a single divide that join at a downstream junction or base level (Fig. 1c):110

� � ij = � � ji =
2j� ij � � ji j
� ij + � ji

: (3)

where� ij (� ji ) is the� value at channel headi (j ), where� is computed between the channel head and the common junction

of �ow pathwaysi andj .

A formal quanti�cation of network complexity is de�ned in a similar manner as a measure of normalized lengthwise differ-

ence (referred to also as asymmetry) between paired �ow pathways (Fig. 1c):115

� L ij = � L ji =
2jL ij � L ji j
L ij + L ji

(4)

whereL ij andL ji are the along-�ow distances from the two channel heads to their common junction or base level.

These de�nitions offer valuable insights into how� might in�uence network complexity,� L . In the extreme case of� = 0 ,

� ij = L ij , and � difference across divide reduces to lengthwise asymmetry (Shelef and Hilley, 2014). In this case, stable

planform con�gurations with� � ij = 0 for all i andj reduce to� L ij = 0 for all i andj . Consequently, for� = 0 , the only120

stable branching network is one with perfect lengthwise symmetry, the simplest possible network. As� increases, the drainage

area distribution along the �ow pathways, equation (2), plays a growing role, such that equal� across divides could also be

achieved when� L ij 6= 0 , as long as the drainage area distribution compensates for the lengthwise asymmetry.
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3 Methods

We explore correlations between landscapes' channel concavity indices and their �uvial branching network complexity while125

accounting for the networks' stability. The analysis targets natural drainage networks, numerical networks generated using the

surface process model DAC (Goren et al., 2014), and numerical optimal channel network simulations (Rinaldo et al., 1992).

3.1 Elongated natural mountain ranges

To explore the correlation between channel concavity and drainage network complexity in natural �uvial drainage networks,

we independently quantify� , � L , and � � along 18 elongated mountain ranges across the globe. We choose to focus on130

elongated ranges (rather than study general networks) because (i) such ranges represent topographic units, whose base level

boundaries are relatively well-de�ned, (ii) each of the ranges is relatively simple in terms of its tectonic setting, where the main

faults bound the range rather than transect it, and (iii) for each range,� and� L are quanti�ed over a relatively large domain

with an along range length between 10s-100s km. We further note that the ranges we choose are situated in both extensional

and compressional settings, and accordingly, some are bounded by normal and others by reverse faults. Detailed information135

about the elongated ranges is listed in Appendix A.

The selection of elongated mountain ranges for the current analysis adhered to speci�c criteria: (i) The elongated range has

a single main divide from which basins drain to two opposite base levels. (ii) There should be a minimum of four basins on

each �ank, with the basins' outlets determined by a common elevation contour surrounding the range. (iii) The range should

be free from prevalent volcanic characteristics or systematic structural control on the internal drainage pattern.140

The analysis of the natural elongated mountain ranges is based on the SRTM 3 arc-seconds Digital Elevation Model (DEM)

(Global, 2013) using the TopoToolbox topography analysis package (Schwanghart and Scherler, 2014; Scherler and Schwang-

hart, 2020a). The boundaries of each range were de�ned based on a minimum elevation threshold, chosen visually to eliminate

alluvial fans and focus on bedrock rivers. Then, interstitial basins were excluded from the analyzed area, such that the analysis

was based only on the main basins, draining the main divide to the boundary contour. The drainage network was extracted145

based on a prede�ned drainage area threshold, and we explore the sensitivity of the results to the drainage area threshold in

Appendix B.

A single, best-suited concavity index,� , was determined for each elongated mountain range based on the extracted drainage

network and using the disorder scheme (Gailleton et al., 2021; Hergarten et al., 2016; Mudd et al., 2018). The disorder scheme

assesses the extent to which the elevation-based order of channel pixels aligns with their� value order. The scheme involves150

calculating a normalized measure of pixel disorder for prede�ned discrete values of� , D � (� ) (Gailleton et al., 2021). The

most probable� value (referred to as the best-suited� ) is the one that minimizes theD � (� ) metric. For each value of� , the

calculation involves calculatingR(� ) =
P n

i =1 j� i +1 (� ) � � i (� )j when � is sorted by elevation. Then, because the absolute

value of � depends on� , R(� ) is normalized by� max (� ) to de�ne D(� ) = ( R(� ) � � max (� )) =� max (� ) (Hergarten et al.,

2016; Gailleton et al., 2021). Finally,D � (� ) is de�ned asD � (� ) = D(� )=Dmax (Gailleton et al., 2021).155
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The uncertainty in� is derived based on the uncertainty inD � following Gailleton et al. (2021). To evaluate it, a set ofD � (� )

values was generated through bootstrapping iterations, with the number of iterations being 1.5 times the number of main basins

in each range. In each iteration,D � (� ) was computed based on the drainage network of a random selection of 90% of the main

basins. The speci�c parameters used in the bootstrapping iterations were chosen heuristically for their relatively consistent

results. The identi�cation of the best-suited� using the disorder scheme does not assume any speci�c functional dependency160

between the elevations and� values but does assume that the parameters affecting the elevation along the drainage network,

such as tectonic, climate, and lithology, might vary as a function of� .

� L and � � were computed for all divide points with distance from divide endpoints exceeding 1000 m (Scherler and

Schwanghart, 2020a). For each of these divide points,� L and� � were calculated based on theL and� values of the two

opposing (across the divide point) nearest drainage network pixels along the D8 �ow routing raster, and theL and� values of165

the junction (or base level) of the two opposing pathways. To eliminate the in�uence of overall range asymmetry (which could

stem from orographic effects on climate, tectonic advection, or tectonic tilting), divide points from which �ow diverges to the

two opposite base levels of the elongated range were excluded from the analysis. The calculation of� values employed the

best-suited� value of the range. In cases where the two nearest network pixels were not at the same elevation, a correction was

applied to� L and� � . This correction adds the values ofA �
0� zij =Ks and� zij =KsA � �

i to the� andL of the lower pixel,170

respectively, thus estimating the� andL values for channel heads that are at exactly the same elevation. Here,� zij represents

the elevation difference between the two nearest network pixels,K s is the best-�t steepness index (derived from the slope of

the� -z data of the range), andA i denotes the drainage area at the lower nearest network pixel (assuming it is labeled asi ).

3.2 DAC simulations

The DAC landscape evolution model is a processed-based model presented in Goren et al. (2014). DAC implements an implicit175

solver of the stream power incision model (Howard, 1994; Whipple and Tucker, 1999):E = K (PA)m Sn , whereE [L/T] is

erosion rate,K [L (1 � 3m ) /T(1 � m ) ] is erodibility coef�cient, P [L/T] is precipitation rate,A [L2] is drainage area,S [L/L] is

channel gradient, andm andn are positive exponents. Upon identifyingK s = ( E=KP m )1=n and� = m=n, the stream power

model can be shown to reduce to equation (1). The solver is built upon a triangular, sparse, dynamically adjusting grid. Unlike

previous implementations (Goren et al., 2014, 2015; Habousha et al., 2023) that solved for the divide location and identi�ed180

captures following divide breaching, the DAC implementation used here assumes a strict steepest descent algorithm for �ow

routing. This choice allows better preservation of the initial conditions (starting with a random subdued topography between

0-1 m) and facilitates the comparison of drainage network complexity across values of the concavity index.

For the current analysis, we ran simulations over a domain size of 200 km� 60 km, producing elongated numerical mountain

ranges with a single main water divide. The simulations apply a precipitation rate ofP = 1 m/yr, an uplift rate ofU = 0.5 mm/yr,185

and a slope exponent,n, of 1. The area exponent,m, was varied between the simulations and was maintained spatially uniform

in each simulation. The applied concavity index was calculated as� = m=n. The drainage density, a function of grid spacing,

is independent of the model parameters and similar across the simulations. To maintain a consistent global relief despite the

changes in� , the erodibility coef�cientK is adjusted across the simulations. Table C1 lists the values ofK .
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The simulations run for 100 million years, ensuring topologic stability by verifying that no alterations in �ow routing190

occurred during the �nal 10 million years of each simulation. To ensure that the observed effects are indeed related to� and

not in�uenced byK , Figure C1 replicates a subset of the analysis while keepingK constant.

In the DAC simulations, the calculation� L and� � across divides accounts for all grid-based channel head pairs that share

a divide. When a pair of channel heads does not have the same elevation, a similar correction to the one described for the

natural elongated mountain ranges was used with the applied steepness index,K s.195

3.3 Optimal Channel Network simulations

Optimal Channel Network (OCN) theory (Rodriguez-Iturbe and Rinaldo, 2001; Rinaldo et al., 1992; Molnár and Ramírez,

1998; Banavar et al., 2001) suggests that natural drainage networks self-organize in a way that minimizes global energy expen-

diture during water �ow down the network. In this general view of landscape organization, the energy is evaluated based on

the network's geometry and topology, represented as sets of nodes and edges, where edges represent the channel connections200

between nodes. Each internal node has a unique path leading to an outlet node, and the �ow paths are loopless. The total energy

expenditure, denoted asP, for any network de�ned over the node set is determined by the sum of the local energy expenditures,

Pi , along each edge,i (Sun et al., 1994b):

P =
X

i

Pi /
X

i

Qi Si l i /
X

i

A 

i l i = Peq: (5)

Si is the slope across edgei , A i is the upstream drainage area (proxy for dischargeQ) of nodei from which edgei originates,205

and l i is the length of edgei . The term on the right-hand side of equation (5) is referred to as the energy equivalent,Peq.

The area exponent,
 , is expected to correlate inversely with� , the concavity index (equation 1) (Strong and Mudd, 2022).

However, the interdependence of these two exponents as a function of environmental conditions and network hydrology, and

their consequent functional relation, remains debated (Strong and Mudd, 2022). Here, we follow the formulation of Sun et al.

(1994b) and de�ne
 = 1 � � .210

Natural drainage networks were found to resemble numerically generated networks in a state of a local energy minimum

(Rodriguez-Iturbe and Rinaldo, 2001; Colaiori et al., 1997). A commonly used criterion to identify and construct such networks

is to ensure that the total energy (i.e., equation 5) is not reduced by a single-edge �ip. An edge �ip is an operation that redirects

an edge that emerges from nodei and used to end at nodej , an immediate neighbor ofi , to one of its other immediate neighbors,

k 6= j , without creating loops. A network con�guration where any edge �ip will only increase its total energy content de�nes215

a local energy minimum and corresponds to a topologically stable con�guration.

We perform simulations using an iterative greedy algorithm following Rodríguez-Iturbe et al. (1992) to explore the effect of

� on networks' evolution toward local energy minimum and the complexity of the emerging stable networks. The algorithm

starts from a random network con�guration, attempts a random edge �ip in each iteration, and accepts the new con�guration

only if the edge �ip reduces the total energy. Note that this approach differs from the simulated annealing algorithm (e.g. Sun220

et al., 1994a, b) that de�nes a temperature-dependent probability to accept edge �ips that increase the total energy as a means

to exit local minima and identify a global minimum con�guration. Here, we use the greedy approach to eliminate probability-
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dependent changes that obscure the topological relation between stable networks generated with different� values from the

same initial random state (Rodríguez-Iturbe et al., 1992).

Optimizations with different� are initiated from the same random network with a domain size of 200 over 60 nodes.225

Each node in the domain can drain to one of its eight neighbors, leading edges to be longer in the diagonal than in the rook

directions. The nodes along the domain boundary are de�ned as outlets. Each simulation performed an optimization with a

prede�ned� value. The OCN approach lacks a hillslope domain, resulting in a high drainage density. Therefore, to avoid signal

overwhelming by channel head pairs that merge at a single node downstream,� L and� � are calculated only for neighboring

channel head pairs that drain to different outlets (boundary nodes). Each simulation was run for 3.6� 106 iterations.230

4 Results - Concavity correlates with lengthwise asymmetry in natural and numerical mountain ranges

Among the 18 natural elongated mountain ranges studied, a larger� correlates with a higher median� L (Fig. 2a blue squares)

and a wider spread of� L values (Fig. 2a blue bars, denoting the 25th and 75th percentiles of the� L distribution in each

range). Though the correlation is not necessarily linear, we quantify it through Pearson's linear correlation. The correlation

coef�cient between the best-suited� and the median� L is 0.92 (with a slope of 2.16 and P-value of 4.22� 10� 8), and the235

correlation coef�cient between the best-suited� and the difference between the 75 and 25 percentiles of the� L distribution is

0.81 (with a slope of 1.30 and P-value of 5.54� 10� 5). These trends indicate that those natural networks that are characterized

by a higher value of� are more complex (with larger median� L ) and show greater variability in their level of complexity. In

contrast, low� natural networks have lower complexity and complexity variation.

To explore the relation between planform stability and� , �gure 2a also shows the correlation between� � and� (green240

symbols and bars). The Pearson's linear correlation coef�cient between the best-suited� and the median� � is 0.58 (with a

slope of 0.33 and P-value of 0.01). The correlation coef�cient relating� to the difference between the 75 and 25 percentiles

of the � � distribution is 0.61 (with a slope of 0.43 and P-value of 0.007). Therefore, the association and sensitivity (i.e.,

correlation and slope) between� � and its spread to� are weaker than those between� L and its spread and� . Consequently,

the degree of network instability, as quanti�ed by� � , cannot be invoked as a main driver of the variability in complexity for245

the analyzed ranges.

We cannot fully exclude the possibility that heterogeneity in the environmental condition across the analyzed mountain

ranges affects both� and� L . To address this possibility, we apply a similar analysis over two types of synthetic, steady-state

landscapes of uniform environmental conditions generated using (i) the DAC process-based landscape evolution model (Goren

et al., 2014) and (ii) the process-independent, greedy OCN model. In both models, we run simulations with pre-de�ned�250

values and measured� � and� L over the emerging drainage networks after they have achieved topologic stability. For� L ,

models' results, �gures 2b and 2c (blue), show similar trends as those documented for the natural elongated mountain ranges.

The median and the spread of� L increase with increasing� . For � � (blue), model results show constant and in�nitesimal

values, independent of� in the DAC simulations and weak dependency on� in the OCN simulations. Notably, while the range

of � L has the same order of magnitude in the natural elongated ranges (Fig. 2a) and the numerical drainages (Fig. 2b&c), the255
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Figure 2. Complexity and concavity index. (a) Relations between lengthwise asymmetry,� L (blue) and� � (green), and the concavity

index� . The data represent 18 elongated mountain ranges, visualized as circles on the right-hand side of the map. The circles are color-coded

by the logarithm of the Aridity Index (AI) (Zomer et al., 2022), with yellower colors corresponding to more arid conditions. (b) Relations

between� L , � � , and the concavity index� for numerical ranges from the DAC process model (Goren et al., 2014). (c) Relations between

� L , � � , and the concavity index� for numerical ranges derived from simulations using an optimal channel network model. In all panels, the

squares display median values, and the vertical error bars indicate the 25 and 75 percentiles. The horizontal error bars in panel (a) represent

the uncertainty in� , where the square is located at the best-suited� value. A relatively high regression slope and signi�cant correlation

is observed between� and� L , as well as between� and the spread of� L in the natural ranges and simulations. A weaker (a and c) or

nonexistent (b) correlation is observed between� � and� .

� L values in the simulations are mostly smaller than the natural� L for the higher� values, potentially revealing the effect of

environmental heterogeneity on the natural terrains complexity, consistent with the higher values of� � for these ranges.
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5 Discussion

5.1 Hack's law explains the relation between� and � L

To explain the observed correlation between� and landscape complexity as quanti�ed by� L , we turn to an analysis of260

idealized channels. We set two coordinate systems,x, that follow paired �ow paths from their common junction or base

level to their common divide, such thatx = 0 is at the junction, andx = L i (x = L j ) is the common divide when measured

along channeli (j ) (Fig. 1c). We assume that the channels obey Hack's law (Rigon et al., 1996), such that the drainage area

distribution along the sub-basins whose outlet is the common junction are expressed as follows:

A i (x) = ka i (L i � x)h i for 0 � x � L i � xc = L ij (6)265

A j (x) = ka j (L j � x)h j for 0 � x � L j � xc = L ji

whereka i andka j are Hack's coef�cients andhi andhj are Hack's exponents. The hillslope length,xc, measured between the

divide and the channel heads, is assumed uniform. We further assume that the channels obey a power-law relation between the

slope and the drainage area with a concavity index� , equation (1), and consequently, the� values at the channel heads could

be de�ned by combining equations (6) and (2):270

� i (L i � xc) =

x 0= L i � x cZ

x 0=0

A �
0dx0

A i (x0) � =

8
<

:

A �
0

(1 � h i � )k �
a i

�
L 1� h i �

i � x1� h i �
c

�
for hi � 6= 1

A �
0

k �
a i

ln
�

L i
x c

�
for hi � = 1

(7)

� j (L j � xc) =

x 0= L j � x cZ

x 0=0

A �
0dx0

A j (x) � =

8
<

:

A �
0

(1 � h j � )k �
a j

�
L 1� h j �

j � x1� h j �
c

�
for hj � 6= 1

A �
0

k �
a j

ln
�

L j

x c

�
forhj � = 1

(8)

Requiring the channels to be in a topologic steady-state (stable divide and stable planform con�guration), the channel heads

� values across the divide must be equal. For generality and simplicity, we consider the case wherehi � 6= 1 andhj � 6= 1 and

write the divide stability criterion, equating� i (L i � xc) to � j (L j � xc):275

1
(1 � hi � )k�

a i

�
L 1� h i �

i � x1� h i �
c

�
=

1
(1 � hj � )k�

a j

�
L 1� h j �

j � x1� h j �
c

�
(9)

If Hack's coef�cients and exponents are identical for the two sub-basins, i.e.,ka i = ka j andhi = hj then the only solution to

equation (9), is lengthwise symmetry,L i = L j and� L = 0 for all values of� .

To explore the possibility of stable topologic con�gurations that respect equal� across divide while permitting� L 6= 0 , we

relax the restricting assumption of identical Hack's coef�cient or exponent. First, we consider the case whereka i =ka j is not280

necessarily 1 whereashi = hj = h. Figure 3a shows the value ofka i =ka j needed to ensure equal� across divide, equation

(9), as a function of� and � L . Without loss of generality, we assume thatL j < L i , and consider values ofka i =ka j < 10,

approximately a factor of three larger than the range of reported natural values (Montgomery and Dietrich, 1992; Mueller,

1972; Willemin, 2000; Dodds and Rothman, 2000; Shen et al., 2017; Sassolas-Serrayet et al., 2018). Considering a �xed� L ,
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Figure 3. Changes in lengthwise asymmetry,� L as a function of concavity index,� with differing Hack's law parameters, equation (6).

� L is calculated for idealized sub-basins along paired �ow pathways,i andj , sharing a stable divide (Fig. 1c). (a) The color map represents

the logarithm of Hack's coef�cients' ratio, assuming that Hack's exponents are identical,hi = hj = 2 . (b) The color map represents the

difference between Hack's exponents, assuming Hack's coef�cients are identical andhi = 2 . In both panelsL i = 50 km, L j � L i , and

xc = 0 :25 km. The black and gray curves represent �tted power laws to the� L -� trends based on the natural elongated mountain ranges

shown in �gure 2a. For the median� L the �t is � L = 2 :12� 1:60 (black curves); for the 75 percentile the �t is� L = 2 :49� 1:23 (upper gray

curves); for the 25 percentile the �t is� L = 1 :54� 2:14 (lower gray curves).

the �gure shows that for low values of� , there are noka i =ka j values within the range for whichL i 6= L j . As � increases,285

� L 6= 0 could be achieved with highka i =ka j values. As� further increases, theka i =ka j values ensuring stable con�gurations

with any particular� L become smaller. This analysis reveals that for small� values, stable topologies can be achieved only

with small � L , but as� increases, small differences in Hack's coef�cients permit stable topological con�guration with large

lengthwise asymmetry.

Next, we consider the case wherehi 6= hj whereaska i = ka j = ka . Here, equation (9) becomes independent ofka , and for290

a �xed value ofhi , the value ofhj for different� L can be solved only implicitly. Figure 3b shows the value of the difference

hi � hj as a function of� and� L , for hi = 2 . The difference is used rather than the ratio, as withka (Fig. 3a), because the

h exponents vary by a factor, whereas theka coef�cients can vary by orders of magnitude. We only consider solutions where

0 < h i � hj < 0:5, again representing a difference larger by a factor of approximately three with respect to the range ofh

exponents reported for natural terrains. Here, as well, for low values of� , a solution exists only for very small� L , and as�295

increases, smaller differences in the Hack's exponents allow for a stable con�guration with a large lengthwise asymmetry.

This analysis reveals that the widely documented geomorphic relationships of Hack's law, equation (6), and Flint's law,

equation (1), are consistent with and can explain natural and numerical observations (Fig. 2) of the relations between� and

� L . More speci�cally, the analysis shows that when� is large, stable con�gurations with zero� � across divides can be

achieved even when� L � 0, facilitated by small variations in Hack's exponent and coef�cient. When� is small, topological300

stability necessitates high lengthwise symmetry (small� L ).
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The curves that overly �gure 3 show the best-�t power law relation between the best-suited� and the median (black curve)

and 25 and 75 (gray curves) percentile of� L based on the elongated mountain ranges shown in �gure 2a. The relation

between the curves and the colormap that underlies them reveals that high� natural networks achieve large� L by exploiting

small variations in Hack's exponent or coef�cient. In contrast, low� networks require greater variability in Hack's parameters305

to achieve a much smaller� L .

5.2 Optimal Channel Networks (OCN) perspective

Whereas Hack's law-based analysis, section 5.1, explains the observed correlation between concavity and complexity from a

geomorphic scaling relations standpoint, the OCN framework helps conceptualize this correlation based on energy considera-

tions. Figure 4a shows the evolution of the normalized energy equivalent,Peq=Peqinit as a function of iteration number during310

the energy optimization process under different values of� and starting from the same initial random network, with equivalent

energyPeqinit . The �gure shows that as� decreases, the normalized energy equivalent reduction is greater. Figure 4b shows

the evolution of the median� L during the optimization procedure, displaying a similar trend to that of the normalized en-

ergy equivalent, with a greater reduction in� L with decreasing� . Notably, while the greedy algorithm ensures a monotonous

energy reduction with an increasing number of iterations (Fig. 4a), the� L trends are non-monotonous (Fig. 4b). The� L315

values of the �nal energy minimum networks are depicted in �gure 2c. Appendix D discusses the trend of� � through the

optimization iterations.

Examples of network topology optimized using the greedy algorithm with different values of� are shown in �gure 5. High

� values result in complex, tortuous networks that do not signi�cantly differ from the random initial conditions, consistent

with the low number of accepted edge �ip operations (Fig. 4c). As� decreases, the networks become less complex, and the320

legacy of the initial conditions is gradually erased (Figs. 5c and d). A similar behavior was recorded in surface process model

simulations (Shelef and Hilley, 2014; Kwang and Parker, 2019; Howard, 1994).

The reduction in the minimum normalized energy equivalent and network complexity observed in �gures 4a and 4b, and the

gradual deviation from the random initial network with decreasing� (seen in �gure 5) could be rationalized analytically. In the

limit of � = 0 and when the edge length is uniform, the energy equivalent, equation (5),
P

i
A1� �

i l i , becomes proportional to325
P

i
L i (here,l i is the length of a single edge andL i represents the distance to the outlet node) (Colaiori et al., 1997). In this case,

the global minimum is attained when each node drains to an outlet along the shortest path, contributing its local area to the

minimal number of nodes. This ensures that in the limit of� ! 0, the emerging topology is such that eachL i is minimal and

therefore equal across all divides and� L ! 0. Such an optimal network exhibits an exceptionally simple geometry that differs

signi�cantly from any random network, explaining the low-complexity con�gurations that characterize low� OCNs (Fig. 5),330

the many edge �ips needed to achieve such con�gurations, and the associated large normalized energy equivalent reduction

(Figs. 4a and 2c).

In the � ! 1 limit, the energy equivalent becomes independent of the drainage area. Assuming uniforml i , the energy

equivalent is a function of the number of nodes in the domain and is independent of the speci�c drainage con�guration.

Consequently, all networks, including any random initial complex network, have the same minimal energy. This, in turn,335
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Figure 4. Optimal Channel Network (OCN) dynamics as a function of concavity index. Transient response and steady-state values from

OCN simulations (see Method section for details) showing the effect of the concavity index,� on the reduction trends of the (a) Normalized

energy equivalent,Peq=Peqinit , equation (5), (b) Median� L , and (c) The acceptance ratio of edge �ip operations that reduce the total

energy. I.e., the quotient of edge �ips and the total number of iterations.

14



Figure 5. Topologies emerging from OCN simulations with different concavity index. Random initial conditions (top) and �nal, steady

optimal channel networks following the application of the greedy algorithm with different� values. Note the great complexity and the

similarity to the initial conditions of the high� networks relative to the simple geometry of the low� networks that signi�cantly differ from

the initial conditions. Edges are plotted only for drainage area> 5 nodes, and edge width scales with the number of draining nodes.

explains the low number of edge �ips when� ! 1, the small reduction in normalized energy equivalent, and the similarity of

the �nal optimal OCN to the initial random network.
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For0 < � < 1, our analysis reveals a monotonous relation between� to the normalized energy equivalent reduction (Fig. 4a),

the �nal � L (Fig. 2c) and the acceptance ratio of edge �ips (Fig. 4c). Overall, the OCN analysis indicates that� determines

the multiplicity of stable topologies. Networks with a high� value can achieve stability across a wide range of� L values,340

allowing for many possible stable topologies. This includes the formation of complex networks with large� L values, similar

to random networks. In contrast, to attain stability, networks with a low� value are restricted to simple topologies with smaller

� L values.

5.3 Climate aridity controls network complexity

Large data compilations of river pro�les revealed that channel concavity correlates with climatic and hydrologic factors. More345

speci�cally, mean annual rainfall and rainfall intensities correlate positively with the concavity index (Zaprowski et al., 2005).

Likewise, the degree of aridity as quanti�ed by the aridity index, the quotient of precipitation and evapotranspiration potential

(Zomer et al., 2022), correlates with channel concavity, such that in arid regions (with low aridity index) rivers are less concave

(Chen et al., 2019; Getraer and Maloof, 2021). Combining these established relations between climate and concavity index

and the correlation identi�ed here between the concavity index and drainage complexity implies that the climatic conditions350

at which drainage networks develop could be encoded in their complexity and, thus, in the large-scale planform geometry of

landscapes. Consequently, arid climates, characterized by low channel pro�le concavity, likely favor the development of low-

complexity networks, whereas a more humid climate, characterized by high-conavity channels, is expected to result in variable

complexity, including high-complexity drainage networks.

We examine the relationship between the complexity,� L , and the aridity index across the elongated natural mountain355

ranges. The Aridity Index for each elongated range is calculated based on pixel statistics of the Global Aridity Index raster

(Zomer et al., 2022). A mask based on the analyzed area in each elongated range is used to extract the relevant pixels from the

AI raster. The median and 25 and 75 percentile of the pixel values within each such mask are used in the analysis.

Figure 6 shows a positive correlation between climate aridity index (AI) and network complexity for the elongated mountain

ranges. The Spearman's rank correlation coef�cient for this correlation is 0.59 with a P-value of 0.01, indicating that consistent360

with the expectations, higher complexity tends to be associated with higher AI, representing more humid climates. It's worth

noting the signi�cance of this correlation, considering that the correlation between the concavity index and the aridity index

is found to be insigni�cant (see Appendix E for details) and that our dataset comprises only 18 mountain ranges. This could

be seen as another support for the strong link between the network planform complexity and the formative concavity index

(equation 1), which is expected to strongly depend on the hydrologic conditions (i.e., rainfall-discharge, and discharge-channel365

width relations) (Whipple and Tucker, 1999; Freund et al., 2023) and could differ from the measured concavity (Seybold et al.,

2021).
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Figure 6. Complexity and Aridity. The relation between drainage complexity,� L , and Aridity Index, the quotient of precipitation and

evapotranspiration potential (Zomer et al., 2022), for the 18 elongated mountain ranges analyzed in �gure 2a. The box symbols represent the

median values, and the bars show the 25 and 75 percentiles. A signi�cant correlation (P = 0.01) with a Spearman rank correlation coef�cient

of 0.59 indicates that more complex networks (high� L ) are associated with more humid climatic conditions and their corresponding

hydrology.

5.4 Concavity controls planform landscape evolution

The results so far reveal that high-concavity landscapes can achieve topologic stability with variable complexity, whereas

the stability of low-concavity landscapes is conditioned by low complexity. These �ndings are consequential for landscape370

evolution, which we further investigate and quantify using landscape evolution simulations in DAC.

5.4.1 Changing climate

A �rst simulation set is designed to examine how the drainage network adjusts to changes in the concavity index, re�ecting

changing climatic, hydrologic, and geomorphic conditions. Previous studies have linked the concavity index to channel-forming

processes, where debris �ow channels typically exhibit lower concavity compared to �uvial channels (Stock and Dietrich,375

2006). Therefore, a decrease in the concavity index can represent aridi�cation or a transition to a debris-dominated landscape,

while an increase in concavity may indicate a transition to a more humid climate or a �uvial-dominated regime.

The simulation set starts with a topologically stable landscape of high concavity (� = 0.9) and high complexity (brown

frame in �gure 7). We then gradually decrease the concavity index by steps of 0.1. Following each step, we let the landscape

re-equilibrate until no further topological changes are observed. We measure the median value of� L for this equilibrated380

landscape and then use this landscape as the initial condition for the next step. The procedure continues until reaching a low

concavity value of� = 0.1. Subsequently, we gradually increase the concavity index by 0.1, following the same re-equilibration

procedure, until returning to the initial concavity value of� = 0.9.
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Figure 7. The effect of changing concavity on network complexity. Simulation results from the DAC process model (Goren et al., 2014)

showing the relation between the complexity,� L and concavity index,� during a two-stage scenario. First, the concavity is gradually

decreased by steps of 0.1 (left pointing arrow), and second, the concavity increases in steps of 0.1 (right-pointing arrows). The network and

topography of the initial,� = 0 :9 conditions are depicted in the brown framed topography, the� = 0 :1 landscapes, corresponding to the end

of the �rst stage and beginning of the second stage is shown with a black framed topography, and the �nal� = 0 :9 landscape is shown with

a purple framed topography. Note (i) the hysteresis response of� L , showing different trends depending on the directional change in the

concavity index, and (ii) the difference in topographic complexity between the two� = 0 :9 maps. For the current analysis,� L is calculated

only for channel heads that drain to different outlets, such that the shared junction is the base level. Measuring� L over this longer length

scale emphasizes the hysteresis signal.

Figure 7 shows that during the decreasing concavity stage, the median� L gradually decreases, consistent with the results

shown in �gure 2b. However, in the increasing concavity stage, a hysteresis response is observed. The median� L in the385

increasing concavity stage is lower than that of the same concavity value in the decreasing concavity stage and overall shows

only a slight increase compared to the median� L of the landscape with� = 0 :1 (black frame in �gure 7). Consequently, when

the concavity index returns to its initial value of� = 0.9 (purple frame in �gure 7), the median� L of the landscape is smaller

by a factor of 2.4 with respect to the median� L of the initial conditions with the same concavity index.

The dynamics depicted in �gure 7 suggest that when aridi�cation or a transition to a debris �ow-dominated regime takes390

place, there is a signi�cant autogenic reorganization of the drainage network towards a lower complexity con�guration. In

contrast, when transitioning to a more humid climate or a �uvially dominated regime, minimal reorganization is expected, and
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the resulting landscape may retain the complexity of the antecedent, more arid or debris-�ow-dominated state. This implies

that the complexity of a given landscape, as re�ected by� L , is in�uenced by the lowermost concavity experienced by this

landscape. For example, a low complexity landscape, currently located in a humid climate (and exhibiting high concavity),395

might suggest a formation or modi�cation history under drier (i.e., low concavity) conditions. Differences in past aridity can,

therefore, be invoked to explain the variability in� L with aridity (Fig. 6), as well as the increased variability in� L with

concavity in the elongated mountain ranges (Fig. 2a).

5.4.2 Fingerprints of antecedent lithologic conditions

To explore another scenario in which the complexity records the legacy of past conditions, we focus on the effect of lithology400

in a second set of simulations. Here, drainage networks evolve from a subdued, random topography, similar to the simulations

depicted in Figure 2b. However, in this case, a narrow, one-kilometer-wide slab protrudes into the surrounding rocks. The slab

extends down to a depth of �ve kilometers into the crust and is positioned midway between the center of the domain and the

southern base level of the evolving range, as shown in Figure 8. The slab's erodibility is higher by a factor of 100 compared

to that of the surrounding rocks. This high erodibility slab can be conceptualized as a fault zone containing crushed, more405

erodible rocks.

During the initial period of approximately 10 Myr (with an imposed uplift rate of 5� 10� 4 m/yr) the developing channel

networks incise into the layers of rock protruded by the higher erodibility slab. Once the slab is fully removed by erosional

exhumation of �ve kilometers, the networks continue to incise into rocks with a uniform erodibility.

The simulation results reveal distinct behaviors of the drainage networks over time, depending on the concavity index and410

the presence of a high-erodibility slab. In the �rst 10 Myr, south-draining channel segments favor the high-erodibility slab,

resulting in channel segments that develop on top of the slab (Duvall et al., 2020), parallel to the mountain range, with an east-

west orientation. However, beyond this period, after the high-erodibility slab has been eroded, the response of the drainage

networks diverges based on the concavity index.

To quantitatively assess this response, we analyze the number of slab-parallel channel segments whose orientation is within415

10 degrees of the slab's orientation, where a segment connects two neighboring numerical nodes. Figure 8 illustrates the ratio

of longitudinal segments after 100 Myr (post-slab removal by erosion) to the number of longitudinal segments at 10 Myr, prior

to the complete exhumation of the slab, for south draining basins. As the concavity index increases, a greater preservation of

longitudinal segments is observed, although the slab is completely eroded. In the case of a landscape with� = 0 :9 (right-hand

side of Figure 8), the drainage pattern predominantly retains the legacy of the high-erodibility slab, resulting in a preservation420

ratio of longitudinal segments close to 1. Conversely, a landscape with� = 0 :2 (left-hand side of Figure 8) is characterized by

lower preservation of longitudinal segments after the removal of the high-erodibility slab, leading to a low preservation ratio.

The slab simulation set reveals that environmental conditions that sustained a high concavity index over long timescales

resulted in drainage networks that recorded the cumulative effect of spatially varying heterogeneities (e.g., lithology) even long

after these heterogeneities were removed. In contrast, environmental conditions associated with a low concavity index might425

eliminate traces of past spatial heterogeneities.
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Figure 8. Preservation of antecedent conditions as a function of concavity index in a DAC (Goren et al., 2014) process model simulation

series. In these simulations, drainage networks evolve primarily through the incision of spatially uniform rocks, except for a narrow, elongated

slab with a higher erodibility (100 times greater), a width of one kilometer, and a depth that extends from the surface to 5 km into the crust. The

slab is located 15 kilometers from the southern base level. The south-draining basins originally incise into the slab-containing rocks, and the

drainage network locally aligns with the high erodibility slab, forming longitudinal channels regardless of the concavity index (topographies

at the top of the �gure). Following a 5-kilometer exhumation, the slab is fully eroded away, and rivers incise into uniformly erodible strata.

Drainage network response to the removal of the slab depends on the concavity index. In simulations of low concavity (topographic maps on

the left), signi�cant drainage reorganization removes the longitudinal segments(topography at the bottom left). In contrast, high concavity

landscapes (topographic maps to the right) preserve the antecedent longitudinal segments after the slab is eroded (topography at the bottom

right). The central graph presents the preservation ratio by counting the number of longitudinal segments at 100 Myr (after slab removal

by erosion) and dividing it by the number of longitudinal segments at 10 Myr (while the high-erodibility slab is still present) for all south

draining basins.

The two simulation sets indicate that landscapes with high concavity indexes are less sensitive to variations in exogenic

forcing. As a result, high concavity index landscapes can preserve the original drainage patterns (Kwang and Parker, 2019),

their speci�c complexity, and the legacy of the environmental conditions in which these landscapes initially formed. Conversely,

networks with low concavity indexes undergo reorganization to attain a con�guration of lower complexity in response to any430

environmental, climatic, and tectonic changes. Consequently, they possess a limited capacity to retain the legacy of the previous

environmental conditions.

6 Conclusions

The current analysis reveals that channel concavity index,� , re�ecting the channel longitudinal pro�le, sets a �rst-order control

on the planform complexity of drainage networks as quanti�ed by the statistics of asymmetry in the length of paired �ow path-435

ways,� L . Variability of concavity indices, thus, explains the observed variability in complexity across the globe. Speci�cally,
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� controls the multiplicity of stable planform con�gurations available to a drainage network. When� is small, the number of

stable con�gurations is small, and they are all characterized by high lengthwise symmetry, producing simple-looking drainage

networks. When� is large, the number of stable planform con�gurations increases, and they include con�gurations with a

large degree of lengthwise asymmetry, producing complex geometry. Consequently, high� drainages can be found in topolog-440

ical stable con�gurations that are characterized by high lengthwise asymmetry (i.e., high complexity), whereas the stability of

low � drainages is conditioned by a smaller lengthwise asymmetry (i.e., low complexity). These �ndings can be theoretically

explained based on an energy minimization principle or by combining two empirical power laws that are readily documented

across the globe: Hack's law, equation (6), and Flint's law, equation (1), describing the relation between drainage area to chan-

nel length and channel slope, respectively. The multiplicity of steady con�gurations of high� landscapes further means that445

the planform geometry of these networks more readily preserves the legacy of former conditions (Kwang and Parker, 2019).

Drainage network complexity of elongated mountain ranges correlates with the aridity index, a measure of climate dryness.

The correlation emerges despite the relatively small number of natural ranges we analyzed and is intuit through the effect of

climate on channel formative concavity (Whipple and Tucker, 1999). Therefore, the geometric complexity of drainage networks

over entire mountain ranges records information about prevailing climatic conditions.450

Code availability. The codes used in this contribution can be found in Goren (2024). Updates on newer versions will be available at
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Appendix A: Elongated mountain ranges

Comprehensive details of the 18 elongated mountain ranges and the data utilized for generating �gures 2a and 6 is listed in

Table A1. The ranges' relief and drainage network are depicted in �gure A1.
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