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Abstract 1 

Assessing long-term air quality trends helps evaluate the effectiveness of adopted air pollution control policies. 2 

A decade of SAFAR observations revealed that the trend of particulate matter (PM2.5 and PM10) in Delhi shows 3 

a reduction of 2.98 ± 0.53 µg/m
3
/y (4.91 ± 1.01 µg/m

3
/y) or overall 29% (23.7%) reduction between 2011 and 4 

2021 while vehicles almost doubled but with the implementation of cleaner technologies and stricter industrial 5 

regulation. Seasonal negative trends of pre-monsoon (March-April-May; -3.43 ± 1.02 µg/m
3
/y) and post-6 

monsoon (October-November; -4.51 ± 1.59 µg/m
3
/y) are relatively higher. The role of trends in dust storms, fire 7 

counts and annual rainy days are also discussed. The contribution of meteorology to the trend is estimated using 8 

WRF-Chem simulation of PM2.5 for October when maximum stubble burning occurs and gets transported to 9 

Delhi. The model is run with the meteorological initial conditions of 2018, 2015, and 2011 while keeping the 10 

emissions of 2018 with identical model configuration and found that meteorology contributed 9.8% in October, 11 

while the observed decline in PM2.5 is 35% (best fit) and 25% (value). The study identifies the governmental 12 

control measures at various levels and green initiatives as the significant contributors to air quality improvement 13 

during 2011-2021.  14 

Keywords: Air Quality Index; Policy implementation; Particulate Matter; WRF-Chem; Dust storms; Crop 15 

residue burning 16 
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1. Introduction 1 

Air pollution has recently been one of India's most severe environmental problems, especially in metropolitan 2 

cities like Delhi (Beig et al. 2020; 2021; Chen et al., 2020). The economic liberalization led to India’s economy 3 

becoming one of the world’s fastest-growing economies. During the latter half of the 20th century, fast 4 

economic growth, rapid industrialization, increased transportation demand, along with rapid urbanization 5 

dramatically increased air pollutant emissions. High levels of particulate matter concentrations affected human 6 

health and caused broader concern in recent years (Balakrishnan et al., 2019; Geng et al., 2021). In addition, 7 

high concentrations also modulate radiative balance through indirect and direct effects (Seinfeld and Pandis., 8 

2006). Ground-level particulate matter such as PM10 and PM2.5 are extensive environmental problems in 9 

metropolitan cities throughout the world (Zhang et al., 2019; Zhang et al., 2020; Beig et al., 2020; Chen et al., 10 

2020; Chen et al., 2023). Delhi is one of the world's most polluted/populated metropolitan cities (Beig et al., 11 

2019; Jena et al., 2021). Several emission sources of anthropogenic origin in urban areas lead to deterioration of 12 

air quality, e.g. combustion of fossil fuel and bio-fuel, industrial, re-suspended dust. A wide range of emissions 13 

and meteorology conditions affect these sources, formation, chemical composition and transformation of PM in 14 

different regions (Zhao et al., 2013; Shrivastava et al., 2015). PM10 and PM2.5 are the major pollutants in the 15 

world's urban areas; hence, National Ambient Air Quality Standards (NAAQS) have been set up for such 16 

pollutants in India, similar to many other countries over the globe. The levels established by the Government of 17 

India for PM2.5 and PM10 are 60 μgm
−3

 and 100 μgm
−3,

 respectively. These levels are frequently exceeded in 18 

Delhi (MoEFCC, 2015).  19 

Several policies have been implemented across Delhi in various emission sectors to curb the rising levels of 20 

pollutants. Various measures have been taken in the industrial sector, including relocating/shifting, strict 21 

emission standards, restrictions on coal use, and particulate filters. Exhaust emissions have been controlled 22 

through a variety of measures, including the formation of strict emission standards, reducing sulfur in diesel 23 

fuel, reducing benzene in gasoline, introducing unleaded gasoline, clean fuels, scrapping old vehicles, and 24 

improving public transportation (Guttikunda et al., 2014). In addition, biomass burning was banned, an Odd-25 

Even vehicle policy was implemented (2016), the National Air Quality Index was introduced (2016), diesel 26 

vehicles older than ten years were deregistered (2016), and a Graded Response Action Plan (GRAP) for Delhi-27 

NCR (2017) was implemented. Badarpur thermal power plant was closed (2018), Bharat Stage BS-VI grade 28 

auto fuels were used in Delhi in April 2018, and the National Clean Air Program (NCAP) was launched in 2019 29 

(MOEF & CC, 2019). Therefore, it is essential to assess long-term trends along with the policy implementation 30 

timeline to study these policies' impact on significant pollutants.  31 

Regional air quality models have been essential tools for scientifically understanding the distribution of 32 

emissions sources, transport and transformation (Yarragunta et al., 2020; Shahid et al., 2021; Jena et al., 2021; 33 

Du et al., 2022; Kumar et al., 2022). For regional modelling studies, emission inventories are essential for 34 

reflecting the emission inputs into the atmosphere. In addition, meteorological conditions play an essential role 35 

in forming ground-level PM2.5 and PM10, and it is necessary to consider the effects when developing emission 36 

control strategies in different regions of India. Recently, machine-learning models have been developed to 37 

estimate the concentration of air pollutants, removing the impact of meteorology (Zhang et al., 2020; Du et al., 38 

2022;  Chen et al., 2023). These algorithms have an improved performance compared to traditional statistical 39 
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and chemistry transport models i.e. Weather Research and Forecasting model coupled with Chemistry, WRF-1 

Chem. through changing bias/variance and error in high-dimensional data sets. However,  Vu et al., (2019) 2 

found that, it is difficult to interpret the underlying mechanism responsible for such change and interpretation of 3 

results of these models. Therefore, chemical transport models are widely used to evaluate air quality response to 4 

clean air policy. However, the operations of the models consume considerable computing resources, and there 5 

are major uncertainties in emission inventories and the models themselves (Zhang et al., 2019). The uncertainty 6 

problems of chemical transport models are checked by their ability to reproduce observations using the 7 

measured data set, i.e. the measured PM2.5 and PM10. The studies on the relative contribution of emission control 8 

and meteorology to particulate pollution by machine learning model and chemical transport model are very 9 

sparse in the Indian region but are many over different regions of the world (Wang et al., 2019; Choi et al., 10 

2019; Zhang et al., 2021; Yin et al., 2021). Recently, Hammer et al., (2021) found that the observed decline in 11 

PM2.5 during the COVID-19 lockdown in the North China Plain was driven by a combination of emission 12 

reduction and meteorology. Du et al., (2022) found that changes in meteorological factors and emission 13 

reduction contributed to a decrease in PM2.5 by 18.6% and 10.5%, respectively, in the Beijing-Tianjin-Hebei 14 

(BTH) region in 2020 compared to 2018. In another study by Singh et al., (2021), during 2014-19, a significant 15 

decline in PM was found in five Indian mega cities such as New Delhi, Chennai, Hyderabad, Mumbai and 16 

Kolkata, ranging from 2-8% per year. Long-term analysis of criteria pollutants over Delhi showed decreasing 17 

trend during 2015-19 (Verma & Nagendra, 2022).  18 

Despite the measures taken by local authorities, very few studies indicate that air quality in Indian cities is 19 

declining significantly. The relative contribution of emission control and meteorology to the variation in PM2.5 20 

and PM10 is sparse in the Indian context. Thus, evaluating the impact of meteorological variation on pollutants 21 

during recent years was necessary and could provide crucial information for future air pollution control policies. 22 

In this study, we present an analysis of the linear trends of PM2.5 and PM10 using observed data, and the factors 23 

driving these trends are analyzed with nested WRF-Chem simulations over Delhi. The relative contribution of 24 

meteorological variation to the change in linear trends of PM2.5 and PM10 in Delhi from 2011 to 2020 is 25 

investigated. The influence of seasonal external factors like dust storms and stubble burning is quantified. Our 26 

study reveals the impacts of meteorological conditions on PM2.5 and PM10 concentration during the recent 27 

decade 2011-21, for the first time and provide a reference for formulating future air quality policies. The 28 

observation, model configurations and validation are shown in Section 2. The main results and discussions are 29 

presented in Section 3, and the conclusions are given in Section 4. 30 

2. Methods and materials 31 

2.1 Observational network 32 

The observational network, SAFAR, ‘System of Air Quality and Weather Forecasting and Research (SAFAR)' 33 

was commissioned in Delhi in 2010. This pilot project was adopted by GURME and World Meteorological 34 

Organization (Beig et al., 2015). SAFAR-Delhi comprises a network of 10 online automatic Air Quality 35 

monitoring stations (Table.S1) and a coupled high-resolution online chemistry transport model, WRF-Chem 36 

(Marrapu et al., 2014; Srinivas et al., 2016) for Air quality prediction. These air quality monitoring stations 37 

(AQMS) are instrumented with US-EPA approved monitors in continuous monitoring mode, spread across 38 
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Delhi over different micro-environments viz. background, residential area, traffic location, downtown area and 1 

so on to represent the local environment and the average can be representative of overall Delhi as per WMO 2 

guidelines (Beig et al., 2015; Srinivas et al., 2016). These analyzers are operated and maintained as per the US-3 

EPA-approved standard specification, and quality control is certified by Bureau Veritas Certification (ISO9001). 4 

The instruments are calibrated based on the Standard Operating Procedures adopted by US-EPA. Details of 5 

SAFAR network in Delhi can be found in Beig et al., (2020; 2021).  6 

2.2 Model setup  7 

The detailed description of the SAFAR air quality forecasting model adopted in this work is provided elsewhere 8 

(Marrapu et al., 2014; Srinivas et al., 2016), hence not discussed in detail. It is based on WRF–Chem (Weather 9 

Research and Forecasting coupled with Chemistry) configured with 4-nested domains. There are a total of 33 10 

vertical model layers, with the model top situated at 50 hPa. The National Centre for Environmental Prediction 11 

(NCEP) final analysis fields (FNL) at a resolution of 1°× 1° were used to provide the model with meteorological 12 

initial and lateral boundary conditions. We took the daily varying BB (Biomass burning) emissions of different 13 

trace species from the Fire Inventory from NCAR (National Centre for Atmospheric Research) (FINN) 14 

(Wiedinmyer et al., 2011). Biogenic emissions of trace species were calculated online using the Model of 15 

Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther et al., 2006). We have used the gas-phase 16 

mechanism of CBMZ chemistry scheme consisting of Carbon Bond Mechanism version Z (CBMZ), which 17 

contains 73 chemical species and 237 reactions, and MOSAIC-4 bin (Model for Simulating Aerosol Interactions 18 

and Chemistry; Zaveri et al., 2008) aerosol scheme that uses four sectional bins where three bins are assigned 19 

for aerosols of diameter less than 2.5 μm, and other bin describing the size range 2.5–10 μm. The various 20 

parameterization schemes, input setting and emission inventory used for this WRF-Chem configuration can be 21 

found in detail elsewhere (Marrapu et al., 2014). The model results were routinely validated with surface 22 

observations over the Delhi region, and results can be found elsewhere (Marrapu et al., 2014; Sahu et al., 2015; 23 

Srinivas et al., 2016; Beig and Sahu, 2018; Beig et al., 2021). 24 

2.3 Influence of seasonal external factors and meteorological conditions 25 

2.3.1 Seasonal external factors (Dust storms and stubble burning) 26 

Northern India (Delhi and Indo Gangetic plain) witnessed several dust storm episodes in May and June due to 27 

low-level jet streams which brought dust particles from the Middle East and especially from the Thar desert 28 

(Dey et al., 2004; Goel et al., 2020; Sethi et al., 2020). Dust events were identified from observations when the 29 

ratio of PM2.5 to PM10 was less than or equal to 15%, indicating the predominance of coarse/dust particles. These 30 

dust events were also corroborated by NASA's dust score from Aqua satellite   31 

(https://worldview.earthdata.nasa.gov). On this basis, we have estimated the number of dust events and the trend 32 

in the occurrence of dust events over the period 2011-2021. 33 

Stubble/biomass burning (majorly during October-November) in the northwest region (mainly Punjab and 34 

Haryana states) is an external factor that significantly impacts air quality in Delhi (Beig et al., 2020) through 35 

transport. Average radiative power, with 40% and 80% confidence, retrieved from Aqua and Terra satellites 36 

data (https://firms.modaps.eosdis.nasa.gov/)  over the potential stubble-burning region were analysed to 37 
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understand the possible significance of Delhi's air quality trend since Delhi’s air quality is mainly dependent on 1 

PM, the trends of PM are considered for the current study. 2 

Variations in rainfall during 2011-2021 could affect PM10 and PM2.5 concentrations. Hence the trend in the 3 

number of annual rainy days was also analysed using gridded rainfall data. 4 

2.3.2 Meteorological conditions 5 

Three simulations with the same emission inventory and changing meteorological conditions were conducted 6 

with the setup described in section 2.2 to examine the effects of meteorological conditions on air quality, 7 

particularly on PM. The simulation period was October 2011, 2015, and 2018. The emission inventory 2018 was 8 

used for all the simulations and is considered a reference year for the assessments. The quantitative impact 9 

assessment method of meteorological conditions on PM (PM2.5 and PM10) was established as follows: 10 

𝑀_𝑃𝑀𝑖𝑗 =
𝑃𝑀𝑖𝑗−𝑃𝑀2018𝑗

𝑃𝑀2018𝑗
𝑋100   (1) 11 

where 𝑃𝑀𝑖𝑗 the simulated concentration of pollutant j in i
th

 year; 𝑃𝑀2018𝑗 is the simulated concentration of 12 

pollutant j in 2018 and the unit is μg/ m
3
. 𝑀_𝑃𝑀𝑖𝑗  is the simulated % contribution of meteorological variation to 13 

pollutant j in i
th

 year compared to 2018. Positive values represent unfavourable meteorological conditions in i
th

 14 

year compared to 2018, such as higher relative humidity and lower wind speed, and negative values represent 15 

favourable meteorological conditions in i
th

 year compared to 2018. The method has been widely used by various 16 

researchers (Zhang et al., 2021; Hammer et al., 2021; Du et al., 2022), while the conclusion from model results 17 

can be affected by simulation bias due to uncertainty in chemical mechanisms, emission inventory and 18 

meteorology parameters (Yin et al., 2021). Any error in the simulated PM due to errors in the emission 19 

inventory used gets cancelled, contributing to meteorology alone, as all other inputs remain the same. 20 

2.4 Trend estimation 21 

Analysis of long-term trends of air pollutants has significant implications for identifying the emission hot spots, 22 

evaluating the effectiveness of policies and regulations, assessing the health impacts, and understanding the 23 

chemistry and radiative effects of the atmosphere. We have followed the method for trend analysis used by 24 

various researchers ( Brockwell and Davis, 2002; Solmon et al., 2015; Zhang et al. 2017; Georgoulias et al. 25 

2019; Choo et al. 2020; Singh et al. 2021). The monthly averaged concentrations of PM2.5 and PM10  are used for 26 

the trend calculation over Delhi for 2011-2021. The monthly datasets are first de-seasonalized by applying a 13-27 

month moving average for trend first guess and after that, a stable seasonal filter is used to remove the seasonal 28 

cycle. Linear regression is applied on the de-seasonalized time series of PM2.5 and PM10 to calculate the linear 29 

trend. Statistical significance of the linear trend is calculated using a parametric student t-test and the 30 

statistically significant non-zero slopes (p-value < 0.05) are presented. 31 

3. Results and discussions 32 

3.1 Air Quality Index (AQI) 33 

https://doi.org/10.5194/egusphere-2024-803
Preprint. Discussion started: 19 April 2024
c© Author(s) 2024. CC BY 4.0 License.



7 
 

An AQI is a rating system that describes how clean the air is and how it affects human health. It provides 1 

information in colour and simple numbers without any units for easy understanding. As per CPCB guidelines, 2 

there are six AQI categories: Good, Satisfactory, Moderate, Poor, Very Poor and Severe. AQI for SAFAR 3 

network cities is calculated based on the criteria pollutants viz, O3, CO, NO2, PM10, and PM2.5. The computation 4 

of AQI requires the concentration of these pollutants and their breakpoint concentration, and details are 5 

available in MoEFCC (2015).  6 

 7 

 Fig. 1 Annual variation of AQI over Delhi, 2011-2021 8 

The annual variation of AQI for lead pollutants over Delhi during the period of 2011-2021 is depicted in Fig. 1. 9 

It represents the number of days that fall into various AQI categories such as Good, Satisfactory, Moderate, 10 

Poor, Very Poor and Severe in each year. AQI in the Moderate category has the highest occurrence in all the 11 

years for the study years. A significant variation is evident in the average number of days falling in each AQI 12 

category. 'Moderate’ AQI is reported 32 - 47% of days during the period 2011-21, with an average of 38%, 13 

followed by ‘Very Poor’ AQI,(25%), ‘Poor’ (18%) and ‘Satisfactory’(14%) while “Severe” was at 4%. More 14 

than 50% of days since 2016 have been in the ‘Good to Moderate’ AQI category. However, for the year of 15 

Covid lockdown, 2020, 69% (252 days) of days fell into this category, followed by 63 % (229) in 2021, 58% 16 

(212) in 2019 and 57% (208) in 2017. In contrast, the AQI category of severe to poor had increased in the earlier 17 

years from 2011 to 2016. While ‘Severe and Poor’ combined AQI days were 61 % (221days) in 2015, the same 18 

stood at 31 % (114 days) in 2020. The study results show that days with ‘Satisfactory’ AQI level have increased 19 

consistently since 2015 while days of  'Very poor’ category  have decreased, indicating that there has been a 20 

gradual improvement in air quality from 2015 to 2021. 21 

3.2 Climatology of PM2.5 and PM10 22 

Fig. 2a shows the annual average PM2.5 and PM10 mass concentrations over Delhi during 2011-2021, averaged 23 

across ten stations in different micro-environments. By averaging the data, inhomogeneity can be eradicated, 24 

and the data can be viewed as representative of the entire city area, as explained in section 2.1. The 25 

climatological (2011-2021) average of PM2.5 mass concentration was found to be 104±55 µg/m
3
 with the highest 26 

value of 113 µg/m
3
, observed in the year 2016 and the lowest one 83 µg/m

3
 in 2020. Similarly, the average 27 

PM10 was found to be 209±85 µg/m
3
 during this period, with the highest concentration of 229 µg/m

3
 in 2012 28 
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and the lowest 163 µg/m
3
 in 2020. The linear trends are discussed in the next section for the period 2011-2021 1 

in which 2020 is an anomalous year with full or partial lockdowns implemented during March-May due to the 2 

pandemic. In order to understand whether the trend during 2011-2021 is affected by including 2020 data, we 3 

have calculated anomaly of each year from the decadal mean (2011-2021) and depicted in Figure 2b.The 4 

negative anomalies of PM2.5 in 2019, 2020 and 2021 are almost the same, hence inclusion of 2020 data hardly 5 

changes the annual trend for the period, 2011-2021. 6 
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Fig. 2 (a) Annual variation of PM2.5 and PM10 mass concentration with standard deviation in Delhi for 2011-2021, (b) 8 
Anomaly of PM2.5 and PM10 for each year from the average (2011-2021) concentration 9 

Fig. 3 shows the seasonal variation of PM2.5 and PM10 from 2011 to 2021 in Delhi. It is detected that the highest 10 

seasonal loading of PM10 is during the post-monsoon (ON) and the lowest during monsoon (JJAS). Generally, 11 

throughout the study period (2011-2021), average PM10 loading over Delhi is noticed to be the highest in post-12 

monsoon (298±71), followed by winter (257±53), then pre-monsoon (207±52) and monsoon (127±50 µg/m
3
) 13 

(Fig. 3(b)). PM2.5 also showed a similar seasonal variation as PM10 ((Fig. 3(a)). The average PM2.5 was highest in 14 

post-monsoon (170±50), followed by winter (145±39), pre-monsoon (83±22) and monsoon (59±19 µg/m
3
).  15 
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1 
 Fig. 3 Seasonal variation of PM2.5 and PM10 (2011-2021) in Delhi 2 

3.3 Linear trends of PM2.5 and PM10 3 

Fig. 4 and Table 1 show absolute annual and seasonal trends of PM2.5 in Delhi during 2011-2021. A significant 4 

declining (negative) trend is observed for PM2.5 in Delhi with a definite change of -2.98 ± 0.53 µg/m
3
 per year 5 

(2.64 % reduction per year) or an overall 29.0 % reduction from 2011 to 2021 (Table 1). Singh et al., (2021) 6 

reported a declining trend in five metro cities in India using US embassy data in each city, while Sharma et al., 7 

(2022) based on similar hourly data, concluded that no significant trend was witnessed. Hammer et al., (2020), 8 

in their AOD-based global study, deciphered an increasing trend till 2012 for India and East Asia while Europe 9 

and Eastern US showed a slow but steady reduction; however, the study further concluded that a global decline 10 

in PM2.5 is observed during 2011-2018 with India leading the pack with -0.54±0.7 µg/m
3
/y. The recent works of 11 

(Verma & Nagendra, (2022) and Chetna et al. (2022) based on six stations in Delhi show a drop of ~-5.1 12 

µg/m
3
/y (2014-2019) and   -1.35 µg/m

3
/y (2007-2021) respectively in PM2.5 respectively. PM2.5 observed in our 13 

study may be more representative of decadal variation with -2.98 ± 0.53 µg/m
3
 per year as it also presents a 14 

varied combination of stations and hence NCR as a whole, though with a low representation of north-west 15 

Delhi. 16 

Reduction in PM2.5 is attributable to changes in emissions, seasonal external influencing factors (like dust storms 17 

and biomass burning) and meteorology over the study region (Verma & Nagendra, 2022; Chetna et al., 2022). 18 

Chetna et al. (2022) detail the meteorological influences based on the re-analysis data to conclude that RH and 19 

surface pressure increased temporally and wind speed decreased. While an increase in RH may help in the 20 

deposition of particulates and low wind speed during summer may limit dust rising, a low wind would also help 21 

build up concentration in winter due to lack of dispersion. Central and Delhi governments are implementing 22 

various policies to curb air pollution in Delhi. Verma & Nagendra, (2022) provide a detailed timeline of such 23 

policies. Our results also support the positive impact of such policies and some meteorological influences in the 24 

declining trend revealed here.  25 

Further, for meticulous analysis, linear trends are also calculated for different meteorological seasons in Delhi, 26 

i.e. winter, pre-monsoon, monsoon and post-monsoon. Significant decreasing seasonal trends have been 27 

observed for PM2.5 during various seasons except in winter, where the trend in PM2.5 is insignificant (P=0.085). 28 

PM2.5 has exhibited a declining trend of -4.51 ± 1.59, -3.43 ± 1.02, -2.35 ± 0.67 and -2.28 ± 1.28 µg/m
3
/y 29 
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respectively, during post-monsoon, pre-monsoon, monsoon and winter. In their long-term seasonal trend study, 1 

Chetna et al. (2022) found that winter displayed the slightest change with +0.06 µg/m
3
/y, while the summer 2 

showed the steepest reduction with -3.5 µg/m
3
/yr. They also find a declining trend of -1.95 µg/m

3
/y in monsoon, 3 

while current results indicate a stronger downward trend. The difference is attributable to different periods and 4 

the number of observation stations. Our winter months include December, January and February, while their 5 

study considering the latter two months resulted only in a slight incremental tendency for winter, unlike this one. 6 

Similarly, the differences in post-monsoon trends are also due to the included month and other reasons. 7 

 8 

Fig. 4 Time series of monthly averaged  PM2.5 (black ) deseasonalized series (red ) with their corresponding linear fit 9 

(with slope ± standard error)  (red)  for 2011-2021 in Delhi. Lower panels (4) consider DJF as winter, MAM, 10 

Summer, JJAS, Monsoon; and ON, as post-monsoon. 11 

Absolute annual and seasonal trends of PM10 in Delhi during 2011-2021 is shown in Fig. 5. Similar to PM2.5, a 12 

significant declining (negative) trend was noticed for PM10 in Delhi with an absolute change of 4.91 ± 1.01 13 

µg/m
3
 per year (2.15 % reduction per year) or an overall 23.7 % reduction from 2011 to 2021 (Table 1). 14 

Significantly decreasing seasonal trends have also been observed for PM10 during various seasons except in 15 

winter, where the trend in PM10 was insignificant (P=0.2146). Seasonal PM10 has decreased by 8.25 ± 2.29, 6.90 16 

± 2.27, 3.08 ± 1.46 and 2.55 ± 2.01 µg/m
3
/y during pre-monsoon, post-monsoon, monsoon and winter, 17 

respectively. The more significant decrease (w.r.t. 2011) in PM10 was found during the pre-monsoon season and 18 

was estimated as 3.66% followed by 2.57% decrease during the post-monsoon season. 19 

 20 
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 1 

Fig. 5 Same as in Fig.4 but for PM10 2 

Table 1:  Reduction in mass concentration (slope ± standard error) and percentage reduction  per year) of PM2.5 3 
and PM10 in Delhi for 2011-2021; P-values at 95% confidence level. The base year considered is 2011; annual 4 
and seasonal means are tabulated.  5 

 PM2.5 (per year) PM10 (per year) 

Trend 

(µg/m
3
) 

Relative 

Trend (%) 

P-Value Trend 

(µg/m
3
) 

Relative 

Trend (%) 

P-Value 

Winter -2.28±1.28 -1.62 0.0852 -2.55±2.01 -0.98 0.2146 

Pre-Monsoon -3.43±1.02 -3.55 0.0021 -8.25±2.29 -3.66 0.0011 

Monsoon -2.35±0.67 -2.40 0.0011 

 

-3.08±1.46 -1.59 0.0410 

 

Post-

Monsoon 

-4.51±1.59 -3.57 0.0100 -6.90±2.77 -2.57 0.0210 

Annual -2.98±0.53 -2.64 0.0001 -4.91±1.01 -2.15 0.0001 

 6 

The most significant decrease has been observed during the post-monsoon season (3.57%), which may be 7 

attributed partly to the change in meteorology and any trend in stubble-burning transport during this season. To 8 

delineate the net effect of meteorology on PM concentration, a sensitivity study through WRF-Chem model 9 

simulation of PM2.5 is done for October in the post-monsoon season, as the season has shown the highest 10 

negative trend compared to other seasons. The conclusions drawn from these simulations are systematically 11 

presented further. 12 

3.4 Influence of meteorology on PM concentration  13 
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To assess the impact of meteorology on PM concentration, WRF-Chem model sensitivity simulations have been 1 

performed as discussed in section 2.3. According to the results, the weather conditions in the Delhi region in 2 

2011 and 2015 were relatively more unfavourable, leading to higher levels of PM pollution than the weather 3 

conditions in 2018 (Fig. 6). The adverse weather conditions in 2011 and 2015 resulted in an increase of 9.8% 4 

and 5.1%, respectively, in meteorology-associated PM2.5 with reference to that in 2018 (Fig. 6). Model results 5 

also showed that unfavourable weather conditions contributed to an increase of 19.5% in meteorology-6 

associated PM10 in 2011 and an increase of 11.7% in 2015 with reference to that in 2018 (Fig. 6). Thus changes 7 

in meteorological conditions played a significant role in the long-term trends of PM2.5 and PM10 (Hammer et al., 8 

2021; Du et al., 2022; Chen et al., 2023). Gong et al.,(2021) estimated that the contribution of meteorology to 9 

PM variation was 5% on an annual scale, whereas it escalated by 10-20 % during heavy pollution season in 10 

China during 2013-2019. The meteorology-driven anomalies contributed −3.9% to 2.8% of the annual mean 11 

PM2.5 concentrations in eastern China (Xiao et al., 2021). Though there are independent studies of long-term PM 12 

trends and meteorological variables, no studies have yet quantified the effect of meteorology on PM trends. Our 13 

results indicate that the favourable meteorological conditions in 2018, compared to that in 2011 and 2015, are 14 

instrumental in bringing down the PM levels by about 10%, at least for October. However, further studies are 15 

required to quantify the approximate effect of each parameter. In the following section trends of some of the 16 

common influences are considered. 17 

 18 

  19 

Fig. 6 Simulated surface PM2.5 and PM10 over Delhi during post-monsoon due to change in meteorological conditions 20 

of October: overall percentage change in the simulated PM2.5 and PM10 using meteorology of 2011 and 2015 with 21 

reference to that of 2018.  22 
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3.5 Dust storms 1 

During the pre-monsoon season, dust storms impact Delhi air, resulting in high dust/coarse particulate 2 

concentrations in PM10 and, to a lesser extent, PM2.5. Sarkar et al., (2019) deliberated upon the characteristics of 3 

dust storm 2018 influence on the air of Delhi and adjacent areas. As explained earlier, the trend in dust storms is 4 

calculated as they are potentially contributing external factors. It showed a decrease of 0.35 events per year 5 

(Fig.7); hence, it may be said that overall, there is a reduction of 4 dust storms from 2011 to 2021. As evident in 6 

Fig 7, some years have a very high impact, whereas some have a negligible impact; however, one cannot ignore 7 

the temporal influence. This decrease in dust storms might have contributed a little, but its contribution to the 8 

trend in PM10 or PM2.5 cannot be quantified as it is pretty complex.  9 
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 12 

Fig. 7 Trends in Dust storms (upper panel) and VIIRS Fire counts/stubble burning (lower panel) during 2011-2021 13 
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3.6 Stubble burning 1 

The surrounding region of Delhi has two significant stubble/crop burning periods: one in April-May and the 2 

second in October-November. These events could also potentially impact Delhi’s particulate matter (PM) 3 

concentration. Nonetheless, the pre-monsoon burnings generally have lesser influence as the upwind direction 4 

(southeast) during the period does not aid transport to Delhi, and mixed layer depth being high enough disperses 5 

the transported pollutant efficiently. Conversely, during post-monsoon, the prominent upwind direction 6 

(northwest) majorly aids PM transport from Haryana and Punjab. A study by Beig et al. (2020b) concluded that 7 

air quality in Delhi during the post-monsoon season (October-November) was significantly influenced by 8 

biomass burning/stubble burning exacerbated by prevailing winter conditions (Beig et al., 2020). Therefore, it 9 

could be one of the seasonal external factors influencing the PM2.5 trend during 2011-2021. The annual trend in 10 

satellite-derived (VIIRS) fire counts (lat: 27.67-33.42, long: 73.87-77.12), covering Haryana and Punjab, some 11 

parts of northeast Rajasthan, and southwest Himachal Pradesh), a proxy to the intensity of stubble burning, was 12 

estimated and found to be decreasing but negligible trend (Fig 7). Figure 7b also portrays the annual HFAP 13 

(High fire activity period count) and October and November fire counts separately; though their trends are 14 

different, all of them are statistically insignificant. The meaning of HFAP, including references, is given in the 15 

supplementary file (S1). Fire count has a decreasing trend for October, whereas it has an upward tendency in 16 

November. This decrease in stubble burning could account for only a tiny percentage of the declining PM2.5 17 

trend. As the reduction during post-monsoon is the highest, delving further, it is observed through the 18 

concentration-weighted trajectories (Fig.8a) that the influence of crop burning in Haryana is more prominent in 19 

this period. Quantifying the burning in terms of Fire Radiative Power (FRP), which is an average of fire 20 

emission, the FRP trend over Haryana displayed a declining trend (Fig.8b), especially after 2016. This 21 

observation supports the steeper reduction in the post-monsoon season. Again, the trend slopes are small and 22 

insignificant for 2011-2021. This exercise is taken up only to demarcate the possible control region of PM 23 

transport to Delhi during post-monsoon period.   24 

 25 

 26 
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 1 

Fig. 8 a) Concentration-weighted trajectories during October and November for a typical year and b) trends in FRP 2 

for Haryana (H) and Punjab (P) for the same period. 3 

Another critical factor that could affect the PM10/PM2.5 trend is the number of annual rainy days from 2011-4 

2021. India Meteorological Department (IMD) gridded rainfall (25 km X 25 km) data was used to estimate the 5 

trend in rainy days (Pai et al., 2014). A rainy day is defined as a day with rainfall ≥ 2.5 mm. The trend in annual 6 

rainy days was found to have negligible contribution to the PM2.5 trend, with a decrease of 0.06 rainy days in a 7 

year and an overall 0.7 rainy days during 2011-2021 (Fig.9). Chetna et al. (2022) found an increasing trend in 8 

humidity over Delhi through the wet deposition of PM or humidity-assisted growth and induced deposition is 9 

not always linear but complex. 10 
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Fig. 9 Annual number of rainy days during 2011-2021 2 

3.7 Governmental Control Measures  3 

Despite accounting for meteorology and the three potential seasonal external factors, namely dust storms, 4 

stubble burning and annual rainy days, one could not wholly explain the significant decrease in particulate 5 

concentrations in Delhi during 2011-2021. Therefore, the improvement in air quality observed during 2011-6 

2021 could be attributable to various mitigation measures implemented in Delhi to curb air pollution.  7 

In 2016, the vehicular density was ~8000 per 1000 population, which increased to 1.5 times in 2019 (Verma and 8 

Nagendra, 2023). The BS IV norms were mandated in 2010 for personal cars and BS-VI in 2020, while BS-VI 9 

for two/three wheelers were implemented in 2016. These were the traffic-related regulations during the study 10 

period. A change from BS-III to BS-IV for 2 and 3-wheelers could have reduced the emission of PM by 50% 11 

from that source. In 2015, NGT (National Green Tribunal) imposed a ban on diesel vehicles that are more than 12 

10 years old.  13 

On the industrial front, several restrictions have been continuously imposed on various facets such as cleaner 14 

fuel, emission standards, stack height, etc., such as the pet coke and furnace oil ban in 2017, converting 15 

industries to use CNG since 2018, creating new/stricter norms for emission reduction in various industries 2011 16 

onwards and so on. On the societal front, improving public transport with cleaner fuel, increasing green cover 17 

and specific initiatives to introduce cleaner cooking fuel, use of increased solar energy, shut down of power 18 

plants and construction activities during adverse meteorological conditions also might have limited the PM 19 

pollution. Specific studies of future scenarios show that a significant reduction in PM pollution is achievable by 20 

stricter adherence to emission norms (Bhanarkar et al., 2018; Venkataraman et al., 2018; Conibear et al., 2018; 21 

Chowdhury et al., 2019; Purohit et al., 2019). These comprehensive multi-pronged mitigation measures should 22 

https://doi.org/10.5194/egusphere-2024-803
Preprint. Discussion started: 19 April 2024
c© Author(s) 2024. CC BY 4.0 License.



17 
 

be able to explain about 15% reduction seen in particulate concentration trends other than meteorology and 1 

external factors, especially since 2015. 2 

Change in LULC over the years is one of the potential factors that can impact air quality in Delhi.  Gupta (2021) 3 

reported percentage change in LULC in national capital region Delhi as derived from high resolution satellite 4 

imagery using geo-informatics. It is reported that ‘Built-up Land area’ changed by 5.46%, ‘Agricultural land 5 

area’ by -4.95%, ‘Forest area’ by 2.91%, ‘Barren & Scrub Land’ by -3.18% and Water bodies by -0.24% during 6 

2008-2018. Apparently, increase in Built-up and increase in forest cover was set off with decrease in 7 

Agricultural area, Barren land and Water bodies owing to the pressures of population increase and for enacting 8 

policy measures. Definitely, the increase of built up area at least at some point of time have contributed to 9 

construction related dust but thereafter how they contribute to pollution cannot be assessed exactly as the net 10 

effect of urbanization and open area dust rising contribution can be contradicting. While Barren land turning to 11 

urban forestry is sure to reduce pollution except for pollen transport, if any. Similar is the case of Agriculture 12 

area turning to Built-up as there may not be cropping throughout the year for non-availability of water and open 13 

uncultivated land may be a source of dust in summer. Reduction of water bodies surely contribute to pollution in 14 

any form. Overall observed LULC change during 2008-2018 seems not to play a decisive role in air quality 15 

improvement because of the opposing outcomes.  16 

4. Conclusions 17 

A decade of in-situ SAFAR observations in Delhi has revealed gradual air quality improvement, specifically 18 

from 2015 onwards. The linear trend analysis indicated that the observed PM2.5 and PM10 decreased 29% and 19 

24%, respectively, from 2011 to 2021. Trends of seasonal external factors like dust storms, crop residue/stubble 20 

burning, change in LULC over the years and the number of rainy days seemingly only insignificantly contribute 21 

to the declining trend of particulate matter during 2011-2021. Sensitivity analysis using WRF-Chem to quantify 22 

the role of meteorology reveals that over the years (from 2011 to 2018 for October), meteorological conditions 23 

have become more favourable, contributing about 10% to the observed decreasing trend in PM2.5. The decrease 24 

in PM2.5 observed on an annual scale could be attributed to the activities adopted from time to time to reduce 25 

emissions, primarily and to meteorology to a lesser scale. Various mitigation plans implemented by governing 26 

bodies to curb air pollution have improved Delhi’s air quality over the years, manifested in the increased 27 

number of satisfactory days (25 days in 2015 to 100 days in 2018). The study also finds that the Haryana region 28 

has definitive control over the transport of pollutants from stubble burning to Delhi. The study’s prime 29 

conclusion is that Governmental policies and their efficient implementation, public initiatives and outreach can 30 

turn even the most polluted cities into sustainable ones despite intensified multi-factored urbanization and 31 

increasing emissions. Such long-term observations and their analyses and model evaluations can categorize such 32 

effects. 33 
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