## Supplement of

## An improved Trajectory-mapped Ozonesonde dataset for the Stratosphere and Troposphere

## (TOST): update, validation and applications

Zhou Zang<sup>1</sup>, Jane Liu<sup>1</sup>, David Tarasick<sup>2</sup>, Omid Moeini<sup>2</sup>, Jianchun Bian<sup>3</sup>, Jinqiang Zhang<sup>3</sup>, Anne M. Thompson<sup>4,5</sup>, Roeland Van Malderen<sup>6</sup>, Herman G.J. Smit<sup>7</sup>, Ryan M. Stauffer<sup>4</sup>, Bryan J. Johnson<sup>8</sup> and Debra E. Kollonige<sup>4,9</sup>

<sup>1</sup>Department of Geography and Planning, University of Toronto, Toronto, Canada
<sup>2</sup>Environment and Climate Change Canada, Toronto, Canada
<sup>3</sup>Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
<sup>4</sup>Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
<sup>5</sup>University of Maryland Baltimore County, Baltimore, MD, USA
<sup>6</sup>Royal Meteorological Institute of Belgium, Brussels, Belgium
<sup>7</sup>Institute for Energy and Climate Research: Troposphere (IEK-8), Research Centre Juelich (FZJ), Juelich, Germany.
<sup>8</sup>NOAA/ESRL Global Monitoring Division, Boulder, Colorado, USA
<sup>9</sup>Science Systems and Applications, Inc., Lanham, MD, USA

Correspondence: Jane Liu (janejj.liu@utoronto.ca)

**Table S1.** Information on the ozonesonde stations used, including each station's ID number, name, locations, the number of profiles used, and measurement period. The stations in bold fonts are the stations showing a drop-off of 2-8% in the stratospheric ozone and total ozone column since 2013. The Beijing station is named the Nanjiao Meteorological Observatory.

| m         | Station name         | Longitudo | Latituda     | Altitudo | Start- | End- | No.        |
|-----------|----------------------|-----------|--------------|----------|--------|------|------------|
| ID        | Station name         | Longitude | Latitude     | Annuae   | year   | year | profiles   |
| 255       | Ainsworth (Airport)  | -100      | 42.6         | 789      | 1986   | 1986 | 7          |
| 494       | Alajuela             | -84.2     | 10           | 899      | 2005   | 2009 | 133        |
| 229       | Albrook              | -79.5     | 9            | 66       | 1980   | 1980 | 20         |
| 18        | Alert                | -62.3     | 82.5         | 62       | 1987   | 2021 | 1650       |
| 111       | Amundsen-scott       | -24.8     | -90          | 2810     | 1970   | 1987 | 183        |
| 348       | Ankara               | 32.9      | 40           | 891      | 1994   | 2012 | 340        |
| 328       | Ascension Island     | -14.2     | -7.6         | 91       | 1990   | 2021 | 905        |
| 483       | Barbados             | -59.4     | 13.2         | 32       | 2006   | 2006 | 27         |
| 199       | Barrow               | -156.6    | 71.3         | 11       | 1974   | 2008 | 21         |
| 104       | Bedford              | -71 3     | 42.5         | 80       | 1970   | 1971 | 53         |
| /         | Beijing              | 116.5     | 39.8         | 30       | 2001   | 2019 | 902        |
| ,         | Belgrano             | -34.6     | -77 9        | 250      | 2016   | 2021 | 119        |
| ,<br>420  | Beltsville (md)      | -76.5     | 39           | 72       | 2016   | 2021 | 12         |
| 181       | Berlin/Templehof     | 13.4      | 52 5         | 50       | 1970   | 1973 | 134        |
| 107       | Biscarrosse/Sms      | 1.7       | 52.5<br>AA A | 18       | 1976   | 1973 | 350        |
| 525       | Bogota               | -1.2      | 44.4         | 2541     | 1008   | 2008 | 64         |
| 525<br>67 | Boulder Esrl Ha (co) | 105.2     | 30.0         | 1743     | 1990   | 2008 | 1076       |
| 228       | Brotta Laka          | -105.2    | 50.2         | 580      | 2002   | 2022 | 1970       |
| 220       | Brazzeville          | -104.7    | JU.2         | 214      | 2003   | 1002 | 403        |
| 204       |                      | 13.2      | -4.3         | 110      | 1990   | 1992 | 02<br>1075 |
| 394<br>20 | Gradineadows         | 144.9     | -37.7        | 110      | 1999   | 2021 | 1075       |
| 30        | Cagnari/Eimas        | 9.1       | 39.2         | 4        | 1970   | 1980 | 579        |
| 20        | Caribou              | -08       | 46.9         | 192      | 1981   | 1981 | 1          |
| 444       | Cheju                | 126.5     | 33.5         | 300      | 2001   | 2001 | 13         |
| 224       | Chilca               | -/6.8     | -12.5        | -1       | 1975   | 1975 | 3          |
| 100       | Churchill            | -94.1     | 58.8         | 35       | 1973   | 2021 | 1748       |
| 198       | Cold Lake            | -110      | 54.8         | 702      | 1977   | 1981 | 66         |
| 236       | Coolidge Field       | -61.8     | 17.3         | 10       | 19/6   | 19/6 | /          |
| 472       | Cotonou              | 2.2       | 6.2          | 9.5      | 2005   | 2007 | 97         |
| 334       | Cuiaba               | -56.1     | -15.6        | 990      | 1992   | 1992 | 21         |
| 450       | Davis                | 78        | -68.6        | 14       | 2003   | 2019 | 501        |
| 316       | De Bilt              | 5.2       | 52.1         | 4        | 1992   | 2021 | 1528       |
| 238       | Denver               | -104.9    | 39.8         | 1611     | 1977   | 1977 | 1          |
| /         | Dumont               | 140       | -66.4        | 20       | 1991   | 2019 | 704        |
| 441       | Easter Island        | -109.4    | -27.2        | 69.2     | 1995   | 2021 | 323        |
| 456       | Egbert               | -79.8     | 44.2         | 251      | 2003   | 2011 | 372        |
| 213       | El Arenosillo        | -6.7      | 37.1         | 41       | 1977   | 1983 | 18         |
| 335       | Etosha Pan           | 15.9      | -19.2        | 1100     | 1992   | 1992 | 16         |
| 315       | Eureka               | -86.4     | 80           | 10       | 1992   | 2021 | 1911       |
| 203       | Ft. Sherman          | -80       | 9.3          | 57       | 1977   | 1977 | 16         |
| 228       | Gimli                | -97       | 50.6         | 228      | 1980   | 1985 | 31         |
| 76        | Goose Bay            | -60.3     | 53.3         | 44       | 1970   | 2021 | 2317       |
| 237       | Great Falls          | -111.3    | 47.5         | 1118     | 1977   | 1977 | 4          |
| 330       | Hanoi                | 105.8     | 21           | 6        | 2004   | 2021 | 350        |
| 40        | Haute provence       | 5.7       | 43.9         | 684      | 1981   | 1997 | 61         |
| 477       | Heredia              | -84.1     | 10           | 1176     | 2005   | 2011 | 127        |
| 109       | Hilo (hi)            | -155.1    | 19.7         | 11       | 1982   | 2021 | 1742       |
| 92        | Hobart               | 147.5     | -42.8        | 4        | 2021   | 2021 | 1          |
| 99        | Hohenpeissenberg     | 11        | 47.8         | 976      | 1970   | 2021 | 6058       |
| 361       | Holtville (ca)       | -115.4    | 32.8         | -19      | 2006   | 2006 | 13         |

| 484     | Houston (tx)             | -95.4  | 29.7  | 19        | 2004 | 2006 | 62   |
|---------|--------------------------|--------|-------|-----------|------|------|------|
| 418     | Huntsville               | -86.6  | 35.3  | 196       | 1999 | 2007 | 575  |
| 303     | Iqaluit                  | -68.5  | 63.8  | 20        | 1991 | 1992 | 30   |
| 265     | Irene                    | 28.2   | -25.9 | 1524      | 1990 | 2021 | 540  |
| 336     | Isfahan                  | 51.7   | 32.5  | 1550      | 1995 | 2011 | 151  |
| 404     | Jokioinen                | 23.5   | 60.8  | 103       | 1995 | 1998 | 99   |
| 439     | Kaashidhoo               | 73.5   | 5     | 1         | 1999 | 1999 | 54   |
| 7       | Kagoshima                | 130.6  | 31.6  | 283       | 1970 | 2005 | 816  |
| 457     | Kelowna                  | -119.4 | 49.9  | 456       | 2003 | 2017 | 700  |
| 344     | Kings park               | 114.2  | 22.3  | 66        | 2000 | 2021 | 976  |
| 225     | Kourou                   | -52.6  | 5.3   | 4         | 1974 | 1974 | 3    |
| 436     | La Reunion               | 55.5   | -21.1 | 24        | 1998 | 2021 | 816  |
| /       | Laquila                  | 13.3   | 42.4  | 683       | 1994 | 2021 | 309  |
| 256     | Lauder                   | 169.7  | -45   | 370       | 1986 | 2021 | 1966 |
| 254     | Laverton                 | 144.8  | -37.9 | 21        | 1984 | 1999 | 340  |
| 221     | Legionowo                | 21     | 52.4  | 96        | 1979 | 2021 | 2170 |
| 43      | Lerwick                  | -1.2   | 60.1  | 80        | 1992 | 2016 | 1223 |
| 174     | Lindenberg               | 14.1   | 52.2  | 112       | 1975 | 2021 | 2727 |
| 235     | Long View                | -94.8  | 32.2  | 103       | 1976 | 1976 | 2/2/ |
| 29      | Macquarie Island         | 159    | -54.5 | 6         | 1994 | 2021 | 1176 |
| 308     | Madrid                   | -3.8   | 40.5  | 640       | 1994 | 2021 | 1132 |
| 400     | Maitri                   | 11.4   | -70.5 | 330       | 1994 | 2008 | 141  |
| 448     | Malindi                  | 40.2   | -3    | -6        | 1999 | 2006 | 191  |
| 233     | Marambio                 | -56.6  | -64 2 | 198       | 1988 | 2019 | 1286 |
| 466     | Maxaranguape (Natal)     | -35.4  | -5.4  | 42        | 2002 | 2015 | 355  |
| /       | Memurdo                  | 166.7  | -78.8 | 10        | 1986 | 2010 | 822  |
| ,<br>88 | Mirny                    | 93     | -66.5 | 30        | 1989 | 1991 | 114  |
| 190     | Naha                     | 127.7  | 26.2  | 27        | 1989 | 2018 | 1107 |
| 175     | Nairobi                  | 36.8   | -1.3  | 1710      | 1996 | 2010 | 1001 |
| 487     | Narragansett             | -71.4  | 41.5  | 21        | 2006 | 2008 | 51   |
| 219     | Natal                    | -35.2  | -5.8  | 32        | 1979 | 2000 | 866  |
| 323     | Neumaver                 | -83    | -70 7 | 42<br>42  | 1992 | 2021 | 1737 |
| 10      | New Delhi                | 77.1   | 28.3  | 273       | 1984 | 2017 | 197  |
| 280     | Novolasarevskava/Forster | 11.9   | -70.8 | 110       | 1985 | 1991 | 393  |
| 89      | Nv-aalesund              | 11.9   | 78.9  | 110       | 1992 | 2021 | 2562 |
| /       | OHP                      | 57     | 43.9  | 777       | 1991 | 2021 | 1428 |
| 523     | Pago Pago/American Samoa | -170.6 | -14.2 | 77        | 1998 | 2021 | 850  |
| 210     | Palestine                | -95 7  | 31.8  | 121       | 1975 | 1985 | 163  |
| 432     | Papeete (Tahiti)         | -149   | -18   | 2         | 1995 | 1999 | 168  |
| 488     | Paradox                  | -73.6  | 43.9  | 284       | 2006 | 2006 | 8    |
| 435     | Paramaribo               | -55.2  | 5.8   | 20 .<br>7 | 1999 | 2021 | 834  |
| 156     | Paverne                  | 66     | 46.5  | 491       | 1970 | 2021 | 6693 |
| 360     | Pellston (mi)            | -84 7  | 45.6  | 235       | 2004 | 2004 | 38   |
| 322     | Petaling Java            | 101.7  | 27    | 17        | 1998 | 2021 | 477  |
| 332     | Pohang                   | 129.4  | 36    | 2.5       | 1995 | 2021 | 1050 |
| 217     | Poker Flat               | -147 5 | 65.1  | 204       | 1979 | 1982 | 40   |
| 187     | Poona                    | 73.8   | 18.5  | 559       | 1984 | 2009 | 140  |
| 526     | Port Hardy               | -127.4 | 50.7  | 17        | 2018 | 2021 | 137  |
| 333     | Porto Nacional           | -48.4  | -10.8 | 240       | 1992 | 1992 | 15   |
| 242     | Praha                    | 14.4   | 50    | 304       | 1979 | 2021 | 1873 |
| 440     | r h Brown Research Shin  | -65.6  | 30.6  | 2         | 1999 | 2006 | 89   |
| 212     | r/v a.k.Shirshov         | 75     | -15   | -1        | 1977 | 1977 | 32   |
| 24      | Resolute                 | -95    | 74.7  | 64        | 1970 | 2021 | 2037 |
| 489     | Richland                 | -119.2 | 46.2  | 123       | 2006 | 2006 | 24   |
| 297     | S.Pietro Capofiume       | 11.6   | 44.6  | 11        | 1984 | 1993 | 98   |
| 100     | Sable Island             | -60    | 43.9  | 4         | 2004 | 2006 | 61   |

| 434 | San Cristobal                  | -89.6  | -0.9  | 8    | 1998 | 2021 | 445  |
|-----|--------------------------------|--------|-------|------|------|------|------|
| 239 | San Diego                      | -117.2 | 32.8  | 124  | 1977 | 1977 | 2    |
| 234 | San Juan                       | -66.1  | 18.5  | 17   | 1976 | 1976 | 6    |
| 524 | San Pedro                      | -84.2  | 10    | 899  | 2005 | 2021 | 658  |
| 401 | Santa Cruz-Botanico (Tenerife) | -16.3  | 28.5  | 36   | 1995 | 2021 | 1362 |
| 12  | Sapporo                        | 141.3  | 43.1  | 19   | 1970 | 2018 | 1392 |
| 406 | Scoresbysund                   | -21.9  | 70.5  | 9999 | 1989 | 2020 | 1494 |
| 443 | Sepang Airport                 | 101.7  | 2.7   | 17   | 1998 | 2017 | 372  |
| 214 | Singapore                      | 103.9  | 1.3   | 36   | 2012 | 2015 | 37   |
| 262 | Sodankyla                      | 26.6   | 67.4  | 179  | 1988 | 2021 | 1763 |
| 132 | Sofia                          | 23.4   | 42.8  | 588  | 1982 | 1991 | 239  |
| 997 | South Pole                     | -169   | -90   | 2834 | 1970 | 2021 | 2251 |
| 231 | Spokane                        | -117.4 | 47.7  | 576  | 1976 | 1976 | 7    |
| 21  | Stonyplain/Edmonton            | -114.1 | 53.5  | 766  | 1970 | 2021 | 2121 |
| 491 | Summit                         | -38.5  | 72.6  | 3202 | 2005 | 2015 | 551  |
| 438 | Suva/Fuji                      | 178.2  | -18.1 | 6    | 1997 | 2021 | 502  |
| 101 | Syowa                          | 39.6   | -69   | 21   | 1970 | 2021 | 1925 |
| 260 | Table Mountain (ca)            | -117.7 | 34.4  | 2285 | 2006 | 2006 | 35   |
| 95  | Taipei                         | 121.4  | 25    | 11   | 2000 | 2021 | 141  |
| 14  | Tateno (Tsukuba)               | 140.1  | 36.1  | 31   | 1970 | 2021 | 1876 |
| 485 | Tecamec (Unam)                 | -99.2  | 19.3  | 2272 | 2006 | 2006 | 35   |
| 205 | Thiruvananthapuram             | 77     | 8.5   | 60   | 1984 | 2009 | 205  |
| 460 | Thule                          | -68.7  | 76.5  | 57   | 1991 | 2003 | 249  |
| 65  | Toronto                        | -79.5  | 43.8  | 198  | 1976 | 1994 | 15   |
| 445 | Trinidad Head                  | -124.1 | 41.1  | 36   | 1997 | 2021 | 1286 |
| 53  | Uccle                          | 4.3    | 50.8  | 100  | 1970 | 2021 | 6352 |
| 339 | Ushuaia                        | -68.3  | -54.9 | 17   | 2008 | 2019 | 227  |
| 318 | Valentia                       | -10.2  | 51.9  | 14   | 1994 | 2021 | 745  |
| 490 | Valparaiso (in)                | -87    | 41.5  | 240  | 2006 | 2006 | 18   |
| 257 | Vanscoy                        | -107.3 | 52.2  | 510  | 1990 | 2004 | 57   |
| 55  | Vigna Di Valle                 | 12.2   | 42.1  | 260  | 2011 | 2021 | 172  |
| 107 | Wallops Island                 | -75.5  | 37.9  | 13   | 1970 | 2020 | 2113 |
| 482 | Walsingham                     | -80.6  | 42.6  | 200  | 2006 | 2006 | 43   |
| 437 | Watukosek (Java)               | 112.7  | -7.6  | 50   | 1998 | 2021 | 357  |
| 458 | Yarmouth                       | -66.1  | 43.9  | 9    | 2003 | 2021 | 794  |
| 194 | Yorkton                        | -102.5 | 51.3  | 504  | 1975 | 1978 | 72   |

|      | 1980s JJA        |        | 1980             | 80s DJF 19 |        | s JJA     | <b>1990s DJF</b> |                  |  |
|------|------------------|--------|------------------|------------|--------|-----------|------------------|------------------|--|
|      | TOST             | SAGE   | TOST             | SAGE       | TOST   | SAGE      | TOST             | SAGE             |  |
| R    | 0.97             | 0.97   | 0.97             | 0.95       | 0.97   | 0.98      | 0.96             | 0.96             |  |
| RMS  | 359.79           | 357.71 | 436.99           | 569.58     | 381.08 | 335.68    | 522.18           | 509.68           |  |
| Bias | -26.80           | -47.01 | -19.46           | -115.93    | 1.09   | 11.74     | 58.95            | 3.33             |  |
| RD   | -1.16            | -2.04  | -0.64            | -3.81      | 0.05   | 0.52      | 2.04             | 0.11             |  |
| Ν    | 271              | 271    | 779              | 779        | 1494   | 1494      | 1920             | 1920             |  |
|      | <b>2000s JJA</b> |        | <b>2000s DJF</b> |            | 2010   | 2010s JJA |                  | <b>2010s DJF</b> |  |
|      | TOST             | MLS    | TOST             | MLS        | TOST   | MLS       | TOST             | MLS              |  |
| R    | 0.96             | 0.96   | 0.96             | 0.96       | 0.96   | 0.95      | 0.97             | 0.97             |  |
| RMS  | 470.80           | 566.49 | 516.80           | 495.71     | 474.20 | 575.47    | 446.90           | 449.48           |  |
| Bias | 10.23            | 249.18 | 1.68             | -18.40     | -7.92  | 258.47    | 0.96             | -43.47           |  |
| RD   | 0.44             | 10.93  | 0.06             | -0.69      | -0.34  | 11.33     | 0.03             | -1.59            |  |
| Ν    | 7460             | 7460   | 7661             | 7661       | 11432  | 11432     | 12133            | 12133            |  |

**Table S2.** Validation of the trajectory-derived (TOST) against ozonesonde measurement in two seasons (JJA: June-July-August, DJF: December-January-February) by decade from the 1980s to 2010s (in red text). The validation of SAGE and MLS ozone in the corresponding decade is provided as a comparison (in blue text).

**Table S3.** Comparisons of data coverage, number of ozonesonde stations and ozonesonde profiles between TOST-v1 and TOST-v2.

| Data coverage (%)          | 90-60S            | 60-30S            | 30S-30N           | 30-60N            | 60-90N            |
|----------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| TOST-v1                    | $53.57 \pm 14.06$ | $39.61 \pm 15.75$ | $24.26 \pm 13.73$ | $78.44 \pm 18.75$ | $62.61 \pm 12.70$ |
| TOST-v2                    | 57.40 ± 15.36     | $44.12 \pm 17.42$ | $28.00 \pm 16.34$ | $80.98 \pm 18.10$ | $64.24 \pm 13.36$ |
| <b>Ozonesonde stations</b> |                   |                   |                   |                   |                   |
| TOST-v1                    | 8                 | 4                 | 32                | 46                | 10                |
| TOST-v2                    | 12                | 6                 | 48                | 64                | 13                |
| Ozonesonde profiles        |                   |                   |                   |                   |                   |
| TOST-v1                    | 3764              | 2216              | 6363              | 32779             | 4765              |
|                            |                   |                   |                   |                   |                   |
| TOST-v2                    | 10176             | 4785              | 17934             | 54432             | 13630             |



Figure S1. (a-d) Global distribution of monthly mean ozone at 3-4 km and 19-20 km in January and July 2020 from forward trajectories. (e-h) same as (a-d) but for backward trajectories. (i-l) the relative difference in monthly mean ozone between forward and backward trajectories [100 × (forward trajectories - backward trajectories) / (0.5 × forward trajectories + 0.5 × backward trajectories), in %].



Figure S2. (a-c) Comparison of monthly average tropospheric ozone mixing ratios from ozonesondes (Sonde-Observed) and trajectory-derived TOST data with trajectories from observations only in the troposphere (**Traj-Derived, tropospheric-only**) for the entire study period of ozone concentration at 0-50 ppbv and 50-150 ppbv. Solid red lines represent the linear fitting line (with the intercept set to 0) and dashed black lines denote the 1:1 axis. N is the total number of data points, R is the correlation coefficient, Bias is the overall average difference in monthly mean values [Traj-Derived ozone - Sonde-Observed ozone, in ppbv], RD is the relative difference in % [100 × (Traj-Derived ozone - Sonde-Observed ozone)/ Sonde-Observed ozone)], and RMS is the root mean square difference in ppbv). Note that Traj-Derived ozone at each station is derived without input from the station itself; that is, Traj-Derived represents an ensemble of 141 separate computations of TOST, each one withholding a single validation station. (d) the R (bars), RD (dots and lines) and linear fitting coefficient (with the intercept set to 0; triangles) between the Traj-Derived ozone and Sonde-Observed ozone by decade. The dashed line denotes where the linear fitting coefficient is 1.



Figure S3. The comparison of monthly ozone mixing ratios between IAGOS-observed (x-axis labeled: IAGOS-Observed) and TOST data (y-axis labelled: TOST) by decade (a-c) and for the entire study period (d) of ozone concentration at 50-150 ppbv. Solid red lines represent the linear fitting line (with the intercept set to 0) and dashed black lines denote the 1:1 axis. N is the total number of data points, R is the correlation coefficient (unitless), Bias is the difference in monthly mean values [TOST ozone - IAGOS ozone, unit: ppbv], RD is the relative difference [100 × (TOST ozone - IAGOS ozone)/(0.5 × TOST ozone + 0.5 × IAGOS ozone)], and RMS the root mean square difference (unit: ppbv).



Figure S4. Radar plot for RMSE of TOST Traj-derived and satellite ozone data against ozonesonde measurements at different latitudinal zones. (a) the RMSE for Traj-derived and SAGE ozone in the 1990s; (b) the RMSE for Traj-derived and MLS ozone in the 2010s. The RMSE in a given latitudinal zone is from the monthly ozone mixing ratios between the Traj-derived (or satellite) ozone and ozonesonde measurement in 16-26 in that latitudinal zone. Traj-derived ozone is without the input of stations being tested.



Figure S5. Similar to Figure 2a-c, comparisons in monthly ozone mixing ratios between trajectory-derived (Traj-Derived) and satellite-based (SAGE and MLS) ozone data in JJA and

DJF in the stratosphere from 16-26 km by decades, in the 1980s and 1990s for SAGE and in the 2000s and 2010s for MLS.



Figure S6. The mean relative difference in data coverage between TOST-v1 and TOST-v2 [ $100 \times (TOST-v2 \text{ data coverage} - TOST-v1 \text{ data coverage})/TOST-v1 \text{ data coverage} (in \%)$ ] for four decades from 1970-2008. The suface layer (0-1 km) is not compared here due to the topography issue with TOST-v1 (see Figure 9 and Section 3.3 for details).



Figure S7. (a) The global topographical map. The dashed circles indicate the regions with large spatial differences between the two versions of TOST data (v1 and v2) at 0-1 km. (b, c) The mean ozone concentrations at 0-1 km and 19-20 km in the 2000s at two stations for ozonesonde, TOST-v2 and TOST-v1.