

1 **Supplementary Materials**

2 **Experimental setup**

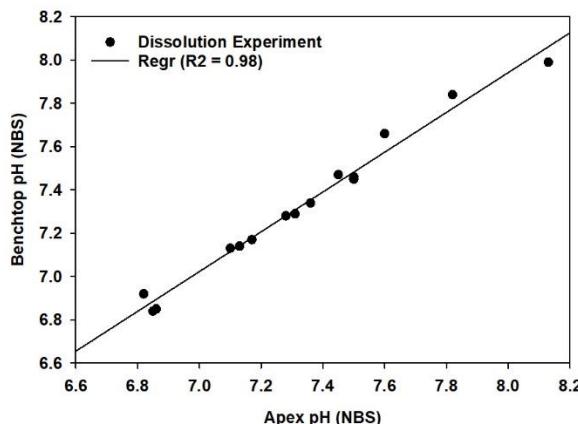
3

4

5

6 **Figure S1:** Simplified schematic of the flow through feedback-controlled seawater system used
7 for the mineral dissolution experiments. The pre-treatment tanks contained seawater filtered to 5
8 microns from Yaquina Bay and were vigorously bubbled with ambient air. Water was pumped
9 from the pre-treatment tanks to the CO₂ manipulation tanks (Lo, Mid, Con, Hi) and excess water
10 was then circulated back. CO₂ treatment tanks were manipulated using lab-grade CO₂ to generate
11 specific Ω_{calcite} in a feedback-controlled system measuring pH_(NBS). The pH in each CO₂
12 manipulation tank was monitored using an Apex-Controller manipulation system (Neptune
13 Systems Energy Bar 832 interfaced with an Apex Controller Base Unit and pH/ORP probe
14 modules: PM1). One double junction pH probe was located in the recirculation return line in each
15 CO₂ manipulation tank. All pH probes were calibrated at the beginning of each experiment using
16 pH 4, 7, and 10 NBS buffers, to obtain a three-point calibration curve.

17


18 **Table S1:** Table of measured TCO₂, pCO₂, Temperature (T), Salinity (S) and calculated pH_(NBS)
19 and Saturation State (Ω_{calcite}) from seawater tank discrete (pCO₂/TCO₂) samples associated with
20 our flow through feedback-controlled seawater system. For each dissolution trial, a total of four
21 pCO₂/TCO₂ samples were used. Measurements following procedures from Bandstra et al. (2006),
22 modified for discrete samples as in Hales et al. (2005), Barton et al., (2012), and Hales et al. (2017).
23 The temperature (°C) listed is from in situ measurements recorded from within the water treatment
24 tanks (does not reflect experimental temperatures)

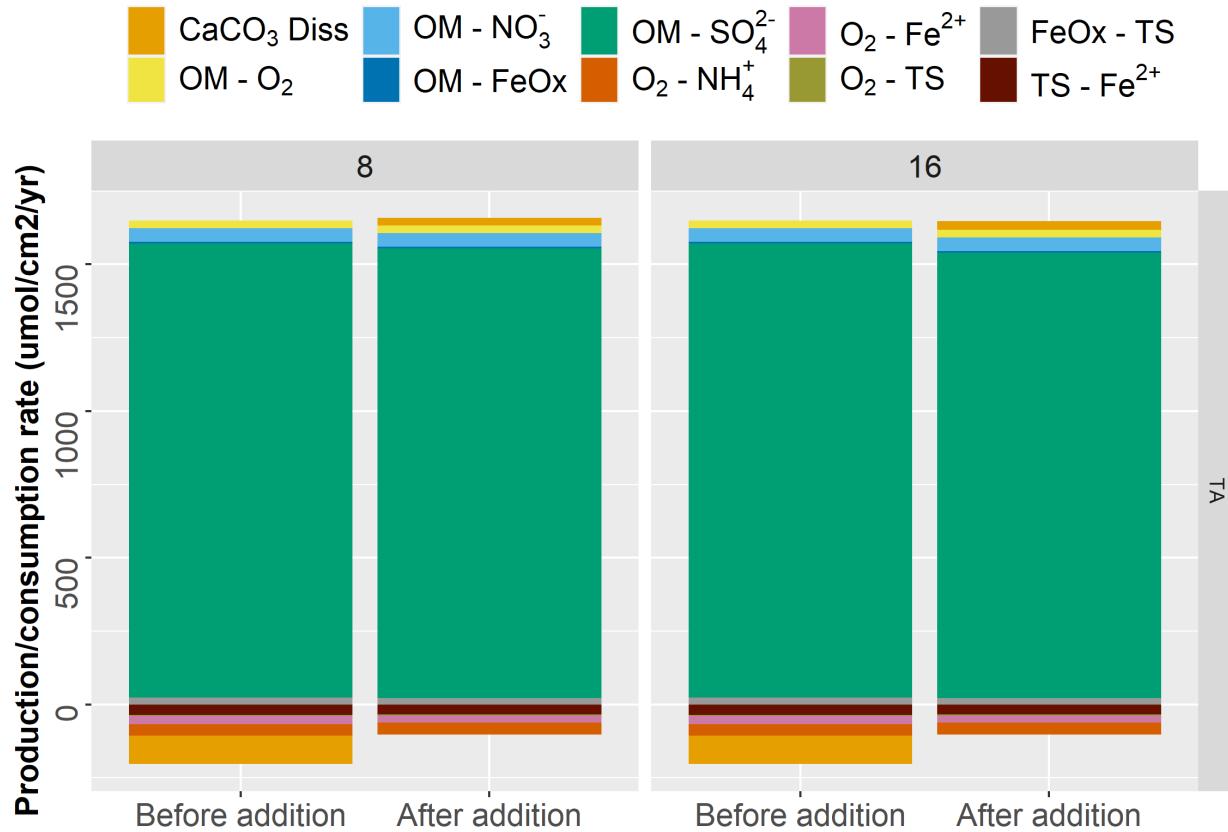
TCO ₂ ($\mu\text{mol/kg}$)	pCO ₂ (μatm)	T (°C)	Salinity	Measured pH _(NBS)	Calculated Ω_{calcite}
--	---	--------	----------	---------------------------------	---

2530.7	8589.3	18	33.1	6.85	0.25
2340.1	4569.2	18	33.2	7.14	0.45
2291.5	2537.9	19	33.4	7.28	0.85
2252.8	1946.2	18	33.2	7.46	1.03

25

26 The correlation between measured benchtop pH data and the pH data calculated from pCO₂/TCO₂
 27 measurements for header tanks in all experiments was consistently an R² greater than 0.9 across
 28 all experiments (Figure S2).

29


30 **Figure S2:** Measured pH_{NBS} from a benchtop probe and the pH_{NBS} from the experimental system
 31 in the flowthrough feed-back controlled seawater system tanks

32

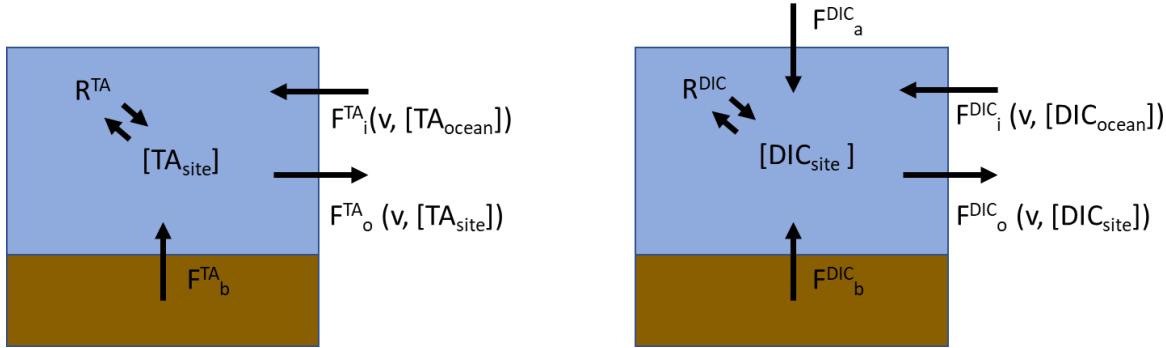
33 *Effect of the dilution due to mineral addition*

34 We carried out addition simulations in which we assumed that the addition of minerals at the top
 35 replaces OM, lowering the OM concentration in the top 2 cm. To estimate the potential impact
 36 of dilution due to replacing OM with PIC, we simulated OM as state variable and using a rate
 37 expression $R_C = k \cdot OM$, replacing the imposed OM reaction rates $R_C = R_C^0 \cdot \exp(-x/g_{OM})$. We
 38 assumed that the proportion of addition of PIC is the same as removal of the OM (i.e., adding 8%
 39 of mineral means lowering OM concentration by 8%). The rate constant k was set to 0.25 yr⁻¹,
 40 chosen to approximate the rates computed in the $R_C(z)$ approach. Flux of carbon was taken from
 41 literature as $\sim 510 \mu\text{mol cm}^{-2} \text{ yr}^{-1}$ (Thullner et al., 2009).

42 Figure S3 shows before and after the addition of minerals when dilution is present. We compared
 43 these results against a simulation with dilution turned off. Impact of dilution was minimal with
 44 slight reductions observed mainly in OM mineralization processes which resulted in decreases in
 45 TA production rates. Production of TA production was reduced by 17 and 33 $\mu\text{mol cm}^{-2} \text{ yr}^{-1}$ for
 46 8% and 16% applications respectively.

47
48 **Figure S3.** Production of TA for different amounts of mineral added when dilution is considered
49 (8 = 8% mineral addition, 16 = 16% mineral addition).

50 *Box model for atmospheric DIC uptake*


51 To estimate the impact of OAE on benthic fluxes calculated in this study and thus CO₂ uptake in
52 Yaquina Bay, we used a simple mass balance approach similar to Brenner et al. (2016), which
53 focuses on the ratio of DIC over TA as the controlling factor of CO₂ uptake (Egleston et al., 2010).
54 We calculated the mass balance for TA and DIC prior to and 2 years after the mineral addition to
55 isolate the additional CO₂ uptake due to mineral addition. Riverine impact was assumed negligible,
56 reflecting the strong coupling of Yaquina Bay with the coastal ocean reported previously (Brown
57 & Ozretich, 2007). Therefore, tidal exchange and benthic fluxes were the only input/output
58 pathways considered in the TA mass balance (Figure S4). At steady state, the alkalinity balance is
59 given by:

$$F_i^{TA} - F_o^{TA} + F_b^{TA} + R^{TA} = 0$$

60 where F_i^{TA} is the tidal influx of TA as a function of water exchange rate and oceanic TA ($F_i^{TA} = \nu[TA_{ocean}]$), F_o^{TA} is the tidal outflux of TA from the Bay to the ocean as a function of tidal velocity
61 and TA of the study site ($F_o^{TA} = \nu[TA_{site}]$), F_b^{TA} is the benthic flux computed by the reactive
62 transport model and R^{TA} is the net rate of water column TA production/consumption resulting
63 from primary productivity and respiration. The mass balance for DIC is given by:

$$F_i^{DIC} - F_o^{DIC} + F_b^{DIC} + F_a^{DIC} + R^{DIC} = 0$$

67 where F_i^{DIC} is the tide-driven influx of DIC ($F_i^{DIC} = v[DIC_{ocean}]$), F_o^{DIC} is the outflux of DIC
 68 ($F_o^{DIC} = v[DIC_{site}]$), F_b^{DIC} is the benthic flux of DIC, F_a^{DIC} is the atmospheric CO₂ and R^{DIC} is the
 69 sum of reaction rates producing/consuming DIC.

70
 71 **Figure S4:** Schematic of water column TA and DIC fluxes for Yaquina Bay.

72 The water exchange rate was approximated from measurements of water height. Using a 3 m
 73 semidiurnal tidal range from NOAA South Beach, OR (Station ID: 9435380) station, a
 74 representative exchange velocity is 2.1×10^5 cm/yr .

75 For pre-addition scenario, benthic TA and DIC fluxes were taken from the model as 1100 and
 76 1121 $\mu\text{mol cm}^{-2} \text{ yr}^{-1}$ respectively. TA mass balance equation was solved for R^{TA} using $[TA_{ocean}]$
 77 as 2.2 and $[TA_{site}]$ as 1.9 mmol L^{-1} (measured at Hatfield Marine Station). Then, R^{DIC} was
 78 estimated using R^{TA} with respiration producing NO_3^- /primary production consuming NO_3^-
 79 (coupled respiration and nitrification). $[DIC_{site}]$ and $[DIC_{ocean}]$ were calculated using site and
 80 ocean TA and pH using aquaenv R package as 1.8 and 2.1 $\mu\text{mol/cm}^{-3}$ respectively. Lastly, F_a^{DIC}
 81 was estimated by DIC mass balance.

82 After the addition of minerals, benthic fluxes were 1227 and 1185 $\mu\text{mol cm}^{-2} \text{ yr}^{-1}$ for TA and DIC.
 83 $[TA_{site}]$ and $[DIC_{site}]$ were recalculated using mass balance with R^{TA} , R^{DIC} , assuming pH of the
 84 site to be constant from pre-addition and changes in $[TA_{site}]$ and $[DIC_{site}]$ were in the order of
 85 $10^{-3} \mu\text{mol/cm}^3$.

86 Flux of CO₂ between the atmosphere and the water showed that the bay is net heterotrophic with
 87 emission fluxes of 458352 and 458294 $\mu\text{mol cm}^{-2} \text{ yr}^{-1}$ for before and after the addition respectively.
 88 Impact of buffering on F_a^{DIC} was calculated as additional 58 $\mu\text{mol cm}^{-2} \text{ yr}^{-1}$ CO₂ flux into the water
 89 column during the peak buffering period which was significantly smaller than total CO₂ influxes
 90 due to large impact of tidal input.

91 We explored the sensitivity of air-sea CO₂ fluxes to the pH in the bay, as well as the magnitude of
 92 the tidal exchange between the bay and the coastal ocean. CO₂ uptake due to mineral addition was
 93 slightly sensitive to pH in the bay (a change of approximately 14 $\mu\text{mol cm}^{-2} \text{ yr}^{-1}$ per change in 1
 94 pH unit). However, since the CO₂ uptake due to mineral additions were calculated as the difference
 95 between two scenarios, altering the tidal input (tidal exchange volume, DTA, DDIC) did not have
 96 a considerable impact on the impact of buffering (not shown).

97 **References:**

98 Bandstra, L., Hales, B., & Takahashi, T. (2006). High-frequency measurements of total CO₂:
99 Method development and first oceanographic observations. *Marine Chemistry*, 100(1-2), 24-38.

100 Barton, A., Hales, B., Waldbusser, G. G., Langdon, C., & Feely, R. A. (2012). The Pacific oyster,
101 *Crassostrea gigas*, shows negative correlation to naturally elevated carbon dioxide levels:
102 Implications for near-term ocean acidification effects. *Limnology and oceanography*, 57(3), 698-
103 710.

104 Brown, C. A., & Ozretich, R. J. (2009). Coupling between the coastal ocean and Yaquina Bay,
105 Oregon: Importance of oceanic inputs relative to other nitrogen sources. *Estuaries and Coasts*, 32,
106 219-237.

107 Hales, B., Suhrbier, A., Waldbusser, G. G., Feely, R. A., & Newton, J. A. (2017). The carbonate
108 chemistry of the “fattening line,” Willapa Bay, 2011–2014. *Estuaries and Coasts*, 40, 173-186.

109 Hales, B., Takahashi, T., & Bandstra, L. (2005). Atmospheric CO₂ uptake by a coastal upwelling
110 system. *Global Biogeochemical Cycles*, 19(1).

111 Thullner, M., Dale, A. W., & Regnier, P. (2009). Global-scale quantification of mineralization
112 pathways in marine sediments: A reaction-transport modeling approach. *Geochemistry,
113 geophysics, geosystems*, 10(10).

114