This study observed erosion processes and some soil-hydrological properties at the headcut areas of two permanent gullies in Northeast China's Mollisols region during rainy and snow-melting seasons. Key parameters like soil moisture, temperature, and precipitation were investigated to understand water storage capacity, leakage processes, and suction stress levels. Although only two headcuts were monitored, I think the results could be of interest for the scientific community, but I would only recommend the publication of the work if a series of changes and improvements are carried out. In my opinion, the authors wrongly include methodological content and interpretations in the results section. These contents should be rightly placed in the corresponding section. Additionally, I miss some methodological details that I consider relevant (UAV data, processing, etc. see my comments below). Finally, figures must be notably improved, particularly the font size, please see my comments below. I detail these suggestions in the following lines:

Replies:

Thanks for your comments to improve the quality of this manuscript.

Firstly, the physical process of gravitational soil erosion in permanent gully has been long neglected in the soil-water conservation research field, while it plays an important role in permanent gully expansion and development. In this work, we clearly addressed their differences and similarities with the landslides and used the theory of unsaturated soil mechanics to study their physical process.

As you suggested, we should clearly state some methodological content and interpretations in the method part, not in the results part. Meanwhile, some short paragraph in the results part should be moved into discussion part. We also found that the texts in some figures are not clear enough to read and some errors exists. Therefore, we made a thorough revision of this manuscript and the figures.

We made a point-to-point response to your comments, as follows:

Comment 1
Abstract: I have doubts about the last sentence as the USLE was not designed to predict gully erosion. I would recommend to delete this sentence.

Reply 1
Done. We revised the last sentence of in the abstract. As you know, USLE is an empirically-based function. If a physically-based function is developed to predict the gully erosion, it will be better. We revised the last sentence in the abstract into: The findings of this study could deepen our understanding of the physical process of permanent gully development from the perspective of hydrological and hydro-mechanics behavior of gully headcut.

Comment 2
Figure 1. Should be improved, China is floating in the white. In general, some items in the figures are difficult to read, for example legend items in Figure 1c, the location map bewteen 1b and 1c is impossible to see.

Reply 2
Done. We revised the figure 1. The new figure is shown as follows:
Comment 3
Fig. 2 Again some labels are very difficult to read, for example H in b.
Reply 3
Done.
Some labels in figure 2 are difficult to see. We improved the quality of the figure 2. The revised figure 2 is shown as follows:
Comment 4
L150 monitoring instead "observation work"
Reply 4
OK. We already revised it.

Comment 5
Section 3.1 How many flights did you carry out? what was the monitoring period? dates, UAV type, resolution? I miss so many details here.
Reply 5
Ok.
We should give a clear description of the detailed information of the flights and monitoring period, dates, UAV type and the resolution of the digitized elevation model.

In the revised manuscript, we clearly presented the missing information in the second paragraph of section 3.1
To observe the gravitational mass-wasting process during the rainy and melting seasons, the study area was scanned by numerous control plates (the dots in Figs. 1a and 1b, and dashed circles in Figs. 2c and 2d), installed in and around the gully area and used unmanned aerial vehicle (Phantom 4 RTK-DJI). These control points were used to analyze the accuracy of the UAV-derived map and digital elevation model, aiming to obtain highly accurate topography. During the melting season in 2023 and the rainy season in 2022, three flights on 28 June 2022, 17 October 2022, and 20 June 2023, were carried out to obtain the high-resolution maps and digital elevation models (DEMs) with high resolutions of 0.058, 0.108 and 0.042m, respectively. The DEMs were spatially registered in ArcGIS 10.2 by a standard layer of orthoimage, ground control points, and the spline function. Then, the erosion depth of the headcut area could be obtained by the differences between two DEMs. Therefore, the linear and the areal erosion intensity can be calculated using the erosion depth and the grid size. Then, the differences between two digital elevation models generated the positive and negative terrain, which quantitatively showed the erosion intensity of the gravitational mass-wasting. Additionally, the eroded soil volume in the unit over-steepen slope surface area, termed areal erosion intensity, was applied in this work to address the erosion intensity of gravitational mass-wasting.

Comment 6
L213-219 This is methodology and should be placed there, for example in section 3.1
Reply 6
Yes. We adopted your suggestion here. We revised the second paragraph in section 3.1: “To observe the gravitational mass-wasting process during the rainy and melting seasons, the study area was scanned by numerous control plates (the dots in Figs. 1a and 1b, and dashed circles in Figs. 2c and 2d), installed in and around the gully area and used unmanned aerial vehicle (Phantom 4 RTK-DJI). These control points were used to analyze the accuracy of the UAV-derived map and digital elevation model, aiming to obtain highly accurate topography. During the melting season in 2023 and the rainy season in 2022, three flights on 28 June 2022, 17 October 2022, and 20 June 2023, were carried out to obtain the high-resolution maps and digital elevation models (DEMs) with high resolutions of 0.058, 0.108 and 0.042m, respectively. The DEMs were spatially registered in ArcGIS 10.2 by a standard layer of orthoimage, ground control points, and the spline function. Then, the erosion depth of the headcut area could be obtained by the differences between two DEMs. Therefore, the linear and the areal erosion intensity can be calculated using the erosion depth and the grid size. Then, the differences between two digital elevation...
models generated the positive and negative terrain, which quantitatively showed the erosion intensity of the
gravitational mass-wasting. Additionally, the eroded soil volume in the unit over-steepen slope surface area, termed
areal erosion intensity, was applied in this work to address the erosion intensity of gravitational mass-wasting."

Comment 7
RESULTS: there are many interpretations of the results that, in my opinion, are discussions more
than objective results, therefore, I suggest to move these sentences to the corresponding section and
use the results just for the objective introduction of observed data or processes.
Reply 7
Done.
We checked the results section and some paragraphs should be in the discussion part. Except
some brief interpretations before a result section (we already moved to corresponding section, either
in the method section or the discussion section), four paragraphs should be moved, they are “the
second paragraph of 4.1 section, the third paragraph of 4.4 section, and the first and the fourth
paragraph of 4.3.2 section. The 4.2 and 4.3 section clearly gave the objective introduction of the
observed data and analysis.

The second paragraph of 4.1 section act a connecting role to the following result section. It
gave a brief analysis about and clear explanation on the 4.2, 4.3 and 4.4 section. Of course, the first
sentence with citations has been deleted because it is useless. Therefore, we suggest that keep the
revised second paragraph of 4.1 section.

The third paragraph of 4.4 section cited a reference, aiming to compare the rainfall threshold.
We revised this paragraph, and merely keep the objective results. For the rainfall threshold
comparison, we moved them into the discussion section.

The first paragraph of 4.3.2 section repeated with some sentences in the discussion part and
the fourth paragraph of 4.3.2 section. Therefore, he fourth paragraph of 4.3.2 section should be kept
and the first paragraph of 4.3.2 section should be merged into the discussion section.

Comment 8
L241- These instead this
Reply 8
Done.
We already revised it.

Comment 9
L281 - Soil instead soi
Reply 9
Done.
We already revised it.

Comment 10
L271- I think you used this acronym before
Reply 10
Yes.
We used this acronym before, so we revised it into full text.
Comment 11
L315-139 - Again methodological issues in the results section.
Reply 11
Done.
We already moved it into the last paragraph of the methodology part.

Comment 12
L321- 0.15°C per day? specify
Reply 12
Yes. You’re right here. Thanks for your reminding here.
We already added “per day” after the number.

Comment 13
Fig. 8- I cannot see some details in (a), also happens in Fig. 9 (b)
Reply 13
Done.
We added a new figure to give a clear presentation of the figs. 8a and 9b.

The caption of the new figure is: Fig. 9. Hydrologic behavior for gully headcut during light rain events. (a) relatively lower rate of increasing of VWC for gully No. I. (b) relatively higher soil water storage for gully No. II. The three crossing lines of box show the 75th quantile (Q3), median (Q2), and 25th quantile (Q1) from top to bottom. The length of the box is referred to as the interquartile range (IQR= Q3− Q1). The crossed square inside the box is the average value. The upper limit and lower limit of whiskers are Q3+1.5IQR and Q3−1.5IQR, respectively. The solid squares are the outliers.

Comment 14
L356-Avoid citations in the results.
Reply 14
Done.
We already deleted the citation in the results.

Comment 15
Fig. 10- the title of X-axis is not visible
Reply 15
Done.
I’m worry here to miss the title of X-axis in figure 10.
We already revised it.

Comment 16
Additionally, we added a new figure (corresponding to the comment 13)

The caption of the new figure is: **Fig. 9.** Hydrologic behavior for gully headcut during light rain events. (a) relatively lower rate of increasing of VWC for gully No. I. (b) relatively higher soil water storage for gully No. II. The three crossing lines of box show the 75th quantile (Q_3), median (Q_2), and 25th quantile (Q_1) from top to bottom. The length of the box is referred to as the interquartile range ($IQR=Q_3-Q_1$). The crossed square inside the box is the average value. The upper limit and lower limit of whiskers are $Q_3+1.5IQR$ and $Q_3-1.5IQR$, respectively. The solid squares are the outliers.