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Abstract. In this study, we use deep learning models with advanced variants of recurrent neural networks, 

specifically Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional LSTM (BiLSTM), to 

simulate large-scale groundwater level (GWL) fluctuations in northern France. We develop a multi-station 15 

collective training for GWL simulations, using “dynamic variables (i.e., climatic) and static basin characteristics. 

This large-scale approach can incorporate dynamic and static features to cover more reservoir heterogeneities 

in the study area. Further, we investigated the performance of relevant feature extraction techniques such as 

clustering and wavelet transform decomposition to simplify network learning using regionalised information. 

Several modelling performance tests were conducted. Models specifically trained on different types of GWL, 20 

clustered based on the spectral properties, performed significantly better than models trained on the whole 

dataset. Clustering-based modelling reduces complexity in the training data and targets relevant information 

more efficiently. Applying multi-station models without prior clustering can lead the models to preferentially 

learn the dominant behaviour, ignoring unique local variations. In this respect, wavelet pre-processing was 

found to partially compensate clustering, bringing out common temporal and spectral characteristics shared by 25 

all available GWL time series even when these characteristics are “hidden” (e.g., if their amplitude is too small). 

When employed along with prior clustering, using wavelet decomposition as a pre-processing technique  

significantly improve model performances, particularly for GWLs dominated by low-frequency interannual to 

decadal variations. This study advances our understanding of GWL simulation using deep learning, highlighting 

the importance of different model training approaches, the potential of wavelet pre-processing, and the value 30 

of incorporating static attributes.  
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1. Introduction 

 

Understanding the large-scale hydrological functioning of a hydrological system is the best approach for grasping 

a global view of water reserves and implementing appropriate long-term management strategies (Kingston et 35 

al., 2020; Massei et al., 2020). However, this approach typically requires constructing a large-scale hydrological 

model capable of capturing interactions over large areas, while respecting hydraulic continuity across the 

hydrological system. The model must be able to analyse and test, for example, the effects of different modes of 

exploitation or any other human interventions, as well as the effects of climate change over the long term. 

Building a large-scale model implies collecting and processing a massive database to accurately capture all the 40 

geological, oceanic, climatic, and anthropogenic forcings that drive groundwater flow. In addition, the numerical, 

physics-based representation of all hydrological processes occurring between the surface, sub-surface, and 

groundwater remains  extremely complex , particularly in large-scale modelling (Paniconi & Putti, 2015). For 

these reasons, although progress has been made in this field, applications of physics-based models are still 

mainly focused on aquifers in relatively small watersheds (add REF).  45 

Under these conditions, data-driven tools have emerged as a valuable, or complements,  for capturing the 

complex interactions across various spatio-temporal scales. These tools leverage large datasets without relying 

on physical representations of the non-linear processes linking climatic and hydrological signals   (Hauswirth et 

al., 2021). Instead, they approximate these processes using simple weight matrices that replicate observed 

hydrological signals, whether at the scale of an aquifer or a river  (Vu et al., 2023). Notably, the application of 50 

artificial intelligence (AI) algorithms, especially deep learning (DL), is expanding in  hydrological sciences (Nourani 

et al., 2014, 2023; Rajaee et al., 2019), a trend driven by increased computational resources and the growing 

availability of global datasets covering hydrological and catchment attributes (Addor et al., 2017; Kratzert et al., 

2023). Recent studies further highlight the potential of DL for hydrological modelling (Fang et al., 2022; Klotz et 

al., 2022; Kratzert et al., 2019, 2021; Nourani et al., 2021) and forecasting (Jahangir et al., 2023; Momeneh & 55 

Nourani, 2022; Sina Jahangir & Quilty, 2023; Vu et al., 2023).  

Data-driven approaches have been widely applied to rainfall-runoff modelling due to the availability of extensive 

runoff data. However, their application in groundwater studies is more challenging. The high cost of installing 

piezometers and the geological complexity of underground reservoirs, which exhibit diverse hydrodynamic 

behaviours across scales, make it difficult to obtain representative data. Additionally, linking groundwater data 60 

to specific locations is challenging, as aquifer delineation is more complex than catchment delineation for surface 

water. Groundwater systems also respond more slowly to changes, often requiring long-term data series, and 

are uniquely sensitive to human activities, such as pumping, which differ from influences on runoff, like river 

straightening or dam construction. Consequently, deep learning (DL) applications in groundwater modelling are 
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generally limited to local scales, often using single-station data for simulation or forecasting (Chidepudi et al., 65 

2023a; Bai & Tahmasebi, 2023; Vu et al., 2023). 

In groundwater studies, the term ‘global models’ is sometimes used to describe models trained on data from 

multiple wells or stations. However, this can be misleading, as it implies a broader scope than is usually intended. 

In the present study, we use the term 'multi-station approach' to more accurately describe models that integrate 

data from various wells alongside external input variables. Although some studies have explored multi-station 70 

approaches for groundwater level (GWL) simulations, they are typically limited to forecasting or reconstruction 

using data from nearby wells. For example, Vu et al. (2021) reconstructed GWLs at single stations based on 

nearby station data, and Patra et al. (2023) developed ‘global models’ focused on GWL forecasting. In another 

study, Gholizadeh et al. (2023) demonstrated the potential of LSTM combined with static attributes to simulate 

both streamflow and GWL. 75 

Furthermore, clustering methods have shown promise in groundwater modelling, often used in hybrid models 

alongside AI techniques such as self-organising maps (Nourani et al., 2015, 2016; Wunsch et al., 2022b), K-means 

(Ahmadi et al., 2022; Kardan Moghaddam et al., 2021; Kayhomayoon et al., 2021, 2022; Nourani et al., 2023), 

and Fuzzy C-means (Jafari et al., 2021; Nourani & Komasi, 2013; Rajaee et al., 2019; Zare & Koch, 2018). However, 

most of these studies focus on autoregressive approaches that depend on past GWL data. The regionalisation of 80 

GWLs through clustering and non-autoregressive DL models, which learn from comprehensive datasets with 

external variables, remains underexplored. Multi-station approaches that integrate both static and dynamic data 

or incorporate clustering have shown potential for runoff modelling (Fang et al., 2022; Hashemi et al., 2022; 

Klotz et al., 2022), but their utility for GWL simulations across varied hydrogeological settings requires further 

investigation.  85 

To address these gaps, this study aims to provide a comprehensive evaluation of regional modelling approaches 

for GWL simulations compared with local models, guided by the following research questions: 

a) How do generalised (multi-station) models compare with specialised (single-station) models in simulating 

GWLs? 

b) Can wavelet pre-processing improve the performance of models trained on data from multiple stations across 90 

different types of GWLs? 

c) To what extent do static attributes or one-hot encoding techniques enhance model generalisation across 

varied GWL behaviours, and is their combined use more effective than individual applications? How do these 

models compare to those trained on stations grouped by similar spectral and temporal characteristics? 

d) What are the key variables influencing model learning, particularly for capturing low-frequency variability 95 

within high-frequency-dominated explanatory signals?" 
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By investigating these questions, this study seeks to advance the understanding of regional GWL modelling and 

to compare multi-station and local approaches. This study focuses on "simulation" rather than "forecasting" in 

the context of DL applications in groundwater modelling, following the framework developed by Beven and 

Young (2013), where "simulation" aims to reproduce system behaviour without observed outputs, and 100 

"forecasting" predicts future states based on past observations. Our approach centres on simulating GWL 

dynamics to improve understanding rather than forecasting future levels. To this end, we evaluate multi-station 

models, incorporating static attributes and wavelet pre-processing, and compare results with local models. All 

experiments are conducted in a gauged setting, similar to Li et al. (2022). 

The remainder of this paper is structured as follows: Section 2 presents the study area along with the datasets 105 

used, and Section 3 outlines the methodology and experimental design. Section 4 assesses the models' ability to 

capture variations in GWLs under different scenarios, followed by discussions on result interpretability. Section 

5 presents our main conclusions and future perspectives. 

2. Study area  and Data 

The study area is approximately 80,000 km2 of Northern France, as depicted in Figure 1. The available GWLs of 110 

climate-sensitive wells (i.e. not strongly affected by human activities) were obtained between 1968 and 2022 

from the ADES (Accès aux Données sur les Eaux Souterraines) database (https://ades.eaufrance.fr/; Winckel et 

al., 2022).. The dataset consists of 35 mixed, 23 inertial and 18 annual stations. All the wells considered in the 

study are in unconfined aquifers.  In addition, the GWL data were clustered into three different types following 

the methodology outlined by Baulon et al. (2022b), which is based on spectral properties (i.e. characteristic time 115 

scales of variability inherent to each cluster). These clusters are identified as annual, mixed, and inertial, as 

depicted in Figure 1. Specifically, the first cluster exhibits a GWL pattern predominantly influenced by the annual 

cycle, indicating an annual behaviour. The second cluster, the mixed, shows characteristics of both annual and 

interannual GWL variability. The third cluster, the inertial, is mainly characterised by its low-frequency GWL 

variability. In this study, low-frequency refers to interannual to  decadal timescales; from now in this paper, the 120 

term low-frequency will be used to refer to such timescales.A comprehensive list of all analysed wells, including 

their identifiers, GWL types and coordinates, is available in the supplement (Table S1). 

 

 

 125 

https://ades.eaufrance.fr/
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Figure 1: Clustering of GWL time series data (Background layer: © OpenStreetMap contributors 2023. Distributed under the Open Data 

Commons Open Database License (ODbL) v1.0.) based on the spectral statistical properties (Baulon et al., 2022b): a) station locations 

(on the top), b) Representative GWL time series for each groundwater type (bottom).  

We used the forcing data from ERA5,  with a spatial resolution of 0.25 degrees, to obtain the dynamic climate 130 

variables (Hersbach et al., 2020). In particular, we extract seven atmospheric variables: 10m zonal (W-E) U-wind 

component (u10), 10m meridional (S-N) V-wind component (v10), 2m air temperature (t2m), evaporation (e), 

mean sea level pressure (msl), surface net solar radiation (ssr), total precipitation (tp). These variables are 

among the most commonly used inputs for hydrological and land surface models, representing atmospheric 

conditions, circulation, moisture fluxes and radiative forcing (Kratzert et al., 2023). ERA5 is the best available 135 

global reanalysis with the data available from 1940 and is generally considered adequate for capturing regional 

and global hydrometeorological variations (Chidepudi et al., 2024). Addressing the uncertainty issue of ERA5 is 

beyond the scope of this paper and can be considered a complete research work. ERA5 Reanalysis data have 

uncertainty related to potential regional biases; this and their use for hydrological modelling is still ongoing 

research. Particularly in “large-sample hydrology“, precipitation is considered to have more bias than 140 

temperature (Clerc-Schwarzenbach et al., 2024). Nevertheless, recent studies conducted recently concluded 

that ERA5 temperature and precipitation biases had been consistently reduced compared to ERA-Interim and 

were found to be quite accurate for hydrological modelling, for instance, in the case of conterminous US (Tarek 

et al., 2020). Gualtieri (2022) highlighted that ERA5 uncertainties are greatest in mountainous and coastal 

locations (in the study presented herein, only 1 station out of 76 is located within the 10-15 km from the coast). 145 

Finally, one recent study concluded that the use of ERA5 precipitation was recommended for all extra-tropical 

regions (Lavers et al., 2022). Nevertheless, we evaluated different alternative reanalysis products, such as the 

SAFRAN (Système d'Analyse Fournissant des Renseignements Atmosphériques à la Neige) reanalysis developed 
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specifically for France (Vidal et al., 2010). ERA5 and SAFRAN precipitation appeared to have the same low-

frequency timescales of variability than our GWL time series series, as displayed in Figure.3 (this paper) and 150 

Fig.11 in Chidepudi et al. 2023a. ERA 5, then, is suitable for our purpose.  

In this work, we also included static attributes (Table 1 and Figure 2) to assess whether such informative data 

would help to better represent small differences between GWL time series owing to different contexts (e.g., 

type of porosity, overall geological context, lithology, location) . Static attributes are available for different 

ranges of aquifer classes with different resolutions. We took the static attribute's value corresponding to each 155 

well's location. Static attributeswere extracted from the BDLISA (Base de Donnée des Limites des Systèmes 

Aquifères) (https://bdlisa.eaufrance.fr/) database, which provides point-scale information. BDLISA is based on 

a mix of information from geological maps, piezometric maps, and hydrochemistry at a scale of 25km. For our 

study, we kept information coming from BDLISA at its original scale (25km), which means aquifer static 

attributes have a resolution of 25km. This information from BDLISA should be understood as a local-to-regional 160 

description of aquifers. Exact details of static attributes for each GWL station can be found in the supplement 

(Table S1). 

  

       

Table 1: Summary of the static attributes used in the current study. A comprehensive explanation of all descriptions can be found at 165 

the URLs provided in the 3rd column. 

Variable Description Possible values and details  

type of porosity Type of environment for a hydrogeological 

entity characterised based on the level of 
porosity: porous, karstic, fracture.... 

https://id.eaufrance.fr/nsa/
353 

geological context 
at large-scale 

Hydrogeological entity theme based on the 
different geological formations: alluvial, 
sedimentary, volcanic... 

https://id.eaufrance.fr/nsa/
348 

lithology Dominant rock types associated with the 
well location: limestone, clay... 

https://id.eaufrance.fr/nsa/
165 

co-ordinates  latitude and longitude of the well location 
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Figure 2: Distribution of Geological Features by Class 

The decision to include the relevant static attributes comes from a trade-off between the transposability of 170 

models and the availability of attributes, as we need to ensure that all those variables are widely available at 

the required resolution. For instance, hydraulic conductivity, mightnot be easily available everywhere, and high 

spatial heterogeneity that would not accounted for owing to available spatial resolution may lead to inconsistent 

results  (a 25km resolution might not be relevant when aquifers are highly heterogeneous). Exploring the role 

of static attributes in more detail would require much further work than what was conducted in this study. 175 
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3. Methodology: from single-station to multi-station training   

3.1 Theoretical modelling background 

In the present study, we explored the use of recurrent-based deep learning models to simulate GWLs across 

multiple stations using different approaches as described in section 3.2. We apply three types of recurrent 

neural networks: Long Short-Term Memory (LSTM, Hochreiter & Schmidhuber, 1997), Gated Recurrent Unit 180 

(GRU, Cho et al., 2014), and Bidirectional LSTM (BiLSTM, Graves & Schmidhuber, 2005), alongside a wavelet pre-

processing strategy (BC-MODWT). Each of these methods is designed to process data that changes over time, 

capturing patterns and dependencies that occur over extended periods. In brief, LSTM has a single memory cell 

and three gates (forget, input, and output) to manage the flow of information. GRU simplifies this design, with 

only two gates (reset and update), to increase computational efficiency by reducing the number of parameters 185 

compared to LSTM. BiLSTM further optimises data analysis by simultaneously processing sequences in both 

forward and backward directions. These models are particularly good at identifying various patterns in data 

sequences, making them ideal for simulating GWLs that change over time (Vu et al., 2023). 

We also explored the potential of wavelet decomposition (BC-MODWT) to decompose the data into 

components of varying frequencies (Figure 3), from high to low, to provide more detailed input to the DL models 190 

to better simulate the GWLs. As explained in Chidepudi et al. (2023a), decomposition depth (i.e. the choice of 

the number of components) was constrained by the trade-off between 1) achieving a sufficient high level of 

decomposition to ensure the low-frequency variability is properly reached, and 2) keeping the number of 

coefficients affected by boundary conditions as low as possible since these have to be ultimately removed from 

the input time series. All input time series were decomposed using BC-MODWT, with a decomposition depth of 195 

4 as in Chidepudi et al. (2023a). Figure 3 illustrates the decomposition result for the precipitation time series.A 

4-level decomposition efficiently extracted the first 4 so-called wavelet details (tp_1 to tp_4) while the last fifth 

(so-called smooth) tp_5 component remains of sufficiently low frequency. It is visible that tp_5, almost invisible 

in the original tp precipitation time series, corresponds well to the variability of the most inertial GWL types 

(Figure.3, in red, with a few month time lag with respect to tp). 200 

3.1.1 Model training and evaluation 

To maintain consistent comparison criteria across all methods evaluated in the study, Bayesian optimisation 

was used for hyperparameter tuning. Details of the range of hyperparameters used are shown in Table 2. 

Furthermore, the range of hyperparameters used for optimisation was standardised across all methods, 

following the best practices outlined for both standalone and wavelet-assisted models, as detailed in Chidepudi 205 

et al. (2023a) and Quilty and Adamowski (2018). 
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Figure 3: Total precipitation(tp) and its wavelet components: High(tp_1) to low frequency(tp_5) and GWL (in red). 

However, we made an important update to the model architecture by setting the number of layers to one for 

all models, rather than optimising it. This decision was based on findings from Figure 4, which suggested that 210 

optimising the number of layers did not significantly improve performance, in line with recent studies in related 

fields like rainfall-runoff modelling (Kratzert et al., 2019, 2021). Other adjustments included reducing the 

number of initialisations to 10 and setting the number of trials in the Bayesian optimisation to 30. These changes 

were aimed at reducing the computational requirements of our approach, making it more efficient without 

significantly affecting the quality of our results and are consistent with recent studies (Wunsch et al., 2022a).  215 

Table 2: Hyperparameter details (Modified and adapted from chidepudi et.,al 2023a) 
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Hyperparameter Value considered 

Sequence length 48 

Dropout 0.2 

Optimizer ADAM 

Early stopping 50 

Number of layers 1 

Hidden neurons (10, 20, …,100) by 10 

Learning rate (0.001,0.01) (log values) 

Batch size (16, 32, …,256) by powers of 2 

Epoch (50, 100, …,500)  

 

The intricacies and specific technical details of the architectures of these models are well documented in the 

existing body of deep learning research applied to hydrological simulations, as detailed in several studies 

(Chidepudi et al., 2023a;2024; Fang et al., 2022; Kratzert et al., 2021; Li et al., 2022; Vu et al., 2023).  220 
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Figure 4: Comparison of performance of single-layer DL models (left column) and multiple-layer DL models (right column) with respect 

to single station model as a reference. SA represents Standalone models while Wav represents Wavelet-assisted models. 

To further interpret and decrypt the results, we used the SHAP or Shapley Additive Explanations approach 

(Lundberg & Lee, 2017), which is an increasingly popular game-centric approach for explaining the outcomes of 225 

deep learning models. SHAP explains how each input feature influences the ’model’s simulations. It does this by 

highlighting two key aspects: the importance of each variable, where a higher mean absolute SHAP value 

indicates a greater impact, and the nature of that impact, whether positive or negative. 
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3.2 Experimental design 230 

This section details the experimental design used to assess the effectiveness of training models using data from 

all available stations. Our study uses different strategies to incorporate numerical and categorical data into the 

models. The aim is to improve the accuracy of GWL  simulations by exploring ways of incorporating regional 

variability into the models. The experimental setup is structured to test different modelling strategies, as 

described below and visualised in Figures 5 and 6: 235 

 

Figure 5: Construction of the different multi-station approaches for standalone and wavelet models and associated covariates (input 

features). 

1. Single-station or local models (models trained and tested individually per station): these models are trained 

and evaluated on data from individual stations. As a baseline, their performance provides a benchmark for 240 

evaluating the effectiveness of more generalised models. This approach is dominant in developing data-driven 

models for GWL simulations and is discussed in detail in  Chidepudi et al. (2023a; 2024). The optimal 

hyperparameters for all standalone and wavelet models in the single-station approach are presented in the 

supplement (Table S3-S4). 

 245 
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2. Multi-station (models trained and tested together on many stations): these models are trained using data 

aggregated from multiple stations and tested with different input configurations. In the first configuration (NO), 

models are trained on all stations using dynamic variables only, excluding static attributes and one-hot encoding 

. In the second configuration (OHE), models are trained using  One-Hot Encoding to represent individual station 

ID information as binary vectors to ensure that the specific information is obtained from collective training. Li 250 

et al. (2022) also showed that one-hot vector (one hot encoding using basin ID) could produce similar results to 

using catchment attributes in gauged basin scenarios. One-hot encoding serves as an alternative to 

incorporating static attributes directly into the model (Table 3).  In the third configuration (STAT: Static attributes 

and dynamic Variables), models include both static attributes (e.g., latitude, longitude) and dynamic variables 

as inputs, with categorical variables encoded similarly to one-hot encoding but represented in separate columns 255 

for each unique value or class (Table 4). In the fourth configuraiton (STAT_OHE), we  (combine static attributes, 

one-hot encoding for well IDs, and dynamic variables to provide a comprehensive dataset for model training. In 

other words, it is a combination of the two input strategies above.The covariates and input shapes for various 

multi-station approaches are summarized in Figure 5 and the exact shapes of 3D tensors are provided in 

the supplementary material (Table S5): 260 

Table 3: Example of one hot encoding based on different wells 

WELL Dynamic variables  Well_ID_1 Well_ID_2 Well_ID_3 
 

1 … 1 0 0 

2 … 0 1 0 

3 ... 0 0 1 
 

Table 4: Example with static attributes of numeric and categorical types 

WELL Dynamic 
variables  

Static_1 
(Latitude) 

Static_2 
(Longitude) 

Category_ 1 
(Alluvial) 

Category 2 
(sedimentary) 

Category 3 
(Mountainous) 

1 … 5.1 9.5 1 0 0 

2 … 2.8 10.8 0 1 0 

3 …. 5.4 9.2 0 0 1 

 

In addition to these configurations, we investigated the performance of multi-station models trained on GWLs 265 

with similar spectral statistical properties. This approach assesses the effectiveness of models tailored to specific 

GWL behaviours compared to more generalised models using the aforementioned strategies. For validation 

purposes, in this study, Kling-Gupta efficiency (KGE, Gupta et al. 2009 ) is preferred over Nash–Sutcliffe efficiency 

(NSE) and other metrics because it offers a more comprehensive evaluation by integrating three aspects of 

model error: correlation, bias, and the ratio of standard deviations. 270 
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Figure 6: Comparison of different approaches adopted in the current study: a) single station (Top), b) multi-station without clustering 

(Middle) c) multi-station with clustering based on spectral properties(bottom). (Background layer: © OpenStreetMap contributors 2023. 

Distributed under the Open Data Commons Open Database License (ODbL) v1.0.) 

For the single-station approach, the data was split into training (80%) and testing sets (20%) as described in 290 

Chidepudi et al. (2023). Furthermore, to facilitate hyperparameter tuning, the last 20% of the training data was 

used as a validation set. For the multi-station approach, the train-test split was also performed at each station, 

following the same procedure as the single-station approach. However, the data from all stations was then 

a) 

b) 

c) 
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collectively combined during the training. The rationale behind the specific train-test split is to ensure that the 

models capture the multi-annual to decadal variability in observed GWLs . To achieve this, a minimum of 34 295 

years of data (1970-2014) was used for training, while the most recent 8.66 years of data (2015/01-2023/08) 

were reserved for testing. The testing period was chosen to be the most recent years, allowing for an evaluation 

of the model’s performance on the latest available data. The specific dates and periods used for training and 

testing at each station are detailed in the supplementary material (Table S2). 

Our methodology for comparing single-station and multi-station approaches, both with and without prior 300 

clustering based on spectral properties, is consistent with the research conducted in rainfall-runoff modelling 

by Hashemi et al. (2022), where the catchments were divided into five subsets according to hydrological 

regimes. This comprehensive experimental design aims to identify the most effective strategies for using multi-

station data in the simulation of groundwater level variations. Detailed hyperparameters for all the multi-station 

standalone and wavelet models can be found in the supplement (Tables S6-S9) 305 

 

4. Capabilities, performances and interpretability of multi-station 

approaches 

4.1 Different strategies for multi-station approach 

All models tested in the case of this study performed more or less equivalently and eventually yielded very 310 

satisfactory results. This can be attested by the performance comparison shown in Figure 4 (comparison of the 

3 model types in single-station mode) and by comparing Figure 7 (GRU Multi-station) with Figures A1 (LSTM 

Multi-station)  and A2 (BiLSTM Multi-station). We finally decided to favour the GRU architecture owing to its 

recognised computational efficiency over more traditional LSTM-based architectures (Cho et al., 2014; Cai et al., 

2021; Chidepudi et al., 2023, 2024 ) 315 

Figure 7 shows the results of different GRU model configurations for simulating GWLs. The first row shows the 

performance of the standalone GRU model for different GWL categories, while the second row shows the 

wavelet-assisted GRU results. 
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320 

Figure 7: CDF Comparison of KGE values of the GRU With different approaches and GWL types. 

Several observations can be made from Figure 7. Wavelet pre-processing generally improves model 

performance, especially in the inertial GWL category, where cumulative distribution functions (CDFs) are 

steeper and shifted to the right, indicating a higher proportion of simulations with high performance. This is in 

line with previous findings as already reported in our previous works (Chidepudi et al., 2023a & 2024). This 325 

demonstrates the wavelet decomposition ability to extract“hidden” inertial dynamics features which facilitate 

their assimilation by the model in the learning process. In other words, the improvement attributed to wavelet 

pre-processing becomes more pronounced as we move from annual to mixed, and then further to inertial 

behaviour. This is because in the case of annual-type GWL, the dominant variability (annual cycle) is already well 

expressed in several input variables (e.g. t2m, msl, ssr). In the case of mixed- and inertial GWL types, the 330 

dominant low-frequency variability, while also present, is barely expressed, almost “hidden”, in the input data, 

and becomes prominent in GWL due to the low-pass filtering action of aquifers (Baulon et al., 2022; Schuite et 

al., 2019). Wavelet decomposition allows the unravelling of such hidden information, helping the neural 

networks to reach it for enhanced learning. This is illustrated in Figure 3 with the low-frequency component of 

precipitation (tp5) matching the variations of one inertial-type GWL (in red, with a few months-lag time), 335 

whereas it is masked by other higher-frequency components in the original precipitation time series (tp). The 

combination of static attributes and OHE gives competitive results, particularly in the inertial category, 
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demonstrating the effectiveness of this method without the need for prior clustering of GWL behaviour. Multi-

station models, when trained separately for each GWL cluster, generally outperform those trained on 

aggregated data. This is reflected in higher KGE values for cluster-specific models, suggesting a better 340 

representation of the unique characteristics of each GWL type. However, this advantage diminishes for mixed 

GWLs, which are the majority in the study area. Although single-station models perform best for all GWL types, 

some multi-station models approach or match their performance, highlighting their potential for regional-scale 

GWL simulations. For the annual GWL category, models trained on mixed GWL data without wavelet pre-

processing and relying solely on static attributes do not show significant performance improvements, suggesting 345 

that static features alone may not adequately represent the dynamic nature of groundwater behaviour.  

 

 

Figure 8: Results with wavelet assisted GRU in the annual type of GWLs through a) Single station (top) and b) Multi-station model trained 

on the annual type of GWLs with static and OHE (bottom) 350 

Figures 8 to 10 show the best GWL simulations obtained of different types (annual, mixed and inertial) for single 

and multi-station models. For those particular cases, both approaches perform similarly and lead to good 

performance. However, the single-station seems to perform best for inertial GWL type for training by simple 

visual assessment, and it is clear from the comparison of KGE values of all stations (Fig.7) that the more 

specialised single-station models generally gave the best results overall, although not significantly. This is more 355 

specifically true for inertial GWL, where regional model performances reach the same level as single-station 

models. While single-station models perform well, multi-station models are valuable when single-station 
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modelling is impractical due to data limitations or computational requirements. For instance, for inertial types 

where the length of training data might be an issue (e.g. Chidepudi et al., 2024), the performance of the wavelet 

multi-station models was completely comparable to single-station models (Fig.7, wavelet models/inertial types), 360 

showing that in the case of data limitation, the regional approach seems to compensate the lack of temporal 

depth of available time series. 

 

 

 365 

 

 

 

 

 370 

 

 

 

 

Figure 9: Results with wavelet assisted GRU in the mixed type of GWLs through a) Single station (top) and b) Multi-station model trained 375 

on the mixed type of GWLs with static and OHE (bottom) 
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 385 

 

Figure 10: Results with wavelet assisted GRU in the inertial type of GWLs through a) Single station (top) and b) Multi-station model 

trained inertial type of GWLs with static and OHE (bottom) 

In summary, wavelet-assisted GRU models are particularly effective, especially for low-frequency dominated 

GWL behaviour, and multi-station models designed for specific GWL types (i.e. training over specific pre-390 

clustered datasets) generally outperform generalised models. The multi-station approach is sensitive to the 

dominant GWL type in the training dataset, with the best results identified in models trained for the 

predominant mixed GWL type.To address the issue of model learning dominant behaviour in collective training 

of multi-station approaches, future investigations may involve generating synthetic time series with randomised 

amplitude changes of constituting frequencies to increase the dataset while balancing all the important 395 

behaviours. This could also help in understanding the influence of the size of the dataset on using multi-station 

approaches. 

4.2 Understanding GWL Simulations Through SHAP Interpretability 

This section deals with a deeper understanding of the simulations from the insights obtained from the SHAP 

analysis on the model’s interpretability. Here, we investigated the key contributing factors for GWL simulations 400 

in different approaches that were previously evaluated above in terms of accuracy. 

Figure 11a shows the SHAP representative summary plot for the standalone models using a single-station 

approach. These plots highlight the influence of different variables/attributes on the final simulation. In 

particular, the distribution of data points on the SHAP diagram indicates either a positive (right side on the x-
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axis) or negative (left side on the x-axis) impact on the output variable. In contrast, the colour scale indicates 405 

the range of feature values in which red represents large values, and blue represents small ones of the 

corresponding feature. Features (input variables) are organised from the most to the least influencing, from top 

to bottom, based on each feature's mean absolute SHAP values. For instance, in Figure 11a, total precipitation 

(tp) is the most influencing feature on the GWL output, and the large feature values on the right (red) correspond 

to a positive influence on GWL (high GWL with high total precipitation). On the left-side, negative tp SHAP values 410 

indicate lower precipitation values contributing to the low GWLs.. 

 

 

 

 415 

 

 

 

 

 420 

Figure 11:  SHAP summary plot examples for single station model(on the left) and multi-station model with static attributes(on the right). 

Color bar shows the range of feature values with red depicting larger values and blue refers to smaller ones. 

From the analysis of Figure 12 and Figure 13, several notable patterns emerge regarding the contribution of 

different variables to GWL simulations using standalone models and those with wavelet pre-processing, and the 

impact of clustering as well as pre-clustering based on spectral statistical properties.  425 

In single-station standalone models, SHAP analysis shows that certain variables consistently influence GWL 

simulations, although their order of importance can change. Total Precipitation (TP) emerges as the key factor, 

with Surface Net Solar Radiation (SSR) occasionally overtaking TP in importance, particularly in mixed GWL 

clusters. This is especially evident in models trained on clusters, along with static features, or one-hot encoding 

(OHE). Nonetheless, TP and SSR are the primary drivers in these simulations. 430 

In multi-station standalone models without clustering, TP and SSR lead in importance among all variables, 

followed by wind speed at 10 meters (v10), evaporation (e), and air temperature close to the ground (2-meter 

temperature, t2m), which vary in their influence. Notably, v10 plays a bigger role in models in multi-station 
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approaches. When models are trained on clusters, evaporation becomes more significant, yet the impact of 

clustering on variable importance is generally minor.  435 

The spectral statistical characteristics (amplitude of high and low frequencies) were used for the pre-clustering 

of GWLs. These characteristics are related to the filtering of the input signal by the physical properties of the 

hydrological system. This highlights the importance of pre-clustering in capturing the physical characteristics of 

basins and suggests that it may be preferable to cluster based on these properties rather than relying on static 

attributes, especially when the relevance of static attributes is uncertain. 440 

SHAP analyses show that standalone models maintain similar variable importance rankings even after clustering 

with static attributes and OHE. However, wavelet pre-processing shifts the importance towards dynamic 

components, reducing the contributions of static features or OHE. When clustering is combined with wavelet 

pre-processing, low-frequency precipitation components emerge as key contributors, improving model 

performance. 445 
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Figure 12: Top four important variables by cluster for standalone GRU models with different approaches. On Y-axis, Percentage of stations 

for each variable within in the cluster. 
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 450 

Figure 13: Top four important variables in regional GRU wavelet assisted model trained with different approaches for different classes: 

Wavelet components of each variable are denoted by the numbers 1 to 5, where 1 represents highest frequency and 5 represents the 

lowest. 

 

When models are trained after clustering, low-frequency components (e.g. , tp_5, t2m_5) are prioritised in 455 

mixed and inertial clusters: components not seen without clustering. Annual types prioritise relevant 

frequencies (1 to 3), consistent with single-station model patterns. The addition of static attributes to the OHE 
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does not significantly alter the contributions, suggesting a dominance of dynamic variables after decomposition. 

Also, differences among multi-station approaches after clustering are minimal for both standalone and wavelet 

models. 460 

Wavelet pre-processing performs a similar function to pre-clustering based on spectral properties by revealing 

information across all frequencies, including low amplitude frequencies that may be obscured. The order of best 

approaches is based on the results: wavelet plus pre-clustering, followed by pre-clustering only, then wavelet 

only, and finally standalone highlighting the effectiveness of this approach. 

There is a clear pattern when clustering is applied; without clustering the high-frequency component of the 2-465 

meter temperature (T2m_1) is dominant. Multi-station models show less diversity in variable contributions than 

single-station models. The exception is the Stat_OHE without clustering approach, which uniquely captures low-

frequency information from T2m_5 and e_4. Otherwise, the static and NO approaches gave similar results. 

The influence of static attributes or OHE appears to be minimal, possibly due to the high dimensionality 

introduced by numerous dynamic and static attributes. This observation suggests that future research could 470 

investigate alternative methods, such as target encoding, to address this dimensionality issue.  It is also true that 

deeper investigation on the most relevant static attributes linked to hydrolgic response could be conducted. 

Yetthe purpose of this study was not to determine the forcing factors of GWL variations; in this aim, a more 

comprehensive evaluation of such links would require specific approaches that have been undertaken and 

presented in several previous works (Lee et al., 2019; Heudorfer et al., 2019; Liesch & Wunsch, 2019; Haaf et 475 

al., 2020; Giese et al., 2020). In some of our previous works (albeit for the Normandy region only), the linkages 

between GWL variability and potential forcing factors, such as the thickness and lithology of surficial formations, 

aquifer thickness, vadose zone thickness, upstream/downstream location along the flow path, distance to the 

river, presence of karst,  were investigated using dedicated approaches combining multivariate analysis, 

clustering and spectral analysis of GWL time series (Slimani et al., 2009; El Janyani et al., 2012 and 2014). These 480 

studies showed that GWL dynamics could be related to some basin and aquifer properties, although these 

relationships remained rather complex. In a recent study, Haaf et al. (2023) developed an innovative 

methodological approach for modelling GWL at unmonitored locations using basin properties and machine 

learning on a daily time-step basis for alluvial aquifers with overall quite high hydraulic conductivity (median 

around 10-2m/s). Their models performed quite well in representing GWL variations at both intra- and 485 

interannual time scales using physiographic, land cover and geological characteristics. However, the amplitude 

of low-frequency, interannual to decadal variability of the dataset used in their study was much lower than what 

could be encountered in our monthly time step database. The specific type of aquifer that Haaf et al. (2023) 

investigated likely explains their high sensitivity to many surface processes. In our study, alluvial aquifers only 
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represented approximately 10% of the GWL stations (8 over 76 stations) and were only of annual (3 stations) or 490 

mixed (4 stations) types. Almost all other wells were located in chalk or limestones.  

In the framework of our study, we decided to exclude characteristics such as vadose or saturated zone thickness. 

Such variables have been used in previous studies (El Janyani et al., 2012 and 2014; Haaf et al., 2023) and 

considered static (averaged over long periods of time) to investigate the impact of (hydro)geological and 

geomorphologic characteristics on GWL behaviours. However, in our study, it was not relevant to consider such 495 

characteristics as “static” since they are linked to the varying GWL which we aim to simulate. Other types of 

static characteristics reflecting the hydraulic properties of the aquifers, such as hydraulic conductivity, 

transmissivity,  porosity or storativity, were also discarded. While informative in terms of hydrological 

knowledge, it is likely that 1- their availability may not be guaranteed over large areas, hence limiting their 

usefulness, and 2- their representativeness as numeric values might be questionable in contexts where spatial 500 

heterogeneity is high: in such cases, more general qualitative descriptors such as “fissured” or “porous” might 

be preferable, as using precise values of hydraulic conductivity, etc., would likely make the models very sensitive 

to hydraulic heterogeneity which can not be accounted for so precisely. In addition, in a recent and relevant 

study on “entity-aware deep learning models with static attributes,” Heudorfer et al. (2024) highlighted that the 

models developed did not actually show any entity awareness and eventually utilised static attributes as simple 505 

identifiers (almost similar to the OHE approach presented herein), meaning that the models did not make use 

of relevant and precise (hydro)geological information. 

Although the added value of static variables was found to be marginal in the present study, they may prove 

useful in settings where no measurement is available. Further research is required to determine their utility in 

simulating such ungauged hydro systems. The approaches presented (except OHE) may apply to ungauged 510 

aquifers but require validation in a pseudo-ungauged environment. The use of data from multiple stations can 

enrich the dataset, improving the representation of groundwater systems and the robustness of the models. 

This multi-station approach also allows the model to be applied to areas without GWL monitoring, thereby 

capturing regional dynamics. However, single-station modelling remains important for understanding local 

interactions. The choice of method should, therefore, be guided by research objectives, data availability and the 515 

hydrogeological context. Where clustering results in too many groups, future studies should consider fine-tuning 

the general model for each cluster, following the approach of Mohammed & Corzo (2024). 

5. Concluding remarks 

This study has explore different multi-station approaches to GWL simulations with emphasis on the use of static 

attributes, one-hot encoding and the combination of both while training on all available data or by training on 520 

each GWL type based on the clustering. Our results highlight the potential of these approaches compared to 

the traditional single-station approach with and without the use of BC-MODWT. Key findings from this research 
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highlight the advantages of clustering based on spectral properties, which significantly improve the results of 

multi-station models, surpassing those of general models. As highlighted above clustering should be preferred 

over the use of static attributes, as the use of static attributes alone may not be sufficient to effectively 525 

distinguish different behaviours. Wavelet pre-processing is very effective at extracting relevant information at 

all time scales, allowing low-frequency dominated GWLs to be handled with increased accuracy. The 

combination of clustering and wavelet pre-processing produced the most accurate simulations, indicating that 

wavelet pre-processing likely captured key information needed for accurate modelling. 

The study also showed that a multi-station approach, without clustering, should be used cautiously, as models 530 

tend to adopt dominant behaviour, which may not always be desirable. In scenarios where wavelet pre-

processing is not applied, the combination of static attributes and OHE demonstrated promising results, 

particularly for GWLs dominated by low-frequency variability. However, the minimal effect of static attributes 

or OHE observed in wavelet-assisted models may be due to the high-dimensional nature of these variables (due 

to wavelet decomposition that increases the number of covariates), suggesting a potential avenue for future 535 

research to explore alternative encoding strategies, such as target encoding. SHAP analyses consistently 

identified key contributors across models, with clustered models highlighting the pivotal role of low-frequency 

components, especially precipitation and temperature, in achieving superior simulations for inertial and mixed 

types of GWL. 

In this article, we introduced the following question: “What’s the best way to leverage regionalised 540 

information?”. Our results suggest that this is highly dependent on the specific characteristics of the dataset, 

particularly the quantity and and types of static attributes. It is generally expected that a much higher number 

of static attribute types would allow for a much better improvement of the multi-station simulation approach. 

However, Our findings indicate that the most significant improvements in multi-station simulation approaches 

come from wavelet analysis and clustering techniques. The inclusion of static attributes provides minor 545 

additional enhancements, which can be valuable but are not the primary drivers of improvement. These findings 

align with those of Heudorfer et al. (2024), who found no substantial improvements using around 28 static 

features (including 18 environmental and ten time series-based). Also, as pointed out by these authors, 

employing static attributes for model training might be more relevant in applications involving larger scales (i.e., 

a spatial case that compasses variety of geological contexts as in continental or global) and/or more extensiver 550 

datasets. Moreover, one must remember that a trade-off must be found between the amount of static 

attributes required and data availability, especially for applications at ungaged sites. However, the use of static 

attributes and OHE yielded similar results in the gauged scenario and proved efficient in accounting for local 

station information, which aligns with the findings of Heudorfer et al. (2024). On the other hand, in the study 

presented herein, wavelet pre-processing allowed for deciphering the “hidden” dynamic components of GWL 555 

variability (i.e. by separating low-frequency variations from annual or intra-annual variability), which eventually 
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corresponded to taking into account the influence of (hydro)geological, geomorphological and physiographic 

properties. Ultimately, the latter, which varies across the study region, operates a differential filtering effect of 

the input signals. Pre-clustering the dataset also yielded significant improvements that were even more 

noticeable when combined with wavelet pre-processing. However, owing to its capability of leveraging pre-560 

processing the different frequency components in the time series of the whole dataset, wavelet pre-processing 

somehow acts in the same way as pre-clustering, which consists of grouping inertial (i.e. low-frequency 

dominated), mixed and annual time series in different clusters. 

In summary, although the study has led to a better understanding of GWL simulation approaches with limited 

static attributes, further research is needed to explore the potential influence of other physical basin properties, 565 

such as the thickness of overlying formations, altitude, distance from the sea, etc. It should also be pointed out 

that clustering can be a source of information on the physical properties of the basin. Indeed, the three groups 

determined in this study based on spectral properties indirectly carry information on the modalities of water 

transfer in the shallow formations and aquifer, which are controlled by the hydraulic properties of the basin. 

The study of the importance of using static data in groundwater modelling using deep learning tools needs to 570 

be extended to cover level prediction at sites with no piezometers. The insights gained here pave the way for 

future efforts to simulate GWLs in unmonitored or new locations, taking advantage of the robustness offered 

by multi-station models while recognising the value of single-station models for capturing local-scale 

interactions. Finally, it is noticeable through our study that the overall approach is compatible with a frugal AI 

approach (keeping in mind that our datasets are very small compared to classical big datasets from other fields 575 

like natural language processing etc.): compact networks were tested and preferred (one layer), Bayesian 

optimisation was used instead of grid search for hyperparameter tuning. In addition, multi-station approaches 

pave the way for transfer learning, reducing the need for specialised models and retraining new models. The 

way forward is clear: to improve the GWL simulations efficiently, we may need to adopt a nuanced mix of 

efficient input signal pre-processing, potentially new encoding strategies or a more straightforward way like 580 

physics-informed neural networks to incorporate all possible additional knowledge of the system, and possibly 

clustering. Yet, we would recommend using advanced pre-processing over clustering, which would allow for 

leveraging the same type of information while preventing separating the dataset and reducing its size. 
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Appendix A: 
 

Results from LSTM and BILSTM 

 

Figure A1: CDF Comparison of KGE values of the LSTM With different approaches and GWL types. 615 
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Figure A2: CDF Comparison of KGE values of the BiLSTM With different approaches and GWL types. 
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