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Abstract. In this study, we used deep learning models with advanced variants of recurrent neural networks, 

specifically Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional LSTM (BiLSTM), 

to simulate large-scale groundwater level (GWL) fluctuations in northern France. We developed a multi-15 

station collective training for GWL simulations, using “dynamic variables (i.e., climatic) and static basin 

characteristics. This large-scale approach offers the possibility of incorporating dynamic and static features 

to cover more reservoir heterogeneities in the study area. Further, we investigated the performance of 

relevant feature extraction techniques such as clustering and wavelet transform decomposition with the aim 

of simplifying network learning using regionalised information. Several modelling performance tests were 20 

conducted.  Models specifically trained on different types of GWL, clustered based on the spectral properties 

of the data, performed significantly better than models trained on the whole dataset. Clustering-based 

modelling reduces complexity in the training data and targets relevant information more efficiently. Applying 

multi-station models without prior clustering can lead the models to learn the dominant  behaviour 

preferentially, ignoring unique local variations. In this respect, wavelet pre-processing was found to partially 25 

compensate clustering, bringing out common temporal and spectral characteristics shared by all available 

time series even when these characteristics are “hidden” because of too small amplitude. When employed 

along with prior clustering, thanks to its capability of capturing essential features across all time scales (high 

and low), wavelet decomposition used as a pre-processing technique provided significant improvement in 

model performance, particularly for GWLs dominated by low-frequency variations. This study advances our 30 

understanding of GWL simulation using deep learning, highlighting the importance of different model 
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training approaches, the potential of wavelet pre-processing, and the value of incorporating static 

attributes.  

1. Introduction 

 35 

Understanding the large-scale hydrological functioning of a hydrosystem is the best approach for grasping a 

more global view of water reserves and implementing appropriate long-term management strategies 

(Kingston et al., 2020; Massei et al., 2020). However, this approach requires constructing a large-scale 

hydrological model capable of capturing interactions over large areaswhile respecting hydraulic continuity 

across the hydrosystem. The model must be able to sanalyse and test, for example, the effects of different 40 

modes of exploitation or any other human interventions, as well as the effects of climate change over the 

long term. Building the large-scale model implies collecting and processing a massive database to accurately 

capture all the geological, oceanic, climatic, and anthropogenic forcings that drive groundwater flow.  

However, the numerical, physics-based representation of all the physical processes occurring during the 

hydrological cycle in the subsurface remains an extremely complex task to achieve rigorously, particularly in 45 

large-scale modelling (Paniconi & Putti, 2015). Although progress has been made in this field, applications of 

physics-based models are still mainly focused on aquifers in relatively small watersheds.  

Under these conditions, data-driven tools have emerged as an interesting alternative (or complement) for 

capturing the complex interactions that occur on different time and space scales, including large ones. They 

rely on efficiently processing a large database without having to rely on numerical physical representations 50 

of the non-linear physical processes that link climatic and hydraulic signals(Hauswirth et al., 2021). These 

processes are efficiently approximated on the basis of small and simple weight matrices defined to reproduce 

the observed hydraulic signals, either at an aquifer or river(Vu et al., 2023). The application of artificial 

intelligence (AI) algorithms, and deep learning (DL) in particular, is growing in the geosciences and especially 

in the hydrosciences(Nourani et al., 2014, 2023; Rajaee et al., 2019), thanks to the increase in computational 55 

resources, but also the growing availability of global datasets for different hydrological variables(Addor et al., 

2017; Kratzert et al., 2023), which are making it possible to better address issues related to the understanding 

and management of hydrological systems (Muñoz-Carpena et al., 2023). This growing interest has been 

confirmed in several recent studies that have highlighted the potential of deep learning tools for hydrological 

simulations(Fang et al., 2022; Klotz et al., 2022; Kratzert et al., 2019, 2021; Nourani et al., 2021) and 60 

forecasting tasks (Jahangir et al., 2023; Momeneh & Nourani, 2022; Sina Jahangir & Quilty, 2023; Vu et al., 

2023). Most often, these approaches are applied to rainfall-runoff modelling due to the availability of long-

term runoff data, which is not always the case for aquifers due to the high cost of installing piezometers. 
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Furthermore, the highly heterogeneous nature of underground reservoirs leads to complex hydrodynamic 

behaviours on a regional or continental scale, which cannot be captured by a limited number of piezometers. 65 

Consequently, the few applications of DL to groundwater, whether in simulation (Chidepudi et al., 2023a) or 

forecasting (Bai & Tahmasebi, 2023a; Collados-lara et al., 2023; Rahman et al., 2020; Vu et al., 2023; Wunsch 

et al., 2021), are on a local scale and involve only single station models on a small number of piezometers in 

the construction of neural networks.  

DL models have proved effective on a local scale and are also on a larger scale by collectively training a 70 

significant number of piezometers (Chidepudi et al., 2023b; Heudorfer et al., 2024). This collective approach 

involves using and processing all available piezometric stations to learn about relationships or events likely 

to occur at the target station, even if they have not yet been observed at that station. This approach also 

requires using and extracting the relevant global climate signal and tracking its effects. This can have a 

delayed effect on piezometric fluctuations, making DL models more effective for long-term forecasting. 75 

Working with groundwater data also presents unique challenges compared to runoff data, such as 1) 

complex and heterogeneous geological factors influencing GWLs, 2) difficulty in linking the available data to 

the appropriate well  (for surface water, this is easily done through catchment delineation, but this isn’t the 

case for aquifer delineation), 3) slow response time (longer time series needed, i.e. data availability issue as 

mentioned above), 4) distinct sensitivities to human activities (e.g. pumping), which differ from those 80 

affecting runoff data, like river straightening and dam construction.  

In some hydrological studies, the term ‘global models’ is being used to describe models trained from multiple 

wells or stations. However, this term can be misleading in the groundwater context as it suggests a broader 

scope than intended. Therefore, in this study, we use the term “multi-station approach” for models trained 

on data from different wells with external input variables, which more accurately reflects their scope and 85 

methodology. 

Efforts to use data from multiple GWL stations in model training have been limited and have often focused 

on forecasting or reconstruction using data from nearby GWL wells as input. For example, Vu et al. (2021) 

used data from nearby stations to reconstruct the GWLs at a single station, albeit using GWLs from nearby 

stations only while training individual models for each station. Another recent study (Patra et al., 2023) 90 

developed so-called ‘global models’ for GWL forecasting and not simulations, i.e. these models only use past 

GWL data to forecast future GWLs. (Bai & Tahmasebi, 2023) used graph neural networks for GWL forecasting 

to capture the spatial dependencies of nearby wells and compared their performance with the single station 

gated recurrent unit (GRU) and long short-term memory (LSTM). A recent study by Gholizadeh et al. (2023) 

used LSTM alongside static attributes and demonstrated its applicability for simulating both streamflow 95 

discharge and GWL. However, the scope of the study for GWL simulations was limited to only two dynamic 
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variables: precipitation and temperature. This approach was used to simulate 21 GWL wells across Alabama 

from 1990 to 2021. Notably, the study focused on annually varying GWLs, which may not represent the most 

difficult GWL variations to model. Cai et al. (2021), in their study conducted in the central eastern continental 

United States, showed that GRU performed better when it was informed by hydrogeological characteristics 100 

expected to affect groundwater response along with dynamic input variables (in this case, precipitation and 

streamflow).  

Several studies on groundwater modeling also demonstrated the potential of clustering methods (Nourani 

et al., 2022) in hybrid models along with AI approaches such as self-organising map (Nourani et al., 2015, 

2016; Wunsch et al., 2022b), K-means (Ahmadi et al., 2022; Kardan Moghaddam et al., 2021; Kayhomayoon 105 

et al., 2021, 2022; Nourani et al., 2023), Fuzzy  C-means ((Jafari et al., 2021; Nourani & Komasi, 2013; Rajaee 

et al., 2019; Zare & Koch, 2018). However, most of these studies mainly focused on autoregressive 

approaches that rely on using previous GWL or nearby wells’ GWL data as input for forecasting or 

reconstruction. 

The regionalisation of GWLs, a process that could involve clustering and training of DL models using the non-110 

autoregressive approach of learning from external input variables on comprehensive datasets, remains 

underexplored. The potential of multi-station approaches, particularly those that integrate static attributes 

and dynamic data or use clustering/pre-clustering, remains largely unevaluated in the context of GWL 

simulations. While these methods have proven effective in runoff modelling(Fang et al., 2022; Hashemi et 

al., 2022; Klotz et al., 2022),  their application to GWL simulation is still not fully explored or validated across 115 

diverse hydrogeological settings. A comprehensive evaluation of their strengths and weaknesses is essential 

to unlock their full potential in the simulation of GWLs. This includes a detailed investigation of the 

performance of these models in various GWL simulation scenarios. In addition, techniques such as wavelet 

pre-processing, such as BC-MODWT (Chidepudi et al., 2023a), have shown promise in single-station models 

but have not been extensively tested on regional-scale simulations. Given this background, the current study 120 

aims to address several research questions:     

a) How do the generalised (multi-station) models compare with the specialised (single-station) models 

in simulating GWLs?  

b) Can wavelet pre-processing techniques improve the performance of models for different types of 

GWLs when trained with data from all available stations? 125 

c) To what extent do static attributes or one-hot encoding techniques help models  generalise across 

different GWL behaviours? Is using a combination of these methods more effective than using them 

individually? Furthermore, how do these models compare to those trained on GWL stations grouped 

by similar spectral and temporal statistical characteristics? 
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d) What are the key variables that influence the learning of these models, particularly in terms of 130 

capturing low-frequency variability while it is buried into high-frequency-dominated explanatory 

signals? 

By addressing these questions, this study aims to provide a comprehensive evaluation of regional modelling 

approaches for GWL simulations and to compare their performance with the local approaches. We want to 

highlight that the present study is not dedicated to ‘forecasting’ as is the case in most applications of DL to 135 

groundwater modelling. The reader can be referred to Beven & Young (2013) for distinctions between 

‘simulation’ and ‘forecasting’. In brief, according to their framework, ‘simulation’ means reproducing system 

behaviour without using observed outputs, while ‘forecasting’ involves reproducing system behaviour ahead 

of time based on past observations. This study focuses on simulation to understand GWL dynamics rather 

than forecasting future levels. This distinction is important for framing our approach and interpreting our 140 

results. To achieve this, we test different approaches for multi-station models while including static 

attributes and comparing the results with those obtained using local models. Furthermore, we evaluate the 

impact and usefulness of integrating wavelet pre-processing with multi-station deep learning models. All our 

experiments are conducted only under the gauged scenario, similar to (Li et al., 2022)  

The rest of the paper is structured as follows: Section 2 details the datasets used, and Section 3 presents the 145 

methodology and experimental design for the different approaches. Section 4 discusses the ability of the 

models and robustness in capturing different variations in GWLs and input scenarios. Section 5 deals with 

the discussion on the interpretability of the obtained results. Section 6 presents our main conclusions and 

perspectives. 

2. Study area  and Data 150 

The study area is approximately 80,000 km2 of Northern France, as depicted in Figure 1. The available GWLs 

of climate-sensitive wells (i.e. not strongly affected by human activities and sensitive to climate variability 

(Baulon et al., 2022a)) with high data quality until the end of 2022 were obtained from the ADES (Accès aux 

Données sur les Eaux Souterraines) database (https://ades.eaufrance.fr/; Winckel et al., 2022). All the wells 

considered in the study are in unconfined aquifers. In addition, the GWL data were clustered into three 155 

different clusters following the methodology outlined by Baulon et al. (2022b), which is based on spectral 

properties (i.e. characteristic time scales of variability inherent to each cluster). These clusters are identified 

as annual, mixed, and inertial, as depicted in Figure 1. Specifically, the first cluster showcased in Figure 1 

exhibits a pattern predominantly influenced by the annual cycle, indicating an annual behaviour. The second 

cluster, the mixed, shows characteristics of both annual and interannual variability. The third cluster, the 160 

inertial, is mainly characterised by its low-frequency variability, as shown in Figure 1. The dataset consists of 

35 mixed, 23 inertial and 18 annual stations. All the wells considered in the study are in unconfined aquifers. 

https://ades.eaufrance.fr/
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A comprehensive list of all analysed wells, including their identifiers, GWL type and coordinates, is available 

in the supplement (Table S1). 

 165 

Figure 1: Clustering of GWL timeseries data (Background layer: © OpenStreetMap contributors 2023. Distributed under the Open 

Data Commons Open Database License (ODbL) v1.0.) based on the spectral statistical properties (Baulon et al., 2022b) 

We used the forcing data from ERA5 (Hersbach et al., 2020) with a spatial resolution of 0.25 degrees to obtain 

the dynamic climate variables. In particular, we extract seven atmospheric variables: 10m zonal (W-E) U-

wind component (u10), 10m meridional (S-N) V-wind component (v10), 2m air temperature (t2m), 170 

evaporation (e), mean sea level pressure (msl), surface net solar radiation (ssr), total precipitation (tp). These 

variables are among the most commonly used inputs for hydrological and land surface models, representing 

atmospheric conditions and circulation, moisture fluxes and radiative forcing. ERA5 is the best available 

global reanalysis with the data available from 1940 and is generally considered adequate for capturing 

regional and global hydrometeorological variations. Addressing the uncertainty issue of ERA5 is beyond the 175 

scope of this paper and can be considered a complete research work. ERA5 Reanalysis data have uncertainty 

related to potential regional biases; this and their use for hydrological modelling is still ongoing research, 

particularly in “large-sample hydrology“  (Maria Clerc-Schwarzenbach et al., 2024.). Precipitation is 

considered to have more bias than temperature. However, recent studies conducted recently concluded that 

ERA5 temperature and precipitation biases had been consistently reduced compared to ERA-Interim and 180 

were found to be quite accurate for hydrological modelling, for instance, in the case of conterminous US 

(Tarek et al., 2020). Gualtieri (2022) highlighted that ERA5 uncertainties were greater in mountainous and 

particularly in coastal locations located less than 15 km from the coastline (in the study presented herein, 

only 1 station out of 76 is located within the 10-15 km range identified in Gualtieri (2022)). Finally, one recent 

study (Lavers et al., 2022) conducted by ECMWF on evaluating ERA5 precipitation for climate monitoring 185 

concluded that using ERA5 precipitation should be recommended for extra-tropical regions. However, for 

our study area, we have been evaluating different potential alternative reanalysis products, such as the 

SAFRAN (Système d'Analyse Fournissant des Renseignements Atmosphériques à la Neige) reanalysis 

developed specifically for France (Vidal et al., 2010). ERA 5 and SAFRAN precipitation appeared to have the 
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same low-frequency components as detected in the GWL time series, as displayed in Figure.3 (this paper) 190 

and Fig.11 in Chidepudi et al. 2023a. ERA 5, then, is suitable for our purpose.  

Static attributes are available for different ranges of aquifer classes with different resolutions; we took the 

static attribute's value corresponding to each well's location—associated with the Well IDs. Static attributes, 

coming from the BDLISA (Base de Donnée des Limites des Systèmes Aquifères) (https://bdlisa.eaufrance.fr/) 

database, are point-scale information, i.e., each well received set of attributes given different possible 195 

methods (geographical imputation, rule-based, human expertise). BDLISA is based on a mix of information 

from geological maps, piezometric maps, and hydrochemistry at a scale of 25km. BDLISA was originally 

designed at a 25km scale and later upscaled to larger scales. For our study, we kept information coming from 

BDLISA at its original scale (25km), which means aquifer static attributes have a resolution of 25km. This 

information from BDLISA should be understood as a local-to-regional description of aquifers. 200 

In this work, we also included static attributes (Table 1 and Figure 2) to assess whether such informative data 

would help to better represent small differences between GWL time series owing to different contexts (e.g., 

type of porosity, overall geological context, lithology, location (lon, lat)). Such data were retrieved from the 

French national database BDLISA ); they would be related to the filtering capabilities of the aquifers with 

respect to the input signals (e.g. precipitation). Although they seem somehow redundant, they are expected 205 

to provide complimentary information about the hydrogeological nature of the hydrosystems. Exact details 

of static attributes for each GWL station can be found in the supplement (Table S1). 

  

 

Table 1: Summary of the static attributes used in the current study. Comprehensive explanation of all descriptions can be found at 210 

the URLs provided in the 3rd column. 

Variable Description Possible values and details  

type of porosity Type of environment for a hydrogeological 

entity characterised based on the level of 
porosity: porous, karstic, fracture.... 

https://id.eaufrance.fr/nsa/
353 

geological context 
at large-scale 

Hydrogeological entity theme based on the 
different geological formations: alluvial, 
sedimentary, volcanic... 

https://id.eaufrance.fr/nsa/
348 

lithology Dominant rock types associated with the 
well location: limestone, clay... 

https://id.eaufrance.fr/nsa/
165 

co-ordinates  latitude and longitude of the well location 
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Figure 2: Distribution of Geological Features by Class 215 

 

The decision to include the relevant static attributes comes from a trade-off between the transposability of 

models and the availability of attributes, as we have to make sure that all those variables are widely available 

at required resolution. Also, for some attributes like hydraulic conductivity, it might not be straightforward 

to get the most relevant resolution, which is needed to account for the most appropriate characteristic 220 

describing the well. For instance, a 25km resolution might not be relevant when aquifers are highly 

heterogeneous. Exploring the role of static attributes in more detail would require much further work than 

what was conducted in this study. 



   

 

9 

 

3. Methodology: from single station to multi-station training   

3.1 Theoretical modelling background 225 

In the current study, we explored the use of recurrent-based deep learning models to simulate GWLs across 

multiple stations using different approaches as described in section 3.2. We apply three types of recurrent 

neural networks: Long Short-Term Memory (LSTM, Hochreiter & Schmidhuber, 1997), Gated Recurrent Unit 

(GRU, Cho et al., 2014), and Bidirectional LSTM (BiLSTM, Graves & Schmidhuber, 2005), alongside a wavelet 

pre-processing strategy (BC-MODWT). Each of these methods is designed to process data that changes over 230 

time, capturing patterns and dependencies that occur over extended periods. In brief, LSTM has a single 

memory cell and three gates (forget, input, and output) to manage the flow of information. GRU simplifies 

this design, with only two gates (reset and update), to increase computational efficiency by reducing the 

number of parameters compared to LSTM. BiLSTM further optimises data analysis by simultaneously 

processing sequences in both forward and backward directions. These models are particularly good at 235 

identifying various patterns in data sequences, making them ideal for simulating GWLs that change over time 

(Vu et al., 2023). 

We also explored the potential of wavelet decomposition (BC-MODWT) to decompose the data into 

components of varying frequencies (Figure 3), from high to low, to provide more detailed input to the DL 

models to better simulate the GWLs. As explained in Chidepudi et al. (2023a), decomposition depth (i.e. the 240 

choice of the number of components) was constrained by the trade-off between 1- achieving a sufficient 

high level of decomposition to ensure the low-frequency variability is properly reached, and 2- keeping the 

number of coefficients affected by boundary conditions as low as possible since these have to be ultimately 

removed from the input time series. All input time series were decomposed using BC-MODWT, with 

decomposition depth of 4 as in Chidepudi et al. (2023a). Figure 3 illustrates the decomposition result for the 245 

precipitation time series.A 4-level decomposition efficiently extracted the first 4 so-called wavelet details 

(tp_1 to tp_4) while the last fifth (so-called smooth) tp_5 component remains of sufficiently low frequency. 

It is clearly visible that tp_5, almost invisible in the original tp precipitation time series, corresponds well to 

the variability of the most interial GWL types (Figure.3, in red, with a few month time lag with respect to tp). 

3.1.1 Model training and evaluation 250 

To maintain consistent comparison criteria across all methods evaluated in the study, Bayesian optimisation 

was used for hyperparameter tuning. Details of range of hyperparameters used are shown in Table 1. 

Furthermore, the range of hyperparameters used for optimisation was standardised across all methods, 

following the best practices outlined for both standalone and wavelet-assisted models, as detailed in 

Chidepudi et al. (2023a) and Quilty and Adamowski (2018). 255 
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Figure 3: Total precipitation(tp) and its wavelet components: High(tp_1) to low frequency(tp_5) and GWL (in red). 

 However, we made an important update to the model architecture by setting the number of layers to one 

for all models, rather than optimising it. This decision was based on findings (Figure 4) that optimising the 

number of layers did not significantly improve performance and was in line with recent studies in related 260 

fields like rainfall-runoff modelling (Kratzert et al., 2019, 2021). Other adjustments included reducing the 

number of initialisations to 10 and setting the number of trials in the Bayesian optimisation to 30. These 

changes were aimed at reducing the computational requirements of our approach, making it more efficient 

without significantly affecting the quality of our results and are consistent with recent studies (Wunsch et 

al., 2022a).  265 

Table 2: Hyperparameter details (Modified and adapted from chidepudi et.,al 2023a) 
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Hyperparameter Value considered 

Sequence length 48 

Dropout 0.2 

Optimizer ADAM 

Early stopping 50 

Number of layers 1 

Hidden neurons (10, 20, …,100) by 10 

Learning rate (0.001,0.01) (log values) 

Batch size (16, 32, …,256) by powers of 2 

Epoch (50, 100, …,500)  

 

 

The intricacies and specific technical details of the architectures these models are well documented in the 

existing body of deep learning research applied to hydrological simulations, as detailed in several studies 270 

(Chidepudi et al., 2023a;2024; Fang et al., 2022; Kratzert et al., 2021; Li et al., 2022; Vu et al., 2023).  
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Figure 4: Comparison of performance of single layer DL models (left column) and multiple-layer DL models (right column) with respect 

to single station model as a reference. SA represents Standalone models while Wav represents Wavelet-assisted models. 

To further interpret and decrypt the results for better understanding, we used the SHAP or Shapley Additive 275 

Explanations, approach(Lundberg & Lee, 2017), which is an increasingly popular game-centric approach for 

explaining the outcomes of deep learning models. SHAP, explains how each input feature influences the 

’model’s simulations. It does this by highlighting two key aspects: the importance of each variable, where a 

higher mean absolute SHAP value indicates a greater impact, and the nature of that impact, whether positive 

or negative. 280 
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3.2 Experimental design 
This section details the experimental design used to assess the effectiveness of training models using data 

from all available stations. Our study uses different strategies to incorporate numerical and categorical data 

into the models. The aim is to improve the accuracy of GWL  simulations by exploring ways of incorporating 285 

regional variability into the models. The experimental setup is structured to test different modelling 

strategies, as described below and visualised in Figure 5 & 6: 

 

Figure 5: Construction of the different multi-station approaches for standalone and wavelet models and 

associated covariates (input features). 290 

1. Single station or local models (models trained and tested individually per station): These models are 

trained and evaluated on data from individual stations. As a baseline, their performance provides a 

benchmark for evaluating the effectiveness of more generalised models. This approach is dominant 

in developing data-driven models for GWL simulations and is discussed in detail in  Chidepudi et al. 

(2023a; 2024). The optimal hyperparameters for all standalone and wavelet models in the single-295 

station approach are presented in the supplement (Table S3-S4). 
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2. Multi-station (models trained and tested together on many stations): These models are trained using 

data aggregated from multiple stations and tested with different input configurations.The covariates 

and input shapes for various multi-station approaches are summarized in Figure 5 and exact shape 300 

of 3D tensors are provided in supplement (Table S5): 

a. NO (dynamic inputs only): Models are trained on all stations using dynamic variables only, 

excluding static attributes and one-hot encoding.  

 

b. OHE (One-Hot Encoding): This method involves one-hot encoding to represent individual 305 

station ID information as binary vectors to ensure that the specific information is obtained 

from collective training, similar to the one-hot vector strategy developed in rainfall-runoff 

modelling (Li et al., 2022). This study showed that one-hot vector (one hot encoding using 

basin ID) could produce similar results to using catchment attributes in gauged basin 

scenarios. One-hot encoding serves as an alternative to incorporating static attributes 310 

directly into the model (Table 3). 

 

Table 3: Example of one hot encoding based on different wells 

WELL Dynamic variables  Well_ID_1 Well_ID_2 Well_ID_3 
 

1 … 1 0 0 

2 … 0 1 0 

3 ... 0 0 1 

 

c. STAT (Static attributes and dynamic Variables): Models include both static attributes (e.g., 315 

latitude, longitude) and dynamic variables as inputs, with categorical variables encoded 

similarly to one-hot encoding but represented in separate columns for each unique value or 

class (Table 4). 

 

 320 
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Figure 6: Comparison of different approaches adopted in the current study: a) single station (Top), b) multi-station without clustering 340 

(Middle) c) multi-station with clustering based on spectral properties(bottom). (Background layer: © OpenStreetMap contributors 

2023. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.) 

 

3. STAT_OHE (Static attributes, one-hot encoding, and dynamic variables): This configuration 

combines static attributes, one-hot encoding for well IDs, and dynamic variables to provide a 345 

a) 

b) 

c) 
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comprehensive dataset for model training. In other words, it is a combination of the two input 

strategies above. 

Table 4: Example with static attributes of numeric and categorical types 

WELL Dynamic 
variables  

Static_1 
(Lattitude) 

Static_2 
(Longitude) 

Category_ 1 
(Alluvial) 

Category 2 
(sedimentary) 

Category 3 
(Mountainous) 

1 … 5.1 9.5 1 0 0 

2 … 2.8 10.8 0 1 0 

3 …. 5.4 9.2 0 0 1 

 

In addition to these configurations, we investigated the performance of multi-station models trained on 350 

GWLs with similar spectral statistical properties. This approach assesses the effectiveness of models tailored 

to specific GWL behaviours compared to more generalised models using the aforementioned strategies. In 

this study, Kling-Gupta efficiency (KGE, Gupta et al. 2009 ) is preferred over Nash–Sutcliffe efficiency (NSE) 

and other metrics because it offers a more comprehensive evaluation by integrating three aspects of model 

error: correlation, bias, and the ratio of standard deviations. 355 

For the single-station approach, the data was split into training (80%) and testing sets (20%) as described in 

Chidepudi et al., 2023. Furthermore, to facilitate hyperparameter tuning, the last 20% of the training data 

was used as a validation set. For the multi-station approach, the train-test split was also performed at each 

station, following the same procedure as the single-station approach. However, the data from all stations 

was then collectively combined during the training. The rationale behind the specific train-test split is to 360 

ensure that the models capture the multi-annual to decadal variability in GWLs observed in the region. To 

achieve this, a minimum of 34 years of data (1970-2014) was used for training, while the most recent 8.66 

years of data (2015/01-2023/08) were reserved for testing. This split corresponds to approximately 80% of 

the data for training and 20% for testing. By following this approach, we aimed to ensure that the models 

were exposed to a sufficiently long period of data during training, enabling them to capture the amplitude 365 

and variability of GWL fluctuations over multi-annual to decadal timescales. The testing period was chosen 

to be the most recent years, allowing for an evaluation of the models’ performance on the latest available 

data. The specific dates and periods used for training and testing at each station are detailed in the 

supplement (Table S2). 

Our methodology for comparing single station and multi-station approaches, both with and without prior 370 

clustering based on spectral properties, is consistent with the research conducted in rainfall-runoff modelling 

by Hashemi et al. (2022), where the catchments were divided into five subsets according to hydrological 

regimes. This comprehensive experimental design aims to identify the most effective strategies for using 
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multi-station data in the simulation of groundwater level variations. Detailed hyperparameters for all the 

multi-station standalone and wavelet models can be found in the supplement (Tables S6-S9) 375 

 

4. Capabilities, performances and interpretability of multi-station 

approaches 

4.1 Different strategies for multi-station approach 

All models tested in the case of this study performed more or less equivalently and eventually yielded very 380 

satisfactory results. This can be attested by the performance comparison shown in Figure 4 (comparison of 

the 3 model types in single-station mode) and by comparing Figure 7 (GRU Multi-station) with Figures A1 

(LSTM Multi-station)  and A2 (BiLSTM Multi-station). We finally decided to favor the GRU architecture owing 

to its recognised computational efficiency over more traditional LSTM-based architectures (Cho et al., 2014; 

Cai et al., 2021; Chidepudi et al., 2023, 2024 ) 385 

Figure 7 shows the results of different GRU model configurations for simulating GWLs. The first row shows 

the performance of the standalone GRU model for different GWL categories, while the second row shows 

the wavelet-assisted GRU results. 
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390 

Figure 7: CDF Comparison of KGE values of the GRU With different approaches and GWL types. 

Several observations can be made from Figure 7. Wavelet pre-processing generally improves model 

performance, especially in the inertial GWL category, where cumulative distribution functions (CDFs) are 

steeper and shifted to the right, indicating a higher proportion of simulations with high performance. This is 

in line with previous findings as already reported in our previous works (Chidepudi et al., 2023a & 2024). This 395 

demonstrates the wavelet decomposition ability to extract“hidden” inertial dynamics features which 

facilitates their assimilation by the model in the learning process. In other words, the improvement 

attributed to wavelet pre-processing becomes more pronounced as we move from annual to mixed, and 

then further to inertial behaviour. This is because in the case of annual-type GWL, the dominant variability 

(annual cycle) is already well expressed in several input variables (e.g. t2m, msl, ssr). In the case of mixed- 400 

and inertial GWL types, the dominant low-frequency variability, while also present, is barely expressed, 

almost “hidden”, in the input data, and becomes prominent in GWL due to the low-pass filtering action of 

aquifers(Baulon et al., 2022; Schuite et al., 2019). Wavelet decomposition allows unraveling such hidden 

information, helping the neural networks to reach it for enhanced learning. This is illustrated in figure 3 with 

low-frequency component of precipitation (tp5) matching the variations of one intertial-type GWL (in red, 405 

with a few month-lag time), whereas it is masked by other higher-frequency components in the original 

precipitation time series (tp).The combination of static attributes and OHE gives competitive results, 
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particularly in the inertial category, demonstrating the effectiveness of this method without the need for 

prior clustering of GWL behaviour. Multi-station models, when trained separately for each GWL cluster, 

generally outperform those trained on aggregated data. This is reflected in higher KGE values for cluster-410 

specific models, suggesting a better representation of the unique characteristics of each GWL type. However, 

this advantage diminishes for mixed GWLs, which are the majority in the study area. Although single station 

models perform best for all GWL types, some multi-station models approach or match their performance, 

highlighting their potential for regional-scale GWL simulations. For the annual GWL category, models trained 

on mixed GWL data without wavelet pre-processing and relying solely on static attributes do not show 415 

significant performance improvements, suggesting that static features alone may not adequately represent 

the dynamic nature of groundwater behaviour.  

Figures 8-10 show the best GWL simulations obtained of different types (annual, mixed and inertial) for single 

and multi-station models. While single station models perform best, multi-station models are valuable where 

single station modelling is impractical either due to data limitations or computational requirements. 420 

Figure 8: Results with wavelet assisted GRU in the annual type of GWLs through a) Single station (top) and b) Multi-station model 

trained on the annual type of GWLs with static and OHE (bottom) 
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Figure 9: Results with wavelet assisted GRU in mixed type of GWLs through a) Single station (top) and b) Multi-station model trained 

on the mixed type of GWLs with static and OHE (bottom) 425 
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Figure 10: Results with wavelet assisted GRU in the inertial type of GWLs through a) Single station (top) and b) Multi-station model 

trained inertial type of GWLs with static and OHE (bottom) 

In summary, wavelet-assisted GRU models are particularly effective, especially for low-frequency dominated 430 

GWL behaviour, and multi-station models designed for specific GWL types (i.e. training over specific pre-

clustered datasets) generally outperform generalised models. The multi-station approach is sensitive to the 

dominant GWL type in the training dataset, with the best results seen in models trained for the predominant 

mixed GWL type in the study region To address the issue of model learning dominant behaviour in collective 

training of multi-station approaches, possible future investigation may involve generating synthetic time 435 

series with randomised amplitude changes of constituting frequencies to increase the dataset while 

balancing all the important behaviours. This could also help in understanding the influence of the size of 

dataset on using multi-station approaches. 

4.2 Understanding GWL Simulations Through SHAP Interpretability 

This section deals with the deeper understanding of the simulations from the insights obtained from the 440 

SHAP analysis on model’s interpretability. In this study, we investigated the key contributing factors for GWL 

simulations in different approaches that were previously evaluated above in terms of accuracy. 

Figure 11a shows the SHAP representative summary plot for the standalone models using a single station 

approach. These plots highlight the influence of different variables/attributes on the final simulation. In 

particular, the distribution of data points in the SHAP summary plots (Figure 11), with more points to the 445 

right (coloured red) indicating positive influences, and the opposite indicating negative relationships. 
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Figure 11:  SHAP summary plot examples for single station model and multi station model with static attributes 

From the analysis of Figure 12 and Figure 13, several notable patterns emerge regarding the contribution of 450 

different variables to GWL simulations using standalone models and those with wavelet pre-processing, and 

the impact of clustering as well as pre-clustering based on spectral statistical properties.  

In single station standalone models, SHAP analysis shows that certain variables consistently influence GWL 

simulations, although their order of importance can change. Total Precipitation (TP) emerges as the key 

factor, with Surface Net Solar Radiation (SSR) occasionally overtaking in mixed GWL cluster, especially in 455 

models trained on clusters, along with static features, or one-hot encoding (OHE). Nonetheless, TP and SSR 

are the primary drivers in these simulations. 

In multi-station standalone models without clustering, TP and SSR lead in importance, followed by wind 

speed at 10 meters (v10), evaporation (e), and air temperature close to the ground (2-meter temperature, 

t2m), which vary in their influence. Notably, v10 plays a bigger role in models in multi-station approaches. 460 

When models are trained on clusters, evaporation becomes more significant, yet the impact of clustering on 

variable importance is generally minor.  

The spectral statistical characteristics (amplitude of high and low frequencies) were used for the pre-

clustering of GWLs. These characteristics are related the filtering of the input signal by the physical properties 

of the hydrological system. This highlights the importance of pre-clustering in capturing the physical 465 

characteristics of basins and suggests that it may be preferable to cluster based on these properties rather 

than relying on static attributes, especially when the relevance of static attributes is uncertain. 

SHAP analyses show that standalone models maintain similar variable importance rankings even after 

clustering with static attributes and OHE. However, wavelet pre-processing shifts the importance towards 

dynamic components, reducing the contributions of static features or OHE. When clustering is combined 470 

with wavelet pre-processing, low-frequency precipitation components emerge as key contributors, 

improving model performance.  
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Figure 12: Top four important variables by cluster for standalone GRU models with different approaches. On Y-axis, Percentage of 475 

stations for each variable within in the cluster. 
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Figure 13: Top four important variables in regional GRU wavelet assisted model trained with different approaches for different classes 

 

When models are trained after clustering, low-frequency components (e.g. , tp_5, t2m_5) are prioritised in 480 

mixed and inertial clusters: components not seen without clustering. Annual types prioritise relevant 

frequencies (1 to 3), consistent with single-station model patterns. The addition of static attributes to the 

OHE does not significantly alter the contributions, suggesting a dominance of dynamic variables after 
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decomposition. Also, differences among multi-station approaches after clustering are minimal for both 

standalone and wavelet models. 485 

Wavelet pre-processing performs a similar function to pre-clustering based on spectral properties by 

revealing information across all frequencies, including low amplitude frequencies that may be obscured. The 

order of best approaches based on the results: wavelet plus pre-clustering, followed by pre-clustering only, 

then wavelet only, and finally standalone highlighting the effectiveness of this approach. 

There is a clear pattern when clustering is applied; without clustering the high frequency component of the 490 

2-meter temperature (T2m_1) is dominant. Multi-station models show less diversity in variable contributions 

than single-station models. The exception is the Stat_OHE without clustering approach, which uniquely 

captures low-frequency information from T2m_5 and e_4. Otherwise, the static and NO approaches gave 

similar results. 

The influence of static attributes or OHE appears to be minimal, possibly due to the high dimensionality 495 

introduced by numerous dynamic and static attributes. This observation suggests that future research could 

investigate alternative methods, such as target encoding, to address this dimensionality issue. 

The purpose of the study presented here was not to determine the forcing factors of GWL variations; in this 

aim, a more comprehensive evaluation of such links would require specific approaches that have been 

undertaken and presented in several previous works (Lee et al., 2019; Heudorfer et al., 2019; Liesch & 500 

Wunsch, 2019; Haaf et al., 2020; Giese et al., 2020). In some of our previous works (albeit for the Normandy 

region only), the linkages between GWL variability and potential forcing factors such as the thickness and 

lithology of surficial formations, aquifer thickness, vadose zone thickness, upstream/downstream location 

along the flow path, distance to the river, presence of karst,  were investigated using dedicated approaches 

combining multivariate analysis, clustering and time series / spectral analysis and decomposition (Slimani et 505 

al., 2009; El Janyani et al., 2012 and 2014), which showed that GWL dynamics could be related to some basin 

and aquifer properties, although these relationships remained rather complex.  In a recent study, Haaf et al. 

(2023) developed an innovative methodological approach for modelling GWL at unmonitored locations using 

basin properties and machine learning on a daily time-step basis for alluvial aquifers with probably quite high 

hydraulic conductivity overall. The models developed performed quite well in representing GWL variations 510 

at both intra- and interannual time scales using physiographic, land cover and geological characteristics. 

However, the amplitude of low-frequency, interannual to decadal variability of the dataset used in their 

study was much lower than what could be encountered in our monthly time step database. The specific type 

of aquifer Haaf et al. (2023) investigated likely explains their high sensitivity to many surface processes. In 

our study, alluvial aquifers only represented approximately 10% of the GWL stations (8 over 76 stations) and 515 

were only of annual (3 stations)  or mixed (4 stations) types. Almost all other wells were located in chalk or 
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limestones. In the framework of our study, we decided to exclude some relevant characteristics such as 

vadose or saturated zone thickness: even when averaged over quite long periods (several years), these values 

actually represent GWL (the target variable). For mixed or inertial types in particular, it would probably make 

our models irrelevant for simulations over long-term predictions of several years or even decades when used 520 

along with climate projections and in another recent and relevant study by Heudorfer et al. (2024) developed 

entity-aware deep learning models with static attributes such as aquifer type (based on porosity). These 

authors concluded that the models did not show any entity awareness and eventually utilized static 

attributes as simple identifiers (almost similar to the OHE approach presented herein), meaning that the 

models did not make use of the relevant (hydro)geological information. 525 

Although the added value of static variables was found to be marginal in the current study, they may prove 

useful in settings where no measurement is available. Further research is required to determine their utility 

in simulating such ungauged hydro systems. The approaches presented (except OHE) may be applicable to 

ungauged aquifers but require validation in a pseudo-ungauged environment. The use of data from multiple 

stations can enrich the dataset, improving the representation of groundwater systems and the robustness 530 

of the models. This multi-station approach also allows the model to be applied to areas without GWL 

monitoring, thereby capturing regional dynamics. However, single-station modelling remains important for 

understanding local interactions. The choice of method should therefore be guided by research objectives, 

data availability and the hydrogeological context. Where clustering results in too many groups, future studies 

should consider fine-tuning the general model for each cluster, following the approach of Mohammed & 535 

Corzo (2024). 

5. Concluding remarks 

This study has demonstrated the different multi-station approaches to GWL simulations with emphasis on 

the use of static attributes, one-hot encoding and the combination of both while training on all available data 

or by training on each GWL type based on the clustering. The study also highlights the potential of these 540 

approaches compared to the traditional single- station approach with and without the use of BC-MODWT. 

Key findings from this research highlight the advantages of clustering based on spectral properties, which 

have been shown to significantly improve the results of multi-station models, surpassing those of general 

models. Clustering is preferred over the use of static attributes, as the use of static attributes alone may not 

be sufficient to effectively distinguish different behaviours. Wavelet pre-processing is very effective at 545 

extracting relevant information at all levels, from high to low-frequency, allowing low-frequency dominated 

GWLs to be handled with increased accuracy. The combination of clustering and wavelet pre-processing 

produced the most accurate simulations, indicating that wavelet pre-processing likely captured key 

information needed for accurate modelling. 
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The study also showed that a multi-station approach, without clustering, should be used  cautiously, as 550 

models tend to adopt dominant behaviour, which may not always be desirable. In scenarios where wavelet 

pre-processing is not applied, the combination of static attributes and OHE demonstrated promising results, 

particularly for GWLs dominated by low-frequencies. However, the minimal effect of static attributes or OHE 

observed in wavelet-assisted models may be due to the high-dimensional nature of these variables (due to 

wavelet decomposition that increases the number of covariates), suggesting a potential avenue for future 555 

research to explore alternative encoding strategies, such as target encoding. SHAP  analyses consistently 

identified key contributors across models, with clustered models highlighting the pivotal role of low-

frequency components, especially precipitation and temperature, in achieving superior simulations for 

inertial and mixed types of GWL. 

In this article, we introduced the following question: “What’s the best way to leverage regionalised 560 

information?”. In light of our results, it then seems like this is highly dependent on the amount and types of 

static attributes. It is generally expected that a much higher number of static attribute types would allow for 

a much better improvement of the multi-station simulation approach. However, Heudorfer et al. (2024) 

found no improvements using around 28 static features (including 18 environmental and ten time series-

based). Also, as pointed out by these authors, employing static attributes for model training might be more 565 

relevant in applications on larger scales and/or larger datasets. 

Moreover, one must remember that a trade-off must be found between the amount of static attributes 

required and data availability, especially for applications at ungaged sites. However, the use of static 

attributes and OHE yielded similar results in the gauged scenario (this study) and proved efficient in 

accounting for local station information, which aligns with the findings of Heudorfer et al. (2024). On the 570 

other hand, in the study presented herein, wavelet pre-processing allowed for deciphering the “hidden” 

dynamic components of GWL variability (i.e. by separating low-frequency variations from annual or intra-

annual variability), which eventually corresponded to taking into account the influence of (hydro)geological, 

geomorphological and physiographic properties. Ultimately, the latter – which varies across the study region 

- operates a differential filtering effect of the input signals. Pre-clustering the dataset also yielded significant 575 

improvements that were even more noticeable when combined with wavelet pre-processing. However, 

owing to its capability of leveraging pre-processing the different frequency components in the time series of 

the whole dataset, wavelet pre-processing somehow acts in the same way as pre-clustering, which consists 

of grouping inertial (i.e. low-frequency dominated), mixed and annual time series in different clusters. 

In summary, although the study has led to a better understanding of GWL simulation approaches with limited 580 

static attributes, further research is needed in the following areas, also exploring other physical basin 

parameters such as the thickness of overlying formations, altitude, distance from the sea, etc. It should also 
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be pointed out that clustering can be a source of information on the physical properties of the basin. Indeed, 

the three groups determined in this study on the basis of spectral properties indirectly carry information on 

the modalities of water transfer in the shallow formations and aquifer, which are controlled by the hydraulic 585 

properties of the basin. The study of the importance of using static data in groundwater modelling using 

deep learning tools needs to be extended to cover level prediction at sites with no piezometers. The insights 

gained here pave the way for future efforts to simulate GWLs in unmonitored or new locations, taking 

advantage of the robustness offered by multi-station models while recognising the value of single-station 

models for capturing local-scale interactions. Finally, it is noticeable through our study that the overall 590 

approach is compatible with a frugal AI approach (keeping in mind that our datasets are very small compared 

to classsical big datasets from other fields like natural language processing etc.): compact networks were 

tested and preferred (one layer), Bayesian optimisation was used instead of grid search for hyperparameter 

tuning. In addition, multi-station approaches pave the way for transfer learning, reducing the need for 

specialised models and retraining new models. The way forward is clear: to improve the GWL simulations 595 

efficiently, we may need to adopt a nuanced mix of efficient input signal pre-processing, potentially new 

encoding strategies to incorporate all possible additional knowledge of the system, and possibly clustering. 

Yet, we would recommend using advanced pre-processing over clustering, which would allow for leveraging 

the same type of information while preventing from separating the dataset and reducing its size. 
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Results from LSTM and BILSTM 
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Figure A1: CDF Comparison of KGE values of the LSTM With different approaches and GWL types. 630 

 

Figure A2: CDF Comparison of KGE values of the BiLSTM With different approaches and GWL types. 
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