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Abstract. Spatial distribution of mountain snow water equivalent (SWE) is key information for water management. We 12 

implement a tool to simulate snowpack properties at high resolution (100 m) by sourcing only global datasets of climate, land 13 

cover and elevation. The meteorological data are obtained from ERA5 which makes the method applicable in near real time 14 

(5 day latency). We evaluate the output using 49 SWE maps derived from airborne lidar surveys in the Sierra Nevada. We find 15 

a very good agreement at the catchment scale using uncalibrated lapse rates. Larger biases at the model grid scale are especially 16 

evident at high elevation but do not alter the catchment-scale snow mass accuracy. We additionally compare the simulated 17 

snow depth to Sentinel-1 snow depth retrievals and find a similar accuracy with respect to synchronous airborne lidar surveys. 18 

However, Sentinel-1 snow depth products are temporally sparse and often masked during the melt season and do not provide 19 

SWE. 20 

1 Introduction 21 

Many populated regions with dry summers and wet winters depend on mountain snow for water supply (Mankin et al., 2015; 22 

Sturm et al., 2017; Viviroli et al., 2020). Understanding the catchment scale seasonal snow storage before and during the melt 23 

season is key to optimizing water use between hydropower production, crop irrigation and freshwater supply. In addition, an 24 

accurate prediction of the timing and magnitude of the snowmelt runoff is bound by our ability to characterize the spatial 25 

distribution of mountain snow before the melt season (Freudiger et al., 2017). 26 

 27 
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Despite its hydrological significance, the snow water equivalent (SWE) remains poorly monitored in many mountain regions 28 

especially outside North America and Europe. In situ measurements are often too sparse considering the spatial variability of 29 

mountain snow (Fayad et al., 2017).  To cope with this issue, airborne measurement campaigns are now routinely used in the 30 

western USA to measure snow depth but their cost remains prohibitive in other regions (Painter et al., 2016). Meanwhile, 31 

several approaches have emerged to retrieve mountain snow depth from satellite remote sensing (e.g. Pléiades, ICESat-2 and 32 

Sentinel-1). Pléiades is limited to small regions (Marti et al., 2016), while ICEsat-2 provides only sparse sampling (Deschamps-33 

Berger et al., 2023). Sentinel-1 has been used to derive snow depth at 1 km resolution (Lievens et al., 2019). This method is 34 

limited to dry snow conditions and therefore does not allow monitoring of the snowpack during the melt season. However, it 35 

offers a global and spatially continuous coverage which is a key advantage with respect to the other approaches. All the above 36 

remote sensing approaches require an estimation of snow density to obtain the SWE, but it has been established that snow 37 

depth explains most of the SWE variance (Guyennon et al., 2019; López-Moreno et al., 2013; Sturm et al., 2010; Bormann et 38 

al., 2013). 39 

 40 

Another approach to estimating mountain SWE distribution is to use a snowpack model, but the challenge then lies with 41 

obtaining accurate meteorological forcing (Günther et al., 2019; Raleigh et al., 2016). To cope with the lack or sparsity of in 42 

situ meteorological measurements, one solution is to use atmospheric model outputs as forcing data. In particular, climate 43 

reanalyses can provide long term hourly meteorological data at global scale. Climate reanalyses are also becoming increasingly 44 

accurate (Hersbach et al., 2020) with advances in atmospheric and land surface modeling and the assimilation of a growing 45 

dataset of in situ and remote sensing observations . These reanalyses also seen notable progress in recent years in terms of 46 

latency. For example, the preliminary ERA5 reanalysis provided by the European Centre for Medium-Range Weather 47 

Forecasts has a short latency of 5 days (whereas it was 2–3 months with the previous ERA-Interim). This preliminary product 48 

only rarely deviates from the fully quality-checked final product that is released 2 months later (Hersbach et al., 2020). This 49 

timely product can fulfill the need for up-to-date meteorological forcing information. However, reanalyses cannot be used 50 

directly to force a mountain snowpack model because the grid cell size is too coarse (approximately 30 - 50 kilometers for 51 

ERA5 and MERRA-2 respectively), which creates large biases in the computed SWE (Wrzesien et al., 2019). 52 

 53 

To address the mismatch in spatial resolution between reanalyses datasets and snow distribution, previous studies used 54 

downscaling algorithms based on a digital elevation model before running a snowpack model on a finer grid (Armstrong et al., 55 

2018; Baba et al., 2018; Billecocq et al., 2023; Mernild et al., 2017; Weber et al., 2021). This approach enables estimation of 56 

high resolution SWE and snow depth without ground data. For example, Mernild et al. (2017) and Baba et al. (2018)  studied 57 

the snowpack properties over large and ungauged regions in the Andes and the High Atlas mountain ranges using the 58 

MicroMet/SnowModel package (Liston et al., 2020; Liston and Elder, 2006a, b). However, the evaluation of these simulations 59 

relied on sparse in situ observations or MODIS snow cover area. Weber et al. (2021) used 10 years of snow depth measurements 60 

from two automatic weather stations to assess their simulations in the Research Catchment Zugspitze (12 km²). Mernild et al. 61 
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(2017) used 13 years of MODIS data over the Andes Cordillera (~16 million km²) along with 4 km grid maps of snow depth 62 

that were reconstructed from in situ observations. Baba et al. (2018) used 18 years of MODIS data to assess simulations in the 63 

High Atlas of Morocco, snow depth at a single automatic weather station, precipitation at three meteorological stations and 64 

river discharge of the Ourika catchment (503 km²). However, these in situ or remote sensing datasets did not allow a thorough 65 

evaluation of the model ability to capture snow mass across the landscape. 66 

 67 

In this study, we focus on the Tuolumne River catchment in the Sierra Nevada, USA (Figure 1). Since 2013, this site has been 68 

regularly surveyed by the Airborne Snow Observatory (ASO) to determine snow depth and SWE. The ASO Tuolumne dataset 69 

is the densest time series of high resolution snow depth (3 m) and SWE (5 0m) maps available worldwide at this scale 70 

(1100 km²). The dataset contains 49 surveys and spans several years with contrasted climatic conditions including California’s 71 

most severe drought in the last 1200 years during 2012-2014 (Griffin & Anchukaitis, 2014) and the “snowpocalypse” 2016–72 

2017 winter which was characterized by near-record snow accumulation (Painter et al., 2017). We leverage this observational 73 

dataset to evaluate a new processing pipeline which generates high resolution SWE and snow depth estimates from ERA5 or 74 

ERA5-Land. This pipeline, inspired by previous works (Baba et al., 2018; Mernild et al., 2017) is a wrapper around 75 

MicroMet/SnowModel code. It was designed to work with global meteorological forcing datasets. As such, the workflow can 76 

generate high resolution snow cover simulations in any region of interest across the globe since 1940 up to present. 77 

Furthermore, we compare the output of this pipeline with the more direct approach of Sentinel-1 snow depth on dates matching 78 

the ASO measurements. 79 

  80 
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 81 
Figure 1: Map representing the SWE variability measured by ASO, along with ERA5 and ERA5-Land cells centers 82 

and the Tuolumne River catchment border overlaying the DEM hillshade. 83 

2 Data and Methods 84 

2.1 Data 85 

We used two reanalyses in this study, ERA5 and ERA5-Land. ERA5 is a reanalysis of the global climate and weather since 86 

1940, with a 0.25° resolution (approximately 30 km). It provides hourly atmospheric, oceanic and land-surface variables 87 

computed with a global model and improved by the assimilation of multiple in situ and remote sensing datasets (Hersbach et 88 

al., 2020). ERA5-Land is produced by recomputing ERA5 land variables at finer resolution using a downscaled meteorological 89 

forcing (Muñoz Sabater, 2019). It delivers these variables on a global scale at a 0.1° resolution, from 1950 to this day. As 90 

mentioned above, preliminary versions of ERA5 and ERA5-Land are distributed with a short latency of 5 days. These datasets 91 

are freely available from the Copernicus Climate Change Service (C3S) and can be queried via their application programming 92 

interface. We focused on ERA5 here as we found that it yielded slightly better results than MERRA-2 in a previous case study 93 

using the same approach (Baba et al., 2021). In addition, the latency of MERRA-2 is 3 weeks which may be too long for 94 
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operational water resources applications. To run the model (see below), we also used the 30 m Copernicus Digital Elevation 95 

Model (DEM) (Copernicus Digital Elevation Model, 2023) and the 100 m Copernicus Land Cover (Buchhorn et al., 2020). 96 

 97 

We obtained Sentinel-1 snow depth between 2016 and 2019 from the C-SNOW repository. Sentinel-1 C-band backscatter 98 

observations were used to derive ~1 km resolution snow depth, using an empirical change detection (Lievens et al., 2019). 99 

This product has a revisit time of approximately 3 days over the Tuolumne River catchment during winter but provides almost 100 

no data in spring because the algorithm is considered to be invalid when the snowpack contains liquid water. 101 

 102 

For the evaluation of model outputs and Sentinel-1 products, we used 49 SWE and snow depth maps collected between 2013 103 

and 2019 by the ASO. The ASO acquires hyperspectral data for snow albedo and lidar data for snow depth and computes SWE 104 

as a derived product (Painter et al., 2016). Snow depth is available with a 3 m resolution while SWE has 50 m resolution. The 105 

reported accuracy on the 3 m snow depth products is 0.08 m (Painter et al., 2016) and 50 m SWE is less than 0.01 m w.e. 106 

2.2 Methods 107 

2.2.1 SnowModel 108 

SnowModel is designed to simulate snow evolution on a high resolution grid (1 m to 200 m increments) and a time step from 109 

1 min to 1 day (Liston et al., 2020; Liston and Elder, 2006a). It is separated into four submodels: i) MicroMet redistributes 110 

meteorological forcings (air temperature, relative humidity, wind speed and direction, precipitation, solar radiation, long wave 111 

radiation, and surface pressure) to the target simulation grid (Liston and Elder, 2006b). ii) EnBal computes the snow surface 112 

energy balance, iii) SnowPack computes the snow density and snow depth and iv) SnowTran-3D computes the blowing snow 113 

sublimation and snow redistribution due to wind transport (Liston et al., 2007). SnowModel accounts for the vegetation effects 114 

on the snow cover such as coniferous forests or grassland rangeland to the grid cell vegetation type. MicroMet was originally 115 

designed to interpolate station data on a regular grid. Here, a climate reanalysis grid cell is considered as a virtual station 116 

located at the grid cell center. 117 

 118 
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2.2.2 Model input 119 

 120 
Figure 2: Summary of the different data sources, with their spatial resolutions. Arrows represent a process and the 121 

dotted lines the comparison between different data. 122 

 123 

We developed a tool to automatically prepare SnowModel input files from ERA5 and ERA5-Land data and run the simulations. 124 

This tool uses a digital elevation model (DEM) of the region of interest as an input along with the start and end of the simulation 125 

period. We let the user specify the DEM because it is used to define the model grid, which is the main control of the 126 

computation time. Here we used the 30 m Copernicus orthometric DEM that we extracted and resampled to a WGS84 UTM 127 

11N grid at 100 m resolution using the bilinear method over a region covering the Tuolumne River catchment. The simulation 128 

period was set to September 2012-August 2019, and spans seven years of snowpack dynamics. Using the Climate Data Store 129 

Application Program Interface, our tool downloads ERA5 or ERA5-Land hourly meteorological data ( 2 m temperature, 2 m 130 

dew point temperature, precipitation, 10 m wind eastward and northward component) over the region of interest given by the 131 

DEM bounding box extended to the adjacent ERA5/ERA5-Land neighbouring cells (~30km/11km respectively). Once 132 

downloaded, the meteorological data are processed to match SnowModel/MicroMet input format and units (SOURP Laura / 133 
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ERA_SnowModel_Pipeline · GitLab, 2024). ERA5-Land precipitation is provided as daily cumulative values and is therefore 134 

converted to hourly precipitation rate. Wind components (u,v) are converted into wind speed and direction (0-360°N). The 135 

dew point temperature is converted into relative humidity using Buck’s equation (Buck, 1981), the same equation that is used 136 

in MicroMet. The elevations of ERA5/ERA5-Land cells are determined from the global geopotential file that is first 137 

interpolated on the model grid with a bilinear algorithm. The tool also resamples the Copernicus land cover map on the model 138 

grid using the mode resampling algorithm(GDAL/OGR contributors, 2024). We built a correspondence table to remap the 139 

Copernicus land cover classes to the SnowModel land cover classification (Appendix Table A1). We set all SnowModel 140 

parameters (the curvature length scale, curvature and wind slope weights, minimum wind speed, precipitations schemes for 141 

downscaling or for rain-snow fractions, subcanopy radiations schemes, various thresholds for wind transport calculations, and 142 

albedo values for melting snow cover in specific land covers) to the default values. We used the default monthly temperature 143 

lapse rates and precipitation factors which adjust the precipitation values to the elevation of the model grid. This tool is 144 

implemented in Python. The source code and a more detailed documentation is available at (code availability section). 145 

2.2.3 Comparison with ASO SWE 146 

We resampled the ASO SWE (n=49 surveys) to the model grid which has a resolution (100 m). The resampling was done 147 

using the weighted average of all valid contributing pixels (GDAL/OGR contributors, 2024). We also created a validity mask 148 

to select cells in the Tuolumne River catchment that were always observed by the ASO during this period (some regions were 149 

not always available, representing 2.5% of the catchment area). ASO data and ERA-SnowModel outputs were averaged over 150 

the valid cells to compute the temporal evolution of the catchment-mean SWE. Then, we analyzed the spatially distributed 151 

residuals on the catchment for each observation date of a dry year (2014-2015), a wet year (2016-2017) and an average year 152 

(2015-2016). We used the validity-masked SWE maps to subtract the ASO observations from the ERA-SnowModel output. A 153 

positive bias means the simulated SWE is larger than the observations. 154 

 155 

Additionally we extracted ERA5 and ERA5-Land daily SWE over the Tuolumne River catchment and computed the catchment 156 

scale SWE using an area weighted average (i.e. each SWE value was weighted by the fraction of the grid cell area within the 157 

catchment). Since these SWE products have a very coarse resolution (approximately 31 and 9 km, Fig. 1, Fig. 2), we did not 158 

use them to analyze the residuals distribution as above. 159 

2.2.4 Comparison with Sentinel-1 snow depth 160 

Over the entire study period, we identified three matchup dates for which we have both ASO and Sentinel-1 snow depth 161 

observations with a minimum coverage of 60% of the catchment area. On these dates, the ASO snow depth, Sentinel-1 snow 162 

depth and ERA-SnowModel snow depth were resampled to a common 1 km UTM grid. We applied another validity mask for 163 

the cells where the snow depth is not always available to all three snow depth datasets (here representing 8.5% of missing data 164 
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in the catchment). We subtracted both the SnowModel simulated and the observed Sentinel-1 snow depth with the ASO lidar-165 

derived snow depth observations. For each date, we computed the bias, the standard deviation of the residuals and the RMSE. 166 

3 Results 167 

3.1 Comparison with ASO SWE 168 

Figure 3 shows the temporal evolution of the catchment scale SWE from ASO observations and SnowModel simulations 169 

forced with ERA5 and ERA5-Land. There is a very good agreement between the observations and both simulations, with an 170 

overall correlation of 0.99 for both ERA5 and ERA5-Land SnowModel simulations (with 49 observation dates). First, both 171 

simulations capture the large interannual variability of SWE in the Tuolumne River catchment during the study period. The 172 

observed annual peak SWE ranges from 0.11 m in 2015 to 1.27 m in 2017 while the SnowModel simulations yield from 0.17 173 

m to 1.19 m with ERA5 and from 0.12 m to 1.24 m with ERA5-Land during the same years (but at different dates). In addition, 174 

the model is reproducing the seasonal evolution of SWE with an annual RMSE ranging from 0.03 m to 0.13 m. The catchment 175 

scale SWE accumulation in the ERA5-SnowModel simulations is well captured, we note an underestimation of the snow 176 

ablation rates in late spring, causing a delay from a few days (2013) to one month approximately (2019) in the date of complete 177 

melt out. This issue is mostly evident in 2016-2017 since the ablation rates are insufficient to reach the complete removal of 178 

the snowpack in August as observed by the ASO. Interestingly, we also note that ERA5-Land without resampling almost 179 

always reports the lowest RMSE at the catchment scale, though at 0.1º the distribution of the snow is not well represented. 180 

 181 

 182 
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Figure 3: Temporal evolution of the Tuolumne river catchment SWE for seven hydrological years from 2012 to 2019. 183 

The black dots indicate the ASO data. The dark blue lines show ERA5-SnowModel simulations, the light blue ERA5. 184 

The dark orange lines show ERA5-Land-SnowModel outputs and the light orange the ERA5-Land SWE. The legend 185 

indicates the RMSE between the simulated SWE and the ASO SWE for each year. 186 

 187 

To go beyond this coarse catchment scale diagnostic (1100 km²), we also analyze the distribution of the residuals at the pixel 188 

scale (0.01  km²). Considering the entire simulation period, 10% of the cells have an RMSE above 0.5 m w.e. Figure 4 shows 189 

the distribution of the residuals for every date with ASO observations for three contrasted hydrological years. This figure 190 

indicates that the spread of the residuals increases with the mean SWE depth. For the dry year, the interquartiles of SnowModel 191 

SWE residuals for ERA5 and ERA5-Land do not exceed 0.17 m and 0.09 m w.e. respectively. For the average year, the 192 

interquartiles reach  0.31 m and 0.38 m w.e. and for the wet year 2017, they peak respectively at 0.64 and 0.82 m w.e. 193 

 194 

 195 
Figure 4: Distribution of the residuals between the SnowModel simulated SWE and the ASO SWE at 100 m resolution 196 

in the Tuolumne river catchment (in m w.e.) for three contrasted hydrological years. Filled boxes represent the 197 
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interquartile range, the whiskers show the 5-95 percentiles, the line in each box represents the median of the 198 

distribution, and the green triangle shows the mean. 199 

 200 

Figure 5 shows the distribution of the residuals for two dates by slope, elevation and aspect. We selected an average 201 

hydrological year, once the 1st of April and once at the end of the melting season. The interquartile of the error distribution 202 

never exceeds 0.41 m.w.e. in slope or aspect categories but peaks at 0.67 m.w.e. in the highest elevation band the 1st of April 203 

for the simulations forced with ERA5-Land. 204 

 205 

 206 

Figure 5: Distribution of the residuals between the SnowModel simulated SWE and the ASO SWE at 100 m resolution 207 

in the Tuolumne river catchment (in m w.e.) on the 1st of April 2016 stratified by slope (in percent), elevation (in m 208 

a.s.l.) and aspect (in degrees from north). Whiskers show the 5-95 percentile, the line in each box represents the median 209 

of the distribution and the green triangle shows the mean. Slope, elevation and aspects have been calculated using the 210 

DEM at 100 m resolution. 211 
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3.2 Comparison with Sentinel-1 snow depth 212 

Between 2016 and 2019, there are three dates for which we have both Sentinel-1 and ASO snow depth data. Table 1 213 

summarizes the mean residuals, standard deviation of the residuals and RMSE for each date, comparing Sentinel-1 data and 214 

the SnowModel simulations to ASO snow depth observations. On the 2017-03-03, Sentinel-1 has the lower mean residuals, 215 

standard deviation and RMSE, not far from the ERA5-SnowModel simulations while ERA5-Land-SnowModel simulations 216 

have a greater mean residuals and RMSE. On the second date, the 2018-05-01, Sentinel-1 still performs the best, followed this 217 

time by ERA5-Land-SnowModel simulations while ERA5-SnowModel simulations underperform. Finally on the 2019-03-24, 218 

the closer data to the ASO snow depths seems to be the ERA5-SnowModel simulations and Sentinel-1 data have the most 219 

unsatisfactory performance.     220 

 221 

 222 

 2017-03-03 2018-05-28 2019-03-24 

 

ERA5&

SM 

ERA5-

Land &SM Sentinel-1 

ERA5&S

M 

ERA5-Land 

&SM Sentinel-1 

ERA5&S

M 

ERA5-

Land &SM Sentinel-1 

R² 0.44 0.36 0.37 0.51 0.47 0.52 0.31 0.27 0.25 

Mean 

Residuals -0.49 -0.83 -0.43 0.16 -0.09 -0.05 -0.65 -0.92 -1.24 

Standard 

Deviation 

Residuals 0.90 0.86 0.86 0.41 0.26 0.21 0.81 0.73 0.61 

RMSE 1.02 1.20 0.96 0.44 0.27 0.21 1.04 1.17 1.38 

 223 

Table 1: Statistics on the residuals and RMSE for Sentinel-1 data and SnowModel simulations with ERA5 and ERA5-224 

Land. Statistics are computed at a 1 km resolution and compared to ASO snow depths. 225 

  226 

Figure 6 presents snow depth maps on the Tuolumne River catchment at 1 km resolution with Sentinel-1, ASO and ERA5-227 

SnowModel data. Some pixels are not always observed with ASO data and these missing values are propagated at 1 km 228 

resolution. The same mask is applied on the SnowModel simulations and Sentinel-1 data. Additional missing values are 229 

observed in the Sentinel-1 snow depth maps. Therefore, the statistics of Table 1 are not computed on the exact same area. We 230 

chose to take all possible data into account. 231 

 232 
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 233 
Figure 6: Snow depth maps at 1 km resolution with Sentinel-1, ASO and ERA-SnowModel data. 234 

 235 

Figure 7 shows the Sentinel-1 observed and SnowModel simulated snow depth compared to the ASO observed snow depth, 236 

resampled to a 1 km resolution. We see an underestimation of the snow depth above 2 meters with Sentinel-1 in 2017 and 237 

2019, which is very clear for 2019 when the mean bias is the highest with a relatively low standard deviation. In 2018, Sentinel-238 

1 also underestimates the snow depth. With the ERA5 SnowModel simulations, most of the distribution is centered around a 239 

mean bias that is underestimating the snow depth in 2017 and 2019. We note several cells with a high positive error. In 2018, 240 

the situation is reversed : most of the snow depth estimated with ERA5 SnowModel are overestimated. Finally, the simulations 241 

with ERA5-Land seem to cap at 4 meters of snow depth in 2017 and 2019, with a declining accuracy with the ASO snow depth 242 

starting at 2 m. In 2018, the ERA5-Land SnowModel simulations are mostly underestimating snow depths. 243 

 244 
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 245 
Figure 7: Scatter plots representing the observed and SnowModel simulated snow depth data as a function of ASO 246 

snow depth data, with a one to one line in black. All data is resampled at 1 km resolution. 247 

 248 

4 Discussion 249 

 250 

Downscaling ERA5 forcing is critical to obtain realistic SWE in the Tuolumne and is sufficient to remove the strong negative 251 

bias that is otherwise present in the original ERA5 SWE (Fig 3). The use of this pipeline for long simulation periods could 252 

also bypass the discontinuities in the ERA5 SWE (Urraca and Gobron, 2023) which are caused by a snow capping in the data 253 

assimilation code and the arrival of new snow depth data available for assimilation.  The main effect of the downscaling is a 254 

better representation of the air temperature distribution and therefore a better representation of the solid precipitation fraction. 255 

Then, the performance of the SnowModel simulated SWE largely relies on ERA5 precipitation. Our results suggest that the 256 
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winter precipitation are well represented by ERA5 over the Sierra Nevada, in agreement with previous studies highlighting the 257 

good performances of ERA5 precipitation especially in extratropical regions (Lavers et al., 2022). We find an overestimation 258 

of snow accumulation in high elevation however which occurs only above 3000 m asl. In the study domain, the maximum 259 

elevation of ERA5 and ERA5-Land grid cells are 2654 m and 3100 m respectively. Hence the overestimation shown in Figure 260 

5 is most probably due to the extrapolation of ERA5 precipitation by MicroMet. MicroMet uses monthly coefficients to adjust 261 

precipitation with elevation. These coefficients were derived from a large precipitation gauge dataset in the Western North 262 

America including the Tuolumne river catchment (Liston and Elder, 2006b). As a result, they only represent a first order 263 

variation of precipitation with elevation and may introduce large biases only in areas whose fine scale elevation (i.e. at the 264 

scale of the 100 m grid) deviates substantially from the ERA5 grid cell elevation. Another possible source of error in high 265 

elevation regions is the lack of gravitational transport in SnowModel. High elevation and steep slopes are prone to avalanches 266 

thereby reducing the accumulated snow during the winter season (Quéno et al., 2023). However, we did not find a clear 267 

correlation between the terrain slope and the model error (Fig. 5). Slopes above 15% have a slightly wider error distribution 268 

but the mean absolute biases remain below 0.10 m w.e for both simulations. We also verified the residuals distribution by 269 

average slope classes computed from a 3 m resolution slope raster (computed from the ASO snow-off lidar DEM) and found 270 

similar results. Hence, we do not see a clear evidence that the lack of gravitational transport is the main cause of the high 271 

elevation biases. 272 

 273 

At catchment scale we do not find a clear difference between ERA5-SnowModel and ERA5-Land-SnowModel outputs. This 274 

suggests that the details of the downscaling scheme are not the primary factors of the simulation performance. However, there 275 

is a deviation between both simulations at high elevation. The downscaling of ERA5 creates a strictly increasing bias with 276 

elevation above 2500 m, whereas ERA5-Land creates a more complex bias that is negative between 2000 m and 3000 m and 277 

becomes positive above 3500 m. This more complex bias distribution reflects the fact that the output of the ERA5-Land 278 

SnowModel pipeline is the result of two downscaling schemes (first ERA5 to ERA5-Land, then ERA5-Land to 100 m using 279 

MicroMet, Fig. 2). ERA5-Land atmospheric variables are generated by linear interpolation of their ERA5 counterparts. ERA5-280 

Land air temperature and humidity are also adjusted using the grid cell elevation using a daily lapse rate derived from ERA5 281 

lower troposphere temperature vertical profile (Dutra et al., 2020). This is similar to the MicroMet algorithm. Yet, there are 282 

several differences. In particular, the air temperature downscaling scheme in ERA5-Land is based on a daily environmental 283 

lapse rate derived from ERA5 lower troposphere temperature vertical profiles (Muñoz Sabater, 2019), whereas MicroMet lapse 284 

rates are fixed by month. Unlike ERA5-Land, MicroMet also adjusts the precipitation rates using a function of elevation 285 

(Liston and Elder, 2006b). This is the cause of the non-monotonic evolution of the SWE bias by elevation from ERA5-Land-286 

SnowModel. In future applications we will favor ERA5 instead of ERA5-Land to avoid conflicting processes in the 287 

downscaling of atmospheric variables. It makes it easier to adjust the precipitation correction factors from local data. Using 288 

ERA5 is also more practical as it significantly reduces the download time, computing cost and memory usage of our pipeline. 289 

 290 
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We note the very good performance of ERA5-Land SWE at catchment scale despite its coarse scale (9 km resolution). This 291 

result is in line with (Muñoz-Sabater et al., 2021) who find better performances of ERA5-Land than ERA5 between 1500 m 292 

and 3000 m a.s.l., an elevation band that carries 68 % of the Tuolumne River catchment. (Shao et al., 2022) found a great 293 

accuracy of the ERA5-Land SWE dataset with an RMSE below 0.04 m w.e. in regions north of 45°N. Overall, the performance 294 

of ERA5-Land SWE needs to be consolidated in other regions and ideally over larger domains of mountainous areas. Previous 295 

studies suggested that a resolution below 500 m is required to properly simulate the snowpack distribution (Baba et al., 2019; 296 

Bair et al., 2023). In addition, ERA5-Land resolution does not meet the essential climate variable requirements set by the 297 

World Meteorological Organization for SWE (goal is 500 m resolution) (WMO e-Library, 2024). 298 

 299 

Regarding Sentinel-1, our results suggest that the snow depth is well captured by the C-SNOW algorithm at 1 km resolution. 300 

Although we are interested in SWE and not snow depth, the ASO program has shown that useful SWE products can be derived 301 

from remotely sensed snow depth. Sentinel-1 snow depth dataset seems to represent quite accurately the spatial variability 302 

inside the catchment, although we note a slight underestimation for all three dates before the melting period (2017 and 2019) 303 

and after it (2018). There is no clear pattern in the errors that emerge from these three dates. However, the modeling approach 304 

with ERA-5 (Land) and SnowModel yields similar performances in terms of snow depth as C-SNOW products on the same 305 

dates with more easily understandable error patterns. The simulations with ERA5 and SnowModel are mostly centered around 306 

a negative bias constant with the observed snow depth before the melting period (2017 and 2019), probably representing a 307 

small negative bias in the ERA5 precipitation. The simulations with ERA5-Land SnowModel seem to cap at 4 m which could 308 

be the result of the two consecutives downscaling in the precipitations : the combination of an underestimation of ERA5 309 

precipitation and its downscaling, plus the limitation of the elevation difference between ERA5-Land stations and the DEM 310 

so the MicroMet precipitation factor can not enhance enough the high resolution precipitations. There are different error 311 

sources in the three methods but overall the key difference is that the model provides temporally continuous SWE, snow depth 312 

and other relevant variables like snowmelt runoff, whereas C-SNOW snow depth products are temporally sparse and often 313 

masked during the melt season. 314 

 315 

Our study has several limitations. Despite the large amount of data that were used for this study, our analysis is biased towards 316 

the melt season since most of the ASO surveys were performed during the melt season for operational purposes. As a 317 

consequence, the evaluation of the Sentinel-1 snow depth is limited to three dates only. In addition, we used ASO SWE which 318 

is not a direct observation but a combination of accurate snow depth measurements and modeled snow density. Previous work 319 

has shown that SWE variability is mostly driven by the snow depth variability (López-Moreno et al., 2013; Sturm et al., 2010). 320 

Another limitation is the fact that ERA5 skills may not be homogeneous across the globe due to the uneven distribution of the 321 

assimilated observations. In addition, MicroMet precipitation correction coefficients were obtained from a large region 322 

covering the study area, hence they may not be applicable in other regions. Therefore, we cannot generalize our results to other 323 

regions. However, the increasing weight of global satellite observations in ERA5 over time suggests that ERA5 performances 324 

https://doi.org/10.5194/egusphere-2024-791
Preprint. Discussion started: 22 April 2024
c© Author(s) 2024. CC BY 4.0 License.



16 
 

should be more spatially homogeneous in the recent and upcoming years. As a consequence, ERA5 uncertainty varies with 325 

time since more and more data are available for data assimilation (Bell et al., 2021). This could be a limitation to compute 326 

trends over large periods (Bengtsson et al., 2004). 327 

 328 

However these errors have a low impact at the catchment scale and we can conclude that ERA5-SnowModel is promising for 329 

water resources applications. This pipeline can be used to simulate SWE in near real time without the need of in situ 330 

measurements. The development of a parallel version of SnowModel opens the door to continental scale applications (Mower 331 

et al., 2023). 332 

5 Conclusion 333 

We have evaluated a pipeline to simulate the snowpack in mountainous catchment from global datasets only. This tool is based 334 

on Copernicus land cover and DEM, ERA5 (or ERA5-Land) and SnowModel. It generates daily gridded snow water equivalent 335 

over any region and any period of interest since 1940. Based on 49 reference SWE surveys spanning seven contrasted 336 

hydrological years, we find that it simulates well the SWE at the scale of the Tuolumne river catchment, with RMSE of 0.06 337 

m (and 0.08 m) and correlation of 0.99. The SWE is also well simulated by elevation bands, except in the highest elevation 338 

band where unrealistic SWE values were simulated. Between ERA5 and ERA5-Land, ERA5 is more convenient to use 339 

especially because it requires less computing resources. Using the near real time release of ERA5, this method allows the 340 

simulation of SWE with a 5 day latency. This makes this method usable in operational context and competitive with a satellite-341 

based approach. In particular, we found that it simulates the snow depth as well as the C-SNOW products derived from 342 

Sentinel-1, which is only available during dry snow conditions. 343 

 344 

Our study focused on a single catchment due to the availability of the ASO SWE products. However, ERA5 skills may vary 345 

geographically and temporally due to the heterogeneity of assimilated data sources. Therefore, the performance of this method 346 

should be evaluated in other mountain catchments. Recent remote sensing methods to retrieve snow depth from very high 347 

resolution stereoscopic imagery will be useful for that perspective. To further reduce the errors in the simulation at finer 348 

resolution, we also intend to add a data assimilation module in order to take advantage of other global datasets such as the 349 

snow cover area from remote sensing. 350 
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Appendix 480 

Copernicus 

class number 

Copernicus Vegetation type Forest type Leaf type Chosen 

corresponding SM 

class 

SM class 

number 

0 Nodata    -9999 

20 Shrubs   Mesic upland shrub 6 

30 Herbaceous Vegetation   Grassland rangeland 12 

40 cropland   short crops 23 

50 Urban   Residential/urban 21 

60 sparse vegetation   Bare 18 

70 Snow and ice   Permanent 

snow/glacier 

20 

80 Permanent water bodies   water/ possibly 

frozen 

19 

90 Herbaceous wetland   Shrub wetland/ 

riparian 

9 

100 Moss and lichen   Bare 18 

111 closed forest evergreen needle Coniferous forest 1 

112 closed forest evergreen broad Coniferous forest 1 
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113 closed forest deciduous needle Deciduous forest 2 

114 closed forest deciduous broad Deciduous forest 2 

115 closed forest mixed  Mixed forest 3 

116 closed forest unknown  Mixed forest 3 

121 open forest evergreen needle Coniferous forest 1 

122 open forest evergreen broad Coniferous forest 1 

123 open forest deciduous needle Deciduous forest 2 

124 open forest deciduous broad Deciduous forest 2 

125 open forest mixed  Mixed forest 3 

126 open forest unknown  Mixed forest 3 

200 open sea   Ocean 24 

 481 
Table A1 : Correspondence table between Copernicus land cover and SnowModel vegetation classes 482 
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