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Abstract. Spatial distribution of mountain snow water equivalent (SWE) is key information for water management. We 12 

implement a tool to simulate snowpack properties at high resolution (100 m) by using only global datasets of meteorology, 13 

land cover and elevation. The meteorological data are obtained from ERA5 which makes the method applicable in near real 14 

time (5 day latency). We evaluate the output using 49 SWE maps derived from airborne lidar surveys in the Sierra Nevada. 15 

We find a very good agreement at the catchment scale using uncalibrated lapse rates. Larger biases at the model grid scale are 16 

especially evident at high elevation but do not alter the catchment-scale snow mass accuracy. We additionally compare the 17 

simulated snow depth to Sentinel-1 retrievals and find a similar accuracy with respect to synchronous airborne lidar surveys. 18 

However, Sentinel-1 snow depth products are sparse and often masked during the melt season, whereas ERA5-SnowModel 19 

provides spatially and temporally continuous SWE. 20 

1 Introduction 21 

Many populated regions with dry summers and wet winters depend on mountain snow for water supply (Mankin et al., 2015; 22 

Sturm et al., 2017; Viviroli et al., 2020). Understanding the catchment scale seasonal snow storage before and during the melt 23 

season is key to optimizing water use between hydropower production, crop irrigation and freshwater supply. In addition, an 24 

accurate prediction of the timing and magnitude of the snowmelt runoff is bound by our ability to characterize the spatial 25 

distribution of mountain snow before the melt season (Freudiger et al., 2017). 26 

 27 
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Despite its hydrological significance, the snow water equivalent (SWE) remains poorly monitored in many mountain regions 28 

especially outside North America and Europe. In situ measurements are often too sparse considering the spatial variability of 29 

mountain snow (Fayad et al., 2017).  To cope with this issue, airborne measurement campaigns are now routinely used in the 30 

western USA to measure snow depth but their cost remains prohibitive in other regions (Painter et al., 2016). Meanwhile, 31 

several approaches have emerged to retrieve mountain snow depth from satellite remote sensing (e.g. Pléiades, ICESat-2 and 32 

Sentinel-1). Pléiades very high resolution stereoscopic images can be used to generate snow depth images by differencing two 33 

digital elevation models. However, this approach is limited to small regions (Marti et al., 2016)      ICEsat-2 lidar altimetry has 34 

the potential to provide      snow depth data at global scale but with      a sparse sampling (Deschamps-Berger et al., 2023). 35 

Sentinel-1 has been used to derive snow depth at 1 km resolution in the northern hemisphere (Lievens et al., 2019), and 500 m 36 

over the European Alps (Lievens et al., 2022). This method, which is based on an empirical change detection method applied 37 

to the cross-polarization ratio, is limited to dry snow conditions and therefore does not allow monitoring of the snowpack 38 

during the melt season. However, it offers a global and spatially continuous coverage which is a key advantage with respect 39 

to the other approaches. All the above remote sensing approaches require an estimation of snow density to obtain the SWE, 40 

but it has been established that snow depth explains most of the SWE variance (Guyennon et al., 2019; López-Moreno et al., 41 

2013; Sturm et al., 2010; Bormann et al., 2013). 42 

 43 

Another approach to estimating mountain SWE distribution is to use a snowpack model, but the challenge then lies with 44 

obtaining accurate meteorological forcing (Günther et al., 2019; Raleigh et al., 2016). To cope with the lack or sparsity of in 45 

situ meteorological measurements, one solution is to use atmospheric model outputs as forcing data. In particular, climate 46 

reanalyses can provide long term hourly meteorological data at global scale. Climate reanalyses are also becoming increasingly 47 

accurate (Hersbach et al., 2020) with advances in atmospheric and land surface modeling and the assimilation of a growing 48 

dataset of in situ and remote sensing observations. These reanalyses have also seen notable progress in recent years in terms 49 

of latency. For example, the preliminary ERA5 reanalysis provided by the European Centre for Medium-Range Weather 50 

Forecasts has a short latency of 5 days (whereas it was 2–3 months with the previous ERA-Interim). This preliminary product 51 

only rarely deviates from the fully quality-checked final product that is released 2 months later (Hersbach et al., 2020). This 52 

timely product can fulfill the need for up-to-date meteorological forcing information. However, reanalyses cannot be used 53 

directly to force a mountain snowpack model because the grid cell size is too coarse (approximately 30 - 50 kilometers for 54 

ERA5 and MERRA-2 respectively), which creates large biases in the computed SWE (Wrzesien et al., 2019; Liu et al., 2022). 55 

 56 

To address the mismatch in spatial resolution between reanalyses datasets and snow distribution, previous studies used 57 

downscaling algorithms based on a digital elevation model before running a snowpack model on a finer grid (Armstrong et al., 58 

2018; Baba et al., 2018; Billecocq et al., 2023; Mernild et al., 2017; Weber et al., 2021). This approach enables estimation of 59 

high resolution SWE and snow depth without ground data. For example, Mernild et al. (2017) and Baba et al. (2018) studied 60 

the snowpack properties over large and ungauged regions in the Andes and the High Atlas mountain ranges using the 61 
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MicroMet/SnowModel package (Liston et al., 2020; Liston and Elder, 2006a, b). The evaluation of these simulations relied on 62 

in situ observations or remote sensing snow cover area. Weber et al. (2021) used 10 years of snow depth measurements from 63 

two automatic weather stations to assess their simulations in the Research Catchment Zugspitze (12 km²). Mernild et al. (2017) 64 

used 13 years of MODIS data over the Andes Cordillera (~16 million km²) along with 4 km grid maps of snow depth that were 65 

reconstructed from in situ observations. Baba et al. (2018) used 18 years of MODIS data to assess simulations in the High 66 

Atlas of Morocco, snow depth at a single automatic weather station, precipitation at three meteorological stations and river 67 

discharge of the Ourika catchment (503 km²). However, in situ data are sparse and MODIS snow cover area does not allow a 68 

thorough evaluation of the model ability to capture snow mass across the landscape. 69 

 70 

In this study, we focus on the Tuolumne River catchment in the Sierra Nevada, USA (Figure 1). Since 2013, this site has been 71 

regularly surveyed by the Airborne Snow Observatory (ASO) to determine snow depth and SWE. The ASO dataset on the 72 

Tuolumne catchment       is the densest time series of high resolution snow depth (3 m) and SWE (50m) maps publicly available      73 

at this scale (1100 km²) in the world. The dataset contains 49 surveys and spans several years with contrasted climatic 74 

conditions including California’s most severe drought in the last 1200 years during 2012-2014 (Griffin & Anchukaitis, 2014) 75 

and the “snowpocalypse” 2016–2017 winter which was characterized by near-record snow accumulation (Painter et al., 2017). 76 

We leverage this observational dataset to evaluate a new processing pipeline which generates 100 m resolution SWE and snow 77 

depth estimates from ERA5 or ERA5-Land. This pipeline, inspired by previous works (Baba et al., 2018; Mernild et al., 2017) 78 

is a wrapper around MicroMet/SnowModel code. It was designed to work with global meteorological forcing datasets. As 79 

such, the workflow can generate high resolution snow cover simulations in any region of interest across the globe from 1940 80 

up to present, with any resolution between 1 m and 200 m (Liston and Elder, 2006b). Furthermore, we compare the output of 81 

this pipeline with the more direct approach of Sentinel-1 snow depth on dates matching the ASO measurements. 82 

  83 
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 85 
Figure 1: Map representing the SWE variability measured by ASO, along with ERA5 and ERA5-Land cells centers 86 

and the Tuolumne River catchment border overlaying the DEM hillshade. 87 

2 Data and Methods 88 

2.1 Data 89 

We used two reanalyses in this study, ERA5 and ERA5-Land. ERA5 is a reanalysis of the global climate and weather since 90 

1940, with a 0.25° resolution (approximately 30 km). It provides hourly atmospheric, oceanic and land-surface variables 91 

computed with a global model and improved by the assimilation of multiple in situ and remote sensing datasets (Hersbach et 92 

al., 2020). ERA5-Land is produced by recomputing ERA5 land variables at finer resolution using a downscaled meteorological 93 

forcing (Muñoz Sabater, 2019). It delivers these variables on a global scale at a 0.1° resolution, from 1950 to this day. As 94 

mentioned above, preliminary versions of ERA5 and ERA5-Land are distributed with a short latency of 5 days. These datasets 95 
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are freely available from the Copernicus Climate Change Service (C3S) and can be queried via their application programming 96 

interface (with tutorials that can be found on their website :  Retrieving data — Climate Data Store Toolbox 1.1.5 97 

documentation) 98 

 . We focused on ERA5 here as we found that it yielded slightly better results than MERRA-2 in a previous case study using 99 

the same approach (Baba et al., 2021). In addition, the latency of MERRA-2 is 3 weeks which may be too long for operational 100 

water resources applications. To run the model (see section 2.2.1     ), we also used the 30 m Copernicus Digital Elevation 101 

Model (DEM) (Copernicus Digital Elevation Model, 2023) and the 100 m Copernicus Land Cover (Buchhorn et al., 2020). 102 

 103 

We obtained Sentinel-1 snow depth between 2016 and 2019 from the C-SNOW repository (C-SNOW). Sentinel-1 C-band 104 

backscatter observations were used to derive ~1 km resolution snow depth, using an empirical change detection (Lievens et 105 

al., 2019). This product has a revisit time of approximately 3 days over the Tuolumne River catchment during winter but 106 

provides almost no data in spring because the algorithm is considered to be invalid when the snowpack contains liquid water. 107 

When the snowpack is wet, there is a larger absorption and reflection of the microwave signal emitted by Sentinel-1 which 108 

greatly decreases the performances of the C-SNOW algorithm (Lievens et al., 2019; Tsai et al., 2019).  109 

 110 

For the evaluation of model outputs and Sentinel-1 products, we used 49 SWE and snow depth maps collected between 2013 111 

and 2019 by the ASO. The ASO acquires hyperspectral data for snow albedo and lidar data for snow depth and computes SWE 112 

as a derived product (Painter et al., 2016). Snow depth is available with a 3 m resolution while SWE has 50 m resolution. The 113 

reported accuracy on the 3 m snow depth products is 0.08 m (Painter et al., 2016) and from spatially intensive sampling, the 114 

reported accuracy for the 50 m snow depth products is < 0.01 m (Painter et al., 2016, Figure 15). There are no published 115 

references for the 50 m SWE product. However, Rayleigh & Small (2017) estimated an uncertainty in modeled density of 48 116 

kg/m³ in the Tuolumne basin. This uncertainty can be regarded as a conservative estimate as in situ measurements of snow 117 

density are also used by the ASO to adjust their density model (Painter et al., 2016). Therefore, for a 1 m deep snowpack and 118 

an      uncertainty in snow density of      50 kg/m³     , we estimate the uncertainty of the 50 m SWE products to be      0.05 m 119 

w.e (meters of water equivalent)     . 120 

2.2 Methods 121 

2.2.1 SnowModel 122 

SnowModel is designed to simulate snow evolution on a high resolution grid (1 m to 200 m increments) and a time step from 123 

1 min to 1 day (Liston et al., 2020; Liston and Elder, 2006a). It is separated into four submodels: i) MicroMet redistributes 124 

meteorological forcings (air temperature, relative humidity, wind speed and direction, precipitation, solar radiation, long wave 125 

radiation, and surface pressure) to the target simulation grid (Liston and Elder, 2006b). ii) EnBal computes the snow surface 126 

energy balance, iii) SnowPack computes the snow density and snow depth and iv) SnowTran-3D computes the blowing snow 127 
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sublimation and snow redistribution due to wind transport (Liston et al., 2007). SnowModel accounts for the vegetation effects 128 

on the snow cover such as coniferous forests or grassland to the grid cell vegetation type. MicroMet was originally designed 129 

to interpolate station data on a regular grid. Here, a climate reanalysis grid cell is considered as a virtual station located at the 130 

grid cell center. 131 

 132 

2.2.2 Model input 133 

 134 
Figure 2: Summary of the different data sources, with their spatial resolutions. Arrows represent a process and the 135 

dotted lines the comparison between different data. 136 

 137 

We developed a tool to automatically prepare SnowModel input files from ERA5 and ERA5-Land data and run the simulations. 138 

This tool uses a DEM     of the region of interest as an input along with the start and end of the simulation period. We let the 139 

user specify the DEM because it is used to define the model grid, which is the main control of the computation time. Here we 140 

used the 30 m Copernicus orthometric DEM that we extracted and resampled to a WGS84 UTM 11N grid at 100 m resolution 141 

using the bilinear method over a region covering the Tuolumne River catchment. The simulation period was set to September 142 
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2012-August 2019, and spans seven years of snowpack dynamics. Using the Climate Data Store Application Program 143 

Interface, our tool downloads ERA5 or ERA5-Land hourly meteorological data ( 2 m temperature, 2 m dew point temperature, 144 

precipitation, 10 m wind eastward and northward component) over the region of interest given by the DEM bounding box 145 

extended to the adjacent ERA5/ERA5-Land neighbouring cells (~30km/11km respectively). Once downloaded, the 146 

meteorological data are processed to match SnowModel/MicroMet input format and  147 

units. ERA5-Land precipitation is provided as daily cumulative values and is therefore converted to hourly precipitation rate. 148 

Wind components (u,v) are converted into wind speed and direction (0-360°N). The dew point temperature is converted into 149 

relative humidity using Buck’s equation (Buck, 1981), the same equation that is used in MicroMet. The elevations of 150 

ERA5/ERA5-Land cells are determined from the global geopotential file that is first interpolated on the model grid with a 151 

bilinear algorithm. The tool also resamples the Copernicus land cover map on the model grid using the mode resampling 152 

algorithm (GDAL/OGR contributors, 2024). We built a correspondence table to remap the Copernicus land cover classes to 153 

the SnowModel land cover classification (see Table A1 in appendix). We set all SnowModel parameters (the curvature length 154 

scale, curvature and wind slope weights, minimum wind speed, precipitations schemes for downscaling or for rain-snow 155 

fractions, subcanopy radiations schemes, various thresholds for wind transport calculations) to the default values (see the 156 

parameter file snowmodel.par in the code availability section) . A simple parametrization of the albedo is used with a constant 157 

value 0.8 in dry condition, whereas albedo values for melting snow cover are set according to land covers (Liston et al., 2020). 158 

We used the default monthly temperature lapse rates and precipitation factors which adjust the precipitation values to the 159 

elevation of the model grid. This tool is implemented in Python. The source code and a more detailed documentation is 160 

available at (code availability section). 161 

2.2.3 Comparison with ASO SWE 162 

We resampled the ASO SWE (n=49 surveys) to the model grid which has a resolution (100 m). The resampling was done 163 

using the weighted average of all valid contributing pixels (GDAL/OGR contributors, 2024). We also created a validity mask 164 

to select cells in the Tuolumne River catchment that were always observed by the ASO during this period (some regions were 165 

not always available, representing 2.5% of the catchment area). ASO data and ERA-SnowModel outputs were averaged over 166 

the valid cells to compute the temporal evolution of the catchment-mean SWE. Then, we analyzed the spatially distributed 167 

residuals on the catchment for each observation date of a dry year (2014-2015), a wet year (2016-2017) and an average year 168 

(2015-2016). We used the validity-masked SWE maps to subtract the ASO observations from the ERA-SnowModel output. A 169 

positive bias means the simulated SWE is larger than the observations. 170 

 171 

Additionally, we extracted ERA5 and ERA5-Land daily SWE over the Tuolumne River catchment and computed the 172 

catchment scale SWE using an area weighted average (i.e. each SWE value was weighted by the fraction of the grid cell area 173 

within the catchment). Since these SWE products have a very coarse resolution of approximately 31 and 9 km ( Fig. 1, Fig. 2), 174 

we did not use them to analyze the residuals distribution as above. 175 
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2.2.4 Comparison with Sentinel-1 snow depth 176 

Over the entire study period, we identified three matchup dates for which we have both ASO and Sentinel-1 snow depth 177 

observations with a minimum coverage of 60% of the catchment area. On these dates, the snow depths given by ASO, Sentinel-178 

1 and ERA-SnowModel were resampled to a common 1 km UTM grid. We applied another validity mask for the cells where 179 

the snow depth is not always available to all three snow depth datasets (here representing 8.5% of missing data in the 180 

catchment). The missing values in the 3 m resolution ASO dataset are propagated at the 1 km resolution validity mask. This 181 

decreases the number of observations but ensures that the resampled 1 km snow depths maps are not biased by the spatial 182 

distribution of non-valid pixels in  the 3 m ASO snow depth dataset.      We computed the distributed residuals by subtracting 183 

the ASO snow depth from both SnowModel simulations and Sentinel-1 data. For each date, we averaged the residuals to 184 

compute the mean bias, and we computed the standard deviation of the error. We also computed the RMSE over the catchment 185 

for each date . 186 

3 Results 187 

3.1 Comparison with ASO SWE 188 

Figure 3 shows the temporal evolution of the catchment scale SWE from ASO observations and SnowModel simulations 189 

forced with ERA5 and ERA5-Land. There is a very good agreement between the observations and both simulations, with an 190 

overall correlation of 0.99 for both ERA5 and ERA5-Land SnowModel simulations (with 49 observation dates). First, both 191 

simulations capture the large interannual variability of SWE in the Tuolumne River catchment during the study period. The 192 

observed annual peak SWE ranges from 0.11 m in 2015 to 1.27 m in 2017 while the SnowModel simulations yield from 0.17 193 

m to 1.19 m with ERA5 and from 0.12 m to 1.24 m with ERA5-Land during the same years (but at different dates). In addition, 194 

the model is reproducing the seasonal evolution of SWE with an annual RMSE ranging from 0.03 m to 0.13 m. The catchment 195 

scale SWE accumulation in the ERA5-SnowModel simulations is well captured.We note an underestimation of the snow 196 

ablation rates in late spring, which causing a delay from a few days (2013) to one month approximately (2019) in the date of 197 

complete melt out. This issue is mostly evident in 2016-2017 since the ablation rates are insufficient to reach the complete 198 

removal of the snowpack in August as observed by the ASO. Interestingly, we also note that ERA5-Land without resampling 199 

almost always reports the lowest RMSE at the catchment scale, though at 0.1º the distribution of the snow is not well 200 

represented. 201 

 202 
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 203 
Figure 3: Temporal evolution of the Tuolumne river catchment SWE for seven hydrological years from 2012 to 2019. 204 

The legend indicates the RMSE between the simulated SWE and the ASO SWE for each year. 205 

 206 

To go beyond this coarse catchment scale diagnostic (1100 km²), we also analyze the distribution of the residuals at the pixel 207 

scale (0.01  km²). We computed a map of RMSE using all the 49 validation dates we have between 2013 and 2019. 10% of the 208 

cells in this map have a RMSE above 0.5 m w.e.. Figure 4 shows the distribution of the residuals for every date with ASO 209 

observations for three contrasted hydrological years. The spread of the residuals are shown with the interquartile (i.e., the 210 

difference between the 25 and 75th percentiles) inside the colored boxes, and with the 5-95th percentiles inside the whiskers.  211 

This figure indicates that the spread of the residuals increases with the mean SWE depth. For the dry year, the interquartiles 212 

of SnowModel SWE residuals for ERA5 and ERA5-Land do not exceed 0.17 m and 0.09 m w.e. respectively. For the average 213 

year, the interquartiles reach  0.31 m and 0.38 m w.e. and for the wet year 2017, they peak respectively at 0.64 and 0.82 m 214 

w.e. 215 

 216 
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 217 
Figure 4: Distribution of the residuals between the SnowModel simulated SWE and the ASO SWE at 100 m resolution 218 

in the Tuolumne river catchment (in m w.e.) for three contrasted hydrological years. Filled boxes represent the 219 

interquartile range, the whiskers show the 5-95 percentiles, the line in each box represents the median of the 220 

distribution, and the green triangle shows the mean. 221 

 222 

Figure 5 shows the distribution of the residuals for two dates (2016-04-01 and 2016-05-27) by slope, elevation and aspect. We 223 

aimed to distinguish the model performance in terms of accumulation and ablation processes to better separate the sources of 224 

uncertainties in future studies. Therefore we selected a date before the melting season (April 01 2016) and a date near the end 225 

of the melting season (May 27 2016)     . The interquartile of the error distribution never exceeds 0.41 m.w.e. in slope or aspect 226 

categories but peaks at 0.67 m.w.e. in the highest elevation band the 1st of April for the simulations forced with ERA5-Land. 227 

 228 
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 229 

Figure 5: Distribution of the residuals between the SnowModel simulated SWE and the ASO SWE at 100 m resolution 230 

in the Tuolumne river catchment (in m w.e.) on the 1st of April 2016 (left) and the 27th of May (right), stratified by 231 

slope (in percent), elevation (in m a.s.l.) and aspect (in degrees from north). Whiskers show the 5-95 percentile, the line 232 

in each box represents the median of the distribution and the green triangle shows the mean. Slope, elevation and 233 

aspects have been calculated using the DEM at 100 m resolution. 234 

3.2 Comparison with Sentinel-1 snow depth 235 

Between 2016 and 2019, there are three dates for which we have both Sentinel-1 and ASO snow depth data.    Figure 6 presents 236 

snow depth maps on the Tuolumne River catchment at 1 km resolution with Sentinel-1, ASO and ERA5-SnowModel data. 237 

Some pixels are not always observed with ASO data and these missing values are propagated at 1 km resolution (if there is at 238 

least one missing value among the contributing pixels, a missing value is attributed to the target 1 km cell). The same mask is 239 

applied on the SnowModel simulations and Sentinel-1 data. Additional missing values are observed in the Sentinel-1 snow 240 

depth maps. Therefore, the statistics of Figure 7 are not computed on the exact same area. We chose to take all possible data 241 

into account. 242 
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 243 
Figure 6: Snow depth maps at 1 km resolution with Sentinel-1, ASO and ERA-SnowModel data. 244 

 245 

Figure 7 shows the Sentinel-1 observed and SnowModel simulated snow depth compared to the ASO observed snow depth, 246 

resampled to a 1 km resolution. On the 2017-03-03, Sentinel-1 has the lower bias (-0.43 m), standard deviation (0.86 m) and 247 

RMSE (0.96 m). These statistics are close      to the ERA5-SnowModel simulations (respectively -0.49 m, 0.9 m, 1.02 m) while 248 

ERA5-Land-SnowModel simulations have a greater bias (-0.83 m) and RMSE (1.2 m) with a comparable standard deviation 249 

(0.86 m). On the second date, the 2018-05-01, Sentinel-1 still performs the best with a bias of -0.05 m, and standard deviation 250 

and RMSE both equals to 0.21 m     . On this date,      ERA5-Land-SnowModel simulations are similar to Sentinel-1 with a 251 

bias of -0.09 m, standard deviation of 0.26 m and RMSE of 0.27 m; while ERA5-SnowModel simulations underperform with 252 

a 0.16 m bias, a 0.41 m standard deviation and a 0.44 m RMSE.. Finally on the 2019-03-24, the closer data to the ASO snow 253 

depths seems to be the ERA5-SnowModel simulations with an bias of -0.65 m, a standard deviation of 0.81 m and an RMSE 254 

of 1.04 m.           Sentinel-1 data have the highest bias (-1.24 m) and RMSE (1.38 m), but the lowest standard deviation (0.61 255 

m)     . ERA5-Land-SnowModel simulations also have a high bias (-0.92 m) and RMSE (1.17 m), with a standard deviation of 256 

0.73 m.  We see an underestimation of the snow depth above 2 meters with Sentinel-1 in 2017 and 2019, which is very clear 257 

for 2019 when the mean bias is the highest with a relatively low standard deviation. In 2018, both the ASO and Sentinel-1 258 

observed really low snow depths (<1 m) but there is still a negative bias (-0.05 m) in the Sentinel snow depth distribution     . 259 
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With the ERA5 SnowModel simulations, most of the distribution is centered around a      negative bias that is underestimating 260 

the snow depth in 2017 and 2019. We note several cells with a high positive error. In 2018, the situation is reversed : most of 261 

the snow depth estimated with ERA5 SnowModel are overestimated. Finally, the simulations with ERA5-Land seem to cap at 262 

4 meters of snow depth in 2017 and 2019, with a declining accuracy with the ASO snow depth starting at 2 m. In 2018, the 263 

ERA5-Land SnowModel simulations are mostly underestimating snow depths. 264 

 265 

      266 
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Figure 7: Scatter plots representing the observed and SnowModel simulated snow depth data as a function of ASO 267 

snow depth data, with a one to one line in black. All data are resampled at 1 km resolution. N is the number of values 268 

in each plot. 269 

 270 

4 Discussion 271 

 272 

Downscaling ERA5 forcing is critical to obtain realistic SWE in the Tuolumne catchment and is sufficient to remove the strong 273 

negative bias that is otherwise present in the original ERA5 SWE (Fig 3). The use of this pipeline for long simulation periods 274 

could also bypass the discontinuities in the ERA5 SWE (Urraca and Gobron, 2023) which are caused by a snow capping in 275 

the data assimilation code and the arrival of new snow depth data available for assimilation.  The main effect of the downscaling 276 

is a better representation of the air temperature distribution and therefore a better representation of the solid precipitation 277 

fraction. Then, the performance of the SnowModel simulated SWE largely relies on ERA5 precipitation. Our results suggest 278 

that the winter precipitation is well represented by ERA5 over the Sierra Nevada, in agreement with previous studies 279 

highlighting the good performances of ERA5 precipitation especially in extratropical regions (Lavers et al., 2022). We find an 280 

overestimation of snow accumulation in high elevation which occurs only above 3000 m asl. In the study domain, the maximum 281 

elevation of ERA5 and ERA5-Land grid cells are 2654 m and 3100 m respectively. Hence the overestimation shown in Figure 282 

5 is likely      due to the extrapolation of ERA5 precipitation by MicroMet. MicroMet uses monthly coefficients to adjust 283 

precipitation with elevation. These coefficients were derived from a large precipitation gauge dataset in the Western North 284 

America including the Tuolumne river catchment (Liston and Elder, 2006b). As a result, they only represent a first order 285 

variation of precipitation with elevation and may introduce large biases only in areas whose fine scale elevation (i.e. at the 286 

scale of the 100 m grid) deviates substantially from the ERA5 grid cell elevation. A possible source of error in high elevation 287 

regions is the lack of gravitational transport in SnowModel. High elevation and steep slopes are prone to avalanches thereby 288 

reducing the accumulated snow in these areas during the winter season (Quéno et al., 2023). However, we did not find a clear 289 

correlation between the terrain slope and the model error (Fig. 5). Slopes above 15% have a slightly wider error distribution 290 

but the mean absolute biases remain below 0.10 m w.e for both simulations. We also verified the residuals distribution by 291 

average slope classes computed from a 3 m resolution slope raster (computed from the ASO snow-off lidar DEM) and found 292 

similar results (see Figure A2 of the appendix). Hence, we do not see clear evidence that the lack of gravitational transport is 293 

the main cause of the high elevation biases. Another significant source of uncertainty is related to the albedo parameterization 294 

in SnowModel. The deposition of light absorbing particles like dust can reduce albedo and therefore increase melt especially 295 

at high elevation (Skiles et al., 2018; Dumont et al., 2020).  This might explain the relative increase of the SWE bias between 296 

the 1st of April and the 27th of May at all elevations above 2500 m (Figure 5). 297 

 298 
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At catchment scale we do not find a clear difference between ERA5-SnowModel and ERA5-Land-SnowModel outputs. This 299 

suggests that the details of the downscaling scheme are not the primary factors of the simulation performance. However, there 300 

is a deviation between both simulations at high elevation. As shown in Figure 5, the downscaling of ERA5 creates a strictly 301 

increasing bias with elevation above 2500 m, whereas ERA5-Land creates a more complex bias that is negative between 2000 302 

m and 3000 m and becomes positive above 3500 m. This more complex bias distribution reflects the fact that the output of the 303 

ERA5-Land SnowModel pipeline is the result of two downscaling schemes (first ERA5 to ERA5-Land, then ERA5-Land to 304 

100 m using MicroMet, Fig. 2). ERA5-Land atmospheric variables are generated by linear interpolation of their ERA5 305 

counterparts. ERA5-Land air temperature and humidity are also adjusted using the grid cell elevation using a daily lapse rate 306 

derived from ERA5 lower troposphere temperature vertical profile (Dutra et al., 2020). This is similar to the MicroMet 307 

algorithm. Yet, there are several differences. In particular, the air temperature downscaling scheme in ERA5-Land is based on 308 

a daily environmental lapse rate derived from ERA5 lower troposphere temperature vertical profiles (Muñoz Sabater, 2019), 309 

whereas MicroMet lapse rates are fixed by month. Unlike ERA5-Land, MicroMet also adjusts the precipitation rates using a 310 

function of elevation (Liston and Elder, 2006b). This is the cause of the non-monotonic evolution of the SWE bias by elevation 311 

from ERA5-Land-SnowModel. In future applications we will favor ERA5 instead of ERA5-Land to avoid conflicting 312 

processes in the downscaling of atmospheric variables. It makes it easier to adjust the precipitation correction factors from 313 

local data. Using ERA5 is also more practical as it significantly reduces the download time, computing cost and memory usage 314 

of our pipeline. 315 

 316 

In Figure 3, we note the very good performance of ERA5-Land SWE at catchment scale despite its coarse scale (9 km 317 

resolution). This result is in line with Muñoz-Sabater et al. (2021) who find better performances of ERA5-Land than ERA5 318 

between 1500 m and 3000 m a.s.l. because 68% of the Tuolumne River catchment is in this elevation band.      Shao et al. 319 

(2022) found a similar      accuracy of the ERA5-Land SWE dataset with an RMSE below 0.04 m w.e. in regions north of 320 

45°N. This evaluation was performed using point-scale in situ measurements over large flat regions and not            in complex 321 

mountain terrain like the Tuolumne Basin where the high spatial variability of SWE makes such evaluation more challenging 322 

(Mortimer et al. 2024). Overall, the performance of ERA5-Land SWE needs to be consolidated in other regions and ideally 323 

over larger domains of mountainous areas. Previous studies suggested that a resolution below 500 m is required to properly 324 

simulate the snowpack distribution (Baba et al., 2019; Bair et al., 2023). In addition, ERA5-Land resolution does not meet the 325 

essential climate variable requirements set by the World Meteorological Organization for SWE (goal is 500 m resolution) 326 

(WMO e-Library, 2024). 327 

 328 

Regarding Sentinel-1, Figure 7 suggests that the snow depth is well captured by the C-SNOW algorithm at 1 km resolution. 329 

Although we are interested in SWE and not snow depth, the ASO program has shown that useful SWE products can be derived 330 

from remotely sensed snow depth when combined with in situ measurements and modeled      snow density (Painter et al., 331 

2016). Figure 7 shows that Sentinel-1 snow depth dataset agrees moderately with       the spatial variability inside the catchment, 332 
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although we note a slight underestimation for all three dates before the melting period (2017 and 2019) and after it (2018). 333 

There is no clear pattern in the errors that emerge from these three dates. Other studies highlighted that the C-SNOW algorithm 334 

is not adapted to retrieve snow depth of shallower snowpack (<1.5 m) (Broxton et al., 2024; Hoppinen et al.,2024) which could 335 

be a significant obstacle for an operational use of this product. The modeling approach with ERA-5 (Land) and SnowModel 336 

yields similar performances in terms of snow depth as the C-SNOW product on the same dates. However, two patterns appear 337 

on Figure 7 for these approaches. i) The simulations with ERA5 and SnowModel are mostly centered around a negative bias 338 

constant with the observed snow depth before the melting period (2017 and 2019), probably representing a small negative bias 339 

in the ERA5 precipitation. ii) The simulations with ERA5-Land SnowModel seem to cap at 4 m which could be the result of 340 

the two consecutives downscaling in the precipitations : the combination of an underestimation of ERA5 precipitation and its 341 

downscaling, plus the limitation of the elevation difference between ERA5-Land stations and the DEM so the MicroMet 342 

precipitation factor cannot enhance enough the high resolution precipitations.      Overall, the key difference in the Tuolumne 343 

catchment is that the model provides temporally continuous SWE, snow depth and other relevant variables like snowmelt 344 

runoff, whereas C-SNOW snow depth products are temporally sparse and often masked during the melt season. 345 

 346 

Our study has several limitations. Despite the large amount of data that were used for this study, our analysis is biased towards 347 

the melt season since most of the ASO surveys were performed during the melt season for operational purposes. As a 348 

consequence, the evaluation of the Sentinel-1 snow depth is limited to three dates only. In addition, we used ASO SWE which 349 

is not a direct observation but a combination of accurate snow depth measurements and modeled snow density. Previous work 350 

has shown that SWE variability is mostly driven by the snow depth variability (López-Moreno et al., 2013; Sturm et al., 2010). 351 

Another limitation is the fact that ERA5 meteorological forcings may not be homogeneous across the globe due to the uneven 352 

distribution of the assimilated observations. In addition, MicroMet precipitation correction coefficients were obtained from a 353 

large region covering the study area, hence they may not be applicable in other regions. Therefore, we cannot generalize our 354 

results to other regions. However, the increasing weight of global satellite observations in ERA5 over time suggests that ERA5 355 

performances should be more spatially homogeneous in the recent and upcoming years. As a consequence, ERA5 uncertainty 356 

varies with time since more and more data are available for data assimilation (Bell et al., 2021). This could be a limitation to 357 

compute trends over large periods (Bengtsson et al., 2004). 358 

 359 

However these errors have a low impact at the catchment scale and we can conclude that ERA5-SnowModel is promising for 360 

water resources applications. This pipeline can be used to simulate SWE in near real time without the need of in situ 361 

measurements. The development of a parallel version of SnowModel opens the door to continental scale applications (Mower 362 

et al., 2023). 363 
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5 Conclusion 364 

We have evaluated a pipeline to simulate the snowpack in mountainous catchment from global datasets only. This tool is based 365 

on Copernicus land cover and DEM, ERA5 (or ERA5-Land) and SnowModel. It uses SnowModel/MicroMet to downscale 366 

meteorological variables from ERA5 before computing accumulation and ablation processes using other SnowModel 367 

submodels. It can generate daily gridded snow water equivalent over any region and any period of interest since 1940. Based 368 

on 49 reference SWE surveys spanning seven contrasted hydrological years, we find that the ERA5-SnowModel combination 369 

simulates well the SWE at the scale of the Tuolumne river catchment, with RMSE of 0.06 m (and 0.08 m with ERA5-Land) 370 

and correlation of 0.99 (with both datasets). The SWE is also well simulated by elevation bands, except in the highest elevation 371 

band where unrealistic SWE values were simulated. Between ERA5 and ERA5-Land, ERA5 is more convenient to use 372 

especially because it requires less computing resources. Using the near     -real-     time release of ERA5 allows the simulation 373 

of SWE with a 5 day latency. This makes this method usable in operational context and competitive with a satellite-based 374 

approach. In particular, we found that it simulates the snow depth as well as the C-SNOW products derived from Sentinel-1, 375 

which is only available during dry snow conditions. 376 

 377 

Our study focused on a single catchment due to the availability of the ASO SWE products. However, ERA5 skills may vary 378 

geographically and temporally due to the heterogeneity of assimilated data sources. Therefore, the performance of this method 379 

should be evaluated in other mountain catchments. Recent remote sensing methods to retrieve snow depth from very high 380 

resolution stereoscopic imagery will be useful for that perspective. To further reduce the errors in the simulation at finer 381 

resolution, we also intend to add a data assimilation module in order to take advantage of other global datasets such as the 382 

snow cover area from remote sensing. 383 
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Appendix 541 

Copernicus 

class number 

Copernicus Vegetation type Forest type Leaf type Chosen 

corresponding SM 

class 

SM class 

number 

0 Nodata    -9999 

20 Shrubs   Mesic upland shrub 6 

30 Herbaceous Vegetation   Grassland rangeland 12 

40 cropland   short crops 23 

50 Urban   Residential/urban 21 

60 sparse vegetation   Bare 18 

70 Snow and ice   Permanent 

snow/glacier 

20 

80 Permanent water bodies   water/ possibly 

frozen 

19 

90 Herbaceous wetland   Shrub wetland/ 

riparian 

9 

100 Moss and lichen   Bare 18 

111 closed forest evergreen needle Coniferous forest 1 

112 closed forest evergreen broad Coniferous forest 1 

113 closed forest deciduous needle Deciduous forest 2 
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114 closed forest deciduous broad Deciduous forest 2 

115 closed forest mixed  Mixed forest 3 

116 closed forest unknown  Mixed forest 3 

121 open forest evergreen needle Coniferous forest 1 

122 open forest evergreen broad Coniferous forest 1 

123 open forest deciduous needle Deciduous forest 2 

124 open forest deciduous broad Deciduous forest 2 

125 open forest mixed  Mixed forest 3 

126 open forest unknown  Mixed forest 3 

200 open sea   Ocean 24 

 542 
Table A1 : Correspondence table between Copernicus land cover and SnowModel vegetation classes 543 

 544 

 545 
Figure A2: Distribution of the residuals between the SnowModel simulated SWE and the ASO SWE at 100 m resolution 546 

in the Tuolumne river catchment (in m w.e.) on the 1st of April 2016 (left) and the 27th of May (right), stratified by 547 



25 
 

slope. Whiskers show the 5-95 percentile, the line in each box represents the median of the distribution and the green 548 

triangle shows the mean. Slope has been calculated using the DEM at 3 m resolution and has been resampled with an 549 

average algorithm at 100 m. 550 


