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Abstract. Methane (CH4) is a powerful greenhouse gas with a global warming potential 84 times higher than carbon dioxide

(CO2) over 20 years. CH4 is produced from many natural and anthropogenic sources which can be further classified as biogenic

or thermogenic in origin. The largest biogenic sources result from anaerobic decay such as wetlands, melting permafrost, or

the breakdown of organic matter in the guts of ruminant animals. Thermogenic CH4 is generated during the breakdown of

organic matter at high temperatures and pressure within the Earth’s crust, a process which also produces more complex trace5

hydrocarbons such as ethane (C2H6) and propane (C3H8). Emissions of thermogenic CH4 are dominated by the fossil fuel

energy sector, and the presence of elevated C2H6 along with CH4 can be used to distinguish oil and gas emissions from

biogenic sources. This work outlines the development and deployment of an Unmanned Aerial System (UAS) outfitted with

a fast (1 Hz) and sensitive (1− 2 ppb s−1) CH4 & C2H6 sensor and ultrasonic anemometer. The UAV platform is a vertical-

takeoff, hexarotor vehicle capable of vertical profiling to 120 m altitude and plume sampling across scales up to 1 km. This10

system has been used for direct quantification of point sources, as well as distributed emitters such as landfills, with source

rates as low as 0.04 kg h−1 and up to ~1500 kg h−1. Simultaneous measurements of CH4 and C2H6 mixing ratios, vector

winds, and positional data allows for source classification (biogenic versus thermogenic), differentiation, and emission rates

without the need for modeling or a priori assumptions about winds, vertical mixing, or other environmental conditions. The

UAS has been deployed throughout the Southwest United States for system validation and targeted quantification of various15

sources emitting at or below the detection limits of other aircraft and satellite systems. This system offers a direct, repeatable

method of horizontal and vertical profiling of emission plumes at scales that provide complementary information for regional

aerial surveys as well as local ground-based monitoring.

1 Introduction

Methane (CH4) is the second-largest contributor to anthropogenic radiative forcing and has a significantly higher Global20

Warming Potential (GWP) than carbon dioxide (CO2) (Forster et al. (2007); Schneising et al. (2020); Holmes et al. (2013)).

While the increased use of natural gas (primarily composed of CH4 after processing) for energy generation has helped to

reduce CO2 emissions, supply chain leakage can reduce the environmental benefits of natural gas (Forster et al. (2007); Karion
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et al. (2013); Johnson et al. (2019)). In addition to thermogenic sources from Oil and Natural Gas (O&NG) activities, coal

mining, and natural seeps, there are significant biogenic methane emissions from wetlands, biomass storage, and ruminant25

animals (Forster et al. (2007); Cheewaphongphan et al. (2019)). Detection of ethane—C2H6, the second-largest component in

natural gas (Kutcherov and Krayushkin (2010); Hodnebrog et al. (2018); Forster et al. (2007); Simpson et al. (2012); Peischl

et al. (2018))— is critical for source attribution, particularly when distinguishing between biogenic and thermogenic methane

emissions. Kutcherov and Krayushkin (2010), Glasby (2006) and Etiope and Lollar (2013) have shown that thermogenic

sources all contain some fraction ethane with methane, whereas biogenic sources contain only methane. Accurately quantifying30

contributions from various sources, both spatially and temporally, is an important step towards building local, regional, and

global CH4 emission estimates as well as informing policy decisions.

There are two primary methods to estimate methane emissions: statistical analysis of source activity inventories, known as

‘Bottom-Up’ (BU) estimations, and ‘Top-Down’ (TD) estimates which are based on observations constraining the atmospheric

burden, often by satellites, aircraft, and/or ground-based observation networks (Heath et al. (2015); Schneising et al. (2020);35

Vaughn et al. (2018); Cheewaphongphan et al. (2019); Frankenberg et al. (2016)). While these methods have been used to detect

methane leaks(Frankenberg et al. (2016)) and have played an important role in environmental regulation and policy (Heath

et al. (2015)), the two methods show persistent discrepancies (Vaughn et al. (2018); Peischl et al. (2018); Cheewaphongphan

et al. (2019)). Many BU/TD estimation methods typically represent only a snapshot in time and do not effectively account for

temporal variations such as diurnal and seasonal variability. Multiple studies have shown that O&NG methane emissions vary40

significantly in time (Lavoie et al. (2017); Johnson et al. (2019); Vaughn et al. (2018)) indicating that frequent and repeated

measurements may help to reduce and constrain uncertainties in emissions monitoring (Schneising et al. (2020); NAS2018).

A common method for estimating GHG emissions using aircraft is a mass balance approach (Hiller et al. (2014); Karion et al.

(2013, 2015); Lavoie et al. (2015)), which uses GHG concentration measurements upwind and downwind of target sources to

isolate source methane enhancements from background concentrations (Chen et al. (2016); Frankenberg et al. (2016); Schwi-45

etzke et al. (2017); Johnson et al. (2019)). These measurements can be collected from aircraft transecting the source plume

(Frankenberg et al. (2016); Schwietzke et al. (2017)) or by simultaneous measurements using similar instruments installed

upwind & downwind of the sources (Chen et al. (2016); Gisi et al. (2012)). The accuracy of the latter method depends on

a relatively constant wind speed and direction during data collection. Therefore, it is imperative to have accurate knowledge

of the target area’s principal wind conditions to properly install the instrument, and only those data obtained under favorable50

meteorological conditions can be used to accurately estimate the flux (Chen et al. (2016)). Detailed modeling of meteorology

over large domains (e.g., WRF) of data from multiple solar spectrometers has also been used to infer emissions but is uncertain

when flows are complex (Viatte et al. (2017); Heerah et al. (2021)). Ground-based differential measurements can be useful for

characterizing sources with higher spatial resolution than typical space-based instruments such as TROPOMI’s 10× 10 km2

horizontal resolution (Schneising et al. (2020)). However, the required site analysis and the cost to deploy and maintain multiple55

ground-based sensors limit the number of surveys that can be conducted, especially in secluded, rural areas.

While satellites can monitor CH4 at a global scale, most remote sensing instruments must estimate wind speed and direction

as well as the Boundary Layer (BL) height in order to calculate the source emission rate (Alexe et al. (2015); Frankenberg
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et al. (2005); Parker et al. (2011); Kort et al. (2014); Schneising et al. (2020)). The estimated detection thresholds for satellite

instruments is in the range of 100-10,000 kg h−1(Jacob et al. (2022)), and recent work by Sherwin et al. (2023) indicates a lower60

detection limit of between 500 and 1000 kg h−1 for most satellite systems. Similar to satellites, aircraft CH4 detection systems

require a priori wind information around the source location. However, some aircraft systems are able to infer the BL height

and have a minimum detection thresholds of 2-10kg h−1 due to proximity and higher spatial resolution (Duren et al. (2019)).

Combined measurements using both aircraft and complementary satellite data result in more robust TD emission estimates, but

scheduling and implementing contemporaneous measurement from both air and space can be prohibitively difficult and time-65

consuming. Ground-based detection systems are the most straightforward and accessible methods, but effective site monitoring

is highly dependent on wind directions. Column-averaged measurement techniques using Fourier Transform Spectrometers

(FTS) also require BL height estimations and are unable to provide vertical profiles of source plumes. There is a need for direct,

repeatable, and cost-effective methods for detecting and quantifying CH4 emissions from relatively small sources (< 1kg h−1),

which do not require a priori assumptions.70

This paper details the integration, testing, and initial results of a new methane flux measurement system. It utilizes a com-

pact mid-IR spectrum analyzer and lightweight anemometer onto a commercially available Unmanned Aerial Vehicle (UAV)

for efficient, repeatable flux measurement and characterization of anthropogenic sources. This novel design combines rapid

sampling of chemical and meteorological data with a mobile platform capable of vertical and horizontal profiling relative to

target sources, for high resolution spatial sampling of emission plumes.75

2 System Design

The full Unmanned Aerial System (UAS) is depicted in figure 1. It includes four main components: (1) mobile Mid-IR methane

and ethane sensor (Aeris MIRA Pico) (2) lightweight 3D vector wind and environmental sensor (Anemoment Trisonica Mini)

(3) Unmanned Aerial Vehicle (UAV, DJI Matrice 600 Pro) (4) onboard computer for system monitoring and data collection.

2.1 Onboard Sensors80

2.1.1 Methane and Ethane Sensor

The MIRA (Mid-InfraRed Analyzer) Pico Leak Detection System (LDS) developed by Aeris Technologies employs a solid

state laser and multi-pass absorption cell with a spectral band pass between 2.5 and 4.7 µm. The wide spectral range allows for

simultaneous mixing ratio measurements of both CH4 and C2H6 with a precision of 1 ppb s−1 and 0.5 ppb s−1, respectively

(MIRAManual2019; Scherer (2017)). The response time is a function of the gas flow rate through the cell, which can be85

adjusted via the speed of a small gas pump; flow rates for our system correspond to a response time of ~1.5 s based on

laboratory tests of the decay in pulsed gas releases. The MIRA has been used extensively on the ground including controlled

release tests at Colorado State University’s (CSU) METEC facility to find and quantify leaks (Travis et al. (2020)).
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Figure 1. Unmanned Aerial System (UAS) design overview. (Left) System block diagram: (A) Trisonica Mini Weather Sensor (TWS), (B)

dual-opening sampler inlet, (C) Matrice 600 Pro Unmanned Aerial Vehicle (M600P UAV), (D) Raspberry Pi 4 on-board computer, and (E)

Aeris MIRA Pico methane and ethane sensor. (Right) Flight-Ready UAS collecting ground data prior to takeoff. TWS and sampler inlet (A

and B) mounted on a carbon fiber tube mast above the M600P’s rotor wash.

2.1.2 Onboard Anemometer and Weather Sensor

In addition to gas mixing ratios, direct flux quantification requires measurements of vector winds, temperature, and pressure.90

The system includes an ultra-light, 3D sonic anemometer: the Trisonica Mini Weather Sensor (TWS) by Anemoment has a

mass of 50 g with a volume of less than 450 cm3 (TWSDatasheet2022; TWSManual2018). Direct, in situ measurements of

vector winds during flight removes the need to assume consistency in speed & direction as the UAS rapidly changes location

and altitude throughout each flight. Additionally, environmental measurements can also be used as a way to detect and adapt to

unsafe conditions during flights (Hollenbeck et al. (2018)). The TWS senses vector winds (|u|), temperature (T ), and pressure95

(P ) at 5 Hz with an accuracy of δ|u|= 0.35m s−1, δT = 2C, and δP = 10hPa, respectively (see table 1).

2.1.3 Unmanned Aerial Vehicle (UAV)

The UAV (DJI Matrice 600 Pro, M600P) is a hexarotor vertical takeoff and landing aircraft that is capable of flying with

relatively large payload masses of up to 5.5 kg. This powerful and mobile platform became commercially available in 2014

and has been used in a variety of scientific and commercial applications (McKinney et al. (2019); Villa et al. (2016); Hollenbeck100

et al. (2018)). The M600P can be remotely piloted up to a distance of up to 5 km at a maximum altitude of 125 m above ground
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level. Flight times depend on factors such as payload mass, winds, and flight pattern. Under typical winds of 2–4 m s−1 and

the standard total payload mass of ~3 kg, total flight times range between 18 and 25 min. We employ dual battery packs that

are cycled between flying and charging in the field, allowing for about one flight per hour.

The M600P is controlled via proprietary software & firmware with an expansive API for telemetry logging and flight control105

(MIRAManual2019). However, the reliance on proprietary software limits system customizability and sensor integration (see

section 2.2). While it is possible to automate flight plans for the M600P, it is more important for the operator to maintain control

of the UAS throughout the entire flight to account for changing or unexpected flight conditions.

2.2 Sensor Integration

Each of the three main devices (MIRA Pico, TWS, and M600P) has its own output data stream that must be separately110

parsed and then temporally synchronized with the other streams. The M600P does not support the use of DJI’s proprietary

‘Payload SDK’ — firmware enabling sensor data to be transmitted along with the RF control signal. Therefore, remote monitor

and control of the fully-integrated UAS is handled independently of the M600P via an onboard device for both acquisition

and transmission. A 4th generation Raspberry Pi (RPi) single board computer is the ideal choice due to its size, weight, and

programmability via the Linux Kernel. The RPi is powered independently via a 10 Ah payload battery (see figure 1) allowing115

for ground-based data collection between flights, typically while the UAV batteries are charging.

2.2.1 Payload Sensor Mounting

The both the RPi onboard computer and MIRA Pico mount to the M600P underside as shown in figure 1. The UAV achieves

flight by funneling air downwards to create thrust, constantly displacing air around the vehicle’s body in the process (DJIM600P2018).

Computational fluid dynamics simulations carried out by McKinney et al. (2019) determined that the Matrice 600 Pro causes120

disturbances up to 5 m below the UAV’s center of mass; however, the magnitude of the disturbances drops off quickly at a

height of 60 cm above the UAV body.

The TWS mounts to a mast made of lightweight, carbon fiber tubing (0.5 in diameter) anchored near the UAV’s center of

mass. This places the TWS ~85cm above the UAV and above the shallow inflow layer generated by propellers during normal

flight. At this height above the propellers, air disturbances are below the noise floor of the TWS (~0.1m s−1) or easily calibrated125

out during data processing. A ~1m section of flexible tubing connects the payload’s gas cell to a dual-opening sampling port

approximately 80 cm above the body of the M600P. This tubing introduces a phase lag of ~2s between the measured CH4

concentration time series and the TWS data, which is accounted for in the calculation of instantaneous fluxes.

While the TWS has an integrated magnetometer to measure heading, this device is intended for stationary deployment in

an open location where averaging of compass readings can result in a relatively accurate direction. However, any magnetic130

disturbance created from adjacent devices or operating motors perturb the heading measurements. In contrast, the M600P has

a triple redundant positioning system with an accuracy of < 3◦ at 200 Hz. The TWS must be physically aligned with the more

accurate heading data from the M600P’s Inertial Measurement Unit (IMU) to accurately calculate static-frame vector winds

(more in Section 2.3).
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In order to ensure proper alignment, the M600P is set up facing North with the TWS mounting point tightened so that the135

anemometer’s North arm is facing the same direction. The MIRA Pico and Onboard Computer are both mounted under the

body of the UAV as shown in figure 1. Initial UAV test flights revealed that payload mounting at this location improves flight

performance, especially during takeoff and landing, due to the lower center of mass.

2.3 Relative Wind Adjustments

The Trisonica Mini Weather Station (TWS) is designed for static installation with one arm facing north (TWSDatasheet2022)140

and will therefore produce incorrect results when the device’s heading (‘yaw’, ψ) is not a multiple of 2π (TWSDatasheet2022;

TWSManual2018; Hollenbeck et al. (2018)). In addition, the motion of the UAV during data collection induces an appar-

ent wind that is folded into the TWS wind measurement. Transforming the raw TWS vector wind measurements (um =

[um, vm, wm]) to Earth-fixed coordinates therefore requires accurate, real-time measurements of ψ and UAV velocity (Vs).

In order to transform raw TWS wind data to static-frame vector winds, we apply a standard Galilean transformation u =145

R(ϕ)um + Vs or




u

v

w


 =




cos(ϕ) sin(ϕ) 0

−sin(ϕ) cos(ϕ) 0

0 0 1







um

vm

wm


 +




Vx

Vy

Vz


 (1)

Here, um = [um,vm,wm] are the TWS-measured vector winds, u = [u,v,w] is the corrected wind speed in Earth-fixed coor-

dinates, and Vs = [Vx,Vy,Vz] is the instantaneous UAS velocity. R(ϕ) is the counter-clockwise (CCW) Euler rotation matrix

about the vertical axis (ẑ) where ϕ is the heading (yaw) of the M600P. Rotations around the ŷ and x̂ axis — caused by variations150

in UAV pitch (θ) and roll (φ), respectively — are neglected since changes in θ and φ are negligible during steady, level flights.

A time series of the TWS-measured raw winds during a typical flight is shown in figure 2, along with the derived static-frame

vector winds based on the M600P headings and velocities throughout the flight.

2.4 Background Mixing Ratio Estimation

While the MIRA Pico is highly sensitive with a large dynamic range (~20ppb< χCH4 < 4000ppm) (MIRAManual2019;155

Meyer et al. (2022); Follansbee et al. (2024)), there are observable levels of semi-periodic drift in the measured mixing ratios

for both hydrocarbons at the ppb level. This effect is especially noticeable for χC2H6 , partly because ambient mixing ratios for

C2H6 are generally ~100× smaller than CH4. In addition to these instrumental drifts, the raw concentration measurements (χ)

may reflect actual changes in background mixing ratios. Nearby point sources to do not directly influence these background

variations; instead they may be related to regional-scale emissions and meteorological influences such as winds and stability at160

the mesoscale level. Both of these effects contribute to structure in the measured background (χ0), which must be accurately

quantified in order to isolate enhancements from the target source. This background variability generally occurs over periods
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Figure 2. Raw measured vector winds: (top) and heading/velocity corrected vector winds (bottom) before, during, and after flight. Pre- and

post-flight ground wind speeds at the takeoff location highlighted in gray.

of minutes and is independent between χCH4 and χC2H6 , so that direct comparison prior to baseline removal can be misleading,

especially over longer period datasets.

The UAS measurement strategy involves repeated cross-wind sampling of the plume downwind of a target source (as dis-165

cussed in more detail in section 3.1). The resulting time series of mixing ratio data contains a number of finite-width enhance-

ments superimposed on a slowly varying background, as shown in figure 3. χ0 is estimated by fitting a polynomial to the

measurements outside the plume. After extensive testing, the procedure outlined in figure 3 proved to be the most effective

method of filtering inter-plume samples.

The raw χ timeseries is initially 3-point-smoothed (χ̃) to decrease the effect of noise in the identification of the plume170

edges. The gradient of χ̃ is then used to detect abrupt changes to χ̃ which are indicative of the UAS entering or exiting the

higher-concentration plume, as shown in 3. Samples where ∇χ̃ is greater than a specified threshold (γ) are determined to be

‘in-plume’. For this analysis, we determined a threshold of 0.2 ∗σ reliably distinguished between in-plume and ‘background’

periods. ±0.2σ in figure 3 and in the subsequent analysis of measurements presented here). This filter removes the majority of

the inter-plume samples, leaving behind the ‘background’ samples which vary at a much lower frequency. The gradient filter175

output is then thresholded to remove any remaining inter-plume measurements; the final output samples are from outside the

target plume (background measurements, χ̃bg) and a variable order polynomial (deg(3) in figure 3) is fit to these samples.

The regression coefficients that best fit χ̃bg are then applied to the original χ timestamps to estimate χ0 for each independent

hydrocarbon and dataset.
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Figure 3. Time series of methane measurements during a typical flight, illustrating the procedure for baseline estimation and removal. The

flight involved multiple cross-sections through the downwind plume of a known point emitter, and the plume enhancements in methane are

visible as large spikes in the methane time series. (A) 3-point smooth raw data. (B) gradient filter to detect the majority of in-plume samples.

(C) split remaining samples into segments and remove statistical outliers from each segment. (D) 3rd order polynomial fit using remaining

samples; resultant regression coefficients used with initial (non-smoothed) raw data samples used to estimate baseline.

2.5 Plume Simulations180

Idealized Gaussian plume models are a reasonable first approximation for an emission plume inverse modelling (e.g., Jacob

et al. (2022); Shah et al. (2019); Stockie (2011); Meyer et al. (2022); Follansbee et al. (2024)).

C(x,y,z) =
Q

|u| ·
1

2πσy(x)σz(x)
· exp

[
−y2/

(
2σy(x)2

)]
· exp

[
−(z−H)2/

(
2σz(x)2

)]
(2)

The Gaussian plume equation for the mass density of a gas (C, units of kg m−3) downwind of a point source emitter is

Q is emission rate (kg s−1), u is the constant horizontal wind speed (m s−1), σz & σy are standard deviations for Gaussian185

distributions, in units of meters, which are generally derived using stability classes (Seinfeld and Pandis (2006)). H is the

height of the source (m). C is the estimated increase in gas density at position x (directly downwind, centerline), y (horizontal

from centerline), and z (vertical from centerline) given in meters. It is important to make the distinction between the mass

density, C (kg m−3), and the volume mixing ratio χ (mol mol−1) measured by the MIRA Pico. The conversion between the
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Figure 4. Cross-sections of modelled Gaussian plume under conditions of low wind (2m s) and high solar insulation (stability class "A" from

Woodward (2010)). Each panel depicts the Gaussian plume cross-section at distance X downwind of the source. The horizontal distance,

y, is with respect to plume centerline and the vertical distance z is above ground level. The plume model assumes a steady wind field and

constant emission rate from the source.

two is C = ηρχ where η is the ratio of molar masses of the gas to that of air, and ρ is the air density (kg m−3). Figure 4 shows190

cross-sections of a Gaussian plume simulated at three downwind distances from a 25 kg h−1 point source. Mean winds in

this case are ~2 m s−1 and the stability class corresponds to high solar insolation. As expected, the simulated plume becomes

more dispersed, and broadens both horizontally and vertically with increasing distance from the source. Plume enhancements

in methane range between 1 and 5 ppmv, which are easily detectable with this system, and the horizontal and vertical scales

(~50 m, ~30 m) are readily accessible to the UAS.195

3 Deployment

This section describes the preliminary flight preparation for the UAS based on the modelling and UAV flight time. If both

emissions from the target source and surrounding environmental winds are relatively steady during the M600P’s 15 to 25 min

flight time, then Gaussian models offer a reasonable approximation the expected structure that could be observed in methane

enhancements downwind of the source (Seinfeld and Pandis (2006); Shah et al. (2019); Stockie (2011)). The Gaussian mod-200

eling discussed in the previous section helps to guide and describe the sampling strategy for target sources, but it should be

emphasized that source fluxes reported in this work do not involve Gaussian inverse modelling from direct measurements (see

section 3.2).
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3.1 Flight Pattern

The full UAS setup and pre-flight checks can be completed in under 15 min and any certified remote pilot, or person under the205

supervision of a certified pilot (ACS2021), can maneuver the UAS around target sources for direct plume sampling. The flight

time of ~20 min constrains the types of flight patterns that can be used to quantify source emission rates.

In order to maximize the number of in-plume samples within a relatively short flight period, our strategy is to remain

downwind of the source and fly horizontal ‘transects’ perpendicular to the mean wind direction. This curtain or boustrophedonic

flight is perpendicular to the average wind direction, and involves multiple cuts through the plume in order to measure both210

the in-plume concentrations, χ, and the ambient or background concentrations used to determine χ0. Each individual transect

through the downwind plume is at a relatively constant altitude and horizontal velocity between 2 and 5 m s−1, depending on

the wind conditions and proximity to the source. Transects are typically 50 m to 1 km in length, depending on terrain, wind

variability, and source distribution and downwind distance. Extended sources and measurements collected at larger downwind

distances from the source require longer transects to ensure that the dispersing plume gets fully traversed during each transect.215

The ability to quickly adjust altitude between each of the individual transects allows for direct measurements of the plume’s

vertical structure in addition to the horizontal dispersion.

Direct measurements of a source plume with the MIRA Pico sensor requires the UAS to be physically maneuvered downwind

of the source. While a steady-state Gaussian plume model can be used for flux inversions (e.g., Jacob et al. (2022); Shah

et al. (2019); Stockie (2011); Seinfeld and Pandis (2006); Woodward (2010); Bhattacharya (2013)), these models represent220

plume dispersion probabilities which are not generally observed in the superposition of horizontal transects through the plume.

During direct measurements, large-scale turbulence in the wind flow results in changes to the plume’s size and relative location

throughout the measurement period. Based on simple scaling arguments, we expect that plume variability is largest in the

horizontal plane due primarily to wind directional variability. Figure 5 shows multiple simulated transects through a Gaussian

plume’s downwind cross-section in the case of a steady-state flow. We simulate the stochastic variability in the plume by225

introducing random shifts in centerline between each of the temporally separated transects, which can be seen at the bottom

of Figure 5. This pattern is generally more consistent with our observations in comparison to the steady state model. However,

the stochastic model shows that total plume flux is unaffected by horizontal plume displacements, provided that the integral is

taken along horizontal transects.

3.2 Direct Flux Quantification230

The data collected from a single flight is broken into K individual transects through the source’s downwind plume, each

transect representing data collected at a nearly-constant altitude, z, and non-zero horizontal velocity, Vs, while intersecting the

plume. The altitude, z, is only adjusted between transects with the UAS outside the plume (measuring ambient or background

concentrations).

Mass balance estimation techniques such require knowledge of the wind speed perpendicular to the direction of travel235

(transect crosswind). Optimally, each transect would therefore be perpendicular to the mean horizontal wind direction (u), but
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Figure 5. Simulated flight through Gaussian plume: (top) cross-section of plume X meters directly downwind of source, simulated transects

shown as dotted lines. (middle) Resample of modelled cross-section at constant horizontal transect velocity Vs. (bottom) Random shifts in

centerline horizontal position, simulating variable wind conditions and temporally separated plume transects.

local topography, changing wind fields, and flight safety considerations often result in an angle other than 90◦ between Vs and

u. Therefore, it is important to first define a unit vector, n̂, perpendicular to the direction of travel. Equation 3 shows the system

of equations used to calculate this unit vector.




∥n̂∥= n2

x +n2
y = 1

Vs · n̂= Vxnx +Vy ny = 0
(3)240

Vx and Vy are the instantaneous UAS velocities defined previously. The transect crosswind, a measure of windspeed perpen-

dicular to the UAS transect, is (u · n̂). Maintaining a constant heading and horizontal velocity during flights proved difficult

during periods of irregular and shifting winds. Direct measurements of u and Vs are variable between samples so that n̂ is

required to constrain the flux calculation with respect to each transect.
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Each of the K horizontal transects gets processed individually to calculate the intermediate transect-integrated flux fk245

(equation 4). This is the horizontal integral of the measurements along each transect with units of mass flux rate per unit

vertical distance (kg s−1 m−1).

fk = η

n−1∑

i=0

ρi(χ−χ0)i(u · n̂)i∆si =
n−1∑

i=0

(C −C0)i(u · n̂)i∆si (4)

ηρ(χ−χ0) = (C −C0) is the background-adjusted mixing ratio, ∆s= |Vs|∆t=
√
V 2

x +V 2
y is the distance between samples

(∆t≈ 1s), and ρ and η are defined previously.250

The total flux, Ftot, is then calculated through integrating the sum of fk and the vertical distance between physically adjacent

transects, ∆zk (equations 5 and 6).

∆zk =





|zk+1− zk|/2 +3 |zk|/4 zk = min(z0, . . . , zK−1)

|zk−1− zk| zk = max(z0, . . . , zK−1)

(|zk−1− zk|+ |zk+1− zk|)/2 otherwise

(5)

Ftot =
K−1∑

k=0

(fk ∆zk) (6)255

Adjustments to the vertical integral step ∆zk are taken at the bottom and top transects to account for extrapolation to the

ground and above the flight pattern. A typical flight downwind of a natural gas point source is shown in figure 6. This flight

is composed of eleven horizontal transects over a period of approximately 11 min. The transects were flown approximately

130 m downwind (roughly south-southeast) of the methane point source with a known emission rate of 3.42± 0.01 kg h−1.

3.3 Precision and Uncertainties260

Figure 7 presents the distribution of CH4 and C2H6 baseline estimate residuals (ε0 = χ0− χ̃bg) taken from two test flights

downwind of known natural gas point sources. The 3σ confidence interval (99.7%) is approximately 20 ppb for CH4 and

2 ppb for C2H6 enhancement detection.

Table 1 gives the measurement uncertainties for the major components of the UAS. The precision on the baseline estimate

and associated uncertainties for each sensor lead to an estimated lower quantification threshold of ~7 g h−1 during standard265

flight conditions.
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Figure 6. Plume transect flight pattern viewed from east (bottom left), south (bottom right), and from above (top right). Approximate source

location marked with black square. The windrose plot (top left) shows the Earth-fixed wind in the horizontal direction.
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Figure 7. Residuals CH4 and C2H6 baseline polynomial fit (outlined in figure 3) for two independent datasets, overlaid with 3σ confidence

ellipse.

Sensor Measurement Uncertainty Units

TWS Pressure 1000 Pa

TWS Temperature 2 C

TWS Wind Speed 0.2 m/s

M600P GNSS Horizontal Velocity 0.05 m/s

M600P IMU Heading (Yaw) 0.05 rad

M600P IMU Pitch, Roll 0.017 rad

MIRA Pico Methane 10 ppb

MIRA Pico Ethane 1 ppb

RPi RTC Timestamp 100 ms

Pipeline Methane 20 ppb

Pipeline Ethane 10 ppb

Table 1. Sensor uncertainties TWSDatasheet2022; DJIM600P2018; MIRAManual2019
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4 Analysis

In Fall of 2022, the NMT team participated in a single-blind controlled release validation campaign in Casa Grande, Arizona,

USA (Sherwin et al. (2023); El Abbadi et al. (2023)). While this validation campaign focused on larger-scale aircraft and satel-

lite system validation, it was a unique opportunity to quantify the accuracy for this method of direct methane flux quantification.270

The UAS was deployed multiple times around the controlled release location during two separate, three-day validation trips:

October 10–12 and November 14–16, 2022. Multiple flights at various times throughout the daily testing window (between

10:00 and 14:00 MST most days) measured concentrations downwind of the release stack.

Due to battery life and charging limitations, the UAS typically can accommodate about one flight per hour. Additionally, the

flux quantification method described in section 3.2 relies on relatively stable wind fields around the source, optimally between275

2 and 6 m s−1. Suboptimal environmental conditions and unforeseen instrumentation issues resulted in the rejection of the

majority October 2022 flights from the analysis process. The November 2022, 3-day campaign produced a total of 12 flights,

8 of which were during times of low-variability windfields and good flight conditions to allow for reliable flux quantification.

It is important to note that, at the time of this campaign, the UAS flight pattern and quantification method was still in

active development. While the NMT team quantified and submitted flux estimates during the single-blind and partially-blinded280

phases of the unblinding process (described in El Abbadi et al. (2023)), the final unblinded metered emissions were invaluable

to debug and update the initial quantification process, ultimately leading to the numerical integration outlined in section 3.2.

Here, we present the analysis of the quantification results informed by the unblinded, ground truth-methane flow rates.

Figure 8 shows the comparison between UAS-calculated flux and the corresponding unblinded metered emissions from

8 independent November 2022 flights. The metered rates, taken to be the ground truth emission rates, range from 1.7 to285

1500 kg h−1. This broad range of emission rates highlights the system’s dynamic range and the fitted linear regression shows

the quality of emission estimates compared to the one-to-one agreement with metered rates (dotted line). Our method of flux

quantification shows reasonable agreement with the expected emission rates above 1 kg h−1. However, the results suggest a

systematic underestimation of the emissions which is not correlated to number of transects or windspeeds during flights. One

interpretation of these results is that our field measurements could represent a reasonable lower bound to the true emission rate290

of the source.

4.1 Other Sources

The deployment strategy for this UAS is designed to quantify emissions from targeted local sources such as O&NG wells and

manure storage/biogenic lagoons. With a limited operational distance and flight time, larger distributed sources (such as large-

scale dairies and agricultural centers) are difficult to properly quantify using the numerical integration technique described in295

section 3.2. However, smaller-scale municipal waste facilities with heterogeneous emission profiles can be quantified as long

as the UAS is able to fully, and repeatedly, transect the complex and irregular plumes downwind of the facility.
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Figure 8. Comparison of UAS CH4 flux calculation verses Metered Emissions reported by El Abbadi et al. (2023) and Sherwin et al. (2023).

Both plots show 8 individual flights during the November 2022 field campaign with 1σ error bars. Linear regression fit shown as solid

line for comparison with the idealized one-to-one fit corresponding to perfect agreement between UAS and Metered data (dotted line). Left

Logarithmic plot highlighting UAS’s large dynamic range. Right Linear plot focused on emission rates below detection limits of most aircraft

quantification methods; linear regression fit does not include emission rates above 100 kg h−1.

4.1.1 Municipal Waste Facility

During the course of system development and testing, the UAS was deployed around a local Municipal Waste Facility (MWF) in

Socorro, NM. This location serves a county population of approximately 16,300 with multiple cells over an area of 45 hectares.300

Larger facilities studied by Olaguer et al. (2022) and Lan et al. (2015) reported emission rates between 85 and > 2000 kg h−1;

this much smaller local facility, however, was expected emit at rates less than 10 kg h−1 (Olaguer et al. (2022); Bogner and

Matthews (2003)). The low emission rate and temporal heterogeneity, likely due to changes in cell activity, is evident across

the multiple visits between Spring 2022 and Summer 2023. The flight path from one such flight can be seen in figure 9.

In comparison to flights downwind of point sources such as O&NG wells or controlled NG releases (figure 6), the flight305

pattern and in figure 9 was positioned about 0.5 km downwind of the source and involved plume transects up to ~500 m long,

and over an altitude range of up to 50 m. In addition, the methane enhancements are about a factor of 10 lower than in figure

6, and the plume is distributed over a larger area and centered at a higher altitude. Nevertheless, the overall plume structure

allows for the same flux analysis as discussed for the localized NG point sources above. The measured methane emission rate

for this flight was 1.12± 0.67kg h−1.310
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Figure 9. Example flight, split into individual transects, from landfill in New Mexico. The landfill itself is composed of activate and inactive

cells distributed over and area of approximately 45 ha, resulting in a non-uniform downwind plume profile. Comparison with localized ‘point

source’ presented in figure 6, longer horizontal transects across a wider vertical range are required to measure the multiple distributed and

highly variable emitters.

4.1.2 Orphan Well

During April 2023, the UAS was also deployed around an ‘orphaned well’ located in Hobbs, New Mexico, USA. This site has

been out-of-use for more than two decades and was in the initial phase of being plugged when visited in April 2023. A detailed

analysis of data from this field campaign is presented in Follansbee et al. (2024). The observed plume structure was similar to

that shown in figure 6, but mean wind speeds were much larger and methane plume enhancements were ~400 ppb, roughly315

between the range of plume enhancements shown in figures 6 and 9. Three downwind flights yielded consistent fluxes in the

range of 0.3 to 0.5 kg h−1 (Follansbee et al. (2024)).

4.1.3 Wastewater Treatment Plant

Wastewater Treatment Plants (WWTPs) are a known source of biogenic methane emissions via biodegradation of pollutants by

anaerobic bacteria (Song et al. (2023)). The small town of Socorro, NM has a local Wastewater Treatment plant that processes320

less than one million gallons per day (MGD) so that its contribution to anthropogenic methane is relatively quite low (when

compared to O&NG and agricultural operations). However, the low emission rate of this location was useful for testing of the

UAS’s lower detection and quantification limits.
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A timeseries of measured CH4 and C2H6 concentrations from a short flight in August 2023 is shown in figure 10. While the

in-plume CH4 concentration levels peak at around 40 ppb, the measured C2H6 levels do not exceed the sensor’s noise floor325

of < 1 ppb while passing through the plume. The lack of any correlation between C2H6 & CH4 is strong evidence that the

measured plume is from anaerobic digestion at the WWTP and is not contaminated by another source. The emission rate for

the flight shown in figure 10 is estimated to be 68.7(+171.5,−61.7)g h−1.

Figure 10. Timeseries of methane and ethane mixing ratios, with background subtracted as described in section 2.4, from a flight downwind

of the City of Socorro wastewater treatment plant in August, 2023. The mean winds were ~5m s−1 and the solar insolation corresponded

to stability class "B" due to partial cloud coverage (Woodward (2010)). The biogenic plume was intercepted on two transects separated by

about 40 s, as seen in the methane timeseries about 4-5 minutes into the flight.

4.2 Source Attribution

As discussed in Section 1, simultaneous measurements of both CH4 and C2H6 is useful for source classification as either330

biogenic or thermogenic. In addition, there are varying ratios of trace hydrocarbons found in thermogenic natural gas sources,

and C2H6 is the second-most dominate compound in refined natural gas (Peischl et al. (2018); Hodnebrog et al. (2018);

Kutcherov and Krayushkin (2010); Glasby (2006); NAS2018; Forster et al. (2007); Hansen et al. (2000); Meyer et al. (2022)).

Therefore, the ratio of C2H6 to CH4 can be used to estimate the percentage of non-methane compounds in an O&NG plume

and distinguish between sources.335
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Figure 11. Ethane & Methane enhancement ratios from multiple independent field tests at different sites. October and November 2022

Controlled Releases: are two independent multi-day field campaigns in Casa Grande, AZ during a controlled NG release. San Juan Basin

Well: Multiple flights near an active well-head in Cuba, NM. Permian Basin Well: three independent flights downwind of a an orphan well in

Hobbs, NM, Municipal Waste Facility is a relatively small waste disposal location near Socorro, NM.

Figure 11 shows the ratio of measured C2H6 and CH4 mixing ratios from five different field measurements around various

sources, including the municipal waste facility discussed in section 4.1.1. Multiple downwind plume measurements showed

a negligible C2H6 content (< |0.2%|∆C2H6/∆CH4) from this biogenic source. Consistent with figure 9, the magnitude of

plume CH4 from the MWF is much lower in comparison to the thermogenic methane sources we have sampled. Figure 12

highlights the dynamic range of the UAS, which is able to detect CH4 enhancements of as little at 20 ppb s−1 (after baseline340

removal, Section 2.4). Additionally, the UAS has demonstrated the ability to measure much larger concentrations of more than

40,000 ppm (empirically determined based on MIRA Pico saturation levels during AZ validation flights).

The two different controlled release campaigns in Fall 2022 were about one month apart, and these data are segregated in

figure 12. The measured percentages are in agreement with the contemporaneous CH4 concentration measurements reported

by the controlled release team (El Abbadi et al. (2023)). The same ratio of C2H6 to CH4 was measured across all flights during345
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the first release and similarly during the second campaign, though the ethane content was noticeably different during the second

campaign.

Figure 12. Comparison of estimated Methane flux from various anthropogenic sources. The UAS has a large dynamic range capable of

quantifying emission rates from smaller sources (less than 1 kg h−1). Horizontal dashed lines show the absolute lowest detection limits for

satellite and aircraft quantification methods (Jacob et al. (2022); Duren et al. (2019)) with respect to the estimated lower limit of this system

(~0.007 kg h−1, see section 3.3)

Emissions of unrefined NG from the orphan well discussed in section 4.1.2 contained a smaller fraction of CH4 due to the

presence of other compounds such as H2S, so that it is incorrect to approximate the C2H6 ratio in figure 11 as the non-CH4

percentage. However, this unique C2H6/CH4 ratio was consistent across all orphan well flights, and in good agreement with350

ground-based systems deployed at the same site (Follansbee et al. (2024)); larger ethane content is due to the unrefined natural

gas seeping from the unused well. (Stolper et al. (2018)). Furthermore, measurements of unrefined NG from a leaking O&NG

well in the San Juan Basin, obtained in October 2023, showed a distinct ratio from that of the orphan well from the Permian

Basin. The San Juan Basin is primarily a coal producing region and therefore has a noticeably lower C2H6 content compared

to the Permian Basin, the latter region being primarily composed of oil. Thus, each of the sources shown in Figure 12 had a355

unique and consistent C2H6 ratio which can be used to characterize and differentiate multiple sources based on this percentage.

This is in agreement with the findings of Meyer et al. (2022).
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5 Conclusions

Our results demonstrate the capabilities of this integrated UAS package, along with associated flight strategies and data analysis

methodologies, to quantify and characterize methane emitters across a range of spatial scales (point to ~1 km). Through direct,360

in situ measurements of CH4 mixing ratios and vector winds within the downwind plumes of target sources, this system can

be used to robustly quantify emission source strengths spanning more than three orders of magnitude. Figure 12 presents a

summary of flux measurements from different sources, ranging from large (~1500 kg h−1) emissions in controlled release

experiments, to the very low emissions (0.040 kg h−1) observed from a local WWTP. Large error bars on the four independent

WWTP flights are consistent with the error associated for other low-emission. As noted in the figure, our UAS has the capability365

to quantify emission rates up to and above the lower limits of satellite and aircraft CH4 monitoring systems; thus it is useful for

contemporaneous source quantification to help constrain and bridge the gap between ground-based and top-down measurement

systems. The lower measurement bound for methane fluxes is estimated to be ~0.007 kg h−1, and it is determined primarily

by the precision of the methane measurement and uncertainties associated with the background determination and plume

enhancement.370

The primary limitations of our UAS measurement approach are related to meteorological conditions. Optimum mean wind

speeds are in the range 2-6 m s−1. Wind speeds below 2 m s−1 have been shown to produce less reliable fluxes due to higher

variability in the plume position and shape, while winds above 6 m s−1 are too strong for safe flights with this UAS. The

steadiness of wind directionality can also be a factor, although it is a much less severe constraint than speed provided that the

flight pattern is sufficiently wide to intersect the plume on every transect. Proper deployment also requires access for takeoff375

and landing within 1 km of the source, and the target source’s location must also be known to within a few kilometers. Thus,

although this system is not optimized for wide-area surveys, it is well suited for site quantification of known sources such as

O&NG wells or processing facilities, small dairies and municipal waste facilities, and wastewater treatment plants.
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