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Abstract. Methane (CH4) is a powerful greenhouse gas that is produced by a diverse set of natural and anthropogenic emission

sources. Biogenic methane sources generally involve anaerobic decay processes such as those occurring in wetlands, melting

permafrost, or the digestion of organic matter in the guts of ruminant animals. Thermogenic CH4 sources originate from the

breakdown of organic material at high temperatures and pressure within the Earth’s crust, a process which also produces more

complex trace hydrocarbons such as ethane (C2H6). Here, we present the development and deployment of an Uncrewed Aerial5

System (UAS) that employs a fast (1Hz) and sensitive (1− 0.5 ppb s−1) CH4, C2H6 sensor and ultrasonic anemometer. The

UAS platform is a vertical-takeoff, hexarotor drone (DJI Matrice 600 Pro, M600P) capable of vertical profiling to 120m altitude

and plume sampling across scales up to 1 km. Simultaneous measurements of CH4 and C2H6 concentrations, vector winds,

and positional data allows for source classification (biogenic versus thermogenic), differentiation, and emission rates without

the need for modeling or a priori assumptions about winds, vertical mixing, or other environmental conditions. The system has10

been used for direct quantification of methane point sources, such as orphan wells, and distributed emitters such as landfills and

wastewater treatment facilities. With detectable source rates as low as 0.04 kg h−1 and up to ~1500 kg h−1, this UAS offers

a direct and repeatable method of horizontal and vertical profiling of emission plumes at scales that are complementary to

regional aerial surveys and localized ground-based monitoring.

1 Introduction15

Methane (CH4) is the second-largest contributor to anthropogenic radiative forcing, with a Global Warming Potential (GWP-

20) greater than 80× that of carbon dioxide (CO2) (Solomon et al. (2007); Schneising et al. (2020); Holmes et al. (2013)).

Methane is produced from many natural and anthropogenic sources which can be further classified as biogenic or thermogenic

in origin. The largest biogenic sources result from anaerobic decay such as wetlands, melting permafrost, or the breakdown

of organic matter in the guts of ruminant animals. Thermogenic CH4, ‘natural gas’, is generated during the breakdown of20

organic matter at high temperatures and pressure within the Earth’s crust. The later process also produces more complex
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trace hydrocarbons such as ethane and propane collectively known as Natural Gas Liquids (NGLs). Coal mining, natural

seeps, Oil and Natural Gas (O&NG) activities, and supply chain leakage each produce varying amounts of NGLs. While

sometimes other gases predominate, e.g. CO2, all thermogenic sources contain some fraction ethane (C2H6) (Kutcherov and

Krayushkin (2010); Glasby (2006); Etiope and Sherwood Lollar (2013)), and it is the second-most prevalent NGL in natural25

gas processed for energy generation (Hodnebrog et al. (2018); Solomon et al. (2007); Simpson et al. (2012); Peischl et al.

(2018); Karion et al. (2015); Johnson et al. (2019)). Biogenic methane emissions do not contain ethane (Masson-Delmotte et al.

(2023); Cheewaphongphan et al. (2019)) so that C2H6 is therefore a critical marker for source attribution, particularly when

distinguishing between biogenic and thermogenic methane emissions (Solomon et al. (2007); Karion et al. (2015); Johnson

et al. (2019)). Accurately quantifying contributions from various sources, both spatially and temporally, is an important step30

towards building local, regional, and global CH4 emission estimates as well as informing policy decisions.

The accuracy of regional and global methane emission estimates is limited due to the sheer number of unknown variables.

There are two primary methods to estimate methane emissions: statistical analysis of source activity inventories, known as

‘Bottom-Up’ (BU) estimations, and ‘Top-Down’ (TD) estimates based on observations from instruments deployed on satellite,

aircraft, and ground-based platforms (Heath et al. (2015); Schneising et al. (2020); Vaughn et al. (2018); Cheewaphongphan35

et al. (2019); Frankenberg et al. (2016)). A variety of BU and TD methods have been used to detect methane leaks (Franken-

berg et al. (2005)) and inform policy decisions (Heath et al. (2015)), but persistent discrepancies remain between the BU and

TD methodologies (Masson-Delmotte et al. (2023); Solomon et al. (2007); Vaughn et al. (2018); Peischl et al. (2018); Chee-

waphongphan et al. (2019)). In general, BU and TD estimation methods only represent a snapshot in time and do not effectively

account for temporal variations due to diurnal, seasonal, and activity cycles. Recent studies have shown that O&NG methane40

emissions vary significantly in time (Lavoie et al. (2015); Johnson et al. (2019); Vaughn et al. (2018)) showing that more fre-

quent and repeated measurements are important in helping to reduce uncertainties in emission monitoring (Frankenberg et al.

(2005); Space Studies Board et al. (2019)).

High altitude and space-based systems offer robust methods of monitoring CH4 and other Greenhouse Gases (GHGs) at

regional and global scales (Sherwin et al. (2023); Schneising et al. (2020)). However, most large-area satellites (Sentinel,45

Landsat) drop off in detection at ~1,000 kg h−1 with only the very sophisticated or targeted systems able to quantify sources

< 500 kg h−1 (Sherwin et al. (2023)). These instruments for TD emission estimates are ideally supplemented with contempo-

raneous ground-based measurements to constrain the monitoring capabilities – e.g., Total Carbon Column Observing Network,

TCCON (Vaughn et al. (2018); Pétron et al. (2020); Kort et al. (2014); Parker et al. (2011); Turner et al. (2015); Gisi et al.

(2012)).50

A common method for estimating GHG emissions is a mass balance approach, which uses GHG concentration measurements

upwind and downwind of target sources to isolate the source from background concentrations (Frankenberg et al. (2016);

Schwietzke et al. (2017); Johnson et al. (2019)). These measurements can be collected from aircraft instruments along upwind

and downwind transects (Frankenberg et al. (2016); Schwietzke et al. (2017)) or by simultaneous measurements using similar

ground-based instruments installed upwind and downwind of the sources (Gisi et al. (2012); Saad et al. (2014); Heerah et al.55

(2021)). The accuracy of the latter method depends on relatively constant wind speed and direction during data collection.
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Therefore, accurate knowledge of principal wind conditions is required for proper instrument installation, and only those data

obtained under favorable conditions can be used to accurately estimate the flux (Gisi et al. (2012); Lavoie et al. (2017)).

Aircraft quantification methods generally drop off around 10 kg h−1 for the highly sensitive instruments so that it is difficult

or impossible to quantify low-emitting sources using combined ground, aircraft, and satellite data to constrain and validate the60

estimates. Ground-based detection systems are the most straightforward and accessible methods, but effective site monitoring

is highly dependent on wind directions. Column-averaged measurement techniques using Fourier Transform Spectrometers

(FTS) also require BL height estimations and are unable to provide vertical profiles of source plumes.

There is a need for direct, repeatable, and cost-effective methods for detecting and quantifying CH4 emissions from relatively

small sources (< 1kg h−1), which do not require a priori assumptions. Small Uncrewed Aerial Vehicles (UAVs) offer new65

approaches to airborne air pollution and emission monitoring over scales and locations which are difficult to detect or access

with other regional monitoring systems (Chen et al. (2024); Villa et al. (2016); Burgués and Marco (2020)). While designs

can vary dramatically between models, UAVs are either fixed or rotary-wing platforms. Fixed-wing UAV are typically able

to cover larger areas and generally allow more options for sensor mounting configurations, but they are unable to hover and

quickly adapt to environmental conditions while tracking emission plumes. Rotary wing platforms – also known as Vertical70

Takeoff And Landing (VTOL) or Multirotor UAVs – generally have lower required operating velocities and have the ability to

hover and can therefore be used for more complex, discontinuous missions at higher spatial resolution (McKinney et al. (2019);

Villa et al. (2016); Burgués and Marco (2020)). Multi-rotor UAV usually have between 4 and 8 individual propellers which to

generate thrust and the power consumption results in shorter flight times than their fixed-wing counterparts, but they do not

require specialized equipment or runways for takeoff/landing and recent advances in control technology have made multirotor75

systems easier to reliably operate.

A major issue with fixed-wing systems is that the higher operating velocities and minimum height requirements result in

low detection probabilities during site surveys (Barchyn et al. (2019)). Rotary UAV systems do not require a minimum velocity

to stay aloft, and can therefore be outfitted with a wider range of equipment for physical and chemical sensing (Hollenbeck

et al. (2018); Shah et al. (2019); McKinney et al. (2019); Villa et al. (2016); Burgués and Marco (2020)). For instance, onboard80

anemometers for in situ wind speed/direction have been shown to be more accurate onboard VTOL platforms while higher rel-

ative winds and aerodynamic flows around fixed-wing platforms often result in less accurate in situ measurements (Hollenbeck

et al. (2018)). While multirotor UAVs have a significant propeller wash effect below the body, induced winds are negligible

when anemometers are mounted above the shallow inflow layer (Barbieri et al. (2019); Hollenbeck et al. (2018); Villa et al.

(2016); Barchyn et al. (2019)).85

The fast development of commercial UAV and low-weight sensors has driven a multitude of scientific studies which would

have been difficult or impossible to conduct over a decade ago. Both inverse modeling and mass-balance approaches have

been used to calculate total emissions across a wide range of spatial scales. McKinney et al. (2019) deployed a hexarotor UAV

outfitted with adsorbent cartridges to collect biogenic Volatile Organic Compound (VOCs) emissions at various locations in

central Amazonia. Shah et al. (2019) calculated 3-D flux densities by fitting direct measurements of a downwind CH4 plumes to90

near-field Gaussian plume models. Olaguer et al. (2022) used contemporaneous UAV and mobile ground-based measurements
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to estimate biogenic CH4 emissions from a landfill. Bel Hadj Ali et al. (2020) compared multiple ground-based emission

monitoring techniques with downwind plume measurement fitted to Gaussian plume models. Gålfalk et al. (2021) piloted a

small quadcopter to fully surround a known biogenic methane hotspot for mass balance emission estimates < 200 kg h−1.

This study describes the development and implementation of a new Uncrewed Aerial System (UAS) to address critical areas95

of research by (a) accurately and directly quantifying emissions on small spatial and temporal scales, especially in hard to

reach places; (b) constraining BU inventories driven by small-scale estimations; and (c) separating and attributing thermogenic

and biogenic sources. The New Mexico Tech (NMT) UAS design combines rapid sampling of chemical and meteorological

data with a mobile platform capable of vertical and horizontal profiling relative to target sources, for direct and high resolution

sampling of emission plumes. A commercially available UAV is outfitted with a multi-sensor onboard payload including a100

compact mid-IR spectrum analyzer and lightweight anemometer for efficient, repeatable quantification and characterization of

various localized anthropogenic sources.

2 Methods

2.1 System Design

The full Uncrewed Aerial System (UAS) is depicted in figure 1. It includes four main components: (1) mobile Mid-IR methane105

and ethane sensor (Aeris MIRA Pico) (2) lightweight 3D vector wind and environmental sensor (Anemoment Trisonica Mini)

(3) Uncrewed Aerial Vehicle (DJI Matrice 600 Pro, M600P) (4) onboard computer for system monitoring and data collection.

2.1.1 Methane and Ethane Sensor

The MIRA (Mid-InfraRed Analyzer) Pico Leak Detection System (LDS) developed by Aeris Technologies employs a solid

state laser and multi-pass absorption cell with a spectral band pass between 2.5 and 4.7 µm. The wide spectral range allows for110

simultaneous measurements of both CH4 and C2H6 mixing ratios with a precision of 1 ppb s−1 and 0.5 ppb s−1, respectively

(Aeris Technologies Inc (2019); Scherer (2017)). The MIRA Pico is outfitted with a flexible length of tubing (see section 2.1.4)

and the constant pump flow rate results in a phase lag of ~2 s based on laboratory tests of the decay in pulsed gas releases.

The MIRA has been used extensively on the ground including controlled release tests at Colorado State University’s (CSU)

METEC facility to find and quantify leaks (Travis et al. (2020)).115

2.1.2 Onboard Anemometer and Weather Sensor

In addition to hydrocarbon concentrations, direct flux quantification requires measurements of vector winds, temperature, and

pressure. The system includes an ultra-light, 3D sonic anemometer: the Trisonica Mini Weather Sensor (TWS) by Anemoment

has a mass of 50 g with a volume of less than 450 cm3 (Anemoment LLC (2022, 2018)). Additionally, environmental measure-

ments can also be used as a way to detect and adapt to unsafe conditions during flights (Hollenbeck et al. (2018)). The TWS120
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Figure 1. Uncrewed Aerial System (UAS) design overview. (Left) System block diagram: (A) Trisonica Mini Weather Sensor (TWS), (B)

Gas sampler inlet, (C) Matrice 600 Pro Uncrewed Aerial Vehicle (M600P), (D) Raspberry Pi 4 on-board computer, and (E) Aeris MIRA Pico

methane and ethane sensor. (Right) Flight-Ready UAS collecting ground data prior to takeoff. TWS and sampler inlet (A and B) mounted on

a carbon fiber tube mast above the M600P’s propeller inflow layer (‘rotor wash’).

senses vector winds (|u|), temperature (T ), and pressure (P ) at 5Hz with an accuracy of δum = δvm = 0.2m s−1, δT = 2C,

and δP = 10hPa, respectively (see table 1).

2.1.3 Uncrewed Aerial Vehicle

The DJI Matrice 600 Pro (M600P) is a hexarotor vertical takeoff and landing aircraft that is capable of flying with relatively

large payload masses of up to 5.5 kg. This powerful and mobile platform became commercially available in 2014 and has125

been used in a variety of scientific and commercial applications (McKinney et al. (2019); Villa et al. (2016); Hollenbeck et al.

(2018)). The M600P can be remotely piloted up to a distance of up to 5 km at a maximum altitude of 125m above ground

level. Flight times depend on factors such as payload mass, winds, and flight pattern. Under typical winds of 2–4m s−1 and the

standard total payload mass of ~3 kg, total flight times range between 18 and 25min. We employ dual battery packs that are

cycled between flying and charging in the field; due to battery life and charging limitations, the UAS typically can accommodate130

about one flight per hour. Additionally, the flux quantification method described in section 2.6 relies on relatively stable wind

fields around the source, optimally between 2 and 6m s−1.
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The M600P is controlled via proprietary software & firmware with an expansive API for telemetry logging and flight control

(Dà Jiāng Innovations (2018)). However, the reliance on proprietary software limits system customizability and sensor inte-

gration (see section 2.1.5). While it is possible to automate flight plans for the M600P, it is more important for the operator to135

maintain control of the UAS throughout the entire flight to account for changing or unexpected flight conditions.

2.1.4 Payload Sensor Mounting

The both the RPi onboard computer and MIRA Pico mount to the M600P underside as shown in figure 1. The M600P achieves

flight by funneling air downwards to create thrust, constantly displacing air around the vehicle’s body in the process (Dà Jiāng

Innovations (2018)). Computational fluid dynamics simulations carried out by McKinney et al. (2019) determined that the140

Matrice 600 Pro causes disturbances up to 5m below the M600P’s center of mass; however, the magnitude of the disturbances

drops off quickly at a height of 60 cm above the M600P body.

The TWS mounts to a mast made of lightweight, carbon fiber tubing (0.5 in diameter) anchored near the M600P’s center

of mass. This places the TWS ~85cm above the M600P and above the shallow inflow layer generated by propellers during

normal flight. At this height above the propellers, air disturbances are below the noise floor of the TWS (~0.2m s−1) or easily145

calibrated out during data processing. A ~1m section of flexible tubing connects the payload’s gas cell to a sampling port

approximately 80 cm above the body of the M600P. This physical offset between the MIRA and sampling port introduces a

phase lag of ~2s between the measured MIRA concentrations and the TWS, which is accounted for prior to the calculation of

instantaneous fluxes. The sampler port is outfitted with a plastic Y-shaped inlet for redundant openings to decrease the chance

of damaging the pump due to debris clogging the inlet.150

While the TWS has an integrated magnetometer to measure heading, this device is intended for stationary deployment in

an open location where averaging of compass readings can result in a relatively accurate direction. However, any magnetic

disturbance created from adjacent devices or operating motors perturb the heading measurements. In contrast, the M600P has

a triple redundant positioning system with an accuracy of < 3◦ at 200Hz. The TWS must be physically aligned with the more

accurate heading data from the M600P’s Inertial Measurement Unit (IMU) to accurately calculate static-frame vector winds155

(more in Section 2.2).

In order to ensure proper alignment, the M600P is set up facing North with the TWS mounting point tightened so that the

anemometer’s North arm is facing the same direction. The MIRA Pico and Onboard Computer are both mounted under the

body of the M600P as shown in figure 1. Initial M600P test flights revealed that payload mounting at this location improves

flight performance, especially during takeoff and landing, due to the lower center of mass.160

2.1.5 Onboard Data Logging and Transmission

Each of the three main devices (MIRA Pico, TWS, and M600P) has its own output data stream that must be separately

parsed and then temporally synchronized with the other streams. The M600P does not support the use of DJI’s proprietary

‘Payload SDK’ — firmware enabling sensor data to be transmitted along with the RF control signal. Therefore, remote monitor

and control of the fully-integrated UAS is handled independently of the M600P via an onboard device for both acquisition165
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and transmission. A 4th generation Raspberry Pi (RPi) single board computer is the ideal choice due to its size, weight, and

programmability via the Linux Kernel. The RPi is powered independently via a 10Ah payload battery (see figure 1) allowing

for ground-based data collection between flights, typically while the M600P batteries are charging.

2.2 Relative Wind Adjustments

The Trisonica Mini Weather Station (TWS) is designed for static installation with one arm facing north (Anemoment LLC170

(2022)) and will therefore produce incorrect results when the device’s heading (‘yaw’, ϕ) is not a multiple of 2π (Anemo-

ment LLC (2022, 2018); Hollenbeck et al. (2018)). In addition, the motion of the M600P during data collection induces

an apparent wind that is folded into the TWS wind measurement. Transforming the raw TWS vector wind measurements

(um = [um, vm, wm]) to Earth-fixed coordinates therefore requires accurate, real-time measurements of ϕ and UAS velocity

(Vs). In order to transform the measured TWS data to static-frame coordinate system, we apply a standard Galilean transfor-175

mation as shown in equation 1.

u=R(ϕ)um +Vs =


cos(ϕ) sin(ϕ) 0

−sin(ϕ) cos(ϕ) 0

0 0 1



um

vm

wm

+


Vx

Vy

Vz

=


u

v

w

 (1)

Here, um = [um,vm,wm] are the TWS-measured vector winds, u= [u,v,w] is the corrected wind speed in Earth-fixed coor-

dinates, and Vs = [Vx,Vy,Vz] is the instantaneous UAS velocity. R(ϕ) is the counter-clockwise (CCW) Euler rotation matrix

about the vertical axis (ẑ) where ϕ is the heading (yaw) of the M600P.180

Rotations around the ŷ and x̂ axis — caused by variations in M600P pitch (θ) and roll (φ), respectively — are both generally

less than 3◦ during steady, level flights through the source plume and are therefore neglected in equation 1. The instantaneous

pitch and roll angle can be significant when the M600P is being maneuvered to different altitudes between transects, but

measurements collected during these spurious adjustments are filtered out during the flux quantification process (see section

2.6).185

A time series of the TWS-measured raw winds during a typical flight is shown in figure 2, along with the derived static-

frame vector winds based on the M600P headings and velocities throughout the flight. The raw wind measurements show clear

signatures of back-and-forth, quasi-horizontal motions of the M600P during sampling of a methane plume. Winds adjusted

for changes in heading and horizontal translation show a more realistic, continuous structure, but some residual effects can be

discerned at turning points in the flight, when the platform’s horizontal acceleration is large and the corresponding pitch and190

roll angles become appreciable. In general, pitch and roll angles during level, steady flight sections are less than 3◦ (see figure

A1), but these angles can increase to 10◦ or more during rapid horizontal accelerations. We estimate that a 15◦ pitch or roll

angle may introduce an error of up to 4% in measured horizontal winds, therefore data obtained during turning points and/or

deliberate changes in flight altitude are screened from the analysis of methane fluxes (see section 2.6). The adjusted and filtered

winds have been compared to tower anemometer measurements during controlled release validation experiments (section 3)195

and these show agreement to within ±15% over ~1minute averages and with spatial separations of about 100m. Individual
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wind vector components have also been compared in the field (see figure A2), when the UAS was flown between 10 and 30m

downwind of a static, single-component wind gauge. Comparison of 5-second averages show agreement to within 10% over a

range of winds between 2 and 7m s−1.

Figure 2. Raw measured vector winds: (top) and heading/velocity corrected vector winds (bottom) before, during, and after flight. Pre- and

post-flight ground wind speeds at the takeoff location highlighted in gray.

2.3 Background Concentration Estimation200

While the MIRA Pico is highly sensitive with a large dynamic range (~20ppb< χCH4 < 4000ppm) (Aeris Technologies

Inc (2019); Meyer et al. (2022); Follansbee et al. (2024)), there are observable levels of semi-periodic drift in the measured

mole fractions for both hydrocarbons at the ppb level. This effect is especially noticeable for χC2H6
, partly because ambient

C2H6 concentrations are generally ~100× smaller than CH4. In addition to these instrumental drifts, the raw concentration

measurements (χ) may reflect actual changes in ambient background. Nearby point sources to do not directly influence these205

background variations; instead they may be related to regional-scale emissions and meteorological influences such as winds

and stability at the mesoscale level. Both of these effects contribute to structure in the measured background (χ0), which must

be accurately quantified in order to isolate enhancements from the target source. This background variability generally occurs

over periods of minutes and is independent between χCH4 and χC2H6 , so that direct comparison prior to background removal

can be misleading, especially over longer period datasets.210

The UAS measurement strategy involves repeated cross-wind transects through the dispersing plume downwind of a target

source (as discussed in more detail in section 2.5). The resulting time series concentration data contains a number of finite-width

enhancements superimposed on a slowly varying background, as shown in figure 3A. Over the course of these measurements,

the solar insolation was increasing and the wind speed and direction were changing, which led to a monotonic increase in

the background methane concentration as seen with the increasing background. It should be noted that each plume "spike"215
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in figure 3A should not be expected to have the same peak height or width, since these plume intersects all occur at different

times, altitudes, and downwind distances.

The background, χ0, is estimated by fitting a polynomial to the measurements outside the plume. After extensive testing,

the procedure described below and outlined in figure 3 proved to be the most effective method of filtering inter-plume samples.

The raw χ timeseries is initially 3-point-smoothed (χ̃) to decrease the effect of noise before further filtering (figure 3A).220

The gradient of χ̃ is then used to detect abrupt changes in χ̃ which are indicative of the UAS entering or exiting the higher-

concentration plume, as shown in 3. Samples where ∇χ̃ is greater than a specified threshold get filtered out (i.e., more than

±γσ, where γ is a predefined constant. ±0.2σ in figure 3B and in the subsequent analysis of measurements presented here).

This gradient filter removes the majority of the inter-plume samples, leaving behind the ‘background’ samples which vary at

a much lower frequency. However, the gradient filter is imperfect and occasionally some inter-plume samples are not removed225

during this step. Therefore, a followup outlier filter is used to remove samples which are significantly far from the mean

of the samples (more than one standard deviation from the mean in figure 3C). The remaining samples are taken to be the

background with respect to the target plume (background measurements, χ̃bg) and a variable order polynomial is fit to these

samples. The polynomial order is empirically selected based on the individual dataset, usually between second and fourth

order (cubic in figure 3D). Higher order polynomials have can affect the edges of the fitted timeseries but generally, higher230

order polynomials (> 4) are not required after appropriately setting the gradient and outlier filter threshold parameters. The

polynomial regression coefficients fitting χ̃bg are then applied to the original χ sampled timestamps to estimate χ0 for each

independent hydrocarbon and dataset. This estimated background is then subtracted from the original timeseries to get the

isolated source plume enhancements, (χ−χ0), for both CH4 and C2H6.

Figure 4 presents the distribution of CH4 and C2H6 background estimate residuals (ε0 = χ0 − χ̃bg) from three independent235

flights around different source types. These three datasets were specifically chosen to highlight the variability in ε0 caused in

part by the source strength and environmental conditions. The average 3σ confidence interval (99.7%) calculated from more

than two dozen flights is approximately 16 ppb for CH4 and 2.5 ppb for C2H6. This minimum detection limit governs the

lower bounds on source strengths and fluxes that can be quantified with this UAS (further discussed in section 2.7)

2.4 Plume Simulations240

This section describes the modeling analysis that was conducted to develop optimal flight patterns and sampling strategies for

the UAS. In these idealized simulations, emissions from the target source are held constant and surrounding environmental

winds are steady during the M600P’s 15 to 25min flight time. Gaussian models offer a reasonable approximation for the

structure and evolution downwind of the source’s emission plume under these conditions (Shah et al. (2019); Stockie (2011);

Jacob et al. (2022); Seinfeld and Pandis (2006); Meyer et al. (2022); Follansbee et al. (2024); Woodward (1998)), but it should245

be emphasized that source fluxes reported in this work do not rely on the results of Gaussian plume simulations or inverse

modelling (see section 2.6).

The Gaussian plume equation for the mass density of a gas (C, units of kgm−3) downwind of a point source emitter is

shown in equation 2.
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Figure 3. Time series of methane measurements during a typical flight, illustrating the procedure for background estimation and removal. The

flight involved multiple cross-sections through the downwind plume of a known point emitter, and the plume enhancements in methane are

visible as large spikes in the methane time series. (A) 3-point smooth raw data. (B) gradient filter to detect the majority of in-plume samples.

(C) split remaining samples into segments and remove statistical outliers from each segment. (D) 3rd order polynomial fit using remaining

samples; resultant regression coefficients used with initial (non-smoothed) raw data samples used to estimate background. Estimated CH4

emission rate for this dataset is 0.378± 0.147 kg h−1 (see section 2.6).

C(x,y,z) =
Q

|u|
· 1

2πσy(x)σz(x)
· exp

[
−y2/

(
2σy(x)

2
)]

· exp
[
−(z−H)2/

(
2σz(x)

2
)]

(2)250

Q is emission rate (kg s−1), u is the constant horizontal wind speed (ms−1), σz & σy are standard deviations for Gaussian

distributions, in units of meters, which are generally derived using stability classes (Seinfeld and Pandis (2006); Woodward

(1998)). H is the height of the source (m). C is the estimated increase in gas density at position x (directly downwind, cen-

terline), y (horizontal from centerline), and z (vertical from centerline) given in meters. It is important to make the distinction

between the mass density, C (kgm−3), and the mole fraction χ (molmol−1) measured by the MIRA Pico. The conversion255

between the two is C = ηρχ where η is the ratio of molar masses of the gas to that of air, and ρ is the air density (kgm−3).

Figure 5 shows cross-sections of a Gaussian plume simulated at three downwind distances from a 25 kg h−1 point source.

Mean winds in this case are ~2m s−1 and the stability class corresponds to high solar insolation. As expected, the simulated

plume becomes more dispersed, and broadens both horizontally and vertically with increasing distance from the source. Plume
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Figure 4. Residuals from the CH4 and C2H6 background polynomial fit (outlined in figure 3) for three independent flights. The 3σ confi-

dence interval (99.7%) for each dataset is shown with a dashed line, highlighting the variability in the background estimates due to different

sources and environmental conditions. The average 3σ confidence interval, calculated from 28 flights during 2022 and 2023, is overlaid with

a solid ellipse.

enhancements in methane range between 1 and 5 ppm, which are easily detectable with this system, and the horizontal and260

vertical scales (~50m, ~30m) are readily accessible to the UAS.

2.5 Flight Pattern

The full UAS setup and pre-flight checks can be completed in under 15min and any certified remote pilot, or person under

the supervision of a certified pilot (Federal Aviation Administration (2021)), can operate and maneuver the UAS around a

target source’s emission plume. Part of the setup process involves the verification of MIRA measurements for both CH4 and265

C2H6. Prior to each flight, a small canister of natural gas with a known composition (~7% C2H6:CH4 ) is rapidly opened

and closed about 1m upwind of the UAS gas inlet. This pre-flight release ‘pulse’ is measured on the MIRA to test for any lag

or unexpected gain offset on either of the channels. As discussed in section 2.3, the raw concentration measurements can be

biased due to a quasi-periodic sensor drift which must be estimated and removed before comparing the channels. This step is

completed during data processing after each deployment, and it should be noted that the results from each of these controlled270

pulses has been consistent to within a fraction of the known C2H6:CH4 ratio (<1% disagreement) across all deployments

between 2021 and the present.
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Figure 5. Cross-sections of modelled Gaussian plume under conditions of low wind (2m s) and high solar insulation (stability class "A" from

Woodward (1998)). Each panel depicts the Gaussian plume cross-section at distance X downwind of the source. The horizontal distance,

y, is with respect to plume centerline and the vertical distance z is above ground level. The plume model assumes a steady wind field and

constant emission rate from the source.

The flight time of ~20min constrains the types of flight patterns that can be used to quantify source emission rates. In

order to maximize the number of in-plume samples within a relatively short flight period, our strategy is to remain downwind

of the source and fly horizontal ‘transects’ perpendicular to the mean wind direction. This curtain or boustrophedonic flight275

is perpendicular to the average wind direction, and involves multiple cuts through the plume in order to measure both the

in-plume concentrations, χ, and the ambient or background concentrations used to determine χ0. Each individual transect

through the downwind plume is at a relatively constant altitude and horizontal velocity between 2 and 5m s−1, depending on

the wind conditions and proximity to the source. Transects are typically 50m to 1 km in length, depending on terrain, wind

variability, and source distribution and downwind distance. Extended sources and measurements collected at larger downwind280

distances from the source require longer transects to ensure that the dispersing plume gets fully traversed during each transect.

The ability to quickly adjust altitude between each of the individual transects allows for direct measurements of the plume’s

vertical structure in addition to the horizontal dispersion.

Direct measurements of a source plume with the MIRA Pico sensor requires the UAS to be physically maneuvered downwind

of the source. While a steady-state Gaussian plume model can be used for flux inversions (e.g., Jacob et al. (2022); Shah285

et al. (2019); Stockie (2011); Seinfeld and Pandis (2006); Woodward (1998); Bhattacharya (2013)), these models represent

plume dispersion probabilities which are not generally observed in the superposition of horizontal transects through the plume.

During direct measurements, large-scale turbulence in the wind flow results in changes to the plume’s size and relative location

throughout the measurement period. Based on simple scaling arguments, we expect that plume variability is largest in the

horizontal plane due primarily to wind directional variability. Figure 6 shows multiple simulated transects through a Gaussian290

plume’s downwind cross-section in the case of a steady-state flow. We simulate the stochastic variability in the plume by
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Figure 6. Simulated flight through Gaussian plume: (top) cross-section of plume X meters directly downwind of source, simulated transects

shown as dotted lines. (middle) Resample of modelled cross-section at constant horizontal transect velocity Vs. (bottom) Random shifts in

centerline horizontal position, simulating variable wind conditions and temporally separated plume transects.

introducing random shifts in centerline between each of the temporally separated transects, which can be seen at the bottom

of Figure 6. This pattern is generally more consistent with our observations in comparison to the steady state model. However,

the stochastic model shows that total plume flux is unaffected by horizontal plume displacements, provided that the integral is

taken along horizontal transects.295

2.6 Direct Flux Quantification

The data collected from a single flight is broken into K individual transects through the source’s downwind plume, each

transect representing data collected at a nearly-constant altitude, z, and non-zero horizontal velocity, Vs, while intersecting the
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plume. The altitude, z, is only adjusted between transects with the UAS outside the plume (measuring ambient or background

concentrations).300

Mass balance estimation techniques require knowledge of the wind speed perpendicular to the direction of travel (transect

crosswind). Optimally, each transect would therefore be perpendicular to the mean horizontal wind direction (u), but local

topography, changing wind fields, and flight safety considerations often result in an angle other than 90◦ between Vs and u.

Therefore, it is important to first define a unit vector, n̂, perpendicular to the direction of travel.

∥n̂∥= n2
x +n2

y = 1

Vs · n̂= Vxnx +Vy ny = 0
(3)305

Equation 3 shows the system of equations used to calculate this unit vector, n̂, using the instantaneous horizontal UAS

velocities Vx and Vy defined previously. The transect crosswind, a measure of windspeed perpendicular to the UAS transect,

is (u · n̂). Maintaining a constant heading and horizontal velocity during flights proved difficult during periods of irregular

and shifting winds. Direct measurements of u and Vs are variable between samples so that n̂ is required to constrain the flux

calculation with respect to each transect.310

Each of the K horizontal transects gets processed individually to calculate the intermediate transect-integrated flux fk (equa-

tion 4), the horizontal integral of the samples along each transect (units of mass flux rate per vertical distance, kg s−1 m−1).

fk = η

n−1∑
i=0

ρi(χ−χ0)i(u · n̂)i∆si =

n−1∑
i=0

(C −C0)i(u · n̂)i∆si (4)

ηρ(χ−χ0) = (C −C0) is the background-adjusted mole fraction, ∆s= |Vs|∆t=
√

V 2
x +V 2

y is the distance between sam-

ples (∆t≈ 1s), and ρ and η are defined previously.315

The total flux, Ftot, is then calculated through integrating the sum of fk and the vertical distance between physically adjacent

transects, ∆zk (equations 5 and 6).

∆zk =


|zk+1 − zk|/2+3 |zk|/4 zk =min(z0, . . . , zK−1)

|zk−1 − zk| zk =max(z0, . . . , zK−1)

(|zk−1 − zk|+ |zk+1 − zk|)/2 otherwise

(5)

Ftot =

K−1∑
k=0

(fk∆zk) (6)320

For most transects, ∆zk ranges from the midpoint distance between the previous, lower altitude transect up to the midpoint

between the next, higher altitude transect. Adjustments to the vertical integral step ∆zk are taken at the bottom and top transects

to account for extrapolation to the ground and above the flight pattern. The UAS cannot profile below a height of about 1.5m,
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but the plume flux is expected to decrease non-linearly to zero at the ground. Therefore, we extrapolate below the lowest flight

transect by assuming a constant mixing ratio and wind speed between the lowest transect and 75% of the distance to ground.325

This choice of integral quadrature corresponds to a logarithmic vertical profile for the transect-integrated flux f below level

z, f = f0 ln(z/z0), with z0 = 0.018z. In the absence of tall trees, power lines, or other obstructions, the lowest flight transect

typically lies between 2-4m above ground (including the UAS mast), and the assumed zo therefore ranges between about 4

and 7 cm. Extrapolation at the top edge of the plume can be more complicated, but ideally, the uppermost flight transect will

lie above the plume so that a linear interpolation can adequately account for the top of the plume profile. However, some flight330

patterns (e.g., 9) may not completely span the possible vertical extent of the plume, and in these isolated cases we adopt a

conservative approach by assuming a constant mixing ratio and wind above the transect altitude, extending only to a height

defined by half the vertical distance between the top two transects. Typically, this extrapolation amounts to 2-4 meters above

the uppermost transect. A typical flight downwind of a natural gas point source is shown in figure 7. This flight is composed of

Figure 7. Plume transect flight pattern viewed from east (bottom left), south (bottom right), and from above (top right). Approximate source

location marked with black square. The windrose plot (top left) shows the Earth-fixed wind in the horizontal direction. Estimated CH4

emission rate from UAS is 4.15± 1.11 kg h−1 (compare to metered emission rate of 3.52± 0.01 kg h−1)
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eleven horizontal transects over a period of approximately 11min. The transects were flown approximately 130m downwind335

(roughly south-southeast) of the methane point source with a known emission rate of 3.42± 0.01 kg h−1 (El Abbadi et al.

(2024)).

2.7 Precision and Uncertainties

Errors are calculated using the standard equation (7) described in Taylor (1996) for an arbitrary measured variable, q. Table 1

gives the measurement uncertainties for the major components of the UAS.340

Table 1. Sensor uncertainties for error propagation Anemoment LLC (2022); Dà Jiāng Innovations (2018); Aeris Technologies Inc (2019).
∗Average 1σ standard deviation of residuals from background estimation (ε); actual uncertainty is dependent on the quality of the background

estimate ( χ0) for each of the individual datasets.

Sensor Measurement Uncertainty Units Variable

TWS Pressure 1000 Pa δP

TWS Temperature 2 C δT

TWS Wind Speed 0.2 m/s δum, δvm

M600P GNSS Horizontal Velocity 0.05 m/s δVx, δVy

M600P IMU Heading (Yaw) 0.05 rad δϕ

M600P IMU Pitch, Roll 0.017 rad δθ, δψ

MIRA Pico Methane 1.0 ppb δχCH4

MIRA Pico Ethane 0.5 ppb δχC2H6

RPi RTC Timestamp 100 ms δ(∆t)

Pipeline∗ Methane Background 5.0 ppb δχ0,CH4

Pipeline∗ Ethane Background 1.0 ppb δχ0,C2H6

δq(x, . . . ,z) =

√(
∂q

∂x

)2

δx2 + . . .+

(
∂q

∂z

)2

δz2 (7)

The transect-integrated-flux, fk, given in equation 4 is a function of the background-adjusted concentration (C −C0),

windspeed perpendicular to UAS curtain, and the distance between transect samples (∆s). Each of these terms introduces an

error on fk as defined in equations 8 through 10.

The uncertainty on the background-adjusted concentration, C, is dependent on the calculated air density (ρ=MairP/(RT )345

kgm−3), measured hydrocarbon concentration (χ), estimated background (χ0, see section 2.3), and the uncertainty associated

with each value (see table 1).
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δ(C −C0) = η

√
ρ2 δ(χ−χ0)

2
+(χ−χ0)2 δρ

2

= ηMair/R

√
(P/T )2 [δχ+ δχ0] + (χ−χ0)2

[
(δP/T )

2
+(P δT/T 2)

2
]

(8)

Note that the uncertainty on the estimated χ0 is calculated independently for each flight.350

The crosswind uncertainty is dependent on the static-frame horizontal windspeed (u) calculated as described in section 2.2

with the full uncertainty propagation given in section B1. While the crosswind is dependent the unit vector (n̂), the conservative

upper limit approximation for cross wind is given on the equation 9.

δ (u · n̂) =
√

n2
y δu

2 +n2
x δv

2 ≈
√
δu(um,ϕ,Vx)

2
+ δv (vm,ϕ,Vy)

2 (9)

The final parameter in δfk is the separation between sample along the transect, ∆s, which is dependent on the UAS horizontal355

velocity (Vh =
√
Vx +Vy), sampling rate (∆t= 1Hz), and the associated uncertainties as shown in equation 10.

δ(∆s) =
√

δV 2
h ∆t2 +V 2

h δ(∆t)2 =

√[
(Vx δVx)

2
+(Vy δVy)

2
]2

(∆t/Vh)
2
+
[
V 2
x +V 2

y

]2
δ (∆t)

2 (10)

The calculated uncertainty on fk is therefore calculated as shown in equation 11.

δfk
2 = [δ (C −C0) (u · n̂) ∆s]

2
+ [(C −C0) δ (u · n̂) ∆s]

2
+ [(C −C0) (u · n̂) δ (∆s)]

2 (11)

The total source flux is the summation of each fk multiplied by the corresponding ∆zk, as shown in equation 6. The vertical360

range of each independent transect is given in equation 5. zk is the average height of all samples within transect k and δ(∆z) =

σzk is the uncertainty in altitude.

δFtot =

√
δf2

k ∆z2 + f2
k δ(∆z)

2 (12)

The measurement uncertainties detailed in equations 8 through 12 can be used to identify the major sources of uncertainty in

source emission rate estimates.365

While the minimum flux threshold will depend on the specific meteorological conditions and flight patterns during sampling,

under favorable flight conditions with high solar insulation, 2ms−1 mean windspeed, and a downwind plume cross-sectional

area of 100m2 (see Figure 5), the minimum source strength that can be quantified is on the order of 0.0062 kg(CH4) h
−1 and

0.0018 kg(C2H6) h
−1.
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3 Results370

This section gives an overview of a number of quantification flights between spring 2022 and Fall 2023. Section 3.1 details the

results of multiple controlled releases using the system described in El Abbadi et al. (2024). Section 3.2 discusses measurements

from various, smaller biogenic and thermogenic emission sources collected between winter 2021 and Fall 2023.

3.1 Controlled Release Experiments

In Fall of 2022, the NMT team participated in a single-blind controlled release validation campaign in Casa Grande, Arizona,375

USA (Sherwin et al. (2023); El Abbadi et al. (2024)). While this validation campaign focused on larger-scale aircraft and satel-

lite system validation, it was a unique opportunity to quantify the accuracy for this method of direct methane flux quantification.

The UAS was deployed multiple times around the controlled release location during two separate, three-day validation trips:

October 10–12 and November 14–16, 2022. Multiple flights at various times throughout the daily testing window (between

10:00 and 14:00 MST most days) measured concentrations downwind of the release stack.380

Suboptimal environmental conditions and unforeseen instrumentation issues resulted in the rejection of the majority October

2022 flights from the analysis process. The November 2022, 3-day campaign produced a total of 12 flights, 8 of which were

during times of low-variability windfields and good flight conditions to allow for reliable flux quantification.

It is important to note that, at the time of this campaign, the UAS flight pattern and quantification method were still in

active development. While the NMT team quantified and submitted flux estimates during the single-blind and partially-blinded385

phases of the unblinding process (described in El Abbadi et al. (2024)), the final unblinded metered emissions were invaluable

to debug and update the initial quantification process, ultimately leading to the numerical integration outlined in section 2.6.

Here, we present the analysis of the quantification results informed by the unblinded, ground-truth methane flow rates.

Figure 8 shows the comparison between UAS-calculated flux and the corresponding unblinded metered emissions from

8 independent November 2022 flights. The metered rates, taken to be the ground truth emission rates, range from 1.7 to390

1500 kg h−1. This broad range of emission rates highlights the system’s dynamic range and the fitted linear regression shows

the quality of emission estimates compared to the one-to-one agreement with metered rates (dotted line). Our method of flux

quantification shows reasonable agreement with the expected emission rates above 1 kg h−1. However, the results suggest an

underestimation of the emissions which is not correlated to number of transects or windspeeds during flights. This may be due

to the limited flight time and under-sampling the downwind plume with the UAS. One interpretation of these results is that our395

field measurements could represent a reasonable lower bound to the true emission rate of the source.

3.2 Targeted Point and Distributed Sources

The deployment strategy for this UAS is designed to quantify emissions from targeted local sources such as O&NG wells and

manure storage/biogenic lagoons. With a limited operational distance and flight time, larger distributed sources (such as large-

scale dairies and agricultural centers) are difficult to properly quantify using the numerical integration technique described in400
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Figure 8. Comparison of UAS CH4 flux calculation verses Metered Emissions reported by El Abbadi et al. (2024) and Sherwin et al. (2023).

Both plots show 8 individual flights during the November 2022 field campaign with 2σ error bars. Linear regression fit shown as solid

line for comparison with the idealized one-to-one fit corresponding to perfect agreement between UAS and Metered data (dotted line). Left

Logarithmic plot highlighting UAS’s large dynamic range. Right Linear plot focused on emission rates below detection limits of most aircraft

quantification methods; linear regression fit does not include emission rates above 100 kg h−1.

section 2.6. However, smaller-scale municipal waste facilities with heterogeneous emission profiles can be quantified as long

as the UAS is able to fully, and repeatedly, transect the complex and irregular plumes downwind of the facility.

3.2.1 Municipal Waste Facility

During the course of system development and testing, the UAS was deployed around a local Municipal Waste Facility (MWF) in

Socorro, NM. This location serves a county population of approximately 16,300 with multiple cells over an area of 45 hectares.405

Larger facilities studied by Olaguer et al. (2022) and Lan et al. (2015) reported emission rates between 85 and > 2000 kg h−1;

this much smaller local facility, however, was expected to emit at rates less than 10 kg h−1 (Olaguer et al. (2022); Bogner and

Matthews (2003)). The low emission rate and temporal heterogeneity, likely due to changes in cell activity, is evident across

the multiple visits between Spring 2022 and Summer 2023. The flight path from one such deployment can be seen in figure 9.

In comparison to flights downwind of point sources such as O&NG wells or controlled NG releases (figure 7), the flight410

pattern in figure 9 was positioned about 0.5 km downwind of the source and involved plume transects up to ~500m long, and

over an altitude range of up to 50m. In addition, the methane enhancements are about a factor of 10 lower than in figure 7, and

the plume is distributed over a larger area and centered at a higher altitude. Nevertheless, the overall plume structure allows
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Figure 9. Example flight, split into individual transects, from landfill in New Mexico. The landfill itself is composed of activate and inactive

cells distributed over and area of approximately 45 ha, resulting in a non-uniform downwind plume profile. Comparison with localized ‘point

source’ presented in figure 7, longer horizontal transects across a wider vertical range are required to measure the multiple distributed and

highly variable emitters. Estimated flux rate for this flight is 1.33± 0.58kg h−1.

for the same flux analysis as discussed for the localized NG point sources above. The measured methane emission rate for this

flight was 1.33± 0.58kg h−1.415

3.2.2 Orphan Well

During April 2023, the UAS was also deployed around an ‘orphaned well’ located in Hobbs, New Mexico, USA. This site has

been out-of-use for more than two decades and was in the initial phase of being plugged when visited in April 2023. A detailed

analysis of data from this field campaign is presented in Follansbee et al. (2024). The observed plume structure was similar to

that shown in figure 7, but mean wind speeds were much larger and methane plume enhancements were ~400 ppb, roughly420

between the range of plume enhancements shown in figures 7 and 9. Three downwind flights yielded consistent fluxes in the

range of 0.3 to 0.4 kg h−1 (Follansbee et al. (2024)).

3.2.3 Wastewater Treatment Plant

Wastewater Treatment Plants (WWTPs) are a known source of biogenic methane emissions via biodegradation of pollutants by

anaerobic bacteria (Song et al. (2023)). The small town of Socorro, NM has a local Wastewater Treatment plant that processes425

less than one million gallons per day (MGD) so that its contribution to anthropogenic methane is relatively quite low (when
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compared to O&NG and agricultural operations). However, the low emission rate of this location was useful for testing of the

UAS’s lower detection and quantification limits.

A timeseries of measured CH4 and C2H6 concentrations from a short flight in August 2023 is shown in figure 10. The

CH4and C2H6 detection limit (calculated from the background fit residual 3σ confidence interval, see section 2.3) is overlaid430

on the timeseries shown in figure 9. While the in-plume CH4 concentration levels peak at around 40 ppb, no corresponding

C2H6 enhancements are detected while passing through the plume. The lack a correlation between C2H6 and CH4 is strong

evidence that the measured plume is from anaerobic digestion at the WWTP and is not contaminated by another source.

However, it is important to note that weaker source strengths lead to a decrease in the signal-to-noise ratio so that C2H6 from

thermogenic sources may not be detectable. This is shown visually at the bottom of figure 10 where the expectation C2H6435

timeseries for 10% and 5% C2H6:CH4 thermogenic plumes are modelled with respect to the measured CH4 timeseries. While

the C2H6 signal for the 10% thermogenic mixture peaks above the detection threshold (1.5ppb in this dataset), the 5% mixture

is barely visible above the noise floor. However, it is important to note that weaker source strengths lead to a decrease in the

signal-to-noise ratio so that C2H6 from thermogenic sources may not be detectable. This is shown visually at the bottom of

figure 10 where the expectation C2H6 timeseries for 10% and 5% C2H6:CH4 thermogenic plumes are modelled with respect440

to the measured CH4 timeseries. While the C2H6 signal for the 10% thermogenic mixture peaks above the detection threshold

(1.5ppb in this dataset), the 5% mixture is barely visible above the noise floor. The emission rate for the flight shown in figure

10 is estimated to be 68.7(+171.5,−61.7)g h−1.

3.3 Source Attribution

As discussed in Section 1, simultaneous measurements of both CH4 and C2H6 is useful for source classification as either445

biogenic or thermogenic. In addition, there are varying ratios of trace hydrocarbons found in thermogenic natural gas sources,

and C2H6 is the second-most dominate compound in refined natural gas (Peischl et al. (2018); Hodnebrog et al. (2018);

Kutcherov and Krayushkin (2010); Glasby (2006); Space Studies Board et al. (2019); Solomon et al. (2007); Hansen et al.

(2000); Meyer et al. (2022)). Therefore, the ratio of C2H6 to CH4 can be used to estimate the percentage of non-methane

compounds in an O&NG plume and distinguish between sources.450

Figure 11 shows the ratio of measured C2H6 and CH4 mole fraction from five different field measurements around various

sources, including the municipal waste facility discussed in section 3.2.1. Multiple downwind plume measurements showed a

negligible C2H6 content (< |0.2%| C2H6 : CH4) from this biogenic source. Consistent with measured concentrations in figure

9, CH4 concentrations from the MWF are much lower in comparison to the sampled thermogenic methane sources.

The two different controlled release campaigns in Fall 2022 were about one month apart, and these data are segregated in455

figure 11. The measured percentages are in agreement with the contemporaneous CH4 concentration measurements reported

by the controlled release team (El Abbadi et al. (2024)). The same ratio of C2H6 to CH4 was measured across all flights during

the first release and similarly during the second campaign, though the ethane content was noticeably different during the second

campaign.
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Figure 10. (Top and Middle) Timeseries of measured and background subtracted CH4 and C2H6 concentrations (section 2.3) from a flight

downwind of the City of Socorro wastewater treatment plant in August 2023. (Bottom) Expectation C2H6 timeseries if measured CH4

plume (Top) was thermogenic with 10% and 5% C2H6:CH4 ratios. The mean winds were ~5m s−1 and the solar insolation corresponded to

stability class “B” due to partial cloud coverage (Seinfeld and Pandis (2006); Woodward (1998)). The plume was intercepted on two transects

separated by about 40 s, as seen in the CH4 timeseries (top) about 4-5minutes into the flight. No corresponding C2H6 enhancements we

measured indicating that the plume is biogenic (compare with expectation thermogenic C2H6 timeseries). Estimated CH4 emission rate of

0.061± 0.032 kg h−1.

Emissions of unrefined NG from the orphan well discussed in section 3.2.2 contained a smaller fraction of CH4 due to the460

presence of other compounds such as H2S, so that it is incorrect to approximate the C2H6 ratio in figure 11 as the non-CH4

percentage. However, this unique C2H6:CH4 ratio was consistent across all orphan well flights, and in good agreement with

ground-based systems deployed at the same site (Follansbee et al. (2024)); larger ethane content is due to the unrefined natural
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Figure 11. Ethane & Methane enhancement ratios from multiple independent field tests at different sites. October and November 2022

Controlled Releases: are two independent multi-day field campaigns in Casa Grande, AZ during a controlled NG release. San Juan Basin

Well: Multiple flights near an active well-head in Cuba, NM. Permian Basin Well: three independent flights downwind of an orphan well in

Hobbs, NM, Municipal Waste Facility is a relatively small waste disposal location near Socorro, NM.

gas seeping from the unused well. (Stolper et al. (2018)). Furthermore, measurements of unrefined NG from a leaking O&NG

well in the San Juan Basin, obtained in October 2023, showed a distinct ratio from that of the orphan well from the Permian465

Basin. The San Juan Basin is primarily a coal producing region and therefore has a noticeably lower C2H6 content compared

to the Permian Basin, the latter region being primarily composed of oil. Thus, each of the sources shown in Figure 11 had a

unique and consistent C2H6 ratio which can be used to characterize and differentiate multiple sources based on this percentage.

This is in agreement with the findings of Meyer et al. (2022).

Figure 12 highlights the dynamic range of the UAS, which is able to detect CH4 enhancements of as little at 20 ppb s−1 (after470

background removal, Section 2.3). Additionally, the UAS has demonstrated the ability to measure much larger concentrations

of more than 40,000 ppm (empirically determined based on MIRA Pico saturation levels during AZ validation flights).
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Figure 12. Comparison of estimated Methane flux from various anthropogenic sources. The UAS has a large dynamic range capable of

quantifying emission rates from smaller sources (less than 1 kg h−1). Horizontal dashed lines show the absolute lowest detection limits for

satellite and aircraft quantification methods (Jacob et al. (2022); Duren et al. (2019)) with respect to the estimated lower limit of this system

(~0.007 kg h−1, see section 2.7)

4 Conclusions

Our results demonstrate the capabilities of this integrated UAS package, along with associated flight strategies and data anal-

ysis methodologies, to quantify and characterize methane of point and distributed emission sources. Through direct, in situ475

measurements of CH4 concentrations and vector winds downwind of target sources, the UAS can be used to quantify emission

rates spanning more than three orders of magnitude. The lower bound limit for CH4 flux measurements is estimated to be
~0.007 kg h−1, and it is determined primarily by the precision of the concentration measurements and uncertainties associated

with determining the background levels with respect to variable plume enhancements.

Environmental conditions largely dictate the plume dispersion and transport with respect to a target source; optimal down-480

wind distances and transect velocities during flight are highly dependent on insolation and windspeed/direction. The results

from the controlled releases shown in figure 8 and table B1 were obtained during daytime periods of relatively steady winds and

low cloud coverage (high solar insulation leading to large vertical mixing). In all cases, the measured emission rates showed

reasonable agreement with metered flow rates, generally within 1σ error. However, the results suggest the potential for a small

systematic underestimation of emissions across all scales, depending on environmental conditions. This underestimation may485

arise from limitations on the horizontal extent or vertical distribution of transects during each flight, resulting in an under-
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sampling of the continuous emission plume. Therefore, UAS flux quantification may represent an effective lower-bound value

for the true emission rate. It is important to note that the results in section 3.1 were informed by the fully unblinded metered

rates whereas the aforementioned aircraft systems used fully blinded or partially unblinded data for the reported estimates

(El Abbadi et al. (2024); Sherwin et al. (2023)).490

The primary limitations of our UAS measurement approach are related to meteorological conditions. Optimum mean wind

speeds are in the range 2-6m s−1. Wind speeds below 2m s−1 have been shown to produce less reliable fluxes due to higher

variability in the plume position and shape, while winds above 6m s−1 are too strong for safe flights with this UAS. The

steadiness of wind directionality can also be a factor, although it is a much less severe constraint than speed provided that

the flight pattern is sufficiently wide to intersect the plume on every transect. Proper deployment also requires access for495

takeoff and landing within 1 km of the source, and the target source’s location must also be known to within a few kilometers.

While successful deployment and flux quantification is constrained to a specific range of environmental conditions, the UAS

offers a relatively simple method of deployment for quantifying emitters that would otherwise be difficult or impossible for

other monitoring techniques to access or detect. Thus, although this system is not optimized for wide-area surveys, it is well

suited for site quantification of known sources such as O&NG wells or processing facilities, small dairies and municipal waste500

facilities, and wastewater treatment plants.

Appendix A: Supplemental Information

Appendix B: Supplemental Equations

B1 Static Vector Wind Uncertainty
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Figure A1. Instantaneous UAS Pitch and Roll versus horizontal velocity from all flights presented in figure 12 and table B1 (>

13,500 samples). Plot contains all samples prior to filtering and transect processing as described in section 2.6.

Code and data availability. Software Minimal Working Examples (MWE) for MIRA Pico background concentration estimation (section

2.3) and static winds calculations using measurements with the onboard anemometer (section 2.2) are available through GitHub (Dooley

(2024a, c)). Processed dataset files from flights discussed in section 3, figure 12, and table B1 are also available on GitHub (Dooley (2024b)).
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Figure A2. (Top) Comparison of vector wind (u) from UAS adjustment (section 2.2) with directional ground anemometer aligned to the west.

(Bottom height of UAS above ground level (blue) with respect to anemometer (orange). Highlighted regions depict steady/level transects

within 20m horizontal distance from the fixed anemometer.)

name): Adam R. Brandt, Philippine M. Burdeau, Yuanlei Chen, Zhenlin Chen, Jeffrey S. Rutherford, and from Rawhide Leasing (operating

the gas equipment) Mike Brandon.
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Dà Jiāng Innovations: Matrice 600 Pro User Manual, 2018.

Dooley, J. F.: nmt_uas_background_estimate, https://github.com/jfdoolster/nmt_uas_background_estimate.git, 2024a.

Dooley, J. F.: nmt_uas_public, https://github.com/jfdoolster/nmt_uas_public.git, 2024b.

Dooley, J. F.: nmt_uas_wind_direction, https://github.com/jfdoolster/nmt_uas_wind_direction.git, 2024c.

Duren, R. M., Thorpe, A. K., Foster, K. T., Rafiq, T., Hopkins, F. M., Yadav, V., Bue, B. D., Thompson, D. R., Conley, S., Colombi, N. K.,555

Frankenberg, C., McCubbin, I. B., Eastwood, M. L., Falk, M., Herner, J. D., Croes, B. E., Green, R. O., and Miller, C. E.: California’s

methane super-emitters, Nature, 575, 180–184, https://doi.org/10.1038/s41586-019-1720-3, 2019.

El Abbadi, S. H., Chen, Z., Burdeau, P. M., Rutherford, J. S., Chen, Y., Zhang, Z., Sherwin, E. D., and Brandt, A. R.: Technological

Maturity of Aircraft-Based Methane Sensing for Greenhouse Gas Mitigation, Environmental Science & Technology, 58, 9591–9600,

https://doi.org/10.1021/acs.est.4c02439, 2024.560

29

https://doi.org/10.3390/s19092179
https://doi.org/10.1525/elementa.379
https://doi.org/10.1080/10962247.2020.1728423
https://doi.org/10.1029/2002GB001913
https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.141172
https://doi.org/10.3390/su11072054
https://doi.org/10.1021/acsestair.4c00015
https://github.com/jfdoolster/nmt_uas_background_estimate.git
https://github.com/jfdoolster/nmt_uas_public.git
https://github.com/jfdoolster/nmt_uas_wind_direction.git
https://doi.org/10.1038/s41586-019-1720-3
https://doi.org/10.1021/acs.est.4c02439


Etiope, G. and Sherwood Lollar, B.: Abiotic Methane On Earth, Reviews of Geophysics, 51, 276–299, https://doi.org/10.1002/rog.20011,

2013.

Federal Aviation Administration: Remote Pilot - Small Unmanned Aircraft Systems Airman Certification Standards, 2021.

Follansbee, E., Lee, J. E., Dubey, M. L., Dooley, J., Schuck, C., Minschwaner, K., Santos, A., Biraud, S. C., and Dubey,

M. K.: Quantifying Methane Fluxes from Super-Emitting Orphan Wells to Report Carbon Credits and Prioritize Remediation,565

https://doi.org/10.22541/essoar.171781163.39594276/v1, 2024.

Frankenberg, C., Meirink, J. F., Van Weele, M., Platt, U., and Wagner, T.: Assessing Methane Emissions from Global Space-Borne Observa-

tions, Science, 308, 1010–1014, https://doi.org/10.1126/science.1106644, 2005.

Frankenberg, C., Thorpe, A. K., Thompson, D. R., Hulley, G., Kort, E. A., Vance, N., Borchardt, J., Krings, T., Gerilowski, K.,

Sweeney, C., Conley, S., Bue, B. D., Aubrey, A. D., Hook, S., and Green, R. O.: Airborne methane remote measurements re-570

veal heavy-tail flux distribution in Four Corners region, Proceedings of the National Academy of Sciences, 113, 9734–9739,

https://doi.org/10.1073/pnas.1605617113, 2016.

Gålfalk, M., Nilsson Påledal, S., and Bastviken, D.: Sensitive Drone Mapping of Methane Emissions without the Need

for Supplementary Ground-Based Measurements, American Chemical Society: Earth and Space Chemistry, 5, 2668–2676,

https://doi.org/10.1021/acsearthspacechem.1c00106, 2021.575

Gisi, M., Hase, F., Dohe, S., Blumenstock, T., Simon, A., and Keens, A.: XCO2-measurements with a tabletop FTS using solar absorption

spectroscopy, Atmospheric Measurement Techniques, 5, 2969–2980, https://doi.org/10.5194/amt-5-2969-2012, 2012.

Glasby, G. P.: Abiogenic Origin of Hydrocarbons: An Historical Overview, Resource Geology, 56, 83–96, https://doi.org/10.1111/j.1751-

3928.2006.tb00271.x, 2006.

Hansen, J., Sato, M., Ruedy, R., Lacis, A., and Oinas, V.: Global warming in the twenty-first century: An alternative scenario, Proceedings580

of the National Academy of Sciences, 2000.

Heath, G., Warner, E., Steinberg, D., and Brandt, A.: Estimating U.S. Methane Emissions from the Natural Gas Supply Chain. Approaches,

Uncertainties, Current Estimates, and Future Studies, Tech. Rep. NREL/TP–6A50-62820, 1226158, Joint Institute for Strategic Energy

Analysis, http://www.osti.gov/servlets/purl/1226158/, 2015.

Heerah, S., Frausto-Vicencio, I., Jeong, S., Marklein, A. R., Ding, Y., Meyer, A. G., Parker, H. A., Fischer, M. L., Franklin, J. E.,585

Hopkins, F. M., and Dubey, M.: Dairy Methane Emissions in California’s San Joaquin Valley Inferred With Ground-Based Re-

mote Sensing Observations in the Summer and Winter, Journal of Geophysical Research: Atmospheres, 126, e2021JD034 785,

https://doi.org/10.1029/2021JD034785, 2021.

Hodnebrog, Ø., Dalsøren, S. B., and Myhre, G.: Lifetimes, direct and indirect radiative forcing, and global warming potentials of ethane

(C2H6 ), propane (C3H8), and butane (C4H10), Atmospheric Science Letters, 19, e804, https://doi.org/10.1002/asl.804, 2018.590

Hollenbeck, D., Nunez, G., Christensen, L. E., and Chen, Y.: Wind Measurement and Estimation with Small Unmanned Aerial Systems

(sUAS) Using On-Board Mini Ultrasonic Anemometers, in: 2018 International Conference on Unmanned Aircraft Systems (ICUAS), pp.

285–292, IEEE, Dallas, TX, ISBN 978-1-5386-1354-2, https://doi.org/10.1109/ICUAS.2018.8453418, 2018.

Holmes, C. D., Prather, M. J., Søvde, O. A., and Myhre, G.: Future methane, hydroxyl, and their uncertainties: key climate and emission

parameters for future predictions, Atmospheric Chemistry and Physics, 13, 285–302, https://doi.org/10.5194/acp-13-285-2013, 2013.595

Jacob, D. J., Varon, D. J., Cusworth, D. H., Dennison, P. E., Frankenberg, C., Gautam, R., Guanter, L., Kelley, J., McKeever, J., Ott,

L. E., Poulter, B., Qu, Z., Thorpe, A. K., Worden, J. R., and Duren, R. M.: Quantifying methane emissions from the global scale

30

https://doi.org/10.1002/rog.20011
https://doi.org/10.22541/essoar.171781163.39594276/v1
https://doi.org/10.1126/science.1106644
https://doi.org/10.1073/pnas.1605617113
https://doi.org/10.1021/acsearthspacechem.1c00106
https://doi.org/10.5194/amt-5-2969-2012
https://doi.org/10.1111/j.1751-3928.2006.tb00271.x
https://doi.org/10.1111/j.1751-3928.2006.tb00271.x
https://doi.org/10.1111/j.1751-3928.2006.tb00271.x
http://www.osti.gov/servlets/purl/1226158/
https://doi.org/10.1029/2021JD034785
https://doi.org/10.1002/asl.804
https://doi.org/10.1109/ICUAS.2018.8453418
https://doi.org/10.5194/acp-13-285-2013


down to point sources using satellite observations of atmospheric methane, Atmospheric Chemistry and Physics, 22, 9617–9646,

https://doi.org/10.5194/acp-22-9617-2022, 2022.

Johnson, D., Heltzel, R., and Oliver, D.: Temporal Variations in Methane Emissions from an Unconventional Well Site, American Chemical600

Society: Omega, 4, 3708–3715, https://doi.org/10.1021/acsomega.8b03246, 2019.

Karion, A., Sweeney, C., Kort, E. A., Shepson, P. B., Brewer, A., Cambaliza, M., Conley, S. A., Davis, K., Deng, A., Hardesty, M., Herndon,

S. C., Lauvaux, T., Lavoie, T., Lyon, D., Newberger, T., Pétron, G., Rella, C., Smith, M., Wolter, S., Yacovitch, T. I., and Tans, P.: Aircraft-

Based Estimate of Total Methane Emissions from the Barnett Shale Region, Environmental Science & Technology, 49, 8124–8131,

https://doi.org/10.1021/acs.est.5b00217, 2015.605

Kort, E. A., Frankenberg, C., Costigan, K. R., Lindenmaier, R., Dubey, M. K., and Wunch, D.: Four corners: The largest US methane anomaly

viewed from space, Geophysical Research Letters, 41, 6898–6903, https://doi.org/10.1002/2014GL061503, 2014.

Kutcherov, V. G. and Krayushkin, V. A.: Deep-seated abiogenic origin of petroleum: From geological assessment to physical theory, Reviews

of Geophysics, 48, RG1001, https://doi.org/10.1029/2008RG000270, 2010.

Lan, X., Talbot, R., Laine, P., and Torres, A.: Characterizing Fugitive Methane Emissions in the Barnett Shale Area Using a Mobile Labora-610

tory, Environ Science & Technology, https://doi.org/10.1021/es5063055, 2015.

Lavoie, T. N., Shepson, P. B., Cambaliza, M. O. L., Stirm, B. H., Karion, A., Sweeney, C., Yacovitch, T. I., Herndon, S. C., Lan, X., and Lyon,

D.: Aircraft-Based Measurements of Point Source Methane Emissions in the Barnett Shale Basin, Environmental Science & Technology,

49, 7904–7913, https://doi.org/10.1021/acs.est.5b00410, 2015.

Lavoie, T. N., Shepson, P. B., Cambaliza, M. O. L., Stirm, B. H., Conley, S., Mehrotra, S., Faloona, I. C., and Lyon, D.: Spatiotemporal615

Variability of Methane Emissions at Oil and Natural Gas Operations in the Eagle Ford Basin, Environmental Science & Technology, 51,

8001–8009, https://doi.org/10.1021/acs.est.7b00814, 2017.

Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell,

K., Lonnoy, E., Matthews, J., Maycock, T., Yu, R., and Zhou, B.: Climate Change 2021: The Physical Science Basis. Contribution of

Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 1 edn.,620

ISBN 978-1-00-915789-6, https://www.cambridge.org/core/product/identifier/9781009157896/type/book, 2023.

McKinney, K. A., Wang, D., Ye, J., De Fouchier, J.-B., Guimarães, P. C., Batista, C. E., Souza, R. A. F., Alves, E. G., Gu, D., Guenther, A. B.,

and Martin, S. T.: A sampler for atmospheric volatile organic compounds by copter unmanned aerial vehicles, Atmospheric Measurement

Techniques, 12, 3123–3135, https://doi.org/10.5194/amt-12-3123-2019, 2019.

Meyer, A. G., Lindenmaier, R., Heerah, S., Benedict, K. B., Kort, E. A., Peischl, J., and Dubey, M. K.: Using Multiscale Ethane/Methane625

Observations to Attribute Coal Mine Vent Emissions in the San Juan Basin From 2013 to 2021, Journal of Geophysical Research: Atmo-

spheres, 127, e2022JD037 092, https://doi.org/10.1029/2022JD037092, 2022.

Olaguer, E. P., Jeltema, S., Gauthier, T., Jermalowicz, D., Ostaszewski, A., Batterman, S., Xia, T., Raneses, J., Kovalchick, M., Miller, S.,

Acevedo, J., Lamb, J., Benya, J., Wendling, A., and Zhu, J.: Landfill Emissions of Methane Inferred from Unmanned Aerial Vehicle and

Mobile Ground Measurements, Atmosphere, 13, 983, https://doi.org/10.3390/atmos13060983, 2022.630

Parker, R., Boesch, H., Cogan, A., Fraser, A., Feng, L., Palmer, P. I., Messerschmidt, J., Deutscher, N., Griffith, D. W. T., Notholt, J.,

Wennberg, P. O., and Wunch, D.: Methane observations from the Greenhouse Gases Observing SATellite: Comparison to ground-based

TCCON data and model calculations, Geophysical Research Letters, 38, 2011GL047 871, https://doi.org/10.1029/2011GL047871, 2011.

31

https://doi.org/10.5194/acp-22-9617-2022
https://doi.org/10.1021/acsomega.8b03246
https://doi.org/10.1021/acs.est.5b00217
https://doi.org/10.1002/2014GL061503
https://doi.org/10.1029/2008RG000270
https://doi.org/10.1021/es5063055
https://doi.org/10.1021/acs.est.5b00410
https://doi.org/10.1021/acs.est.7b00814
https://www.cambridge.org/core/product/identifier/9781009157896/type/book
https://doi.org/10.5194/amt-12-3123-2019
https://doi.org/10.1029/2022JD037092
https://doi.org/10.3390/atmos13060983
https://doi.org/10.1029/2011GL047871


Peischl, J., Eilerman, S. J., Neuman, J. A., Aikin, K. C., De Gouw, J., Gilman, J. B., Herndon, S. C., Nadkarni, R., Trainer, M., Warneke, C.,

and Ryerson, T. B.: Quantifying Methane and Ethane Emissions to the Atmosphere From Central and Western U.S. Oil and Natural Gas635

Production Regions, Journal of Geophysical Research: Atmospheres, 123, 7725–7740, https://doi.org/10.1029/2018JD028622, 2018.

Pétron, G., Miller, B., Vaughn, B., Thorley, E., Kofler, J., Mielke-Maday, I., Sherwood, O., Dlugokencky, E., Hall, B., Schwietzke, S., Conley,

S., Peischl, J., Lang, P., Moglia, E., Crotwell, M., Crotwell, A., Sweeney, C., Newberger, T., Wolter, S., Kitzis, D., Bianco, L., King, C.,

Coleman, T., White, A., Rhodes, M., Tans, P., and Schnell, R.: Investigating large methane enhancements in the U.S. San Juan Basin,

Elementa: Science of the Anthropocene, 8, 038, https://doi.org/10.1525/elementa.038, 2020.640

Saad, K. M., Wunch, D., Toon, G. C., Bernath, P., Boone, C., Connor, B., Deutscher, N. M., Griffith, D. W. T., Kivi, R., Notholt, J., Roehl,

C., Schneider, M., Sherlock, V., and Wennberg, P. O.: Derivation of tropospheric methane from TCCON CH4 and HF total column

observations, preprint, Gases/Remote Sensing/Data Processing and Information Retrieval, https://amt.copernicus.org/preprints/7/3471/

2014/amtd-7-3471-2014.pdf, 2014.

Scherer, J. J.: Next-Generation Laser-Based Natural Gas Leak Detection, 2017.645

Schneising, O., Buchwitz, M., Reuter, M., Vanselow, S., Bovensmann, H., and Burrows, J. P.: Remote sensing of methane leakage from

natural gas and petroleum systems revisited, Atmospheric Chemistry and Physics, 20, 9169–9182, https://doi.org/10.5194/acp-20-9169-

2020, 2020.

Schwietzke, S., Pétron, G., Conley, S., Pickering, C., Mielke-Maday, I., Dlugokencky, E. J., Tans, P. P., Vaughn, T., Bell, C., Zimmerle,

D., Wolter, S., King, C. W., White, A. B., Coleman, T., Bianco, L., and Schnell, R. C.: Improved Mechanistic Understanding of Nat-650

ural Gas Methane Emissions from Spatially Resolved Aircraft Measurements, Environmental Science & Technology, 51, 7286–7294,

https://doi.org/10.1021/acs.est.7b01810, 2017.

Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley-Interscience, 2nd edn.,

ISBN 978-0-471-72018-8, 2006.

Shah, A., Allen, G., Pitt, J. R., Ricketts, H., Williams, P. I., Helmore, J., Finlayson, A., Robinson, R., Kabbabe, K., Hollingsworth, P., Rees-655

White, T. C., Beaven, R., Scheutz, C., and Bourn, M.: A Near-Field Gaussian Plume Inversion Flux Quantification Method, Applied to

Unmanned Aerial Vehicle Sampling, Atmosphere, 10, 396, https://doi.org/10.3390/atmos10070396, 2019.

Sherwin, E., El Abbadi, S., Burdeau, P., Zhang, Z., Chen, Z., Rutherford, J., Chen, Y., and Brandt, A.: Single-blind test of nine methane-

sensing satellite systems from three continents, preprint, Atmospheric Sciences, https://eartharxiv.org/repository/view/5605/, 2023.

Simpson, I. J., Sulbaek Andersen, M. P., Meinardi, S., Bruhwiler, L., Blake, N. J., Helmig, D., Rowland, F. S., and Blake,660

D. R.: Long-term decline of global atmospheric ethane concentrations and implications for methane, Nature, 488, 490–494,

https://doi.org/10.1038/nature11342, 2012.

Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., and Miller, H.: Climate Change 2007: The Physical

Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,

Cambridge University Press, Cambridge, ISBN 978-0-521-88009-1 978-0-521-70596-7, 2007.665

Song, C., Zhu, J.-J., Willis, J. L., Moore, D. P., Zondlo, M. A., and Ren, Z. J.: Methane Emissions from Municipal Wastewater Collection

and Treatment Systems, Environmental Science & Technology, 57, 2248–2261, https://doi.org/10.1021/acs.est.2c04388, 2023.

Space Studies Board, Division on Engineering and Physical Sciences, and National Academies of Sciences, Engineering, and Medicine:

Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space: An Overview for Decision Makers and the

Public, National Academies Press, Washington, D.C., ISBN 978-0-309-49241-6, https://www.nap.edu/catalog/25437, 2019.670

32

https://doi.org/10.1029/2018JD028622
https://doi.org/10.1525/elementa.038
https://amt.copernicus.org/preprints/7/3471/2014/amtd-7-3471-2014.pdf
https://amt.copernicus.org/preprints/7/3471/2014/amtd-7-3471-2014.pdf
https://amt.copernicus.org/preprints/7/3471/2014/amtd-7-3471-2014.pdf
https://doi.org/10.5194/acp-20-9169-2020
https://doi.org/10.5194/acp-20-9169-2020
https://doi.org/10.5194/acp-20-9169-2020
https://doi.org/10.1021/acs.est.7b01810
https://doi.org/10.3390/atmos10070396
https://eartharxiv.org/repository/view/5605/
https://doi.org/10.1038/nature11342
https://doi.org/10.1021/acs.est.2c04388
https://www.nap.edu/catalog/25437


Stockie, J. M.: The Mathematics of Atmospheric Dispersion Modelling, Society for Industrial and Applied Mathematics Review, pp. 349–

372, 2011.

Stolper, D. A., Lawson, M., Formolo, M. J., Davis, C. L., Douglas, P. M. J., and Eiler, J. M.: The utility of methane clumped iso-

topes to constrain the origins of methane in natural gas accumulations, Geological Society, London, Special Publications, 468, 23–52,

https://doi.org/10.1144/SP468.3, 2018.675

Taylor, J. R.: An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, University Science Books, 2nd edn.,

ISBN 978-0-935702-75-0, 1996.

Travis, B., Dubey, M., and Sauer, J.: Neural networks to locate and quantify fugitive natural gas leaks for a MIR detection system, Atmo-

spheric Environment: X, 8, 100 092, https://doi.org/10.1016/j.aeaoa.2020.100092, 2020.

Turner, A. J., Jacob, D. J., Wecht, K. J., Maasakkers, J. D., Lundgren, E., Andrews, A. E., Biraud, S. C., Boesch, H., Bowman, K. W.,680

Deutscher, N. M., Dubey, M. K., Griffith, D. W. T., Hase, F., Kuze, A., Notholt, J., Ohyama, H., Parker, R., Payne, V. H., Sussmann, R.,

Sweeney, C., Velazco, V. A., Warneke, T., Wennberg, P. O., and Wunch, D.: Estimating global and North American methane emissions

with high spatial resolution using GOSAT satellite data, Atmospheric Chemistry and Physics, 15, 7049–7069, https://doi.org/10.5194/acp-

15-7049-2015, 2015.

Vaughn, T. L., Bell, C. S., Pickering, C. K., Schwietzke, S., Heath, G. A., Pétron, G., Zimmerle, D. J., Schnell, R. C., and Nummedal, D.:685

Temporal variability largely explains top-down/bottom-up difference in methane emission estimates from a natural gas production region,

Proceedings of the National Academy of Sciences, 115, 11 712–11 717, https://doi.org/10.1073/pnas.1805687115, 2018.

Villa, T., Gonzalez, F., Miljievic, B., Ristovski, Z., and Morawska, L.: An Overview of Small Unmanned Aerial Vehicles for Air Quality

Measurements: Present Applications and Future Prospectives, Sensors, 16, 1072, https://doi.org/10.3390/s16071072, 2016.

Woodward, J. L.: Estimating the flammable mass of a vapor cloud, A CCPS concept book, Center for Chemical Process Safety of the690

American Institute of Chemical Engineers, New York, N.Y, ISBN 978-0-8169-0778-6, 1998.

33

https://doi.org/10.1144/SP468.3
https://doi.org/10.1016/j.aeaoa.2020.100092
https://doi.org/10.5194/acp-15-7049-2015
https://doi.org/10.5194/acp-15-7049-2015
https://doi.org/10.5194/acp-15-7049-2015
https://doi.org/10.1073/pnas.1805687115
https://doi.org/10.3390/s16071072

