
A new aerial approach for quantifying and attributing methane
emissions: implementation and validation
Jonathan F. Dooley1, Kenneth Minschwaner1, Manvendra K. Dubey2, Sahar H. El Abbadi3,a, Evan D. Sherwin3,a,
Aaron G. Meyer2,b, Emily Follansbee2, and James E. Lee2

1Department of Physics, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
2Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
3Department of Energy Science & Engineering, Stanford University, Stanford, CA 94305, USA
apresent address: Sustainable Energy Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
bpresent address: Energy & Geoscience Institute, The University of Utah, Salt Lake City, UT 84112, USA

Correspondence: Jonathan F. Dooley (jonathan.dooley@student.nmt.edu)

Received: 17 March 2024 – Discussion started: 19 March 2024
Revised: 13 June 2024 – Accepted: 23 June 2024 – Published:

Abstract. Methane (CH4) is a powerful greenhouse gas that
is produced by a diverse set of natural and anthropogenic
emission sources. Biogenic methane sources generally in-
volve anaerobic decay processes such as those occurring in
wetlands, melting permafrost, or the digestion of organic5

matter in the guts of ruminant animals. Thermogenic CH4
sources originate from the breakdown of organic material
at high temperatures and pressure within the Earth’s crust,
a process which also produces more complex trace hydrocar-
bons such as ethane (C2H6). Here, we present the develop-10

ment and deployment of an uncrewed aerial system (UAS)
that employs a fast (1 Hz) and sensitive (1–0.5 ppb s−1) CH4
and C2H6 sensor and ultrasonic anemometer. The UAS plat-
form is a vertical-takeoff, hexarotor drone (DJI Matrice 600
Pro, M600P) capable of vertical profiling to 120 m altitude15

and plume sampling across scales up to 1 km. Simultane-
ous measurements of CH4 and C2H6 concentrations, vec-
tor winds, and positional data allow for source classification
(biogenic versus thermogenic), differentiation, and emission
rates without the need for modeling or a priori assumptions20

about winds, vertical mixing, or other environmental con-
ditions. The system has been used for direct quantification
of methane point sources, such as orphan wells, and dis-
tributed emitters, such as landfills and wastewater treatment
facilities. With detectable source rates as low as 0.04 and25

up to ∼ 1500 kg h−1, this UAS offers a direct and repeat-
able method of horizontal and vertical profiling of emission

plumes at scales that are complementary to regional aerial
surveys and localized ground-based monitoring.

1 Introduction 30

Methane (CH4) is the second-largest contributor to anthro-
pogenic radiative forcing, with a global warming potential
(GWP-20) greater than 80× that of carbon dioxide (CO2)
(Solomon et al., 2007; Schneising et al., 2020; Holmes et al.,
2013). Methane is produced from many natural and anthro- 35

pogenic sources which can be further classified as biogenic
or thermogenic in origin. The largest biogenic sources re-
sult from anaerobic decay such as wetlands, melting per-
mafrost, or the breakdown of organic matter in the guts of
ruminant animals. Thermogenic CH4, “natural gas”, is gen- 40

erated during the breakdown of organic matter at high tem-
peratures and pressure within the Earth’s crust. The later pro-
cess also produces more complex trace hydrocarbons such as
ethane and propane, collectively known as natural gas liq-
uids (NGLs). Coal mining, natural seeps, oil and natural gas 45

(O&NG) activities, and supply chain leakage each produce
varying amounts of NGLs. While sometimes other gases pre-
dominate (e.g., CO2), all thermogenic sources contain some
fraction ethane (C2H6) (Kutcherov and Krayushkin, 2010;
Glasby, 2006; Etiope and Sherwood Lollar, 2013), and it is 50

the second-most prevalent NGL in natural gas processed for
energy generation (Hodnebrog et al., 2018; Solomon et al.,
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2007; Simpson et al., 2012; Peischl et al., 2018; Karion
et al., 2015; Johnson et al., 2019). Biogenic methane emis-
sions do not contain ethane (Masson-Delmotte et al., 2023;
Cheewaphongphan et al., 2019), so C2H6 is therefore a crit-
ical marker for source attribution, particularly when distin-5

guishing between biogenic and thermogenic methane emis-
sions (Solomon et al., 2007; Karion et al., 2015; Johnson
et al., 2019). Accurately quantifying contributions from var-
ious sources, both spatially and temporally, is an important
step towards building local, regional, and global CH4 emis-10

sion estimates as well as informing policy decisions.
The accuracy of regional and global methane emission es-

timates is limited due to the sheer number of unknown vari-
ables. There are two primary methods to estimate methane
emissions: statistical analysis of source activity inventories,15

known as “bottom-up” (BU) estimations, and “top-down”
(TD) estimates based on observations from instruments de-
ployed on satellite, aircraft, and ground-based platforms
(Heath et al., 2015; Schneising et al., 2020; Vaughn et al.,
2018; Cheewaphongphan et al., 2019; Frankenberg et al.,20

2016). A variety of BU and TD methods have been used
to detect methane leaks (Frankenberg et al., 2005) and in-
form policy decisions (Heath et al., 2015), but persistent dis-
crepancies remain between the BU and TD methodologies
(Masson-Delmotte et al., 2023; Solomon et al., 2007; Vaughn25

et al., 2018; Peischl et al., 2018; Cheewaphongphan et al.,
2019). In general, BU and TD estimation methods only rep-
resent a snapshot in time and do not effectively account for
temporal variations due to diurnal, seasonal, and activity cy-
cles. Recent studies have shown that O&NG methane emis-30

sions vary significantly in time (Lavoie et al., 2015; Johnson
et al., 2019; Vaughn et al., 2018), showing that more fre-
quent and repeated measurements are important in helping
to reduce uncertainties in emission monitoring (Frankenberg
et al., 2005; Space Studies Board et al., 2019).35

High-altitude and space-based systems offer robust meth-
ods of monitoring CH4 and other greenhouse gases (GHGs)
at regional and global scales (Sherwin et al., 2024; Schneis-
ing et al., 2020). However, most large-area satellites (Sen-
tinel, Landsat) drop off in detection at ∼ 1000 kg h−1 with40

only the very sophisticated or targeted systems able to quan-
tify sources < 500 kg h−1 (Sherwin et al., 2024). These in-
struments for TD emission estimates are ideally supple-
mented with contemporaneous ground-based measurements
to constrain the monitoring capabilities – e.g., Total Carbon45

Column Observing Network, TCCON (Vaughn et al., 2018;
Pétron et al., 2020; Kort et al., 2014; Parker et al., 2011;
Turner et al., 2015; Gisi et al., 2012).

A common method for estimating GHG emissions is a
mass balance approach, which uses GHG concentration mea-50

surements upwind and downwind of target sources to iso-
late the source from background concentrations (Franken-
berg et al., 2016; Schwietzke et al., 2017; Johnson et al.,
2019). These measurements can be collected from aircraft
instruments along upwind and downwind transects (Franken-55

berg et al., 2016; Schwietzke et al., 2017) or by simultane-
ous measurements using similar ground-based instruments
installed upwind and downwind of the sources (Gisi et al.,
2012; Saad et al., 2014; Heerah et al., 2021). The accu-
racy of the latter method depends on relatively constant wind 60

speed and direction during data collection. Therefore, accu-
rate knowledge of principal wind conditions is required for
proper instrument installation, and only those data obtained
under favorable conditions can be used to accurately estimate
the flux (Gisi et al., 2012; Lavoie et al., 2017). Aircraft quan- 65

tification methods generally drop off around 10 kg h−1 for
the highly sensitive instruments, so it is difficult or impossi-
ble to quantify low-emitting sources using combined ground,
aircraft, and satellite data to constrain and validate the esti-
mates. Ground-based detection systems are the most straight- 70

forward and accessible methods, but effective site monitoring
is highly dependent on wind directions. Column-averaged
measurement techniques using Fourier transform spectrom-
eters (FTSs) also require boundary layer height estimations
and are unable to provide vertical profiles of source plumes. 75

There is a need for direct, repeatable, and cost-effective
methods for detecting and quantifying CH4 emissions from
relatively small sources (< 1 kg h−1), which do not require
a priori assumptions. Small uncrewed aerial vehicles (UAVs)
offer new approaches to airborne air pollution and emis- 80

sion monitoring over scales and locations which are difficult
to detect or access with other regional monitoring systems
(Chen et al., 2024; Villa et al., 2016; Burgués and Marco,
2020). While designs can vary dramatically between mod-
els, UAVs are either fixed- or rotary-wing platforms. Fixed- 85

wing UAVs are typically able to cover larger areas and gener-
ally allow more options for sensor mounting configurations,
but they are unable to hover and quickly adapt to environ-
mental conditions while tracking emission plumes. Rotary
wing platforms – also known as vertical takeoff and landing 90

(VTOL) or multirotor UAVs – generally have lower required
operating velocities and have the ability to hover and can
therefore be used for more complex, discontinuous missions
at higher spatial resolution (McKinney et al., 2019; Villa
et al., 2016; Burgués and Marco, 2020). Multirotor UAVs 95

usually have between four and eight individual propellers,
which to generate thrust and the power consumption results
in shorter flight times than their fixed-wing counterparts, but
they do not require specialized equipment or runways for
takeoffs and landings. Recent advances in control technol- 100

ogy have made multirotor systems easier to reliably operate.
A major issue with fixed-wing systems is that the higher

operating velocities and minimum height requirements result
in low detection probabilities during site surveys (Barchyn
et al., 2019). Rotary UAV systems do not require a min- 105

imum velocity to stay aloft and can therefore be outfitted
with a wider range of equipment for physical and chemical
sensing (Hollenbeck et al., 2018; Shah et al., 2019; McK-
inney et al., 2019; Villa et al., 2016; Burgués and Marco,
2020). For instance, onboard anemometers for in situ wind 110
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speed and direction have been shown to be more accurate
onboard VTOL platforms, while higher relative winds and
aerodynamic flows around fixed-wing platforms often re-
sult in less accurate in situ measurements (Hollenbeck et al.,
2018). While multirotor UAVs have a significant propeller5

wash effect below the body, induced winds are negligible
when anemometers are mounted above the shallow inflow
layer (Barbieri et al., 2019; Hollenbeck et al., 2018; Villa
et al., 2016; Barchyn et al., 2019).

The fast development of commercial UAVs and low-10

weight sensors has driven a multitude of scientific studies
which would have been difficult or impossible to conduct
over a decade ago. Both inverse modeling and mass-balance
approaches have been used to calculate total emissions across
a wide range of spatial scales. McKinney et al. (2019) de-15

ployed a hexarotor UAV outfitted with adsorbent cartridges
to collect biogenic volatile organic compound (VOC) emis-
sions at various locations in central Amazonia. Shah et al.
(2019) calculated 3D flux densities by fitting direct mea-
surements of downwind CH4 plumes to near-field Gaussian20

plume models. Olaguer et al. (2022) used contemporaneous
UAV and mobile ground-based measurements to estimate
biogenic CH4 emissions from a landfill. Bel Hadj Ali et al.
(2020) compared multiple ground-based emission monitor-
ing techniques with downwind plume measurements fitted to25

Gaussian plume models. Gålfalk et al. (2021) piloted a small
quadcopter to fully surround a known biogenic methane
hotspot for mass balance emission estimates < 200 kg h−1.

This study describes the development and implementation
of a new uncrewed aerial system (UAS) to address critical30

areas of research by (a) accurately and directly quantifying
emissions on small spatial and temporal scales, especially in
hard to reach places; (b) constraining BU inventories driven
by small-scale estimations; and (c) separating and attributing
thermogenic and biogenic sources. The New Mexico Tech35

(NMT) UAS design combines rapid sampling of chemical
and meteorological data with a mobile platform capable of
vertical and horizontal profiling relative to target sources for
direct and high-resolution sampling of emission plumes. A
commercially available UAV is outfitted with a multi-sensor40

onboard payload including a compact mid-IR spectrum an-
alyzer and lightweight anemometer for efficient, repeatable
quantification and characterization of various localized an-
thropogenic sources.

2 Methods45

2.1 System design

The full uncrewed aerial system (UAS) is depicted in
Fig. 1. It includes four main components: (1) a mobile
mid-IR methane and ethane sensor (Aeris MIRA Pico),
(2) a lightweight 3D vector wind and environmental sensor50

(Anemoment TriSonica Mini), (3) an uncrewed aerial vehicle

(DJI Matrice 600 Pro, M600P), and (4) an onboard computer
for system monitoring and data collection.

2.1.1 Methane and ethane sensor

The MIRA (Mid-InfraRed Analyzer) Pico leak detection 55

system (LDS) developed by Aeris Technologies employs a
solid-state laser and multi-pass absorption cell with a spec-
tral band pass between 2.5 and 4.7 µm. The wide spec-
tral range allows for simultaneous measurements of both
CH4 and C2H6 mixing ratios with a precision of 1 ppb s−1

60

and 0.5 ppb s−1, respectively (Aeris Technologies Inc, 2019;
Scherer, 2017). The MIRA Pico is outfitted with a flexible
length of tubing (see Sect. 2.1.4), and the constant pump flow
rate results in a phase lag of∼ 2 s based on laboratory tests of
the response delay from pulsed gas releases (Sect. 2.1.4). The 65

MIRA has been used extensively on the ground, including
controlled-release tests at Colorado State University’s (CSU)
METEC facility to find and quantify leaks (Travis et al.,
2020).

2.1.2 Onboard anemometer and weather sensor 70

In addition to hydrocarbon concentrations, direct flux quan-
tification requires measurements of vector winds, temper-
ature, and pressure. The system includes an ultra-light
3D sonic anemometer: the TriSonica Mini weather sensor
(TWS) by Anemoment has a mass of 50 g with a volume 75

of less than 450 cm3 (Anemoment LLC, 2021). Additionally,
environmental measurements can also be used as a way to
detect and adapt to unsafe conditions during flights (Hollen-
beck et al., 2018). The TWS senses vector winds (|u|), tem-
perature (T ), and pressure (P ) at 5 Hz with an accuracy of 80

δum = δvm= 0.2 m s−1, δT = 2 C, and δP = 10 hPa, respec-
tively (see Table 1).

2.1.3 Uncrewed aerial vehicle

The DJI Matrice 600 Pro (M600P) is a hexarotor vertical
takeoff and landing aircraft that is capable of flying with rel- 85

atively large payload masses of up to 5.5 kg. This powerful
and mobile platform became commercially available in 2014
and has been used in a variety of scientific and commercial
applications (McKinney et al., 2019; Villa et al., 2016; Hol-
lenbeck et al., 2018). The M600P can be remotely piloted at a 90

distance of up to 5 km at a maximum altitude of 125 m above
ground level. Flight times depend on factors such as payload
mass, winds, and flight pattern. Under typical winds of 2–
4 m s−1 and the standard total payload mass of ∼ 3 kg, total
flight times range between 18 and 25 min. We employ dual 95

battery packs that are cycled between flying and charging in
the field; due to battery life and charging limitations, the UAS
typically can accommodate about one flight per hour. Addi-
tionally, the flux quantification method described in Sect. 2.6
relies on relatively stable wind fields around the source, op- 100

timally between 2 and 6 m s−1.
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Figure 1. Uncrewed aerial system (UAS) design overview. (a) System block diagram: (A) TriSonica Mini weather sensor (TWS), (B) gas
sampler inlet, (C) Matrice 600 Pro uncrewed aerial vehicle (M600P), (D) Raspberry Pi 4 onboard computer, and (E) Aeris MIRA Pico
methane and ethane sensor. (b) Flight-ready UAS collecting ground data prior to takeoff. TWS and sampler inlet (A and B) mounted on a
carbon fiber tube mast above the M600P’s propeller inflow layer (“rotor wash”).

Table 1. Sensor uncertainties for error propagation (Anemoment LLC, 2021; Dà Jiāng Innovations, 2018; Aeris Technologies Inc, 2019).

Sensor Measurement Uncertainty Units Variable

TWS Pressure 1000 Pa δP

TWS Temperature 2 C δT

TWS Wind speed 0.2 m s−1 δum, δvm
M600P GNSS Horizontal velocity 0.05 m s−1 δVx , δVy
M600P IMU Heading (yaw) 0.05 rad δφ

M600P IMU Pitch, roll 0.017 rad δθ , δψ
MIRA Pico Methane 1.0 ppb δχCH4
MIRA Pico Ethane 0.5 ppb δχC2H6
RPi RTC Timestamp 100 ms δ(1t)

Pipeline∗ Methane background 5.0 ppb δχ0,CH4
Pipeline∗ Ethane background 1.0 ppb δχ0,C2H6

∗ Average 1σ standard deviation of residuals from background estimation (ε); actual uncertainty is
dependent on the quality of the background estimate (χ0) for each of the individual datasets.

The M600P is controlled via proprietary software and
firmware with an expansive application programming in-
terface (API) for telemetry logging and flight control (Dà
Jiāng Innovations, 2018). However, the reliance on propri-
etary software limits system customizability and sensor in-5

tegration (see Sect. 2.1.5). While it is possible to automate
flight plans for the M600P, it is more important for the opera-
tor to maintain control of the UAS throughout the entire flight
to account for changing or unexpected flight conditions.

2.1.4 Payload sensor mounting 10

Both the Raspberry Pi (RPi) onboard computer and the
MIRA Pico mount to the underside of the M600P as shown
in Fig. 1. The M600P achieves flight by funneling air down-
wards to create thrust, constantly displacing air around the
vehicle’s body in the process (Dà Jiāng Innovations, 2018). 15

Computational fluid dynamics simulations carried out by
McKinney et al. (2019) determined that the Matrice 600 Pro
causes disturbances up to 5 m below the M600P’s center of
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mass; however, the magnitude of the disturbances drops off
quickly at a height of 60 cm above the M600P body (McKin-
ney et al., 2019).

The TWS mounts to a mast made of lightweight, carbon
fiber tubing (0.5 in diameter) anchored near the M600P’s5

center of mass. This places the TWS ∼ 85 cm above the
M600P and above the shallow inflow layer generated by pro-
pellers during normal flight. At this height above the pro-
pellers, air disturbances are below the noise floor of the TWS
(∼ 0.2 m s−1) or easily calibrated out during data processing.10

A∼ 1 m section of flexible tubing connects the payload’s gas
cell to a sampling port approximately 80 cm above the body
of the M600P. This physical offset between the MIRA and
sampling port introduces a phase lag of ∼ 2 s between the
measured MIRA concentrations and the TWS, which is ac-15

counted for prior to the calculation of instantaneous fluxes.
The sampler port is outfitted with a plastic Y-shaped inlet for
redundant openings to decrease the chance of damaging the
pump due to debris clogging the inlet.

While the TWS has an integrated magnetometer to mea-20

sure heading, this device is intended for stationary deploy-
ment in an open location where averaging of compass read-
ings can result in a relatively accurate direction. However,
any magnetic disturbances created from adjacent devices or
operating motors perturb the heading measurements. In con-25

trast, the M600P has a triple-redundant positioning system
with an accuracy of < 3◦ at 200 Hz. The TWS must be phys-
ically aligned with the more accurate heading data from the
M600P’s inertial measurement unit (IMU) to accurately cal-
culate static-frame vector winds (more in Sect. 2.2).30

In order to ensure proper alignment, the M600P is set up
facing north with the TWS mounting point tightened so that
the anemometer’s north arm is facing the same direction. The
MIRA Pico and onboard computer are both mounted under
the body of the M600P as shown in Fig. 1. Initial M600P35

test flights revealed that payload mounting at this location
improves flight performance, especially during takeoff and
landing, due to the lower center of mass.

2.1.5 Onboard data logging and transmission

Each of the three main devices (MIRA Pico, TWS, and40

M600P) has its own output data stream that must be sep-
arately parsed and then temporally synchronized with the
other streams. The M600P does not support the use of DJI’s
proprietary “Payload SDK” – firmware enabling sensor data
to be transmitted along with the radio frequency control sig-45

nal. Therefore, remote monitoring and control of the fully
integrated UAS are handled independently of the M600P via
an onboard device for both acquisition and transmission. A
fourth-generation Raspberry Pi (RPi) single-board computer
is the ideal choice due to its size, weight, and programma-50

bility via the Linux Kernel. The RPi is powered indepen-
dently via a 10 Ah payload battery (see Fig. 1), allowing for

ground-based data collection between flights, typically while
the M600P batteries are charging.

2.2 Relative wind adjustments 55

The TriSonica Mini weather sensor (TWS) is designed for
static installation with one arm facing north (Anemoment
LLC, 2021) and will therefore produce incorrect results when
the device’s heading (“yaw”, φ) is not a multiple of 2π
(Anemoment LLC, 2021; Hollenbeck et al., 2018). In addi- 60

tion, the motion of the M600P during data collection induces
an apparent wind that is folded into the TWS wind measure-
ment. Transforming the raw TWS vector wind measurements
(um = [um,vm,wm]) to Earth-fixed coordinates therefore re-
quires accurate, real-time measurements of φ and UAS ve- 65

locity (V s). In order to transform the measured TWS data to
a static, Earth-fixed coordinate system, we apply a standard
Galilean transformation as shown in Eq. (1).

u= R(φ)um+V s

=

 cos(φ) sin(φ) 0
−sin(φ) cos(φ) 0

0 0 1

um
vm
wm

+
VxVy
Vz


=

uv
w

 (1)

Here, um = [um,vm,wm] are the TWS-measured vector 70

winds, u= [u,v,w] is the corrected wind speed in Earth-
fixed coordinates, and V s = [Vx,Vy,Vz] is the instantaneous
UAS velocity. R(φ) is the counterclockwise (CCW) Euler
rotation matrix around the vertical axis (ẑ), where φ is the
heading (yaw) of the M600P. 75

Rotations around the ŷ and x̂ axes – caused by variations
in M600P pitch (θ ) and roll (ϕ), respectively – are both gen-
erally less than 3◦ during steady, level flights through the
source plume and are therefore neglected in Eq. (1). The in-
stantaneous pitch and roll angle can be significant when the 80

M600P is being maneuvered to different altitudes between
transects, but measurements collected during these spurious
adjustments are filtered out during the flux quantification pro-
cess (see Sect. 2.6).

A time series of the TWS-measured raw winds during a 85

typical flight is shown in Fig. 2, along with the derived static-
frame vector winds based on the M600P headings and veloci-
ties throughout the flight. The raw-wind measurements show
clear signatures of back-and-forth, quasi-horizontal motions
of the M600P during sampling of a methane plume. Winds 90

adjusted for changes in heading and horizontal translation
show a more realistic, continuous structure, but some resid-
ual effects can be discerned at turning points in the flight,
when the platform’s horizontal acceleration is large and the
corresponding pitch and roll angles become appreciable. In 95

general, pitch and roll angles during level, steady flight sec-
tions are less than 3◦ (see Fig. A1), but these angles can in-
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Figure 2. Raw measured vector winds (a) and heading- and velocity-corrected vector winds (b) before, during, and after flight. Pre- and
post-flight ground wind speeds at the takeoff location highlighted in gray.

crease to 10◦ or more during rapid horizontal accelerations.
We estimate that a 15◦ pitch or roll angle may introduce an
error of up to 4 % in measured horizontal winds; therefore
data obtained during turning points and deliberate changes
in flight altitude are screened from the analysis of methane5

fluxes (see Sect. 2.6). The adjusted and filtered winds have
been compared to tower anemometer measurements during
controlled-release validation experiments (Sect. 3), and these
show agreement to within± 15 % over∼ 1 min averages and
with spatial separations of about 100 m. Individual wind vec-10

tor components have also been compared in the field (see
Fig. A2) when the UAS was flown between 10 and 30 m
downwind of a static, single-component wind gauge. Com-
parisons of 5 s averages show agreement to within 10 % over
a range of winds between 2 and 7 m s−1.15

2.3 Background concentration estimation

While the MIRA Pico is highly sensitive with a large dy-
namic range (∼ 20 ppb<χCH4 < 4000 ppm) (Aeris Tech-
nologies Inc, 2019; Meyer et al., 2022; Follansbee et al.,
2024), there are observable levels of semi-periodic drift in20

the measured mole fractions for both hydrocarbons at the
parts per billion level. This effect is especially noticeable for
χC2H6 , partly because ambient C2H6 concentrations are gen-
erally ∼ 100× smaller than CH4. In addition to these instru-
mental drifts, the raw concentration measurements (χ ) may25

reflect actual changes in ambient background. Nearby point
sources do not directly influence these background varia-
tions; instead they may be related to regional-scale emissions
and meteorological influences such as winds and stability at
the mesoscale level. Both of these effects contribute to struc-30

ture in the measured background (χ0), which must be accu-
rately quantified in order to isolate enhancements from the
target source. This background variability generally occurs
over periods of minutes and is independent between χCH4

and χC2H6 , so direct comparison prior to background removal35

can be misleading, especially over longer period datasets.

The UAS measurement strategy involves repeated cross-
wind transects through the dispersing plume downwind of
a target source (as discussed in more detail in Sect. 2.5).
The resulting time series concentration data contain a num- 40

ber of finite-width enhancements superimposed on a slowly
varying background, as shown in Fig. 3a. Over the course
of these measurements, the solar insolation was increasing
and the wind speed and direction were changing, which led
to a monotonic increase in the background methane concen- 45

tration as seen with the increasing background. It should be
noted that each plume “spike” in Fig. 3a should not be ex-
pected to have the same peak height or width, since these
plume intersects all occur at different times, altitudes, and
downwind distances. 50

The background, χ0, is estimated by fitting a polynomial
to the measurements outside the plume. After extensive test-
ing, the procedure described below and outlined in Fig. 3
proved to be the most effective method of filtering inter-
plume samples. The raw χ time series is initially three-point 55

smoothed (χ̃ ) to decrease the effect of noise before further
filtering (Fig. 3a). The gradient of χ̃ is then used to detect
abrupt changes in χ̃ which are indicative of the UAS enter-
ing or exiting the higher-concentration plume, as shown in
Fig. 3. Samples where ∇χ̃ is greater than a specified thresh- 60

old get filtered out (i.e., more than± γ σ , where γ is a prede-
fined constant; ± 0.2σ in Fig. 3b and in the subsequent anal-
ysis of measurements presented here). This gradient filter re-
moves the majority of the inter-plume samples, leaving be-
hind the “background” samples which vary at a much lower 65

frequency. However, the gradient filter is imperfect, and oc-
casionally some inter-plume samples are not removed during
this step. Therefore, a follow-up outlier filter is used to re-
move samples which are significantly far from the mean of
the samples (more than 1 standard deviation from the mean 70

in Fig. 3c). The remaining samples are taken to be the back-
ground with respect to the target plume (background mea-
surements, χ̃bg), and a variable-order polynomial is fit to
these samples. The polynomial order is empirically selected
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Figure 3. Time series of methane measurements during a typical flight, illustrating the procedure for background estimation and removal.
The flight involved multiple cross-sections through the downwind plume of a known point emitter, and the plume enhancements in methane
are visible as large spikes in the methane time series. (a) Three-point-smoothed raw data. (b) Gradient filter to detect the majority of in-
plume samples. (c) Split remaining samples into segments and remove statistical outliers from each segment. (d) Third-order polynomial fit
using remaining samples; resultant regression coefficients used with initial (non-smoothed) raw data samples used to estimate background.
Estimated CH4 emission rate for this dataset is 0.378± 0.147 kg h−1 (see Sect. 2.6).

based on the individual dataset, usually between second and
fourth order (cubic in Fig. 3d). Higher-order polynomials
can affect the edges of the fitted time series, but generally,
higher-order polynomials (> 4) are not required after appro-
priately tuning the gradient and outlier filter threshold param-5

eters. The polynomial regression coefficients fitting χ̃bg are
then applied to the original χ sampled timestamps to esti-
mate χ0 for each independent hydrocarbon and dataset. This
estimated background is then subtracted from the original
time series to get the isolated source plume enhancements,10

(χ −χ0), for both CH4 and C2H6.
Figure 4 presents the distribution of CH4 and C2H6 back-

ground estimate residuals (ε0 = χ0− χ̃bg) from three inde-
pendent flights around different source types. These three
datasets were specifically chosen to highlight the variability15

in ε0 caused in part by the source strength and environmental
conditions. The average 3σ confidence interval (99.7 %) cal-
culated from more than two dozen flights is approximately
16 ppb for CH4 and 2.5 ppb for C2H6. This minimum detec-
tion limit governs the lower bounds on source strengths and20

fluxes that can be quantified with this UAS (further discussed
in Sect. 2.7)

2.4 Plume simulations

This section describes the modeling analysis that was con-
ducted to develop optimal flight patterns and sampling strate- 25

gies for the UAS. In these idealized simulations, emissions
from the target source are held constant and surrounding
environmental winds are steady during the M600P’s 15 to
25 min flight times. Gaussian models offer a reasonable ap-
proximation for the structure and evolution downwind of the 30

source’s emission plume under these conditions (Shah et al.,
2019; Stockie, 2012; Jacob et al., 2022; Seinfeld and Pan-
dis, 2006; Meyer et al., 2022; Follansbee et al., 2024; Wood-
ward, 1998), but it should be emphasized that source fluxes
reported in this work do not rely on the results of Gaussian 35

plume simulations or inverse modeling (see Sect. 2.6).
The Gaussian plume equation for the mass density of a

gas (C, units of kg m−3) downwind of a point-source emitter
is shown in Eq. (2).

C(x,y,z)=
Q

|u|
·

1
2π σy(x)σz(x)

× exp
[
−y2/

(
2σy(x)2

)]
× exp

[
−(z−H)2/

(
2σz(x)2

)]
(2) 40
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Figure 4. Residuals from the CH4 and C2H6 background poly-
nomial fit (outlined in Fig. 3) for three independent flights. The
3σ confidence interval (99.7 %) for each dataset is shown with a
dashed line, highlighting the variability in the background estimates
due to different sources and environmental conditions. The average
3σ confidence interval, calculated from 28 flights during 2022 and
2023, is overlaid with a solid ellipse.

Q is the emission rate (kg s−1); u is the constant horizon-
tal wind speed (m s−1), and σz and σy are standard devia-
tions for Gaussian distributions in units of meters, which are
generally derived using stability classes (Seinfeld and Pan-
dis, 2006; Woodward, 1998). H is the height of the source5

(m). C is the estimated increase in gas density at position x
(directly downwind, centerline), y (horizontal from center-
line), and z (vertical from centerline) given in meters. It is im-
portant to make the distinction between the mass density, C
(kg m−3), and the mole fraction, χ (mol mol−1), measured by10

the MIRA Pico. The conversion between the two isC = ηρχ ,
where η is the ratio of molar masses of the gas to that of air,
and ρ is the air density (kg m−3).

Figure 5 shows cross-sections of a Gaussian plume sim-
ulated at three downwind distances from a 25 kg h−1 point15

source. Mean winds in this case are ∼ 2 m s−1, and the sta-
bility class corresponds to high solar insolation. As expected,
the simulated plume becomes more dispersed and broad-
ens both horizontally and vertically with increasing distance
from the source. Plume enhancements in methane range be-20

tween 1 and 5 ppm, which are easily detectable with this sys-
tem, and the horizontal and vertical scales (∼ 50 m, ∼ 30 m)
are readily accessible to the UAS.

2.5 Flight pattern

The full UAS setup and pre-flight checks can be completed in25

under 15 min, and any certified remote pilot, or person under

the supervision of a certified pilot (Federal Aviation Admin-
istration, 2021), can operate and maneuver the UAS around a
target source’s emission plume. Part of the setup process in-
volves the verification of MIRA measurements for both CH4 30

and C2H6. Prior to each flight, a small canister of natural gas
with a known composition (∼ 7 % C2H6 : CH4 ) is rapidly
opened and closed about 1 m upwind of the UAS gas inlet.
This pre-flight release “pulse” is measured on the MIRA to
test for any lag or unexpected gain offset on either of the 35

channels. As discussed in Sect. 2.3, the raw concentration
measurements can be biased due to a quasi-periodic sensor
drift which must be estimated and removed before compar-
ing the channels. This step is completed during data process-
ing after each deployment, and it should be noted that the 40

results from each of these controlled pulses has been con-
sistent to within a fraction of the known C2H6 : CH4 ratio
(< 1 % disagreement) across all deployments between 2021
and the present.

The flight time of ∼ 20 min constrains the types of flight 45

patterns that can be used to quantify source emission rates. In
order to maximize the number of in-plume samples within a
relatively short flight period, our strategy is to remain down-
wind of the source and fly horizontal “transects” perpendic-
ular to the mean wind direction. This boustrophedonic cur- 50

tain flight pattern is perpendicular to the average wind direc-
tion and involves multiple cuts through the plume in order to
measure both the in-plume concentrations, χ , and the ambi-
ent or background concentrations used to determine χ0. Each
individual transect through the downwind plume is at a rel- 55

atively constant altitude and horizontal velocity between 2
and 5 m s−1, depending on the wind conditions and prox-
imity to the source. Transects are typically 50 m to 1 km in
length, depending on terrain, wind variability, and source dis-
tribution and downwind distance. Extended sources and mea- 60

surements collected at larger downwind distances from the
source require longer transects to ensure that the dispersing
plume gets fully traversed during each transect. The ability
to quickly adjust altitude between each of the individual tran-
sects allows for direct measurements of the plume’s vertical 65

structure in addition to the horizontal dispersion.
Direct measurements of a source plume with the MIRA

Pico sensor require the UAS to be physically maneuvered
downwind of the source. While a steady-state Gaussian
plume model can be used for flux inversions (e.g., Jacob 70

et al., 2022; Shah et al., 2019; Stockie, 2012; Seinfeld and
Pandis, 2006; Woodward, 1998; Bhattacharya, 2013), these
models represent plume dispersion probabilities which are
not generally observed in the superposition of horizontal
transects through the plume. During direct measurements, 75

large-scale turbulence in the wind flow results in changes to
the plume’s size and relative location throughout the mea-
surement period. Based on simple scaling arguments, we ex-
pect that plume variability is largest in the horizontal plane
due primarily to wind directional variability. Figure 6 shows 80

multiple simulated transects through a Gaussian plume’s
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Figure 5. Cross-sections of modeled Gaussian plume under conditions of low wind (2 m s−1) and high solar insulation (stability class “A”
from Woodward, 1998). Each panel depicts the Gaussian plume cross-section at distanceX downwind of the source. The horizontal distance y
is with respect to plume centerline, and the vertical distance z is above ground level. The plume model assumes a steady wind field and
constant emission rate from the source.

Figure 6. Simulated flight through Gaussian plume: (a) cross-
section of plume X meters directly downwind of source, with sim-
ulated transects shown as dashed lines. (b) Resample of modeled
cross-section at constant horizontal transect velocity Vs. (c) Ran-
dom shifts in the centerline horizontal position, simulating variable
wind conditions and temporally separated plume transects.

downwind cross-section in the case of a steady-state flow. We
simulate the stochastic variability in the plume by introduc-
ing random shifts in the centerline between each of the tem-
porally separated transects, which can be seen at the bottom
of Fig. 6. This pattern is generally more consistent with our5

observations in comparison to the steady-state model. How-
ever, the stochastic model shows that total plume flux is unaf-
fected by horizontal plume displacements, provided that the
integral is taken along horizontal transects.

2.6 Direct flux quantification 10

The data collected from a single flight are broken intoK indi-
vidual transects through the source’s downwind plume, each
transect representing data collected at a nearly constant al-
titude, z, and non-zero horizontal velocity, V s, while inter-
secting the plume. The altitude, z, is only adjusted between 15

transects with the UAS outside the plume (measuring ambi-
ent or background concentrations).

Mass balance estimation techniques require knowledge of
the wind speed perpendicular to the direction of travel (tran-
sect crosswind). Optimally, each transect would therefore be 20

perpendicular to the mean horizontal wind direction (u), but
local topography, changing wind fields, and flight safety con-
siderations often result in an angle other than 90◦ between V s
and u. Therefore, it is important to first define a unit vector, n̂,
perpendicular to the direction of travel. 25

{
‖n̂‖ = n2

x + n
2
y = 1

V s · n̂= Vxnx +Vy ny = 0
(3)

Equation (3) shows the system of equations used to cal-
culate this unit vector, n̂, using the instantaneous horizon-
tal UAS velocities Vx and Vy defined previously. The tran-
sect crosswind, a measure of wind speed perpendicular to 30

the UAS transect, is (u · n̂). Maintaining a constant heading
and horizontal velocity during flights proved difficult during
periods of irregular and shifting winds. Direct measurements
of u and V s are variable between samples, so n̂ is required to
constrain the flux calculation with respect to each transect. 35

Each of the K horizontal transects gets processed in-
dividually to calculate the intermediate transect-integrated
flux fk (Eq. 4), the horizontal integral of the samples along
each transect (units of mass flux rate per vertical distance,
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kg s−1 m−1).

fk = η

n−1∑
i=0

ρi(χ −χ0)i(u · n̂)i1si

=

n−1∑
i=0

(C−C0)i(u · n̂)i1si (4)

ηρ(χ −χ0)= (C−C0) is the background-adjusted mole
fraction, 1s = |V s|1t =

√
V 2
x +V

2
y1t TS1 is the distance

between samples (1t ≈ 1s), and ρ and η have been defined5

previously.
The total flux, Ftot, is then calculated through integrating

the sum of fk and the vertical distance between physically
adjacent transects, 1zk (Eqs. 5 and 6).

1zk =
∣∣zk+1− zk

∣∣/2+ 3 |zk |/4 zk =min(z0, . . . ,zK−1)∣∣zk−1− zk
∣∣ zk =max(z0, . . . ,zK−1)(∣∣zk−1− zk
∣∣+ ∣∣zk+1− zk

∣∣)/2 otherwise
(5)10

Ftot =

K−1∑
k=0

(fk1zk) (6)

For most transects, 1zk ranges from the midpoint dis-
tance between the previous, lower-altitude transect up to the
midpoint between the next, higher-altitude transect. Adjust-
ments to the vertical integral step1zk are taken at the bottom15

and top transects to account for extrapolation to the ground
and above the flight pattern. The UAS cannot profile below
a height of about 1.5 m, but the plume flux is expected to
decrease nonlinearly to zero at the ground. Therefore, we
extrapolate below the lowest flight transect by assuming a20

constant mixing ratio and wind speed between the lowest
transect and 75 % of the distance to ground. This choice
of integral quadrature corresponds to a logarithmic verti-
cal profile for the transect-integrated flux f below level z,
f = f0 ln(z/z0), with z0 = 0.018z. In the absence of tall25

trees, power lines, or other obstructions, the lowest flight
transect typically lies between 2–4 m above ground level (in-
cluding the UAS mast), and the assumed zo therefore ranges
between about 4 and 7 cm. Extrapolation at the top edge of
the plume can be more complicated, but ideally, the upper-30

most flight transect will lie above the plume so that a linear
interpolation can adequately account for the top of the plume
profile. However, some flight patterns (e.g., Fig. 9) may not
completely span the possible vertical extent of the plume, and
in these isolated cases we adopt a conservative approach by35

assuming a constant mixing ratio and wind above the transect
altitude, extending only to a height defined by half the ver-
tical distance between the top two transects. Typically, this
extrapolation amounts to 2–4 m above the uppermost tran-
sect. A typical flight downwind of a natural gas point source40

is shown in Fig. 7. This flight is composed of 11 horizontal
transects over a period of approximately 11 min. The tran-
sects were flown approximately 130 m downwind (roughly

south-southeast) of the methane point source with a known
emission rate of 3.42± 0.01 kg h−1 (El Abbadi et al., 2024). 45

2.7 Precision and uncertainties

Errors are calculated using the standard Eq. (7) described in
Taylor (1996) for an arbitrary measured variable, q. Table 1
gives the measurement uncertainties for the major compo-
nents of the UAS. 50

δq(x, . . . ,z)=

√(
∂q

∂x

)2

δx2
+ . . .+

(
∂q

∂z

)2

δz2 (7)

The transect-integrated flux, fk , given in Eq. (4) is a func-
tion of the background-adjusted concentration (C−C0), wind
speed perpendicular to UAS curtain, and the distance be-
tween transect samples (1s). Each of these terms introduces 55

an error in fk as defined in Eqs. (8) through (10).
The uncertainty on the background-adjusted concentra-

tion, C, is dependent on the calculated air density (ρ =
MairP/(RT ) kg m−3), measured hydrocarbon concentra-
tion (χ ), estimated background (χ0; see Sect. 2.3), and the 60

uncertainty associated with each value (see Table 1).

δ(C−C0)= η

√
ρ2 δ(χ −χ0)

2
+ (χ −χ0)2 δρ

2

= ηMair/R

√
(P/T )2[δχ + δχ0] + (χ −χ0)

2

×
[
(δP /T )2+ (P δT /T 2)2

] (8)

Note that the uncertainty on the estimated χ0 is calculated
independently for each flight.

The crosswind uncertainty is dependent on the static- 65

frame horizontal wind speed (u) calculated as described in
Sect. 2.2 with the full uncertainty propagation given in Ap-
pendix B. While the crosswind is dependent on the unit vec-
tor (n̂), the conservative upper-limit approximation for cross-
wind is given in Eq. (9). 70

δ(u · n̂)=

√
n2
yδu

2
+ n2

xδv
2

≈

√
δu(um,φ,Vx)2+ δv(vm,φ,Vy)2 (9)

The final parameter in δfk is the separation between the
sample along the transect, 1s, which is dependent on the
UAS horizontal velocity (Vh =

√
Vx +Vy TS2 ); sampling rate

(1t = 1 Hz); and the associated uncertainties as shown in 75

Eq. (10).

δ(1s)=

√
δV 2

s 1t
2
+V 2

s δ(1t)
2

=

√ [
(Vx δVx)

2
+ (VyδVy)

2]2 (1t/Vs)
2

+[V 2
x +V

2
y ]

2δ(1t)2
(10)



J. F. Dooley et al.: A new aerial approach for quantifying and attributing methane emissions 11

Figure 7. Plume transect flight pattern viewed from east (c), south (d), and above (b). Approximate source location marked with black square.
The wind rose plot (a) shows the Earth-fixed wind in the horizontal direction. Estimated CH4 emission rate from the UAS is 4.1± 1.11 kg h−1

(compare to metered emission rate of 3.52± 0.01 kg h−1).

The calculated uncertainty on fk is therefore calculated as
shown in Eq. (11).

δfk
2
=
[
δ(C−C0)(u · n̂)1s

]2
+
[
(C−C0)δ(u · n̂)1s

]2
+
[
(C−C0)(u · n̂)δ(1s)

]2 (11)

The total source flux is the summation of each fk mul-
tiplied by the corresponding 1zk , as shown in Eq. (6). The5

vertical range of each independent transect is given in Eq. (5).
zk is the average height of all samples within transect k, and
δ(1z)= σzk is the uncertainty in altitude.

δFtot =

√
δf 2
k 1z

2
+ f 2

k δ(1z)
2 (12)

The measurement uncertainties detailed in Eqs. (8)10

through (12) can be used to identify the major sources of
uncertainty in source emission rate estimates.

While the minimum flux threshold will depend on the
specific meteorological conditions and flight patterns dur-
ing sampling, under favorable flight conditions with high so-15

lar insulation, 2 m s−1 mean wind speed, and a downwind
plume cross-sectional area of 100 m2 (see Fig. 5), the mini-
mum source strength that can be quantified is on the order of
0.0062 kg (CH4) h−1 and 0.0018 kg (C2H6) h−1.

3 Results 20

This section gives an overview of a number of quantification
flights between spring 2022 and fall 2023. Section 3.1 details
the results of multiple controlled releases using the system
described in El Abbadi et al. (2024). Section 3.2 discusses
measurements from various, smaller biogenic and thermo- 25

genic emission sources collected between winter 2021 and
fall 2023.

3.1 Controlled-release experiments

In fall of 2022, the NMT team participated in a single-blind
controlled-release validation campaign in Casa Grande, Ari- 30

zona, USA (Sherwin et al., 2024; El Abbadi et al., 2024).
While this validation campaign focused on larger-scale air-
craft and satellite system validation, it was a unique op-
portunity to quantify the accuracy for this method of direct
methane flux quantification. The UAS was deployed multiple 35

times around the controlled-release location during two sepa-
rate 3 d validation trips: 10–12 October and 14–16 November
2022. Multiple flights at various times throughout the daily
testing window (between 10:00 and 14:00 MST most days)
measured concentrations downwind of the release stack. 40

Suboptimal environmental conditions and unforeseen in-
strumentation issues resulted in the rejection of the major-
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ity of October 2022 flights from the analysis process. The
November 2022 3 d campaign produced a total of 12 flights,
8 of which were during times of low-variability wind fields
and good flight conditions to allow for reliable flux quantifi-
cation.5

It is important to note that, at the time of this campaign,
the UAS flight pattern and quantification method were still
in active development. While the NMT team quantified and
submitted flux estimates during the single-blind and partially
blinded phases of the unblinding process (described in El Ab-10

badi et al., 2024), the final unblinded metered emissions were
invaluable to debug and update the initial quantification pro-
cess, ultimately leading to the numerical integration outlined
in Sect. 2.6. Here, we present the analysis of the quantifica-
tion results informed by the unblinded, ground-truth methane15

flow rates.
Figure 8 shows the comparison between UAS-calculated

flux and the corresponding unblinded metered emissions
from eight independent November 2022 flights. The me-
tered rates, taken to be the ground-truth emission rates, range20

from 1.7 to 1500 kg h−1. This broad range of emission rates
highlights the system’s dynamic range, and the fitted linear
regression shows the quality of emission estimates compared
to the one-to-one agreement with metered rates (dotted line).
Our method of flux quantification shows reasonable agree-25

ment with the expected emission rates above 1 kg h−1. How-
ever, the results suggest an underestimation of the emissions
which is not correlated to number of transects or wind speeds
during flights. This may be due to the limited flight time and
under-sampling the downwind plume with the UAS. One in-30

terpretation of these results is that our field measurements
could represent a reasonable lower bound to the true emis-
sion rate of the source.

3.2 Targeted point and distributed sources

The deployment strategy for this UAS is designed to quan-35

tify emissions from targeted local sources such as O&NG
wells, manure storage, and biogenic lagoons. With a lim-
ited operational distance and flight time, larger distributed
sources (such as large-scale dairies and agricultural centers)
are difficult to properly quantify using the numerical integra-40

tion technique described in Sect. 2.6. However, smaller-scale
municipal waste facilities with heterogeneous emission pro-
files can be quantified as long as the UAS is able to fully, and
repeatedly, transect the complex and irregular plumes down-
wind of the facility.45

3.2.1 Municipal waste facility

During the course of system development and testing, the
UAS was deployed around a local municipal waste facility
(MWF) in Socorro, New Mexico (NM). This location serves
a county population of approximately 16 300 with multi-50

ple cells over an area of 45 ha. Larger facilities studied by

Olaguer et al. (2022) and Lan et al. (2015) reported emis-
sion rates between 85 and > 2000 kg h−1; this much smaller
local facility, however, was expected to emit at rates less
than 10 kg h−1 (Olaguer et al., 2022; Bogner and Matthews, 55

2003). The low emission rate and temporal heterogeneity,
likely due to changes in cell activity, are evident across the
multiple visits between spring 2022 and summer 2023. The
flight path from one such deployment can be seen in Fig. 9.

In comparison to flights downwind of point sources such 60

as O&NG wells or controlled natural gas (NG) releases
(Fig. 7), the flight pattern in Fig. 9 was positioned about
0.5 km downwind of the source and involved plume tran-
sects up to ∼ 500 m long, and over an altitude range of up
to 50 m. In addition, the methane enhancements are about 65

a factor of 10 lower than in Fig. 7, and the plume is dis-
tributed over a larger area and centered at a higher altitude.
Nevertheless, the overall plume structure allows for the same
flux analysis as discussed for the localized NG point sources
above. The measured methane emission rate for this flight 70

was 1.33± 0.58 kg h−1.

3.2.2 Orphan well

During April 2023, the UAS was also deployed around an
“orphaned well” located in Hobbs, New Mexico, USA. This
site has been out of use for more than 2 decades and was 75

in the initial phase of being plugged when visited in April
2023. A detailed analysis of data from this field campaign
is presented in Follansbee et al. (2024). The observed plume
structure was similar to that shown in Fig. 7, but mean wind
speeds were much larger and methane plume enhancements 80

were ∼ 400 ppb, roughly between the range of plume en-
hancements shown in Figs. 7 and 9. Three downwind flights
yielded consistent fluxes in the range of 0.3 to 0.4 kg h−1

(Follansbee et al., 2024).

3.2.3 Wastewater treatment plant 85

Wastewater treatment plants (WWTPs) are a known source
of biogenic methane emissions via biodegradation of pollu-
tants by anaerobic bacteria (Song et al., 2023). The small
town of Socorro, NM, has a local wastewater treatment
plant that processes less than 1×106 gal d−1 (44 L s−1), so 90

its contribution to anthropogenic methane is relatively quite
low (when compared to O&NG and agricultural operations).
However, the low emission rate of this location was useful
for the testing of the UAS’s lower detection and quantifica-
tion limits. 95

A time series of measured CH4 and C2H6 concentrations
from a short flight in August 2023 is shown in Fig. 10. The
CH4 and C2H6 detection limit (calculated from the back-
ground fit residual 3σ confidence interval; see Sect. 2.3) is
overlaid on the time series shown in Fig. 9. While the in- 100

plume CH4 concentration levels peak at around 40 ppb, no
corresponding C2H6 enhancements are detected while pass-
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Figure 8. Comparison of the UAS CH4 flux calculation versus metered emissions reported by El Abbadi et al. (2024) and Sherwin et al.
(2024). Both plots show eight individual flights during the November 2022 field campaign with 2σ error bars. Linear regression fit shown as
solid line for comparison with the idealized one-to-one fit corresponding to perfect agreement between UAS and metered data (dotted line).
(a) Logarithmic plot highlighting the UAS’s large dynamic range. (b) Linear plot focused on emission rates below detection limits of most
aircraft quantification methods; linear regression fit does not include emission rates above 100 kg h−1.

Figure 9. Example flight, split into individual transects, from a
landfill in New Mexico. The landfill itself is composed of active
and inactive cells distributed over an area of approximately 45 ha,
resulting in a non-uniform downwind plume profile. In comparison
to the localized “point source” presented in Fig. 7, longer horizon-
tal transects across a wider vertical range are required to measure
the multiple distributed and highly variable emitters. Estimated flux
rate for this flight is 1.33± 0.58 kg h−1.

ing through the plume. The lack of a correlation between
C2H6 and CH4 is strong evidence that the measured plume
is from anaerobic digestion at the WWTP and is not con-
taminated by another source. However, it is important to
note that weaker source strengths lead to a decrease in the5

signal-to-noise ratio, so C2H6 from thermogenic sources may
not be detectable. This is shown visually at the bottom of
Fig. 10 where the expected C2H6 time series for 10 % and
5 % C2H6 : CH4 thermogenic plumes are modeled with re-
spect to the measured CH4 time series. While the C2H6 sig-10

nal for the 10 % thermogenic mixture peaks above the de-
tection threshold (1.5 ppb in this dataset), the 5 % mixture

is barely visible above the noise floor. However, it is im-
portant to note that weaker source strengths lead to a de-
crease in the signal-to-noise ratio, so C2H6 from thermo- 15

genic sources may not be detectable. This is shown visually
at the bottom of Fig. 10 where the expected C2H6 time series
for 10 % and 5 % C2H6 : CH4 thermogenic plumes are mod-
eled with respect to the measured CH4 time series. While
the C2H6 signal for the 10 % thermogenic mixture peaks 20

above the detection threshold (1.5 ppb in this dataset), the
5 % mixture is barely visible above the noise floor. The emis-
sion rate for the flight shown in Fig. 10 is estimated to be
68.7(+171.5,−61.7)g h−1.

3.3 Source attribution 25

As discussed in Sect. 1, simultaneous measurements of both
CH4 and C2H6 are useful for source classification as ei-
ther biogenic or thermogenic. In addition, there are varying
ratios of trace hydrocarbons found in thermogenic natural
gas sources, and C2H6 is the second-most dominant com- 30

pound in refined natural gas (Peischl et al., 2018; Hodne-
brog et al., 2018; Kutcherov and Krayushkin, 2010; Glasby,
2006; Space Studies Board et al., 2019; Solomon et al., 2007;
Hansen et al., 2000; Meyer et al., 2022). Therefore, the ratio
of C2H6 to CH4 can be used to estimate the percentage of 35

non-methane compounds in an O&NG plume and distinguish
between sources.

Figure 11 shows the ratio of measured C2H6 and CH4
mole fraction from five different field measurements around
various sources, including the municipal waste facility dis- 40

cussed in Sect. 3.2.1. Multiple downwind plume measure-
ments showed a negligible C2H6 content (< |0.2%| C2H6 :

CH4) from this biogenic source. Consistent with measured
concentrations in Fig. 9, CH4 concentrations from the MWF
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Figure 10. (a, b) Time series of measured and background sub-
tracted CH4 and C2H6 concentrations (Sect. 2.3) from a flight
downwind of the city of Socorro wastewater treatment plant in Au-
gust 2023. (c) Expected C2H6 time series if measured CH4 plume
(top) was thermogenic with 10 % and 5 % C2H6 : CH4 ratios. The
mean winds were ∼ 5 m s−1, and the solar insolation corresponded
to stability class “B” due to partial cloud coverage (Seinfeld and
Pandis, 2006; Woodward, 1998). The plume was intercepted on two
transects separated by about 40 s, as seen in the CH4 time series
(top) about 4–5 min into the flight. No corresponding C2H6 en-
hancements we measured indicated that the plume is biogenic (com-
pare with expected thermogenic C2H6 time series). Estimated CH4
emission rate of 0.061± 0.032 kg h−1.

are much lower in comparison to the sampled thermogenic
methane sources.

The two different controlled-release campaigns in fall
2022 were about 1 month apart, and these data are segre-
gated in Fig. 11. The measured percentages are in agreement5

with the contemporaneous CH4 concentration measurements
reported by the controlled-release team (El Abbadi et al.,
2024). The same ratio of C2H6 to CH4 was measured across
all flights during the first release and similarly during the sec-
ond campaign, though the ethane content was noticeably dif-10

ferent during the second campaign.
Emissions of unrefined NG from the orphan well discussed

in Sect. 3.2.2 contained a smaller fraction of CH4 due to the
presence of other compounds such as H2S, so it is incorrect
to approximate the C2H6 ratio in Fig. 11 as the non-CH415

percentage. However, this unique C2H6 : CH4 ratio was con-
sistent across all orphan well flights and in good agreement
with ground-based systems deployed at the same site (Fol-
lansbee et al., 2024); the larger ethane content is due to the
unrefined natural gas seeping from the unused well (Stolper20

et al., 2018). Furthermore, measurements of unrefined NG

Figure 11. Ethane and methane enhancement ratios from multiple
independent field tests at different sites. “October and November
2022 controlled releases” are two independent multiday field cam-
paigns in Casa Grande, AZ, during a controlled NG release. “San
Juan Basin well”: multiple flights near an active wellhead in Cuba,
NM. “Permian Basin well”: three independent flights downwind of
an orphan well in Hobbs, NM. “Municipal waste facility” is a rela-
tively small waste disposal location near Socorro, NM.

from a leaking O&NG well in the San Juan Basin, obtained
in October 2023, showed a distinct ratio from that of the or-
phan well from the Permian Basin. The San Juan Basin is
primarily a coal-producing region and therefore has a no- 25

ticeably lower C2H6 content compared to the Permian Basin,
the latter region being primarily composed of oil. Thus, each
of the sources shown in Fig. 11 had a unique and consis-
tent C2H6 ratio which can be used to characterize and dif-
ferentiate multiple sources based on this percentage. This is 30

in agreement with the findings of Meyer et al. (2022) and
Germain-Piaulenne et al. (2024).

Figure 12 highlights the dynamic range of the UAS, which
is able to detect CH4 enhancements of as little at 20 ppb s−1

(after background removal; Sect. 2.3). Additionally, the UAS 35

has demonstrated the ability to measure much larger con-
centrations of more than 40 000 ppm (empirically determined
based on MIRA Pico saturation levels during Arizona (AZ)
validation flights).

4 Conclusions 40

Our results demonstrate the capabilities of this integrated
UAS package, along with associated flight strategies and
data analysis methodologies, to quantify and characterize
methane of point and distributed emission sources. Through
direct, in situ measurements of CH4 concentrations and vec- 45



J. F. Dooley et al.: A new aerial approach for quantifying and attributing methane emissions 15

Figure 12. Comparison of estimated methane flux from various anthropogenic sources. The UAS has a large dynamic range capable of
quantifying emission rates from smaller sources (less than 1 kg h−1). Horizontal dashed lines show the absolute lowest detection limits for
satellite and aircraft quantification methods (Jacob et al., 2022; Duren et al., 2019) with respect to the estimated lower limit of this system
(∼ 0.007 kg h−1; see Sect. 2.7).

tor winds downwind of target sources, the UAS can be used
to quantify emission rates spanning more than 3 orders of
magnitude. The lower-bound limit for CH4 flux measure-
ments is estimated to be ∼ 0.007 kg h−1, and it is deter-
mined primarily by the precision of the concentration mea-5

surements and uncertainties associated with determining the
background levels with respect to variable plume enhance-
ments.

Environmental conditions largely dictate the plume disper-
sion and transport with respect to a target source; optimal10

downwind distances and transect velocities during flight are
highly dependent on insolation and wind speed and direc-
tion. The results from the controlled releases shown in Fig. 8
and Table B1 were obtained during daytime periods of rel-
atively steady winds and low cloud coverage (high solar in-15

sulation leading to large vertical mixing). In all cases, the
measured emission rates showed reasonable agreement with
metered flow rates, generally within 1σ error. However, the
results suggest the potential for a small systematic underes-
timation of emissions across all scales, depending on envi-20

ronmental conditions. This underestimation may arise from
limitations on the horizontal extent or vertical distribution of
transects during each flight, resulting in an under-sampling of
the continuous emission plume. Therefore, UAS flux quan-
tification may represent an effective lower-bound value for25

the true emission rate. It is important to note that the results
in Sect. 3.1 were informed by the fully unblinded metered
rates, whereas the aforementioned aircraft systems used fully
blinded or partially unblinded data for the reported estimates
(El Abbadi et al., 2024; Sherwin et al., 2024).30

The primary limitations of our UAS measurement ap-
proach are related to meteorological conditions. Optimum
mean wind speeds are in the range of 2–6 m s−1. Wind
speeds below 2 m s−1 have been shown to produce less re-
liable fluxes due to higher variability in the plume posi- 35

tion and shape, while winds above 6 m s−1 are too strong
for safe flights with this UAS. The steadiness of wind di-
rectionality can also be a factor, although it is a much less
severe constraint than speed provided that the flight pattern
is sufficiently wide to intersect the plume on every transect. 40

Proper deployment also requires access for takeoff and land-
ing within 1 km of the source, and the target source’s loca-
tion must also be known to within a few kilometers. While
successful deployment and flux quantification is constrained
to a specific range of environmental conditions, the UAS of- 45

fers a relatively simple method of deployment for quantify-
ing emitters that would otherwise be difficult or impossible
for other monitoring techniques to access or detect. Thus, al-
though this system is not optimized for wide-area surveys, it
is well suited for site quantification of known sources such as 50

O&NG wells or processing facilities, small dairies, munici-
pal waste facilities, and wastewater treatment plants.
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Appendix A: Supplemental information

Figure A1. Instantaneous UAS pitch and roll versus horizontal velocity from all flights presented in Fig. 12 and Table B1 (> 13 500 samples).
Plot contains all samples prior to filtering and transect processing as described in Sect. 2.6.

Figure A2. (a) Comparison of vector wind (u) from UAS adjustment (Sect. 2.2) with directional ground anemometer aligned to the west.
(b) Height of UAS above ground level (blue) with respect to anemometer (orange). Highlighted regions depict steady and level transects
within 20 m horizontal distance from the fixed anemometer.

Appendix B: Supplemental equations

Static-vector wind uncertainty

δu=

√(
∂u

∂um

)2

δum
2
+

(
∂u

∂φ

)2

δφ2
+

(
∂u

∂Vx

)2

δVx
2 (B1)

δv =

√(
∂v

∂vm

)2

δvm
2
+

(
∂v

∂φ

)2

δφ2
+

(
∂v

∂Vy

)2

δVy
2 (B2)5

∂u

∂um
= cos(φ),

∂u

∂φ
=−um sin(φ)+ vm cos(φ),

∂u

∂Vx
= 1 (B3)

∂v∂vm = cos(φ),
∂v

∂φ
=−vm sin(φ)− um cos(φ),

∂v

∂Vy
= 1 (B4)
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Code and data availability. Software minimal working examples
(MWEs) for MIRA Pico background concentration estimation
(Sect. 2.3) and static wind calculations using measurements with
the onboard anemometer (Sect. 2.2) are available through GitHub
(https://github.com/jfdoolster/nmt_uas_background_estimate.git,5

Dooley, 2024a; https://github.com/jfdoolster/nmt_uas_wind_
direction.git, Dooley, 2024c). Processed dataset files from flights
discussed in Sect. 3, Fig. 12, and Table B1 are also available on
GitHub (https://github.com/jfdoolster/nmt_uas_public.git, Dooley,
2024b).10
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y . The missing squares on Vx and Vy was a subtle typo that was missed during initial
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