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Abstract. There is considerable academic interest in the potential for air quality improvement as a co-benefit of climate change

mitigation. Few studies use regional air quality models for simulating future co-benefits, but many use global chemistry-climate

model output. Using regional atmospheric chemistry could provide a better representation of air quality changes than global

chemistry-climate models, especially by improving the representation of elevated urban concentrations. We use a detailed re-5

gional atmospheric chemistry model (WRF-Chem v 4.2) to model European air quality in 2050 compared to 2014 following

three climate change mitigation scenarios. We represent different climate futures by using air pollutant emissions and chemical

boundary conditions (from CESM2-WACCM output) for three Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, SSP3-

7.0; a high, medium and low mitigation pathway).

10

We find that in 2050, following SSP1-2.6, mean population-weighted PM2.5 concentrations across European countries re-

duces by 52% compared to 2014. Whilst under SSP2-4.5, this average reduction is 34%. The smallest average reduction was

18% by following SSP3-7.0. Maximum 6-monthly-mean daily-maximum 8 h (6mDM8h) ozone (O3) is reduced across Europe

by 15% following SSP1-2.6, and 3% following SSP2-4.5, but increases by 13% following SSP3-7.0. This demonstrates clear

co-benefits of climate mitigation. The additional resolution allows us to analyse regional differences and identify key sec-15

tors. We find that mitigation of agricultural emissions will be key for attaining meaningful co-benefits of mitigation policies,

evidenced by the importance of changes in NO3 aerosol mass to determining future PM2.5 air quality and changes in CH4

emissions to future O3 air quality.

1 Introduction20

Poor air quality is a major public health issue worldwide. The negative health impacts are usually attributed to two air pollu-

tants - PM2.5 (any airbourne non-gaseous particle under 2.5 microns in diameter) which can be both a primary or secondary
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air pollutant and ozone (O3) which is a secondary pollutant. Primary sources of PM2.5 include a range of natural and anthro-

pogenic sources, including fossil fuel combustion, and transport. As a secondary pollutant, it can be formed from emissions of

species such as Ammonia (NH3), Sulfur dioxide (SO2) and Nitrogen oxides (NOx). Tropospheric O3 is a secondary pollutant25

formed by photochemical reactions involving volatile organic compounds (VOCs) including methane (CH4), nitrogen oxides

(NOx) and carbon monoxide (CO) in the presence of sunlight. Air pollution may have consequences wider than just mortality,

such as economic cost (Vandyck et al. 2020) and reduced crop yields (Lobell et al. 2022). Both PM2.5 and O3 are intrinsically

linked with climate change; many of the sources of primary PM2.5 and O3 precursors come from the same sources as long-

lived greenhouse gases (or in the case of CH4 are greenhouse gases). Additionally, air pollutants themselves have an impact30

on climate forcing through a range of pathways including directly affecting the radiative balance of the atmosphere, modifying

the albedo of clouds and glaciers and increasing cloud lifetime. (Von Schneidemesser et al. 2020).

Air quality is a major issue due to its impacts on human health, by increasing the risk of a range of diseases. Exposure to

air pollution contributes to about 6.7 million deaths per year (World Health Organisation, 2023), 4.2 million of which are from35

ambient outdoor air pollution and the remainder from household air pollution. In Europe, PM2.5 is responsible for an estimated

368,000 deaths per year (Juginovic et al. 2021) and the annual mean mortality rate from air pollution in Europe of 133 per

100,000 exceeds the global mean of 120 per 100,000 (Lelieveld et al. 2020). Additionally, the European Environment Agency

(2023) reported that in 2022, 96% of Europe’s urban population was exposed to PM2.5 concentrations above the World Health

Organisation’s guideline value of 5 µg/m3. (World Health Organisation, 2021). Poor air quality in Europe is therefore still a40

large factor in human health.

Improving air quality in Europe is feasible: air pollution responds quickly to air pollutant emissions reductions, potentially

resulting in lower population exposure to primary air pollutants. Due to reductions in anthropogenic emissions of air pol-

lutants, PM2.5 air quality in Europe has improved over the past half-century; between 1960 and 2009, population-weighted45

PM2.5 concentrations in the European Union decreased by 55.3% (Butt et al. 2017). Similarly, the responsiveness of air pol-

lution to emissions changes was demonstrated by the major changes in PM2.5 air quality from national to global scales during

the COVID-19 pandemic (Jephcote et al. 2021; Venter et al. 2021; Saha et al. 2022). The speed of this response to changes in

emissions caused by COVID-19 restrictions indicates that considerable improvements in air quality can be achieved when air

pollutant emissions are reduced. Conversely, O3 concentrations in Europe have increased in the latter half of the 20th century50

and early 21st century (Turnock et al. 2020) despite considerable reductions in local, anthropogenic O3 precursor emissions.

This is potentially due to increased intercontinental transport of O3 precursors (Guerreiro et al. 2014). This demonstrates that

despite improving trends in PM2.5, a different approach may be required to reduce exposure to O3.

Air pollutants and greenhouse gases have a lot of common sources and there are many linkages between air quality and55

climate change. It is therefore expected that greenhouse gas mitigation policies may also result in lower air pollution emissions

which may improve air quality (Turnock et al. 2020; Vandyck et al. 2020). This co-benefit is often suggested as a motivator
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to encourage faster and more effective climate mitigation action from policymakers, including at the regional level, because

it turns the concept of climate change mitigation from a diffuse, global-scale requirement to something that can provide mea-

surable, near-term benefits in the local area (von Schneidemesser et al. 2020). Existing research supports the hypothesis that60

air quality co-benefits of climate mitigation will be present in Europe. For example, Turnock et al. (2020) finds that across

Europe, PM2.5 concentrations would decrease by the middle of this century for a range of future scenarios and be stronger in

scenarios with greater mitigation. Reddington et al. (2023) finds that reductions in PM2.5 across Europe following a sustainable

scenario (SSP1-1.9) could improve health across the continent. Fenech et al. (2021) come to a similar conclusion, but focusing

particularly on the UK. This may not be true for all pollutants and all scenarios. For example, findings differ for O3, for which65

Turnock et al. (2020) project an increase in Europe following scenarios with limited climate change mitigation and Fenech et

al. (2021) project an increase compared to the present in all scenarios.

Although improved air quality as a co-benefit of climate mitigation is widely expected, the reality is that the interactions

between these policies are complicated and potentially non-linear. Surface level O3, for example, may worsen following reduc-70

tions of NOx, which is a common emission from combustion processes, depending on the balance between VOCs and NOx in

the vicinity (Miyazaki et al. 2021). Complexity is also added by the interactions between air pollutants and the climate system

itself; the climate affects the formation of some secondary air pollutants, including surface level O3 (Archibald et al. 2020) and

secondary organic aerosol (Scott et al. 2018; Raes et al. 2010). Climate change will also affect the prevailing meteorological

conditions, and impact the dispersion of air pollutants, thereby affecting human exposure (Graham et al. 2020). Aerosols also75

affect the atmosphere’s radiative balance, causing a cooling that masks the true potential scale of climate change (Peace et al.

2020). It is also not a given that all climate mitigation strategies will reduce emissions of primary air pollutants as it depends

on the mitigation strategy used. For example, greater adoption of biofuel burning in the energy sector may not be as effective

in improving air quality compared to non-combustion power sources (Buonocore et al. 2021). modelling studies are therefore

needed to understand how climate change mitigation and air quality might interact, considering differing strategies for climate80

mitigation.

There are some key challenges associated with modelling climate co-benefits. One challenge is selecting the assumptions

to make about societal development and climate mitigation policies. Using consistent scenarios with the same underlying as-

sumptions makes this easier by improving comparability between studies. Previous research into the linkages between climate85

change and air quality largely uses the air pollutant emissions associated with CMIP5 (e.g. Silva et al. 2016; Kumar et al.

2018; Fenech et al. 2021), which are linked with the Representative Concentration Pathways (RCPs) (van Vuuren et al. 2011).

RCPs are pathways of greenhouse gas concentrations over the 21st Century that result in different radiative forcing endpoints

in 2100. Some more recent research (e.g. Rao et al. 2017; Turnock et al. 2020; Reddington et al. 2023) uses the CMIP6 (the

successor to CMIP5) emissions, designed to work with the Shared Socioeconomic Pathways (SSPs) (O’Neill et al. 2017).90

SSPs expand the range of pathways and also provide different narratives of socioeconomic development. These are integrated

to provide a matrix of scenarios that each narrative can result in following multiple concentration pathways. This means the
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emissions meant to represent these integrated scenarios factor in the role of socioeconomic development in more detail than

in the scenarios used in CMIP5. They also further expand on the link between pollution and climate; providing descriptions

on how air pollution control progresses following the narratives, which is then also fed into the air pollutant emissions used in95

CMIP6 (Rao et al. 2017). The RCPs and CMIP5 emissions did not capture the full set of linkages between climate change and

air quality policies due to a lack of detail on socioeconomic development and pollution control and so the SSPs used in CMIP6

will provide a better assessment (Coelho et al. 2023).

Another challenge is the difficulty of modelling air quality and climate simultaneously. Many studies that use the SSPs100

often use the output from global climate models and/or Earth system models (e.g. Turnock et al. 2020, Allen et al. 2020),

or "reduced form" models that generalise over large regions (Rao et al. 2017). These types of models may have less detailed

chemistry schemes than models typically used to simulate regional air quality. They also tend to have a coarser horizontal

resolution than regional air quality models, which is important for air quality research to simulate chemical processes that

impact on air pollutants at local and urban scales (Adedeji et al. 2020, Fenech et al. 2018, Goto et al. 2016). Despite this, global105

chemistry-climate models have tended to be used for future projections of air quality due to prohibitive computational require-

ments for running multi-decadal simulations with regional air quality models. Some studies using CMIP6 output (Turnock et

al. 2023; Reddington et al. 2023) are making progress in improving the representation and resolution of present-day air quality

by combining CMIP6 output with observational and reanalysis data, however, the approaches taken by these studies still use a

coarser grid for future simulations. The finer resolution provided by regional models is especially important if the work aims to110

estimate health impacts as the improved representation of elevated urban concentrations allows for a more realistic population

exposure assessment.

A combined approach to modelling co-benefits that uses both regional air quality and global climate models is needed to

utilise the advantages of both techniques. An approach allowing the use of air quality models could be isolating the impacts of115

solely future emissions changes on air quality. It is well established that in Europe, the impact of emissions changes on future

PM2.5 air quality is likely to far eclipse the impact of climate change (Colette et al. 2013; Chemel et al. 2014; Doherty et al.

2017). Additionally, in Europe, even O3 pollution may not be sensitive to changes in climate (Zanis et al. 2022), further sug-

gesting that not considering climate change is an appropriate trade-off for improving model resolution and chemistry scheme.

120

Due to the computational expense of using high-resolution atmospheric chemistry models and their increased ability to sim-

ulate regional trends, studies using them choose specific regions. As such, some regions are more frequently represented in

the literature than others. Notably, the majority of existing work on future air quality co-benefits of climate mitigation focuses

on China and India (Von Schneidemesser et al. 2020). Examples include Kumar et al. (2018) and Chowdhury et al. (2020)

for India and Cheng et al. (2021) and Conibear et al. (2022) for China. Other domains studied previously include the Korean125

peninsula and Japan (Kim et al. 2020) and the USA (Zhang et al. 2017). We chose to focus our domain on Europe as it is

an under-represented region in the literature. Although studies that focus on Europe or subregions of exist, they largely use
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CMIP5 emissions instead of CMIP6 (e.g. Fenech et al. 2021 and Sa et al. 2016) or have the primary focus of quantifying the

impacts of climate change itself on air quality as opposed to emissions change (Tainio et al. 2013; Tarin-Carrasco et al. 2019).

130

To summarise, existing research suggests there is additional work needed to understand the impact on future air quality from

changes in pollutant emissions associated with the SSPs across Europe using models capable of capturing the changes in air

quality at greater spatial resolution. Therefore we present an exploration of the potential mid-century air quality impacts in Eu-

rope following the emissions changes from three up-to-date SSPs (SSP1-2.6, SSP2-4.5, and SSP3-7.0) using a state-of-the-art

regional atmospheric chemistry model. This aims to help us understand the implications of these updated emissions changes135

on a sub-regional scale in the European domain.

2 Method

2.1 Model Description

We use the Weather Research and Forecasting coupled with Chemistry model version 4.2. (WRF-Chem). This is an Eulerian,140

grid-based atmospheric chemistry model. Grell et al. (2005) provide a general model description. We use WRF-Chem at 30

km horizontal resolution with 38 vertical levels up to 50 hPa and a domain of 100*100 grid boxes ranging from latitudes 32◦

North to 60◦ North and longitudes from 22◦ West to 30◦ East in the North of the domain, narrowing to 13◦ West to 19◦ East in

the Mediterranean (Supplementary Figure A1). Note that the model domain does not cover all of Europe and for the purpose

of this study we define "Europe" as 13 countries: Germany, the UK, France, Spain, Italy, the Netherlands, the Czech Republic,145

Hungary, Poland, Slovakia, Ireland, Slovenia and Portugal. These countries have a combined population of approximately 380

million and represent a range of sources of primary air pollutants and environmental conditions that will affect air quality.

We simulate a present-day air quality control with gridded 2014 emissions used in CMIP6 (Hoesly et al. 2018) and simula-

tions with anthropogenic emissions representing 2050 for each of SSP1-2.6, SSP2-4.5 and SSP3-7.0 (Feng et al. 2020). The150

model parameters are shown in Table 1. For all scenarios the meteorology was fixed at 2014 conditions using meteorological

initial and boundary conditions from ECMWF ERA5 (Hersbach et al. 2020). 2014 was chosen as this is the most recent year

of historical emissions data from the emissions inventory used in CMIP6. We also use CMIP6 output from CESM2-WACCM

(Danabosglu, 2019) simulations to provide initial and chemical boundary conditions. To simulate chemistry, a scheme de-

scribed by Hodzic & Knote (2014) is used that combines MOZART-4 gas phase chemistry, which includes 85 gas-phase155

species, 157 gas phase reactions and 39 photolysis reactions (this scheme and the included reactions are provided by Emmons

et al. 2010) with the MOSAIC aerosol chemistry scheme described initially by Zaveri et al. (2008). This provides detailed

chemistry for a range of aerosol species including nitrate from ammonium nitrate (NO3), sulfate (SO4), organic carbon (OC),

black carbon (BC), ammonium from other sources (NH4), sodium and chloride, all in four size bins up to 10 µg. The combined

scheme described by Hodzic & Knote (2014) enhances these by including aqueous chemistry, improved treatment of monoter-160

5

https://doi.org/10.5194/egusphere-2024-755
Preprint. Discussion started: 21 March 2024
c© Author(s) 2024. CC BY 4.0 License.



penes and hydrocarbons, and updating the mechanism calculating secondary organic aerosols. PM2.5 in the model is the sum

of the total dry aerosol mass in 3 smallest size bins (up to 2.5 µg) of the above aerosol components and "other inorganics"

(OIN) which largely consists of dust. The full range of model inputs are shown in Table 1.

Parameter Scheme Used Source

Chemical Scheme MOZART-MOSAIC 4-bin Aerosol w/Aqueous Chemistry Hodzic and Knote (2014)

Biogenic Emissions MEGAN v2.0.4 Guenther et al.(2006)

Fire Emissions FINNv1.5 Wiedinmyer et al. (2010)

Natural Dust Emissions GOCART Chin et al. (2000), Ginoux et al. (2001)

Meteorological Boundary Conditions ECMWF ERA5 Hersbach et al. (2020)

Chemical Boundary Conditions CESM2-WACCM CMIP6 Simulations Danabasoglu (2019)
Table 1. Model parameters used and sources.

2.2 Emissions associated with CMIP6165

The emissions scenarios we chose cover a range of futures. SSP1-2.6 represents a scenario with accelerated mitigation of

greenhouse gases and sustainable societal development. SSP2-4.5 is a "middle of the road" scenario in which the trajectory

of greenhouse gas mitigation and sustainable development does not accelerate or decelerate strongly. SSP3-7.0 is a scenario

in which regional rivalry hampers greenhouse gas mitigation and sustainable development. The assumptions in air pollutant

controls mirror the trajectories of greenhouse gas emissions in each scenario, with some non-linearity or deviation in particular170

species to match the scenario narrative. These are explained by Rao et al. (2017); In summary, SSP1 assumes an acceleration

in pollution control progress, SSP3 a deceleration, and SSP2 neither a notable acceleration or deceleration from present-day

controls. Figure 1 shows how the emissions of key species change in future scenarios compared to the present day, demonstrat-

ing how the narrative scenarios translate to emissions data. Here the non-methane VOCs are grouped. We see that SSP1-2.6

has considerably lower emissions of all pollutant species compared to the present day. SSP2-4.5 and SSP3-7.0 have lower175

reductions in emissions overall, but notably differing trajectories for NH3 emissions, which increase compared to the present

following both scenarios, CH4 which is mitigated following SSP2-4.5 but worsens following SSP3-7.0 and CO, which is heav-

ily mitigated following SSP1-2.6 and SS2-4.5 but reduces only minimally following SSP3-7.0.

Table 2 shows the European total emissions of air pollutants assumed for the present-day scenario in 2014 and in the sce-180

narios we perform simulations for 2050, taken from the input emissions files from Hoesly et al. (2018) for the present-day and

Feng et al. (2020) for the future scenarios. All the emissions files were at 50 km horizontal resolution. The emissions were then

6
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Figure 1. Relative change of model domain average annual emissions from 2014 to each of the future scenarios in 2050.

regridded to 30km.

Pollutant 2015 emissions SSP1-2.6 (2050) SSP2-4.5 (2050) SSP3-7.0 (2050)

Black Carbon 9.7 3.6 6.3 11

CO 934.3 502.8 796.7 996

NH3 65.3 64.2 76 80.7

NOx 155.5 74.5 116.8 169.9

SO2 100.8 26.7 53.3 99.8

Organic Carbon 34.8 18.2 26.9 38.4

NMVOC 227.2 109.1 197.2 256.2

CH4 388.1 211.1 357.2 559
Table 2. European (domain defined above) total emissions of air pollutants in 2014 from CMIP6 and 2050 from ScenarioMIP SSP1-2.6,

SSP2-4.5 and SSP3-7.0, all expressed in Mt/yr

7
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As the CMIP6 emissions do not include a component of inorganic PM2.5 or PM10 directly emitted as anthropogenic dust (as185

required for WRF-Chem) we created files to simulate this fraction using linear regression based on the anthropogenic carbon

monoxide emissions using the relationship between EDGAR-HTAPv2 carbon monoxide and PM2.5/ PM10 (which represent

anthropogenic dust) emissions (Janssens-Maenhout et al. 2015). This methodology has been used previously by Kumar et al.

(2018) and Wu et al. (2019). These input files are referred to in the rest of the text as anthropogenic dust emissions. To generate

emissions of individual non-methane VOC (NMVOC) chemical species we use scaling factors derived from ratio of individual190

NMVOCs to total NMVOCs in the EDGAR-HTAPv2 emissions inventory (Huang et al. 2017). This provided a greater spec-

trum of speciated VOCs than the scaling factors used by Hoesly et al. (2018) and Feng et al. (2020).

2.3 Model Output

We use hourly output from each the year-long WRF-Chem simulations for each species (O3, CO, CH4, SO2, NO2, Nitrogen195

Oxide (NO), NH3 and PM2.5 dry aerosol mass, and separate files for the individual PM2.5 components, NO3, NH4, SO4, OC,

BC, Sodium and Chloride). All air pollutant output was analysed only at surface level. For some analysis, we weighted PM2.5

and O3 by population using the formula outlined in Abdul Shakor et al. (2020). We used time-varying gridded population pro-

jections for each SSP from Jones & O’Neill (2016). To represent the present-day population, the SSP2 population projection

for 2020 was used.200

2.4 Model Validation

The present-day simulation for 2014 was validated against PM2.5, O3 and aerosol component observations (as detailed in Table

3) from the European Modelling and Evaluation Programme (EMEP) as this features sites for a range of species across Eu-

rope. Coastal sites and sites with an altitude above 1 km were excluded as a model with this resolution would not be expected205

to simulate air pollutant concentrations at these locations well. We used spatial linear interpolation to extract data from our

gridded model output to compare to the locations of the observation sites. The sites used are shown on Supplementary figure A1

Comparisons of modelled and observed O3 and PM2.5 are shown in Figures 2 and 3. Figure 2 shows observed and simulated

monthly mean PM2.5 and O3 colour-coded by the observation station. Simulated monthly O3 data shows a slight underesti-210

mation (mean absolute bias compared to observations was -3.40 µg/m3) overall. This underestimation is generally larger in

the observation sites in Germany (Schmucke, Neuglobsow and Waldhof), however, an overestimation is seen in sites closer to

the Mediterranean (Saint-Nazaire, Barcarrota). There were no O3 observations available for Vredepeel, Cabauw Wielsekade,

Guipry and Melpitz. PM2.5 showed an overestimation compared to observations, with a mean absolute bias of 7.98 µg/m3.

The sites with the largest overestimation were Cabauw Wielsekade, Harwell, and Vredepeel. The overestimation was smaller215

in sites such as San Pablo de los Montes, Barcarrota and Penausende.

8
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Figure 2. Comparison of modelled PM2.5 (a) and O3 (b) to ground-based Observations. Monthly means are used for both species and the

units are µg/m3. Model data is interpolated from the latitude and longitude coordinates of the observation site. The middle line on each plot

represents what the data would look like if observations and model were equal.

Figure 3 is a comparison of monthly mean modelled data compared to observations (averaged over all sites). The model

represented the seasonal cycle, with higher PM2.5 in spring and autumn, matching when the emissions peaked. The model

PM2.5 overestimation was larger in spring and autumn and smaller in summer. Simulated O3 showed seasonal biases, The220

model underestimated in winter and spring but overestimated during summer and autumn.

Further comparison was made between the 2014 modelled PM2.5 and data from a global gridded PM.2.5 reanalysis product

created by Van Donkelaar et al. (2021) from a combination of ground-based and satellite observations (Figure 4). The results

suggest that as a whole domain average, our PM2.5 is higher than the reanalysis, by 4-5 µg/m3 in the early months (January-225

March) before the discrepancy increases over the summer months, due to a larger summertime reduction in PM2.5 in the
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Figure 3. Seasonal cycle in 2014 of a) PM2.5 and b) O3 comparison of monthly mean modelled data to observations (average of all sites).

Number of sites = 26 for PM2.5 and 21 for O3. Both pollutants are measured in µg/m3. The shaded areas represent variation from the mean

across sites as 2* standard deviation.

reanalysis product than in our modelled PM2.5. The discrepancy then reduces once again after September (Figure 4a). Much of

the PM2.5 overestimation over the domain was driven by higher PM2.5 in the urban regions of North-Central Europe, including

the Rhine-Ruhr, and the Benelux region where the model overestimated observed PM2.5 by more than a factor of 2. We do,

however, see lower PM2.5 than the reanalysis in most of non-coastal Spain, in Poland, and in Balkan countries (Croatia, Bosnia230

& Herzegovina, Montenegro) (Figure 4b).

Turnock et al. (2020) reported an underestimation of PM2.5 compared to observations in Europe in a similar period (2005-

2014). This is likely because of the additional emission source of PM2.5 in our simulations and the coarse resolution of Turnock

et al. (2020)’s simulations. Conversely, PM2.5 overestimations have been seen in other studies using CMIP6 emissions to drive

regional models, such as Cheng et al. (2021) simulating over China, who found that nitrate, sulfate and ammonium PM2.5 were235

overestimated compared to observations by 30-60%.

Further validation of PM2.5 components (comparison of modelled values with ground-based observations) was conducted to

diagnose the difference between model and observations. These are shown in Table 3. The total bias in PM2.5 is greater than the

combined bias of the individual aerosol species. Although not every observation site measured each species and therefore the240
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Figure 4. (a) shows a domain average time series of monthly PM2.5 data from the present day simulation compared to the domain average of

monthly PM2.5 from the Van Donkelaar et al. (2021) reanalysis. (b) shows the percentage difference of the annual mean PM2.5 from these

same data sources, with the reanalysis regridded to the model output for better comparison.

proportions cannot be assumed to be the same at each site, this implies that a different source may account for much of the bias.

A large proportion of the bias likely comes from the OIN (dust) component. This agrees with previous research; Im et al. (2015)

find that WRF-Chem setups using GOCART over-produce dust and that the partitioning of dust particulates between PM2.5

and PM10 when MOSAIC aerosols does not reflect real conditions over Europe. Similarly, Georgiou et al. (2018) validating

WRF-Chem over Cyprus show that WRF-Chem simulations with MOSAIC aerosols can result in a significant overestimation245

of PM2.5, largely driven by the dust scheme. Additionally, some of the overestimation in the OIN component is likely the result

of the derived anthropogenic dust emissions as this is calculated from the CO emissions and it would explain the larger overall

PM2.5 overestimation in polluted, urban regions.

Table 3 shows that the model overestimates NO3 aerosol by 2.8 µg/m3b and underestimates SO4 aerosol by -2.1 µg/m3250

when compared to the observation sites. Overestimation of NO3 aerosol matches the findings of other WRF-Chem studies

including Cheng et al. (2021) and Balzarini et al. (2015), however, both of these studies found SO4 overestimation as opposed

to underestimation. The NO3 overestimation may be the result of high NH3 emissions over much of the year for the emis-

sions used in CMIP6 in comparison to other emissions inventories. When compared to EDGAR-HTAPv3 (Crippa et al. 2023)

CMIP6 NH3 emissions were lower during February, March, and April, but higher the rest of the year. Similarly, the CMIP6255

emissions of nitrogen oxides (NOx) are generally higher than EDGAR-HTAPv3 in urban regions, which may also contribute

to the overestimation in NO3 aerosols.
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Pollutant N (sites) Model Mean

(µg/m3)

Observations

Mean

(µg/m3)

Absolute Mean Dif-

ference (model-obs)

(µg/m3)

Root Mean Square

error

PM2.5 24 18 10 8 9.1

Nitrate (NO3) 14 5.8 3.1 2.7 4

Ammonium (NH4) 10 1.5 1.2 0.3 0.6

Organic Carbon (OC) 24 3 2.9 0.1 1.5

sulfate (SO4) 10 1.3 3.4 -2.1 2.5

Black Carbon 13 0.8 0.4 0.4 0.6

Chloride 13 1.4 0.2 1.2 1.5

Sodium 14 1.9 0.2 1.7 1.9
Table 3. Mean difference between annual mean model output and annual mean ground-based observations for different PM2.5 components

across monitoring sites in Europe

Change from present-day in µg/m3 (% in brackets)

Domain statistic Present day concentration (µg/m3) SSP1-2.6 SSP2-4.5 SSP3-7.0

Minimum 4.9 -1.5 (-31) -0.61 (-13) -0.1 (-2)

Mean 19.4 -7.3 (-38) -4.2 (-21.6) -2.1 (-10.8)

Maximum 44.4 -21.3 (-48) -17.6 (-40) -5.6 (-12.6)

Population-weighted mean 17.5 -8.6 (49) -5.2 (30) +0.9 (5)
Table 4. Annual mean PM2.5 whole domain change statistics for each future scenario in 2050 compared to the present day baseline (the

left-hand column). For future scenarios, the raw change for each of these is shown in µg/m3 followed by the percentage change in brackets.

3 Results

3.1 Changes in PM2.5260

Table 4 shows the European annual mean PM2.5 in the present day and the change from this in the future scenarios. In

general, annual mean PM2.5 reduced in all future scenarios compared to the present day. The future reduction in European

annual mean PM2.5 of 38% in SSP1-2.6 was far greater than the 11% following SSP3-7.0. There are differences in the pattern

when population-weighting is applied; overall, population exposure to PM2.5 increases slightly following SSP3-7.0 despite the

domain-wide decrease. This suggests that the majority of the increases in PM2.5 are in highly populated areas265

Spatially (Figure 5), we see greater reductions in PM2.5 in urban and industrial regions than the domain average. Both in-

dustrial and urban regions see strong PM2.5 reductions under SSP1-2.6 and SSP2-4.5 (although these are far larger following

SSP1-2.6). Conversely, under SSP3-7.0, only urban regions see considerable reductions in PM2.5. This would be expected as
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reductions in industrial emissions of NOx or SO2 are smaller following SSP3-7.0 and SSP2-4.5. Additionally, under SSP3-270

7.0, localised areas of worsening air quality are seen, including around East Yorkshire, UK (worsening up to 4 µg/m3) and

Zeeland and South Holland, the Netherlands (worsening up to 2 µg/m3). Some of these localised increases correspond with

the locations of major combustion power plants, including Drax (UK) and Belchatow (Poland). This is because the emissions

scenarios assume that power generation emissions increase up to mid-century compared to the present day following SSP3-7.0,

they drop following SSP2-4.5 but this is approximately half the reduction that is predicted following SSP1-2.6. All scenarios275

show slightly worsening PM2.5 air quality of up to 2 µg/m3 near Gijon, Spain.
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Figure 5. (a) Modelled annual mean PM2.5 (µg/m3) using 2014 emissions. (b),(c) and (d) are the percentage change from (a) of the annual

mean PM2.5 (µg/m3) simulated using 2050 emissions for SSP1-2.6, SSP2-4.5 and SSP3-7.0 respectively.
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The PM2.5 reductions in SSP1-2.6 are larger across most of the domain compared to the other scenarios. This is most no-

table across Central/Eastern Europe (e.g. Germany, Poland, the Czech Republic, Austria). This is potentially because these

regions have a larger proportion of anthropogenic PM2.5 sources than natural sources. Smaller improvements are projected280

in countries such as Portugal and Ireland where natural sources of PM2.5 dominate. Additionally, SSP1-2.6 shows large re-

ductions in rural regions compared to the present, whereas these reductions are minimal following SSP2-4.5 and SSP3-7.0.

This is likely the result of the reduction in NH3 emissions in SSP1-2.6, where SSP2-4.5 and SSP3-7.0 have increases in NH3

emissions (Figure 1). This suggests that the difference in agricultural emissions will be a large driver of the extra reductions

in PM2.5 following SSP1-2.6 and mitigation of emissions in this sector will be key to achieving improved air quality in Europe.285

All countries show overall decreases in population-weighted PM2.5 (Figure 6). The magnitude of which varies greatly based

on the scenario. Following SSP1-2.6, the percentage decrease ranges from 22.7% in Ireland to 68.6% in Hungary. Other coun-

tries with decreases in population-weighted mean PM2.5 following SSP1-2.6 greater than 50% include Slovenia, Slovakia and

Germany. These countries also see the greatest reductions in PM2.5 following the other scenarios, for example the largest re-290

duction following SSP3-7.0 is in Slovenia, at nearly 25%.

In addition to benefiting the least following SSP1-2.6, Ireland benefits the least following SSP2-4.5 with a reduction of

5%. Similar to Ireland, Portugal and Spain do not benefit as much from the emissions changes compared to others. Ireland

even shows an increase in population-weighted PM2.5 following SSP3-7.0 of nearly 4%, which is also seen in the UK. What295

this suggests is that the benefits are concentrated in countries where anthropogenic sources dominate PM2.5 concentrations in

the present day. As coastal island countries, Ireland and the UK likely have a greater proportional quantity of natural sea salt

aerosol making up PM2.5 and Spain and Portugal are likely to have large proportions of natural dust PM2.5 due to proximity

to North Africa.

300

Figure 6 also compares the population-weighted mean to the World Health Organisation annual mean PM2.5 guideline value

of 5 µg/m3. It suggests that following SSP1-2.6, many countries could see PM2.5 exposure reduce below interim target values

(guidelines the WHO suggest as targets to aim for before reaching the guideline value), representing a significant potential

benefit for human health. However, even the emissions reductions from SSP1-2.6 do not result in annual mean population-

weighted PM2.5 concentrations under this guideline, although the model simulated concentrations might be overestimated.305

Notably, while countries where PM2.5 is dominated by natural sources see less improvement, these have among the lowest

PM2.5 population exposure in the present day. This means that the benefits of the emissions changes are primarily seen in the

countries that most need them. The whole domain average also moves below the WHO interim target 1 of 10 µg/m3 following

SSP1-2.6, after a reduction of almost 50%.

310

Figure 7 shows the seasonal cycle of PM2.5 components averaged across the entire model domain. SSP1-2.6 has a much

lower contribution of anthropogenic PM2.5 than SSP2-4.5 and SSP3-7.0, driven by the emissions reductions shown in Figure 2.
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Figure 6. Population-weighted PM2.5 in a selection of European countries following different scenarios compared to WHO guideline values.

The lines labelled with "IG" are WHO interim guidelines. All Europe refers to a combined population-weighted mean of the 13 countries on

the Figure

Figure 7 also shows that it is the change in these anthropogenic species, particularly in NO3 and OC, that drive the differences

between the future scenarios, with NO3 alone reducing total PM2.5 following SSP1-2.6 by over 5µg/m3 throughout much of the

year. The importance of NO3 aerosol in the future scenarios to determining total PM2.5 implies that NH3 and NOx emissions315

reductions will be key to improving future air quality. All future scenarios show overall reductions in NOx emissions, which

can limit the formation of NO3 and NH4 particulates (Pusede et al. 2016), however it is only SSP1-2.6 that shows a significant

reduction in NO3 aerosol, likely because it is the only scenario where NH3 emissions reduce compared to the present day.

This suggests that agriculture will be a key sector for attaining air quality co-benefits as agriculture is a major source of NH3
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emissions. The reduction in OC concentrations is proportionally far larger under SSP1-2.6 than the other scenarios, potentially320

due to the trajectories in power sector OC emissions.
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Figure 7. Seasonal cycle of domain average PM2.5 over each simulation by component, (a) is the 2014 simulation, (b),(c) and (d) are 2050

from each of SSP1-2.6, SSP2-4.5 and SSP3-7.0 respectively.
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Our findings are in agreement with other work in the area, that air quality co-benefits of climate mitigation are likely for

PM2.5. When compared to Fenech et al. (2021) for example (who used CMIP5 emissions and focused on the UK), we see that

both studies project PM2.5 that strong mitigation will result in air quality co-benefits for the UK. The reductions we project for325

the most comparable scenarios (SSP1-2.6/ RCP 2.6) are larger (-7.3 as opposed to -2.2 µg/m3 or approximately 38% vs 25%).

We see a diverging trend for the most pessimistic scenarios - while they see reductions in PM2.5 concentrations following

RCP8.5, we see worsening PM2.5 following SSP3-7.0.

Notably, our model simulated high present-day PM2.5 in urban regions (e.g.Paris, Madrid and London) compared to sur-330

rounding areas. It also produced elevated PM2.5 in heavily industrial regions of Europe such as the Po Valley and the Rhine-

Ruhr (Figure 5a). It is the changes in these regions that stand out in the other panels of Figure 5. What this suggests, is that

our methodology allows us to better represent changes on a local level than work using climate model output. This can be

shown when our work is compared to Turnock et al. (2020) (who used CMIP6 output on a global domain) in Figure 8, which

shows the difference in change between the present and 2050 following SSP3-7.0 for both PM2.5 and O3. Figure 8 shows that335

we see similar spatial changes excluding different trends in PM2.5 across the Iberian Peninsula and most of the British Isles.

This comparison shows how the finer spatial resolution allows us to see localised elevated concentrations of pollution, whereas

pollutants are distributed more evenly over the coarser resolution of global models. We also see greater improvements in PM2.5

overall than Turnock et al. (2020), for example, for SSP1-2.6 our domain improvement of 7 µg/m3 exceeds by more than dou-

ble theirs of approximately 3 µg/m3. This highlights that using air pollutant concentrations from global model simulations may340

underestimate the extent of future changes in air quality.

Geographically the reductions in European PM2.5 are lower than other studies in more polluted regions. Cheng et al. (2021)

find a reduction in population-weighted mean PM2.5 in China between 2020 and 2050 following SSP1-2.6 of between 20 and

25µg/m3 (from approximately 42µg/m3 in the present-day scenario). However, this reduction is similar to the average relative345

reduction of 52% across European countries that we find. Studies on future air quality in India also find that scenarios with

a greater focus on sustainability result in reductions in surface air pollution (Chowdhury et al. (2020); Kumar et al.2018) al-

though methodological differences make direct comparisons with these studies challenging. What these comparisons suggest

is that Europe could see similar relative air quality co-benefits to other regions following future sustainability scenarios.

350

3.2 Changes in O3

Maximum 6-monthly-mean daily-maximum 8h (6mDM8h) O3 does not show spatial peaks in concentration as clearly as PM2.5

does in the present-day simulation (Figure 9), potentially due to inhibited O3 production in urban areas due to the presence

of pollutants such os NOx and VOCs. The main variation seen is marginally higher concentrations in Mediterranean regions,

including Italy, Southern Spain and the French Riviera, which get more sunlight. In the simulations using future scenarios,355

O3 largely reduces following SSP1-2.6 (mean reduction of approximately 15%), SSP2-4.5 shows variation across the domain;
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Figure 8. a) Percentage change annual mean PM2.5 between present day and 2050 following SSP3-7.0 from our simulations with WRF-

Chem b) The same from Turnock et al. (2020) using CMIP6 multi-model output. c) and d) Same as the above, but O3 compared. Note that

this is annual mean O3 and thus, c) differs from panel d) of Figure 10

while the mean change is a reduction of approximately 3%, increases are seen in most of England, the Benelux region and

North-West Germany. 6mDM8h O3 increases across most of the domain following SSP3-7.0 (mean increase of approximately

13%). This is not universal; small decreases of up to 5% are seen in most of the Mediterranean regions with high present-day

O3. Despite the lack of peaks in the present-day simulation, in the future simulations, O3 pollution does not reduce as much in360

urban regions as much of the rest of the domain following SSP1-2.6. The reductions in pollutants that limit formation of O3 in

urban regions may have resulted in these regions not seeing as strong reductions in O3 (or indeed, increases in O3) following

the future scenarios. The same regions show increases following SSP2-4.5 (and some, such as around Barcelona and Naples

show increases following SSP1-2.6) where much of the rest of the domain has reductions in surface level O3 and the increases
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Change from present-day in µg/m3 (% in brackets)

Domain Statistic Present day concentration (µg/m3) SSP1-2.6 SSP2-4.5 SSP3-7.0

Minimum 23.9 +6.4 (+26.7) +8.3 (+34.7) +12.3 (+51.5)

Mean 66.2 -9.8 (-15) +1.7 (+2.6) +8.7 (+13.1)

Maximum 97.4 -13.3 (-24) -0.6 (0.6) +7.6 (+7.8)

Population-weighted mean 52.7 -3 (-7) +5.3 (+10) +8.8 (+16.7)
Table 5. Annual mean O3 whole domain change statistics for each future scenario compared to the present day baseline (the left-hand

column). For future scenarios, the raw change for each of these is shown in µg/m3 followed by the percentage change in brackets.

are higher than surrounding areas following SSP3-7.0. Increases in O3 following SSP3-7.0 are likely caused by increasing CH4365

emissions, which suggests that agriculture will be a key sector for determining future O3 pollution. Conversely, as emissions

of O3 precursors including CO and CH4 decrease compared to the present day following SSP1-2.6 and SSP2-4.5 decrease

compared to the present day, the localised increases are expected to be the result of the reduction of an O3-limiting factor, such

as NOx.//

Annual mean O3 has a different pattern to 6mDM8h in some scenarios; it is projected to increase universally across the370

domain following SSP2-4.5, whereas 6mDM8h reduces compared to the present across much of Southern Europe. What this

suggests is that there are different regimes across Northern and Southern Europe. The seasonal changes are shown in supple-

mentary Figures A2,A3,A4,A5 and A6. The pattern in 6mDM8h is repeated as expected in June, July and August (Supple-

mentary figure A5), which is likely to be a peak season represented in 6mDM8h. The difference in annual mean compared to

6mDM8h is likely driven by the diverging patterns for Dec, Jan, Feb (Supplementary Figure A3) and Sep, Oct, Nov (Supple-375

mentary Figure A6). Sep, Oct Nov shows large increases in O3 in urban and industrialised regions in all scenarios including

SSP1-2.6, suggesting that the reduction in NOx emissions (which in Europe, usually peak in Autumn and Winter) in all sce-

narios drive the increases in annual mean O3 and explain the different pattern from 6mDM8h. In Dec, Jan and Feb, the model

produces worsening O3 concentrations in oceanic regions of Northern Europe, however, this is compared to lower overall O3

concentrations in the present day compared to the rest of the domain and to other seasons.380

The differing trends in CH4, CO and NOx (Figure 10) between the scenarios may explain the difference in O3. It is well

established in the literature that in urban areas reductions in NOx emissions can cause increases in surface level O3, including

within Europe (Lee et al.2020; Finch & Palmer 2020 ). As the impact of NOx controls will be greater outside of the summer

months this will cause O3 increases outside of peak season (Supplementary Figure A2). In SSP1-2.6, this effect appears to be385

masked by much stronger decreases in CO and CH4 emissions than SSP2-4.5 and SSP3-7.0. What this means is that while all

scenarios assume increased pollution control, the additional focus given to climate mitigation (e.g. reducing CH4 emissions)

and the more sustainable socioeconomic development in SSP1-2.6 and SSP2-4.5 has potential air quality co-benefits by out-

weighing any impacts on O3 from reduced NOx. O3 is considerably more impactful on health during peak season due to the

high thresholds needed to affect population health on a large scale, thus most parts of Europe will see reduced impact of O3390
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Figure 9. 6mDM8h O3 calculated as the highest 6-month mean of the highest rolling 8-hour O3 in 24-hour periods in the O3 output for each

scenario. (a) shows this metric for the CMIP6 2014 simulation. (b),(c) and (d) show the percentage change from this for SSP1-2.6, SSP2-4.5

and SSP3-7.0 respectively.

pollution following both SSP1-2.6 and SSP2-4.5. Reductions in NMVOCs could be having similar effects to the NOx reduc-

tions in some regions. In all scenarios, reductions in NOx emissions are stronger than NMVOC emissions, however following

SSP2-4.5 and SSP3-7.0, the proportional gap is much larger. This suggests that in VOC-limited regimes (which are generally
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urban areas), where reductions in NOx are more likely to exacerbate O3, we may see a larger O3 response. This may account

for the larger annual mean O3 increases in urban regions, especially in SSP2-4.5 and SSP3-7.0. Notably, the emissions changes395

may cause different patterns in NOx and VOC-limited regimes that may impact on the O3 response, for example, Liu et al.

(2022) find that in Europe following SSP3-7.0, the percentage of VOC-limited areas drops from nearly 80% to 27% in winter

and from 37% to under 3% in summer. If our simulations have a similar change in sensitivity this could suggest that a different

precursor, such as CH4, primarily drives the increases in O3 following SSP3-7.0.

400

O
3

SO
2

CO CH
4

NO
2

NO NH
3

80

60

40

20

0

20

40

%
 D

iff
er

en
ce

 fr
om

 p
re

se
nt

 (o
ut

pu
t)

SSP1-2.6
SSP2-4.5
SSP3-7.0

Figure 10. Domain average annual mean O3 and other air quality relevant species percentage change in the future scenarios compared to the

present day.

We find a considerably higher percentage increase in annual mean O3 in 2050 following SSP3-7.0 compared to that found

for Europe by Turnock et al. (2020) (Figure 8). Once again, the difference in resolution is clear here as we see much larger
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increases in O3 around certain urban regions, whereas Turnock et al. (2020) show a smaller trend distributed over larger areas.

As with PM2.5, the finer resolution we use could prove valuable, especially for understanding health impacts and trends in

urban areas. As shown by the contrasting trends in urban and rural areas for O3 pollution following some scenarios, being able405

to represent these changes is valuable.

Compared to studies focusing on regions outside of Europe, our findings are similar to those reported by Zhang et al. (2017)

who use WRF-Chem to simulate the impact of RCPs on air pollutants over the USA. They find overall small decreases in

6mDM8h O3 (up to 2 ppb) except in some large urban areas following RCP 4.5, where they report increases of up to 10 ppb.410

Following SSP2-4.5, we see a similar trend (average reduction of -1.5 ppb, but localised increases around some cities and

industrialised areas).

4 Summary and Conclusions

We use emissions data for three SSPs (SSP1-2.6, SSP2-4.5 and SSP3-7.0), representing very different climate futures, to sim-415

ulate air quality in Europe in 2050 compared to the present day. This work uses WRF-Chem v4.2 with a much more detailed

chemistry scheme and finer grid resolution than much of the previous work using SSPs to provide a more detailed assessment

of potential air quality co-benefits on a regional scale.

We show that PM2.5, while expected to reduce compared to the present day across most of Europe in all future scenarios,420

shows by far the biggest reductions in scenarios with a greater focus on sustainability, and therefore more stringent emissions

reductions. We find that in 2050, following SSP1-2.6, mean population-weighted PM2.5 concentrations across European coun-

tries reduces by 52% compared to 2014. Whilst under SSP2-4.5, this average reduction is 34%. The smallest average reduction

was 18% by following SSP3-7.0. The additional benefits we see from following SSP1-2.6 are likely due to emissions reduc-

tions in the agricultural and industrial sectors.425

We also show a different sign of change O3 across the scenarios, demonstrating that in the more sustainable scenario, SSP1-

2.6 (and to a lesser extent, SSP2-4.5), much of Europe will see reduced 6mDM8h O3 concentrations, whereas 6mDM8h O3

will worsen following SSP3-7.0. This is likely driven by a combination of reduced NOx and increased CH4 emissions. This

demonstrates the importance of reducing CH4 alongside other O3 precursor species to avoid reducing the efficacy of overall430

air pollutant controls, caused by focusing entirely on PM2.5 and NOx without also considering the impacts on O3, as evident

from the increases in O3 concentrations during the COVID-19 lockdowns where large reductions in NOx emissions occurred

with smaller or no effect on CH4 (Jephcote et al. 2021; Miyazaki et al. 2021).
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We find that using a regional atmospheric chemistry model provides us with the ability to analyse in more detail where air435

quality in Europe could change in response to the scenarios and that the patterns in air quality changes using this methodology

differ from what you get using climate model output. From that, we can make a more informed hypothesis as to why air pollu-

tants respond the way they do based on sector-specific emissions changes. We demonstrate the value that can be added using

this methodology, for example by providing country-specific population-weighted mean changes, which may be more useful

to regional and national policymakers. This demonstrates the importance of a combined approach to modelling air quality440

co-benefits using both global and regional models.

To conclude, our results suggest that air quality co-benefits will be seen if society follows a pathway in which environmental

sustainability is a priority, particularly in terms of mitigating climate change. This implies there are potential public health

benefits, although the results of this may differ from those of other studies, so further studies to calculate the health benefits445

are important.
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5 Data Availability

Data is available on an online repository at Zenodo (DOI: 10.5281/zenodo.10781398). Data can alternatively be accessed by

contacting Connor Clayton450

Appendix A: Supplementary Figures
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Figure A1. The domain input into WRF-Chem v4.2 for our simulations at 30 km resolution. The observation sites used for model validation

are also shown.
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Figure A2. Annual mean O3 for each scenario. (a) shows this metric for the CMIP6 2014 simulation. (b),(c) and (d) show the percentage

change from this for SSP1-2.6, SSP2-4.5 and SSP3-7.0 respectively.
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Figure A3. Mean O3 in January, February and December for each scenario. (a) shows this metric for the CMIP6 2014 simulation. (b),(c) and

(d) show the percentage change from this for SSP1-2.6, SSP2-4.5 and SSP3-7.0 respectively.
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Figure A4. Mean O3 in March, April and May for each scenario. (a) shows this metric for the CMIP6 2014 simulation. (b),(c) and (d) show

the percentage change from this for SSP1-2.6, SSP2-4.5 and SSP3-7.0 respectively.
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Figure A5. Mean O3 in June, July and August for each scenario. (a) shows this metric for the CMIP6 2014 simulation. (b),(c) and (d) show

the percentage change from this for SSP1-2.6, SSP2-4.5 and SSP3-7.0 respectively.
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Figure A6. Mean O3 in September, October and November for each scenario. (a) shows this metric for the CMIP6 2014 simulation. (b),(c)

and (d) show the percentage change from this for SSP1-2.6, SSP2-4.5 and SSP3-7.0 respectively.
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