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Abstract. Supercooled Liquid-Containing Clouds (sLCCs) play a significant role in Earth’s radiative budget and the hydro-

logical cycle, especially through surface snowfall production. Evaluating state-of-the-art climate models with respect to their

ability to simulate the frequency of occurrence of sLCCs and the frequency with which they produce snow is, therefore, criti-

cally important. Here, we compare these quantities as derived from satellite observations, reanalysis datasets, and Earth System

Models from Phase 6 of the Coupled Model Intercomparison Project (CMIP6) and find significant discrepancies between the5

data sets for mid and high latitudes in both hemispheres. Specifically, we find that the ERA5 reanalysis and ten CMIP6 models

consistently overestimate the frequency of sLCCs and snowfall frequencies from sLCCs compared to CloudSat-CALIPSO

satellite observations. The biases are very similar for ERA5 and the CMIP6 models, which indicates that the discrepancies

in cloud phase and snowfall stem from differences in the representation of cloud microphysics rather than the representa-

tion of meteorological conditions. This, in turn, highlights the need for refinements in the models’ parameterizations of cloud10

microphysics in order for them to represent cloud phase and snowfall accurately. The thermodynamic phase of clouds and

precipitation has a strong influence on simulated climate feedbacks and, thus, projections of future climate. Understanding the

origin(s) of the biases identified here is, therefore, crucial for improving the overall reliability of climate models.

1 Introduction

Snowfall and snow cover have a significant impact on the Earth’s energy budget and the hydrological cycle, especially in mid-15

and high-latitudes, and thereby strongly impact ecosystems and human societies. Snow cover influences vegetation growth,

animal populations, and ecosystem processes, while also impacting economic activities, infrastructure, and health (Callaghan

et al., 2011; Bokhorst et al., 2016). Indeed, snowfall is also an important water resource globally (Barnett et al., 2005) and snow

cover increases the surface albedo, reducing the absorption of incoming solar energy (Zhang, 2005). However, heavy snowfall

events have the potential to negatively impact local communities and infrastructure (Eisenberg and Warner, 2005; Scott et al.,20

2008; Fox et al., 2023).

Cloud phase determines the formation process of snow. Snow can originate from pure ice clouds as well as supercooled

liquid-containing clouds (sLCCs), where both supercooled water droplets and ice crystals coexist at temperatures between
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−40◦C and 0◦C (Jiusto and Weickmann, 1973; Korolev et al., 2017). These sLCCs dominate at latitudes higher than 45◦ and

cover up to 20%− 30% of the Earth depending on the season (Warren et al., 1988; Matus and L’Ecuyer, 2017). The cloud phase25

affects not only the rate and intensity of snowfall but also the microphysical properties of the snowflakes that reach the ground

(Jiusto and Weickmann, 1973; Liu, 2008). Clouds reflect solar radiation (cooling the surface) and trap terrestrial radiation

(warming the surface). The balance between the two effects is partly influenced by the phase composition of the clouds due to

distinct scattering properties of liquid and ice (Shupe and Intrieri, 2004; Ehrlich et al., 2009; Cesana et al., 2012). For otherwise

similar properties, a cloud with more liquid reflects more solar radiation back to space. Therefore, representing the cloud phase30

correctly in Earth System Models (ESMs) has substantial implications for the simulation of cloud radiative properties (Matus

and L’Ecuyer, 2017), especially in future climate projections with a warmer climate. This represents an important component

of the cloud feedback, i.e., how clouds respond to changes in surface air temperature and how these changes, in turn, influence

temperature. The cloud feedback is, at present, the most uncertain physical climate feedback, significantly contributing to the

spread of climate sensitivity in ESMs (Zelinka et al., 2020). Among the most poorly understood cloud feedbacks is the one35

associated with cloud phase changes (Bjordal et al., 2020; Zelinka et al., 2020).

Atmospheric warming can lead to cloud phase changes through two different pathways: less cloud ice due to higher tem-

peratures or more ice due to potentially more ice-nucleating particles (INPs). INPs are microscopic particles present in the air

that serve as the starting point of ice crystal formation in clouds (DeMott et al., 2010). Several studies, including Murray et al.

(2021) showed that increased temperatures, especially in polar regions, have caused a shift of mixed-phase clouds towards40

higher latitudes and altitudes due to the ice reduction in the atmosphere in these regions. The shift in cloud phase towards more

liquid and less ice leads to a reduction in the fraction of precipitation falling as snow in previously snowy areas in the Northern

Hemisphere (NH), but snowfall events will happen further north in the future (Chen et al., 2020). The shift in isolation would

result in an expected decrease in snowfall events and duration of the snowfall season for most regions in the NH (Danco et al.,

2016; Chen et al., 2020). However, potentially partly counteracting this, the reduction in Arctic sea ice may also facilitate local45

emission of INPs (Carlsen and David, 2022). Furthermore, the well-established general increase in total precipitation with

warming may also lead to increased snowfall in some regions (Douville et al., 2023). Hence, cloud phase, snowfall amounts,

and snowfall frequency of occurrence will likely change with warming in ways that are both complex and currently poorly

understood (Danco et al., 2016; Chen et al., 2020; Quante et al., 2021).

There are several processes governing snow formation within sLCCs. The transition from a fully liquid to a completely50

frozen cloud can follow various pathways (Costa et al., 2017), driven by differences in saturation vapor pressures of ice and

liquid at temperatures below 0◦C (Wegener, 1912; Bergeron, 1928; Findeisen, 1938), where ice crystals will grow at the

expense of supercooled liquid water (Korolev and Mazin, 2003; Korolev, 2007; Storelvmo and Tan, 2015; Korolev et al.,

2017). This phenomenon is called the Wegener-Bergeron-Findeisen (WBF) process and can lead to the rapid growth of ice

crystals, which eventually fall out as snow. Increasing INP concentrations can cause cloud glaciation, amplified by the WBF55

process, increasing the precipitation at the surface and consequently shortening the cloud lifetime (Lohmann and Diehl, 2006;

Rosenfeld et al., 2011; Storelvmo and Tan, 2015). Furthermore, ice crystals can be introduced into this sLCC by either falling

into it from above (e.g. Proske et al., 2021) or by turbulent mixing.
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The microphysical processes described above occur on scales smaller than the grid resolution used in ESMs and their

influence on cloud macroscopic properties must therefore be parameterized. Cloud microphysical parameterizations in ESMs60

are known to often be overly crude and simplistic. For example, ESMs generally assume that liquid and ice are uniformly

mixed within a grid box, while observations have shown that sLCCs typically consist of cloud pockets exclusively composed

of liquid or ice (Korolev and Milbrandt, 2022). Additionally, the treatment of primary ice production has an influence on the

amount of supercooled liquid water in climate models (Vergara-Temprado et al., 2018). Only a small number of ESMs include

parameterizations of primary ice production that depend on the presence of aerosols with the ability to act as INPs, while65

the majority include simpler parameterizations that rely only on temperature. Cesana et al. (2015) found that models with

more complex microphysics (e.g., prognostic ice and liquid water content, heterogeneous freezing, riming, accretion, and the

WBF process) tend to provide a more accurate representation of the ice phase. Similarly, Komurcu et al. (2014) noted that the

variability in cloud phase among models was influenced by the specific ice nucleation scheme used and the representation of

other microphysical processes associated with ice.70

ESMs have previously been shown to not accurately represent cloud phase by often underestimating liquid and overestimat-

ing ice, compared to satellite measurements. This has particularly been the case for high-latitude regions (Komurcu et al., 2014;

Cesana et al., 2015; Tan and Storelvmo, 2016; Kay et al., 2016; McIlhattan et al., 2017; Bruno et al., 2021; Shaw et al., 2022).

However, most studies to date were conducted based on the previous generation of ESMs (Coupled Model Intercomparison

Project 5 (CMIP5), Taylor et al., 2012), and a wide range of different cloud phase metrics have been applied in the past, often75

without a clear strategy that allows like-for-like comparison with satellite observations. In other words, uncertainties remain in

understanding the complex processes governing cloud phase and their representation in ESMs (Komurcu et al., 2014). Because

cloud phase and snowfall are tightly linked through the processes outlined earlier, any inaccuracies in representing cloud phase

could lead to biases in the simulation of snow growth, formation, and the precipitation reaching the ground in solid or liquid

form (Mülmenstädt et al., 2021; Stanford et al., 2023). It is important to note, however, that while such biases in cloud phase80

representation might exist, other compensating model biases could nevertheless lead to accurate precipitation simulations.

CloudSat (Stephens et al., 2002) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO, Winker

et al., 2010), flying in the afternoon-train constellation, provide global estimates of cloud properties and snowfall since 2006.

CloudSat is equipped with a Cloud Profiling Radar (CPR) that detects large cloud and precipitation particles, while CALIPSO

with its Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP, Winker et al., 2007), can among other things, determine85

the phase of cloud layers. The CloudSat-CALIPSO constellation overpasses the same regions approximately every 16 days,

providing long-term periodic monitoring of cloud and snowfall characteristics across the globe. Previous studies have con-

tributed to a better understanding of the uncertainties associated with satellite measurements of clouds and precipitation (e.g.,

Stephens and Kummerow, 2007; Hiley et al., 2011). For example, Stephens and Kummerow (2007) identified two primary

sources of uncertainty in retrieval methods, errors in distinguishing between cloudy and clear sky scenes and between pre-90

cipitating and non-precipitating clouds. Furthermore, the forward models used are highly sensitive to their input parameters,

particularly the radiative transfer and atmospheric models. Hiley et al. (2011) demonstrated that snowfall retrievals are also

influenced by retrieval assumptions and the use of different ice particle models, which can significantly affect the estimated
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snowfall rates. Despite limitations, the value of satellite data like CloudSat and CALIPSO for validating reanalysis and ESM

data, which both rely on parameterized microphysics (Forbes and Ahlgrimm, 2014; McIlhattan et al., 2017; Milani et al., 2018;95

Edel et al., 2020; Daloz et al., 2020) is well established. Previous studies suggest that there is a notable difference in snowfall

estimates between ESMs and satellite observations. For example, Heymsfield et al. (2020) found that the Met Office Unified

Model and the Community Atmosphere Model 6 produce double the amount of snowfall relative to satellite observations.

Additionally, Roussel et al. (2020) discovered that the ensemble median of CMIP5 experiments tend to show a positive bias

in snowfall rates compared to the CloudSat average. Of particular relevance for the analysis presented here is the study by100

McIlhattan et al. (2017), who investigated the causes and impacts of liquid-containing cloud (LCC) biases in the Arctic region.

They found that the Community Earth System Model Large Ensemble (CESM-LE) underestimates the frequency of Arctic

LCCs compared to observations. Moreover, the CESM-LE overestimated the snowfall frequency from these clouds, possibly

indicating an overactive WBF process leading to too frequent snowfall and too short cloud lifetime (McIlhattan et al., 2017).

In a comparable study of the Southern Hemisphere (SH), Roussel et al. (2020) showed a weak annual cycle of snowfall rates105

in the Antarctic plateau regions and found that the CMIP5 and CMIP6 (Eyring et al., 2016) simulations tended to overestimate

the average precipitation rate in Antarctica. Despite the improvements in surface temperature representation from CMIP5 to

CMIP6, there is no corresponding improvement in the representation of large-scale mean precipitation rate and seasonality

in the region (Roussel et al., 2020). Precipitation errors in ESMs are not primarily driven by first-order physical links but by

atmospheric circulation and cloud microphysics (Roussel et al., 2020). Antarctica and the surrounding ocean are also known to110

be a region in which ESMs have large biases, which are thought to be attributable to cloud phase biases (e.g. Vergara-Temprado

et al., 2018). These persistent discrepancies between ESMs and observations further highlight the importance of understanding

the link between cloud phase and solid precipitation on different scales and improving the representation of cloud phase in

ESMs.

Reanalysis products employ numerical weather prediction models that assimilate various observations to generate a contin-115

uous spatial and temporal dataset. The European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis datasets

use data collected from satellites, weather stations, and ocean buoys to combine with a numerical weather prediction model

to provide a comprehensive view of the global atmospheric climate. Nonetheless, the precision in depicting cloud and surface

snowfall relies on the underlying model and the assimilated dataset (Boisvert et al., 2018; Daloz et al., 2020; Boisvert et al.,

2020). Challenges may arise due to limited spatial resolution and sparse observations, particularly in remote and complex to-120

pographical regions (Boisvert et al., 2018; Daloz et al., 2020; Boisvert et al., 2020). Wang et al. (2019) studied snowfall within

two ECMWF reanalysis data sets, ERA-Interim (Simmons et al., 2007; Dee et al., 2011) and ERA5 (Hersbach et al., 2020).

The latter includes higher horizontal resolution, improvements to the numerical model, improved data assimilation, and differ-

ent cloud physics schemes (Forbes and Ahlgrimm, 2014). Wang et al. (2019) showed that ERA5 led to a better representation

of snowfall than ERA-Interim. Nevertheless, Milani et al. (2018) concluded that ERA-Interim reanalysis data produce mean125

annual snowfall patterns similar in magnitude to CloudSat over Antarctica. In the Arctic, the ERA-Interim data qualitatively

represented the interannual snowfall rates and seasonal cycle well but underestimated high snowfall rates significantly during

summer and overestimated weak snowfall rates over open water compared to CloudSat (Edel et al., 2020). Seasonal biases
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tended to be higher in colder months when heavier snowfall occurred (Edel et al., 2020). Boisvert et al. (2020) compared

different reanalysis products including ERA-Interim and ERA5, and focused on snowfall in the Southern Ocean. They found130

similar spatial and interannual snowfall patterns, where ERA-Interim produced the least snowfall compared to ERA5 and the

other reanalysis datasets. Sea-ice representation, atmospheric moisture content, temperature, cloud microphysics schemes, and

data assimilation used in the reanalysis were identified to all contribute to the disagreement on snowfall magnitude at lower

latitudes (north of the Antarctic continent, Boisvert et al., 2020). They also showed that the difference between subsequent re-

analysis iterations is due to these factors, and model resolution changes. However, it is challenging to attribute the differences135

further to specific factors.

This study adds to the previous literature discussed above by connecting cloud phase and surface snowfall in ERA5 reanal-

ysis, CMIP6 models, and CloudSat-CALIPSO observations through analyses of the frequency of occurrence of sLCCs and

associated surface snowfall in these data sets. The frequency of sLCC occurrence (fsLCC) represents the fraction of time (in

percent) that sLCCs are observed, while the frequency of snowfall from sLCC (fsnow) denotes the percentage of time that140

sLCCs are snowing. This information is crucial for understanding when and where sLCCs produce snowfall and is vital for

predicting and modeling precipitation patterns in high-altitude and latitudinal areas. By studying the fsnow, valuable insights

into the occurrence of snowfall can be gained, further enhancing our understanding of its role in the water cycle, as well as the

representation of the WBF process in reanalysis and ESMs.

Another novel contribution is the assessment of cloud phase biases based on a relatively new cloud phase metric that aims for145

a like-for-like comparison with satellite retrievals to the extent possible, and the relation of these biases to associated snowfall

biases in reanalysis and ESMs. The study area spans the latitudinal ranges of 45◦N - 82◦N and 45◦S - 82◦S. We select these

regions because they cover the mid-latitudes and polar areas where mixed-phase clouds and surface snowfall are predominantly

observed (Warren et al., 1988; Komurcu et al., 2014; Korolev et al., 2017; Matus and L’Ecuyer, 2017; Chen et al., 2020). The

central research question of this study is: What are the cloud phase biases in the NH and SH mid-to-high latitudes in ERA5150

and historical simulations from CMIP6 with respect to the relatively new cloud phase metrics, and how do these biases relate

to snowfall biases? By addressing this research question, we aim to improve our understanding of cloud phase representation

and its connection to snowfall and ultimately contribute to the advancement of climate modeling and prediction.

In the subsequent sections, we will investigate the frequency and geographic distribution of sLCCs and associated snowfall

in order to distinguish their contribution to the overall snowfall patterns. Section 2 of this paper includes a description of the155

datasets and methodologies utilized in this study. Section 3 presents the results for the fsLCC and fsnow for the NH and SH

mid-to-high latitudes, between 2007 and 2010. Section 4 is a discussion on CloudSat-CALIPSO and the use of different time

sampling for the various datasets. In Section 5, the connection between cloud phase and snowfall biases is discussed and gives

possible next steps for future studies.
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Table 1. Overview of variable and original data field name, units, and data properties for CloudSat-CALIPSO, ERA5, and CMIP6 datasets.

CMIP6 model variables represent variable short names.

Variable Data field name Units Variable property

CloudSat-CALIPSO

Cloud phase flag CloudPhase ice, mixed, liquid from: 2B-CLDCLASS-LIDAR

2-metre temperature Temperature_2m K from: ECMWF-AUX

Surface snowfall rate snowfall_rate_sfc mmh−1 from: 2C-SNOW-PROFILE

ERA5

Total column cloud liquid water tclw kgm−2 Instantaneous

Total column rainwater tcrw kgm−2 Instantaneous

2 metre temperature 2t K Instantaneous

Mean snowfall rate msr kgm−2s−1 Mean rate

CMIP6

Mass Fraction of Cloud Liquid Water clw kgkg−1 model level

Near-Surface Air Temperature tas K single level

Snowfall Flux prsn kgm−2s−1 single level

Pressure on Model Half-Levels phalf Pa model half level

Grid-Cell Area for Atmospheric Grid Variables areacella m2 single level

2 Data and Methods160

Our primary emphasis is on sLCCs in the mid-to-high latitudes and understanding how frequently and where they produce

snowfall. We utilize CloudSat-CALIPSO satellite observations, ERA5 reanalysis, and CMIP6 simulations to assess biases both

in the spatial distribution and frequency of occurrence of sLCCs as well as their respective snowfall frequency. This section

introduces the different data sets and presents the statistical methods used for the cloud phase and snowfall analysis. Table 1

lists the units and data properties for the variables used from CloudSat-CALIPSO, ERA5, and CMIP6, respectively.165

2.1 CloudSat-CALIPSO Satellite Retrievals

In our investigation of the relationship between sLCCs and surface snowfall biases, we rely on satellite observations from

CloudSat and CALIPSO for the comparison with ERA5 and CMIP6 models. Specifically, we use Release 5 (R05) versions

of the 2B-CLDCLASS-LIDAR product (Sassen et al., 2008) for cloud phase determination, the 2C-SNOW-PROFILE product

(Wood and L’Ecuyer, 2018) for the surface snowfall rate estimation, and 2m temperatures from the ECMWF-AUX data set170

that contains ancillary ECMWF state variable data interpolated to each vertical radar bin (see Table 1).
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The 2B-CLDCLASS-LIDAR product utilizes the CALIOP lidar and the CPR on CloudSat and their different sensitivities

to liquid droplets and ice crystals in order to retrieve the phase of a cloudy layer. The algorithm uses a temperature-dependent

radar reflectivity threshold (Zhang et al., 2010), the integrated attenuated lidar backscattering coefficient, as well as cloud

base and top temperatures from atmospheric reanalysis data to discriminate between ice, mixed, or liquid water clouds (Wang175

and Sassen, 2019). In accordance with McIlhattan et al. (2017), we focus on the phase of the bottom cloud layer within the

atmospheric column and neglect the cloud phase quality flag, irrespective of the confidence level indicated. The rationale for the

latter is the lidar’s ability to robustly detect any liquid (liquid or mixed), and a low confidence value for the phase determination

could stem from the uncertainty in the distinction between purely liquid clouds and mixed-phase clouds. This is particularly

true for the frequent structure of polar mixed-phase clouds with the liquid layer at cloud top (McIlhattan et al., 2017).180

To estimate the surface snowfall rate, we use the 2C-SNOW-PROFILE product (Wood and L’Ecuyer, 2018), which is based

on an optimal estimation algorithm to retrieve profiles of parameters of the snow size distribution. The optimal estimation uses

the radar reflectivity profile of the snow layer, ancillary meteorological information, and assumptions about snow microphysical

and scattering properties. As the CPR cannot reliably measure near-surface reflectivities due to ground clutter, the surface

snowfall rate is estimated based on the lowest clutter-free radar bin (Wood et al., 2014). The truncation height of the snow185

profile due to ground clutter is surface dependent (2 range bins above surface over ocean (∼ 500m), 4 range bins over land and

sea ice (∼ 1000m), Wood et al., 2014).

We focus on the years 2007 to 2010 before CloudSat switched to daytime-only operations due to a battery malfunction.

Furthermore, we exclude September 2008 and December 2009 due to insufficient CALIOP data and a CloudSat battery failure

(Keys, 2010). We aggregate the profile-by-profile data to a horizontal grid with a resolution of 3.75◦x1.9◦ for each month.190

Subsequently, we calculate the monthly fsLCC and fsnow as described in Sect. 2.4.

The sea ice concentration (SIC) data used in this study is obtained from the Institute of Environmental Physics, University

of Bremen. The data is derived using the ARTIST Sea Ice (ASI) algorithm developed by Spreen et al. (2008). The ASI retrieval

method utilizes microwave radiometer data from the Advanced Microwave Scanning Radiometer for EOS instrument on the

Aqua satellite and the Advanced Microwave Scanning Radiometer 2 instrument on the GCOM-W1 satellite. Both datasets195

were reprocessed in 2018 with the same parameters. To present the 20% SIC, a seasonal average of the SIC is calculated for

the years 2007 to 2010 and then gridded onto the 3.75◦x1.9◦ grid using bilinear interpolation.

2.2 ERA5 Reanalysis

The ERA5 reanalysis data employs 4D-Var data assimilation of the ECMWF Integrated Forecast System. ERA5 incorporates

an improved stratiform cloud and precipitation scheme, enhancing the representation of mixed-phase clouds compared to200

ERA-Interim (Hersbach et al., 2020) and includes prognostic variables for both rain and snow (Forbes et al., 2011; Forbes and

Tompkins, 2011; Forbes and Ahlgrimm, 2014). The meteorological values are output at a resolution of 0.25x0.25◦.

In order to detect the presence of sLCCs in ERA5 data, specific criteria involving the T2m threshold and LWP threshold

must be met (see Section 2.4). However, it is worth noting that ERA5 does not readily provide LWP values. Therefore, we

calculated LWP using the total column cloud liquid water (tclw) and the total column rainwater (tcrw), expressed in kgm−2205
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(Table 1). We incorporate tcrw with the T2m threshold below 0◦C, as this threshold is used to exclude any rainwater below the

melting layer. By using daily mean values of tclw and tcrw and applying the daily man temperature threshold, we can analyze

the role of supercooled liquid water within clouds and the contribution of liquid water to the snowfall precipitation process in

ERA5.

To calculate the fsnow, we rely on the mean snowfall rate variable (msr, Table 1). The mean snowfall rate, expressed in units210

of kgm−2s−1, provides a combined measurement of both large-scale and convective snowfall. It is calculated as an average over

24 hours. Here we use the ERA5 CDS tool to average all of the output variables into daily mean values based on hourly data

(Cucchi et al., 2021; C3S, 2020-11-12). It is important to note that 2t, tclw, and tcrw (Table 1) are reported as instantaneous

values every hour, meaning that when they are averaged to obtain daily mean values, they may not accurately represent the

actual daily mean values. Nevertheless, a non-zero model daily mean LWP means there was an sLCC in the grid box at some215

point during the day. In contrast, the mean snowfall rate is reported as a temporal average and accurately represents the daily

mean snowfall rate.

2.3 CMIP6 Models

Our inter-model comparison relies on data from CMIP6, which involves simulations from various modeling centers. Specif-

ically, we focus on the historical simulations (1850-near present, Eyring et al., 2016), selecting ten models with daily mean220

outputs from different ensemble members as outlined in Table A1. In most of the figures shown in this study, we present the

CMIP6 multi-model mean.

In our analysis, we consider the following variables (Table 1): mass mixing ratio of cloud liquid water (clw), encompassing

liquid water in both large-scale and convective clouds provided at each model level in units of kgkg−1. Precipitating hy-

drometeors within the clw variable are included only if they affect the model’s radiative transfer calculations. Near-surface air225

temperature (tas), reflecting the temperature at a height of 2 meters above the surface, measured in Kelvin; and snowfall flux

(prsn), representing precipitation in all forms of frozen water, expressed in kgm−2s−1.

As none of the models listed in Table A1 directly provide LWP as a daily output variable, we derive LWP based on clw.

To calculate the LWP, we interpolate the CMIP6 hybrid-sigma pressure to isobaric pressure (Sec. A). The UKESM1-0-LL

and HadGEM3-GC31-LL models provide values on orographic vertical coordinates. Consequently, for these models, we use230

the CMIP6 variable phalf (Table 1) instead of calculating isobaric pressure levels. Subsequently, we utilize the hydrostatic

equation to calculate the liquid water content for each vertical grid box. The liquid water content is then summed up over the

vertical to obtain the LWP for each horizontal grid box (see Section A).

CMIP6 data is gathered from 2006 to 2009 as these years represent the closest available overlapping time range for all

CMIP6 models (some models ended the simulations by December 2009, marked with an asterisk in Table A1). The slight235

mismatch in the time range is of limited relevance, as CMIP6 model simulations are not designed to reproduce the exact

temporal evolution of past weather but instead generate their own internal variability (e.g., ENSO cycles), so they should only

be viewed as generally representative for the time period in question.
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Table 2. Calculation of fsLCC and fsnow and overview of applied thresholds. The first rows correspond to CMIP6/ERA5 metrics, while rows

denoted with ’CC’ describe CloudSat-CALIPSO metrics.

Variable Name Description Thresholds and equations

N_all Number of all days

CC: Number of all observations

N_sLCC Number of days with sLCCs T2m≤ 0◦C, LWP≥5gm−2

CC: Number of observations with sLCCs T2m≤ 0◦C, phase flag liquid/mixed

N_sLCC_sf Number of days with snowing sLCCs sf ≥ 0.01kgm−2h−1

CC: Number of observations with snowing sLCCs sf ≥ 0.01kgm−2h−1

fsLCC (%) Frequency of sLCCs N_sLCC / N_all

fsnow (%) Frequency of snowing sLCCs N_sLCC_sf / N_sLCC

2.4 Calculation of fsLCC and fsnow

The instrument sensitivities of the CPR and CALIOP, as well as their different temporal and spatial sampling in contrast to240

the gridded ERA5 and CMIP6 data, require different metrics that ensure a like-for-like comparison to the extent possible. In

the following, we describe the calculation of these metrics (fsLCC and fsnow) and call attention to differences between the

satellite observations and ERA5 or CMIP6. For ERA5 and for CMIP6 models, we remap all models to the coarsest resolution

of 3.75◦x1.9◦, which corresponds to the grid of IPSL-CM5A2-INCA (Table A1) with a nominal resolution of approximately

500km. We use area-weighted averages for both the NH and SH to calculate spatial means.245

2.4.1 Frequency of sLCC

We defined the occurrence of a sLCC in a cloudy CloudSat-CALIPSO profile when the lidar detected any liquid in the low-

ermost cloud layer (phase flag liquid or mixed), and the surface temperature was below freezing (Temperature_2m≤ 0◦C).

The temperature threshold was applied to ensure that the clouds were supercooled. In ERA5 and CMIP6, we applied the same

temperature threshold and defined an sLCC when the LWP is above 5gm−2. This is in accordance with McIlhattan et al. (2017)250

and based on their sensitivity estimate when comparing CloudSat with ground-based microwave radiometer observations at

Summit, Greenland. This definition of sLCCs is likely a very conservative estimate of the actual frequency of clouds con-

taining supercooled liquid in the atmosphere because we require temperatures below freezing at the surface, while, in reality,

there could still be supercooled liquid even if the surface is above freezing. However, as we are investigating the frequency of

snowing sLCCs in the second part of this study, we want to ensure that any precipitation from the sLCCs is primarily in the255

form of snow.
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In ERA5 and CMIP6, we calculate fsLCC as the number of days with sLCCs present (N_sLCC) divided by the total number

of days (N_all) over a specific time period (see Table 2). However, we cannot utilize daily statistics on a global scale from

CloudSat-CALIPSO due to their transect-based sampling in combination with a revisit time of 16 days and, consequently,

insufficient horizontal coverage (e.g., Kotarba, 2022; von Lerber et al., 2022). Thus, after aggregating the CloudSat-CALIPSO260

profiles to the same grid as ERA5 and CMIP6, we calculate fsLCC from satellite by dividing the number of profiles in that

month with an sLCC by the total number of profiles (see Table 2).

2.4.2 Frequency of Snowfall in sLCCs

For the occurrence of snowfall from sLCCs, we define a snowfall threshold of 0.01kgm−2h−1. Again, this is based on McIl-

hattan et al. (2017) and aims to mitigate biases due to instrument sensitivities. The fsnow in ERA5 and CMIP6 is then calculated265

as the number of days with snowfall (N_sLCC_sf) divided by the total number of days with sLCCs present (N_sLCC, see

Table 2). The ERA5 and CMIP6 snowfall rates and T2m are given as daily mean values. It is important to note that as fsLCC is

calculated using daily mean values, the simulated precipitation can, in principle, occur as rain (or supercooled rain) depending

on the temperature at the time of the precipitation. However, as no additional information is available, we here assume that

all precipitation from sLCCs is in the form of snow. To ensure comparability among the three datasets (CloudSat-CALIPSO,270

ERA5, and CMIP6), we perform a unit transformation, as outlined in Section B.

To account for the differences in sampling in space and time, we calculate fsnow from CloudSat-CALIPSO as the number of

observations with snowing sLCCs divided by the number of observations with sLCCs (Table 2).

3 Results

The following subsections examine and intercompare fsLCC and fsnow, respectively, from the three data sets examined (CloudSat-275

CALIPSO, ERA5 and CMIP6 models).

3.1 Frequency of sLCCs

Fig. 1 a-d presents the seasonal variability of fsLCC observed by CloudSat-CALIPSO in the mid-to-high latitudes of the NH.

Evident from the figure is a clear seasonal progression in the spatial distribution of fsLCC. In summer (JJA), fsLCC reaches its

minimum spatial average, with non-negligible values primarily within the Arctic basin. In NH autumn (SON), fsLCC values280

increase significantly in the Arctic basin but also spread to land areas pole-ward of about 60◦N. In boreal winter (DJF),

maximum values shift away from the Arctic basin and are instead found over the ocean close to the average seasonal sea ice

edge (Fig. 1 a, red line).

The Greenland ice sheet (GRIS) is a region of particular interest for this study, as sLCCs have been proposed to accelerate

GRIS surface melt (Bennartz et al., 2013; Hofer et al., 2019), while snowfall represents the primary ice sheet growth mecha-285

nism. The GRIS, which is characterized by its high elevation and snow-covered surface, experiences numerous sLCCs during

boreal summer and autumn due to sufficient moisture and temperatures below 0◦C in the CloudSat-CALIPSO observations
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Figure 1. The NH mid-to-high latitude seasonal averages of fsLCC. The first row (a-d) for CloudSat-CALIPSO, the second row (e-h) displays

ERA5 data, and the third row (i-l) shows the CMIP6 model mean. Each map includes an area-weighted average for the study area (lower left

corner). These averages are calculated for areas where CloudSat-CALIPSO have valid observations (between 45◦N− 82◦N) and exclude

the dotted area (in e-l). The black dashed line represents the seasonal mean 2m temperature 0◦C isotherm for each individual product. The

red line (in a-d) shows the average sea ice edge of 20% sea ice concentration (SIC) between 2007 and 2010, for the given season.

(Fig. 1 c, d). However, during boreal winter and spring (MAM), the fsLCC is low (< 15%) as the region becomes too dry and

cold (Shupe et al., 2013) to support the formation of sLCCs. The seasonal cycle of fsLCC as observed by CloudSat-CALIPSO

is largely what would be expected from the combined seasonal influence of atmospheric circulation, moisture availability, and290

temperature conditions in the mid-to-high-latitudes in the NH.

Comparing the CloudSat-CALIPSO observations with ERA5 and the CMIP6 model mean, we generally observe that ERA5

and the CMIP6 models show a similar seasonal progression of fsLCC to that seen in the satellite observations. However,

both ERA5 and the CMIP6 mean overestimate fsLCC to various extents during all seasons. The most significant discrepancy

is observed during boreal spring, with area-weighted averaged differences between CloudSat-CALIPSO and ERA5, and the295

CMIP6 model mean of −11% and −14%, respectively (Fig. C1 f, j). Nevertheless, the spatial extent of areas with fsLCC

values larger than 0% in CloudSat-CALIPSO is replicated well in ERA5 and the CMIP6 model mean (Fig. 1). Although

ERA5 and the CMIP6 models have remarkably similar spatial patterns of fsLCCs, the CMIP6 model mean generally exhibits

slightly larger area-weighted biases in the NH (6%− 14%, Fig. C1 i-l) than ERA5 (1%− 11%, Fig. C1 e-h) when compared

to CloudSat-CALIPSO.300
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Figure 2. The SH mid-to-high latitude seasonal averages of fsLCC. The first row (a-d) for CloudSat-CALIPSO, the second row (e-h) displays

ERA5 data, and the third row (i-l) shows the CMIP6 model mean. Each map includes an area-weighted average for the study area (lower left

corner). These averages are calculated for areas where CloudSat-CALIPSO have valid observations (between 45◦S− 82◦S) and exclude the

dotted area (in e-l). The black dashed line represents the seasonal mean 2m temperature 0◦C isotherm for each individual product. The red

line (in a-d) shows the average sea ice edge of 20% sea ice concentration (SIC) between 2007 and 2010, for the given season.

The fact that these discrepancies are about equally present in both ERA5 and CMIP6 models provides valuable insights

into their potential causes. They are most likely linked to the microphysical parametrizations of cloud processes that govern

cloud phase in ERA5 and CMIP6 models. It is reasonable to assume that the temperature in the ECMWF-AUX product used in

CloudSat-CALIPSO is quite similar to the ERA5 daily mean as indicated by the seasonal mean 0◦C isotherm in Figs. 1 and 2.

However, ERA5 shows a slight variation in the 0◦C isotherm line over Central Europe during DJF compared to ECMWF-AUX305

(Fig. 1 e). Furthermore, a comparison of the 2m temperature between ECMWF-AUX and ERA5 shows a latitudinal average

difference of 0.24K± 0.22K (Fig. D1). While atmospheric circulation and overall cloud cover should be well constrained by

the observations used in the ERA5 reanalysis. However, the cloud phase is not as evident in the identified biases. This finding

will be discussed in greater depth in Section 5.1.

Unlike the NH mid-to-high latitudes, the SH does not experience significant seasonal variations in fsLCC, according to the310

CloudSat-CALIPSO observations (Fig. 2 a-d). The fsLCC remains relatively constant across all seasons and is the highest in

a band bounded by the Antarctic continent in the South and approximately the 60◦ parallel in the North, with values between

17%− 24%. However, the area-weighted averages of fsLCC in the SH are generally higher than in the NH. The relatively
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Figure 3. The annual cycle of monthly fsLCC for (a) NH (45◦N-82◦N), and (b) SH (45◦S and 82◦S). Shown are area-weighted averages for

CloudSat-CALIPSO (black), ERA5 (pink), and the CMIP6 model mean (green). Each box represents the interquartile range (IQR) from the

25th to the 75th percentile. The whiskers extend to the minimum and maximum values, defined as the 25th percentile minus 1.5 times the

IQR and the 75th percentile plus 1.5 times the IQR, respectively. Any points falling outside these whiskers are considered outliers and are

marked with crosses. The green dots represent the minimum and maximum CMIP6 model values over all years.

constant fsLCC indicates that a more persistent cloud regime exists in the SH, with extensive sLCC cover present all year

round. This is consistent with previous literature reporting that the Southern Ocean is the region of the world with the most315

extensive mixed-phase cloud cover (Matus and L’Ecuyer, 2017).

Like the GRIS, the Antarctic ice sheet has a low fsLCC with the lowest frequency in austral winter (JJA, ≤ 15%). With its

high elevations, the East Antarctic ice sheet exhibits a lower fsLCC than the flatter West Antarctic Ice Sheet during austral

summer (DJF), autumn (MAM), and spring (SON). Just like the NH, the SH shows a reduced area of fsLCC in austral summer

(Fig. 2 c), but with a larger extent towards lower latitudes (NH: > 70◦N, SH: > 60◦S). In all seasons, fsLCC are observed320

primarily southward of the Antarctic Circumpolar Current, which may be due to the presence of warm water that results in

surface temperatures above the sLCC threshold (Fig. 2 a-d).

In both ERA5 and the CMIP6 model mean, there is a prominent gradient of sLCCs between the Southern Ocean and the

Antarctic ice sheet with fsLCC of up to 100% over the Southern Ocean and < 15% over the Antarctic ice sheet. For the SH

spatial mean, ERA5 and CMIP6 model mean moderately overestimate fsLCC (1%− 8%), with the CMIP6 model mean, in325

general, performing slightly better than ERA5 in comparison to CloudSat-CALIPSO (Fig. C2).

The biases in ERA5 and the CMIP6 models regarding fsLCC, relative to CloudSat-CALIPSO, are further demonstrated

through the area-weighted averages for each month in both hemispheres (Fig. 3). For the area-weighted averages, we consider

only the locations where CloudSat-CALIPSO provided valid data (values between |45◦ − 82◦|). CMIP6 models generate a

large spread of fsLCC, with both CloudSat-CALIPSO and ERA5 falling within the range of the model maximum and minimum330

values (green dots in Fig. 3). Again it is evident that ERA5 and the CMIP6 model mean have higher fsLCC than CloudSat-

CALIPSO in the NH (Fig. 3 a). The SH area-weighted averages show a better agreement between CloudSat-CALIPSO, ERA5,
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Figure 4. Magnitude of seasonal area-weighted averages (between |45◦ − 82◦|) of fsLCC for CloudSat-CALIPSO, ERA5, CMIP6 models

(numbers). The heatmap colors correspond to the differences of area-weighted averages of fsLCC between CloudSat-CALIPSO and ERA5 and

CMIP6 models. Green (pink) values indicate underestimation (overestimation) of the individual model with respect to CloudSat-CALIPSO.

(a) for the mid-to-high latitude NH, and (b) for the mid-to-high latitude SH. Per season, the smallest (largest) seasonal and spatial differences

are outlined with blue (red) lines.

and CMIP6 model mean than in the NH (Fig. 3 b). The CMIP6 model mean underestimates fsLCC in comparison to CloudSat-

CALIPSO during austral summer and autumn, but overestimates during winter and spring, while ERA5 overestimates fsLCC

to various degrees all year round in the SH.335

Finally, to assess the model performance relative to CloudSat-CALIPSO for ERA5 and the individual CMIP6 models for

fsLCC, we analyze the difference in seasonal and spatial averages for each of the 11 models (Fig. 4) for the NH and SH mid-to-

high latitudes. The most significant discrepancy is seen in boreal winter and spring for AWI-ESM-1-1-LR, MPI-ESM1-2-LR,

and IPSL-CM6A-LR with an negative difference > 15% (Fig. 4 a). In the NH, MPI-ESM1-2-LR is generally the model with

the larger overestimation (> 15%), despite in boreal summer with a difference of < 10%. IPSL-CM5A2-INCA has a low340

difference, < 5% in boreal summer, autumn, and winter. As previously highlighted, the difference values for fsLCC are lower

in the SH (Fig. 4 b), and none of the models stand out in terms of overall performance in either direction.
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Figure 5. The figure presents the seasonal averages of fsnow in the NH mid-to-high latitudes. The layout and area-weighted averages are

calculated the same as those shown in Figure 1.

3.2 Frequency of Snowfall from sLCC

To assess the ability of ERA5 reanalysis and the CMIP6 models to represent snowfall processes, we compare the fsnow between

them and the CloudSat-CALIPSO observations. Based on CloudSat-CALIPSO observations, NH sLCCs frequently produce345

snowfall, as can be seen by the non-zero values of fsnow in Fig. 5 a-d. However, during boreal summer, the majority of sLCC

rarely produce snowfall, as shown by the relative increase in the areal extent of zero fsnow values (Fig. 5 c). Notably, during

boreal winter, spring, and autumn, the seasonal average fsnow is highest over open ocean regions, such as the Greenland,

Norwegian, and Barents Sea (30%− 65%), the Labrador Sea (40%− 80%), and the Bering Sea (40%− 100%, Fig. 5 a, b, d).

This is likely due to plentiful available moisture for snowfall to occur and possibly linked to Cold Air Outbreaks (CAOs, Young350

et al., 2017). CAOs arise when cold, dry air flows over warmer, moist sea surfaces. CAOs occur frequently in the North Atlantic

in boreal winter and spring, and the clouds associated with them are predominantly sLCCs (Fletcher et al., 2016; Papritz and

Sodemann, 2018; Geerts et al., 2022; Mateling et al., 2023). While the influence of CAOs is also visible in the fsnow patterns

across various seasons, with the exception of boreal summer, the fsnow values over land areas tend to be lower. Although it

is possible that the higher minimum height bin of the radar used over land (∼ 1000m) may lead to the 2C-SNOW-PROFILE355

product missing some of the precipitation over land, the variability in the fsnow values in regions where similar cloud types

are expected suggests that this land-sea contrast is likely a representative feature. This discrepancy can be attributed to the
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Figure 6. The figure presents the seasonal averages of the fsnow in the SH study region. The layout and area-weighted averages are calculated

the same as those shown in Figure 1.

limited moisture content and shallower boundary layer over land during winter, resulting in lower fsnow compared to ocean

areas where CAOs provide deeper, moisture-rich clouds. Once clouds embedded in CAOs reach a certain distance from the sea

ice, they frequently produce precipitation (e.g., Abel et al., 2017). In contrast, during the winter months, Northern Europe is360

often covered by non-precipitating, supercooled stratus clouds (Cesana et al., 2012; McIlhattan et al., 2017). The models also

show a lower fsnow over land, supporting the idea that the observed land-sea contrast is a genuine characteristic rather than an

artifact of measurement techniques.

In contrast to the CloudSat-CALIPSO observations, both ERA5 and the CMIP6 model mean have much higher fsnow values

(> 60%), which are evenly distributed over the NH mid-to-high latitudes, without a significant seasonal variability. In regions365

where all three datasets have sLCCs, ERA5 and the CMIP6 model mean overestimate the fsnow by ∼ 50% (Fig. C3). This

indicates that ERA5 and the CMIP6 models produce snowfall much more frequently from sLCC than observed. It is important

to note that since fsnow accounts for the number of sLCCs, ERA5 and the CMIP6 models are too efficient in producing snowfall

regardless of the number of sLCCs that are simulated/assessed.

Regarding the SH mid-to-high latitudes, the CloudSat-CALIPSO observations show that there is no significant seasonal vari-370

ation in fsnow, with spatially averaged values of ∼ 20% for all seasons (Fig. 6 a-d). However, when comparing the results from

ERA5 and the CMIP6 model mean with observations from CloudSat-CALIPSO, we find that similar to the NH, the simulated
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Figure 7. Annual cycle of fsnow for (a) the NH, defined here as the region between 45◦N and 82◦N and (b) SH, defined here as the region

between 45◦S and 82◦S. Colors and boxplots are identical to Figure 3.

fsnow values are much higher than those observed (Fig. 6). When considering only regions where CloudSat-CALIPSO observes

fsnow (45◦S− 82◦S), the area-weighted seasonal average of fsnow is approximately 60%− 70% higher in ERA5 and the CMIP6

model mean (Fig. C4). The high simulated values of fsnow in both the NH and SH indicate that ERA5 and CMIP6 models pro-375

duce snowfall far too frequently from sLCCs compared to the satellite observations. In fact, when sLCCs are present, snow

is produced practically all of the time (between 70% and 90%). This bears resemblance to a well-established bias in ESMs,

namely the persistent "perpetual drizzle" problem for warm liquid clouds (Mülmenstädt et al., 2020; Lavers et al., 2021).

To investigate the annual cycle of fsnow and the interannual variation between 2007 and 2010, we present the area-averaged

data based on grid boxes where CloudSat-CALIPSO is capable of making observations (|45◦ − 82◦|, Fig. 7). CloudSat-380

CALIPSO displays a relatively clear seasonal cycle in fsnow in the NH, but not in the SH. The difference in the fsnow between

boreal summer months and the rest of the year in the NH is 15%, while the SH value is constant around 20% throughout

the year. In contrast, ERA5 and the CMIP6 model mean display a more significant seasonal cycle, with a difference of 25%

between boreal summer and winter months (Fig. 7 a). Also, in the SH, there is more of a seasonal cycle evident for ERA5 and

the CMIP6 model mean. Also worth noting is that ERA5 shows more pronounced interannual variability in both hemispheres385

of fsnow for a given month, meaning that the year-to-year fluctuations are larger than for CloudSat-CALIPSO and the CMIP6

model mean.

The comparison of magnitude and model differences for fsnow in Fig. 8 indicates how well the individual ESMs represent the

frequency of occurrence for snow, and if the same models that perform well for fsLCC (Fig. 4) do so for surface snowfall as well.

Among the models, AWI-ESM-1-1-LR and MPI-ESM1-2-LR come closest to matching CloudSat-CALIPSO observations, but390

their fsnow are still much too high (NH: ∼ 30%, SH: ∼ 45%, Fig. 8). At the same time, IPSL-CM5A2-INCA deviates the most

for fsnow in the NH and SH, having a negative difference of ∼ 65% and ∼ 75%, respectively. Interestingly, it appears that some

models that perform well for fsLCC perform poorly for fsnow. This could be an indication that models that are able to simulate
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Figure 8. Magnitude of seasonal area-weighted averages (between |45◦ − 82◦|) of fsnow for CloudSat-CALIPSO, ERA5, CMIP6 models

(numbers). The heatmap colors correspond to the differences of area-weighted averages of fsnow between CloudSat-CALIPSO and ERA5 and

CMIP6 models. Green (pink) values indicate underestimation (overestimation) of the individual model with respect to CloudSat-CALIPSO.

(a) for the mid-to-high latitude NH, and (b) for the mid-to-high latitude SH. Per season, the smallest (largest) seasonal and spatial differences

are outlined with blue (red) lines.

the right frequency of occurrence of sLCCs can do so because they are converting cloud condensate to snow too readily. In

other words, models may be getting the right answer for the wrong reason.395

4 Sensitivity tests

In the previous section, we examined the frequency of occurrence of sLCCs (fsLCC) and the frequency of occurrence of

surface snowfall (fsnow) from sLCCs in CloudSat-CALIPSO, ERA5, and CMIP6 data. We found that the reanalysis and ESMs

overestimate sLCCs and the frequency of surface snowfall in comparison to CloudSat-CALIPSO. These biases in the CMIP6

mean have potentially significant implications for our ability to predict how sLCCs and snowfall might change with future400

warming. At the same time, it is important to note that although the CMIP6 multimodel mean has this overestimation, some of

the individual ESMs are much closer to the observations (green dots in Fig. 3), suggesting that these members may have more

representative changes in clouds and snowfall in the future. It is therefore important to ensure that these findings are robust,

and not overly reliant on subjective decisions or limitations in the design of the comparison. In the following subsections, we
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investigate whether the identified discrepancies between the observations on one hand and ERA5 and the CMIP6 models on405

the other can be explained by sampling biases or instrument sensitivity.

It is important to acknowledge that CloudSat-CALIPSO data come with inherent uncertainties, including those associated

with snowfall retrievals (Stephens and Kummerow, 2007; Hiley et al., 2011; Schirmacher et al., 2023). CloudSat surface

snowfall is subject to sampling biases and ground clutter issues and also relies on ECMWF temperature data to differentiate

between snowfall and rainfall (Boisvert et al., 2020). Milani et al. (2018) found that applying adjustments and a temperature410

threshold to the CloudSat snowfall retrieval led to a decrease in the estimated occurrence of snowfall events by up to 30%,

primarily in the ocean regions surrounding Antarctica. Although these adjustments did not have the same effects everywhere,

this highlights the sensitivity of the CloudSat retrievals to the assumptions made within them.

In addition to the uncertainties in the assumptions used in retrievals, comparing satellite observations with ESMs is challeng-

ing due to several factors linked to the sampling bias of the CloudSat-CALIPSO mission. Numerous considerations come into415

play when deriving climate statistics from satellite transects (Kotarba, 2022). These encompass the narrow swath coverage, in-

frequent revisits, and latitude-dependent ground track density (Kotarba, 2022; von Lerber et al., 2022). Varying the domain size

and time scales of CloudSat observations showed that data on smaller scales or shorter time periods can introduce significant

uncertainties associated with cloud, aerosol, or atmospheric properties (Henderson et al., 2013). However, instantaneous errors

(using satellite data on smaller scales or shorter periods) tend to cancel out over longer time periods (Henderson et al., 2013;420

von Lerber et al., 2022). Another limitation of space-based remote sensing observations is the uncertainty associated with the

retrieval method employed to derive the snowfall rate from radar reflectivity measurements (Kulie and Bennartz, 2009; Milani

et al., 2018). However, in our study, we examine frequencies of occurrence and only use the surface snowfall amount to classify

if an sLCC is snowing (sf ≥ 0.01kgm−2h−1) or not. Such a binary variable should be less sensitive to the exact snowfall rate

retrieval. Edel et al. (2020) presented a CloudSat snowfall climatology, the frequency of snow, and snowfall rates over the425

Arctic. They found that the distribution of snowfall rate does not always match the distribution of snowfall frequency in Cloud-

Sat. Nevertheless, future modeling studies should ideally use the Cloud Feedback Model Intercomparison Project Observation

Simulator Package (COSP, Bodas-Salcedo et al., 2011) to make satellite observations and model datasets more comparable. At

present, COSP output is not available for a sufficient number of models and at a high enough temporal resolution to be useful

for the present study.430

Nevertheless, these satellite observations serve as valuable tools for identifying potential biases in reanalysis and ESMs, as

demonstrated by previous studies (e.g., McIlhattan et al., 2017; Milani et al., 2018; Daloz et al., 2020; Heymsfield et al., 2020;

Boisvert et al., 2020). To test the robustness of the overall findings of this study to our comparison approach, we next want to

show how different temporal resolutions of ERA5, as well as different LWP thresholds applied to the CMIP6 data, impact the

results.435

4.1 Sensitivity to ERA5 temporal resolution

In the comparison by McIlhattan et al. (2017), the analysis was performed on a 6-hourly instantaneous model output to define

the occurrence of LCCs in CESM-LE. As we compare ERA5 and CMIP6 models to CloudSat-CALIPSO, we only have daily
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Figure 9. NH mid-to-high latitude monthly averages of fsLCC for July (a-e) and November (f-j) 2007 to 2010. The columns show the

CloudSat-CALIPSO (CC) monthly means (a, f), ERA5 monthly means based on daily average values (b, g), and ERA5 monthly means based

on hourly values (c, h). The fourth and fifth columns are the difference plots between CloudSat-CALIPSO and the ERA5 daily averages (d,

i) and ERA5 hourly values (e, j), respectively. In the last two columns, green (pink) values indicate underestimation (overestimation) with

respect to the reference used. Area-weighted averages for the study area (45◦N− 82◦N) are located in the lower-left corner of each map and

exclude the dotted area (in b, c, g, h).

means of LWP available. Thus, instead of four instantaneous values per day for a given model grid box, we use only one

daily mean value of LWP. This way, we are comparing 30 daily values from ERA5 and CMIP6 models with thousands of440

CloudSat-CALIPSO profiles within each grid box to calculate fsLCC. Due to the 16-day repeat cycle of CloudSat-CALIPSO,

we cannot perform the satellite analysis on a daily temporal resolution at the given spatial resolution of the models. While

CMIP6 output is not available at a higher temporal resolution, for ERA5, we can actually test the sensitivity using an even

higher time resolution than McIlhattan et al. (2017). We take the hourly outputs from ERA5 from July and November 2007

to 2010 and create monthly mean values. July and November are chosen as these are the months with the lowest and highest445

fsLCC in CloudSat-CALIPSO (Fig. 3 a). We find that the fsLCC values emerging from ERA5 data are not very sensitive to the

output frequency, as shown in Figure 9 (d-e, i-j). The area-weighted difference between CloudSat-CALIPSO and ERA5 hourly

values is negligible in July (1%) and ∼ 15% in the inner Arctic and reduces from 12% overestimation to 7% in November.

However, the conclusion that ERA5 overestimates the fsLCC does not change by changing to a higher time resolution (Fig. 9).

While the sensitivity analysis for ERA5 data indicates that changes in output frequency do not significantly affect the results,450

the same conclusions cannot be directly extrapolated to CMIP6 models. However, based on our analysis, it is reasonable to

assume that similar results could be observed for individual ESMs within CMIP6, although this cannot be confirmed.

4.2 Sensitivity to LWP threshold for CMIP6 models

McIlhattan et al. (2017) conducted a similar analysis as in this study by examining the frequency of Arctic LCCs and fsnow.

They experimented with different LWP thresholds. Specifically, they used the 5gm−2 and 0.01gm−2 thresholds and based455
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Figure 10. Annual average difference plots (CloudSat-CALIPSO (CC) minus model) for fsLCC in the NH mid-to-high latitudes. The first

row represents ERA5 data (a-d), and the second row shows the CMIP6 model mean (e-h) difference. LWP thresholds applied of 3gm−2 (a,

e), 5gm−2 (b, f), 10gm−2 (c, g), and 15gm−2 (d, h). The analysis in this study focuses on the LWP threshold of 5gm−2. The maps in each

row are accompanied by area-weighted averages for the study area, located in the lower-left corner of each map. The averages are calculated

for areas where CloudSat-CALIPSO observations have valid fsLCC values.

their LWP threshold of 5gm−2 on the approximate retrieval uncertainty of LWP from ground-based microwave radiometer

observations. We performed sensitivity tests in which we varied the threshold between 3, 5, 10, and 15gm−2 (Fig. 10). While

some of these values are unreasonably high, it is nevertheless useful to test how adjusting the LWP threshold value affects the

identified bias between the observations and simulations. As expected, Figures 10 and E1 indicate that as the LWP threshold

increases, the overestimation of fsLCC decreases both in the NH and SH. However, unless we increase the LWP threshold in460

ERA5 and in the CMIP6 models to an unrealistically high value, the general findings and conclusions hold - ERA5 and the

CMIP6 model mean still overestimate the occurrence of sLCCs in the study area in comparison to CloudSat-CALIPSO.

5 Discussion and Conclusion

We find that mid-to-high latitude sLCCs and snowfall are produced more frequently in ERA5 and CMIP6 than in CloudSat-

CALIPSO. While previous studies have focused on the underestimation of supercooled liquid fraction (SLF) in mixed-phase465

clouds (Komurcu et al., 2014; Cesana et al., 2015; Tan and Storelvmo, 2016; Kay et al., 2016; Bruno et al., 2021; Shaw et al.,

2022), this research focuses on the frequency of occurrence of sLCCs. This difference in the cloud phase metric can lead to

seemingly contradicting conclusions. We illustrate why our results do not necessarily contradict previous findings with the

following example: If an ESM consistently predicts a low percentage of liquid in clouds, while satellite observations suggest

that liquid occurs only 50% of the time but with a high liquid percentage when it does occur, it can create a discrepancy470

between the metric used here and other cloud phase metrics like SLF. Even though the model would then have an sLCC

frequency of occurrence of 100%, the amount of supercooled liquid could still very well be underestimated. When combined
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with previous studies finding that ESMs generally underestimate SLF, our findings suggest that models too frequently simulate

genuinely mixed-phase clouds with both phases present at the same time and point, while observations more frequently reveal

conditionally mixed conditions, in which ice and liquid are separated in time and/or space (Korolev and Milbrandt, 2022).475

Previous studies not only use different metrics but also, in some cases, evaluate different generations of climate models,

each with distinct cloud characteristics. For instance, many models included in CMIP5 were found to have too few sLCCs

(Cesana et al., 2012, 2015; Tan and Storelvmo, 2016; Kay et al., 2016; Lenaerts et al., 2017; McIlhattan et al., 2017). This

deficiency was addressed in several of the next-generation models used in CMIP6, resulting in an increase in the simulated SLF

(Mülmenstädt et al., 2021). Although some CMIP6 models used in this study still over- or underestimate the traditional SLF480

metrics compared to CALIPSO observations, models such as CNRM-CM6-1 and CNRM-ESM2-1 are within one standard

deviation of the satellite observations (Fig. F1). Studies focusing on high latitudes have shown that comparing individual

CMIP5 models with CMIP6 models reveal improved cloud representation, more closely aligning with observations due to

microphysical adjustments in the newer model versions (Lenaerts et al., 2020; McIlhattan et al., 2020). Indeed, McIlhattan

et al. (2020) showed that when going from the CMIP5 to the CMIP6 version of CESM the frequency of LCC bias switched485

direction and overestimates in comparison to CloudSat-CALIPSO. Lenaerts et al. (2020) showed that cloud coverage increased

and is slightly overestimated in the CMIP6 version of CESM, but still underestimates ice water path. Consequently, some of

the differences between our findings and those from previous studies may be attributed to these improvements in the newer

model generations.

5.1 Links between biases in fsLCC and fsnow490

We find that ERA5 and CMIP6 overestimate the magnitude of fsLCC and fsnow in both hemisphere’s mid-to-high latitudes when

compared to CloudSat-CALIPSO. In contrast, McIlhattan et al. (2017) showed that the CESM-LE underestimates the fLCC by

∼ 17% and overestimates the fsnow by ∼ 57% in the Arctic. However, since we utilize a different metric (sLCC instead of

LCC), there is no reason to expect the model biases to be identical. Nevertheless, in a further study by McIlhattan et al. (2020)

it was shown that the LCC frequency in the newer CESM version is more aligned with the satellite observations except for in495

the summer months, where it overestimates the LCC frequency.

Similarly, we generally observe that ERA5 and the CMIP6 mean overestimate the fsLCC to various extents during all seasons.

These overestimations are likely linked to the microphysical parametrizations of cloud processes that govern cloud phase. This

finding aligns with McIlhattan et al. (2020), indicating that while newer model versions have advanced in representing LCC

frequencies more accurately, they can still overestimate cloud occurrences, particularly in specific seasons. Precipitation in500

the new CESM version is more frequent but lighter overall compared to the previous version, which is similar to our findings

indicating that the models’s sLCCs produce continuous snowfall, analogous to the "perpetual drizzle" problem (Mülmenstädt

et al., 2020; Lavers et al., 2021).

Furthermore, while McIlhattan et al. (2017, 2020) considered a single ESM, our study considers an ensemble of CMIP6

models. Nevertheless, the insights from McIlhattan et al. (2017, 2020) provide relevant context for our finding that ERA5 and505

the CMIP6 model mean produce sLCCs more frequently than observed in the NH and SH mid-to-high latitudes, especially over
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the sea ice and land depending on the season (Figs. C1 and C2). In these regions, not only is the frequency of occurrence of

sLCCs too high, but the sLCCs are too efficient at producing snowfall in ERA5 and CMIP6 models (Figs. 5 and 6). The latter

finding is consistent with the findings of McIlhattan et al. (2017) that LCCs produce snow too frequently in the CESM-LE

model.510

McIlhattan et al. (2017) explained the overestimation of fsnow from LCC by exploring one potential microphysical pathway

for removing supercooled cloud liquid - the WBF process. An overactive WBF process and subsequent removal of cloud ice

from the cloud through snow formation in ERA5 and CMIP6 models could also explain the large overestimation of fsLCC and

fsnow in ERA5 and the CMIP6 model mean. ERA5 and CMIP6 models may thus have more frequent but lighter snowfall events

that lead to a higher fsnow while maintaining the clouds longer, compared to the CloudSat-CALIPSO observations. However,515

for some ESMs, there is no explicit simulation of the WBF process, but rather a simple temperature-dependent partitioning of

cloud condensate into liquid and ice. For such crude parameterization schemes the identified biases are inevitable, as clouds

at a given mixed-phase temperature would always have some liquid present (hence a very high fsLCC) and at the same time

always have ice available that could be converted to snow (hence a very high fsnow).

The difference in simulated fsLCC and fsnow compared to CloudSat-CALIPSO in the NH and SH could, in theory, result from520

differences in surface conditions and/or weather patterns, and thereby differences in moisture availability for the formation of

sLCCs (McIlhattan et al., 2017). However, the fact that very similar biases are found in the reanalysis as in the CMIP6 models

might suggest that surface conditions and weather patterns are not the main explanation for the identified biases. That being

said, reanalysis products are known to be less reliable at high latitudes (Liu and Key, 2016). We therefore cannot rule out

differences in weather patterns as a partial cause of the biases discussed above, but maintain that deficiencies in the model525

representation of cloud microphysics is the more likely culprit. The inclusion of both ERA5 and CMIP6 models in this analysis

is thus beneficial as it helps highlight potential root causes of the identified biases, although it should be noted that individual

CMIP6 models do not all show biases that match ERA5 (Figs. 4 and 8). As stated above, we cannot entirely rule out a modest

contribution to the biases from circulation differences, even for the reanalysis. For example, according to Boisvert et al. (2020),

all reanalysis products show lower precipitation amounts in the southern Ross Sea and Weddell Sea embayments near the ice530

shelves. They explain that this is due to persistent cold and dry katabatic wind blowing from the continent across the ice shelves

and out over the sea ice, which is not beneficial for precipitation formation and not captured well by the reanalyses.

Under the assumption that the overall weather patterns and surface conditions are accurate in ERA5, the most plausible root

cause of the biases in fsLCC and fsnow are linked to the microphysical parametrizations in the reanalysis and ESMs (Kiszler

et al., 2023).535

Boisvert et al. (2020) suggests that the difference in temperature and temperature threshold among various reanalysis mi-

crophysical products may explain the latitudinal inequality in snowfall amount observed between CloudSat and the reanalysis

products. But here, no strong latitudinal dependence is observed in Fig. 6 as we investigate fsnow instead of snowfall amount.

The same principle should apply to ERA5 and the CMIP6 models as they rely on microphysical parametrizations. For the

most part, the 0◦C isotherm shown in Figs. 1 and 2 support our argument that the primary issue with the ERA5 and CMIP6540

datasets lies not with the simulated temperature itself, but with the representation of cloud properties and microphysics. This
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distinction highlights that the observed deviations in fsLCC and fsnow are driven more by inaccuracies in cloud simulation

than by temperature discrepancies. Exceptions occur over Central Europe during DJF between ECMWF-AUX, ERA5 and the

CMIP6 ensemble mean (Figs. 1 a, e, i). However, more notably is the difference in the CMIP6 ensemble mean over the central

Arctic during summer (Fig. 1 k), where simulated temperatures appear to be too cold. In this specific case, the cloud bias could545

stem from a temperature bias, suggesting a potential link between temperature inaccuracies and cloud simulation in the CMIP6

ensemble mean for this region and season. Figs. 4 and 8 show some models performing better than others for fsLCC and fsnow in

comparison to CloudSat-CALIPSO. As discussed above, many models have a simple temperature-dependent cloud phase that

would almost certainly cause them to overestimate the fsLCC and fsnow. A follow-up study will investigate the SLF by isotherm

for mixed-phase clouds of several CMIP6 models. Figure F1 shows that some of the CMIP6 models have a more variable SLF550

in time and space (e.g., AWI-ESM-1-1-LR, MPI-ESM1-2-LR), which might be an indication that they could have more so-

phisticated microphysics and could, therefore, perform better in terms of sLCC and surface snowfall occurrence. However, it is

not immediately clear which models use a purely temperature-dependent cloud phase partitioning. From the interquartile range

(IQR, Fig. F2) CNRM-CM6-1, CNRM-ESM2-1, and IPSL-CM6A-LR are assumed to have a simple temperature-dependent

cloud phase due to the smaller IQR of the temperature at various SLF. Interesting to note, these models with the simpler555

temperature-dependent schemes are the most poorly performing models for fsnow (Fig. 8).

Imura and Michibata (2022) studied the effect of changing the microphysical parametrization scheme from the traditional

diagnostic scheme used in MIROC6, participating in CMIP6, to a prognostic scheme. They found that the prognostic scheme

improved cloud coverage and snowfall in the Arctic. In our study, MIROC6 is one of the models with the largest overestimation

of fsLCC in the SH and the model with the smallest difference in boreal spring (Fig. 4). Furthermore, MIROC6, with the560

diagnostic scheme used here, has a large negative difference in fsnow (45%− 60%) independent of hemisphere and season

(Fig. 8). However, the MIROC6 with the prognostic parametrization scheme in Imura and Michibata (2022) produced light

snowfall too frequently, in agreement with the results presented here, despite the use of a different microphysical scheme.

ERA5 and the CMIP6 model mean are not able to reproduce fsnow in comparison to CloudSat-CALIPSO. The overestimation

in ERA5 could be related to the global average wet bias of up to 0.27mmday−1 in the ECMWF product used in ERA5565

(Lavers et al., 2021). If the modeled sLCCs are practically always snowing, then the sLCCs should have a shorter lifetime and

subsequently have a lower fsLCC than observations suggest. However, ERA5 and the CMIP6 model mean seem to have sLCCs

that produce a little bit of snow all the time and, at the same time, maintain the sLCCs in the atmosphere. This bias may be the

sLCC’s counterpart to the "perpetual drizzle problem" that has been identified in ESMs for warm liquid clouds (Mülmenstädt

et al., 2020).570

5.2 Implications for modeling and future projections

An overestimation of snowfall frequency can have significant effects on the Earth’s radiative budget. The fact that the models

seem to snow a little bit all the time instead of producing occasional heavy snowfall events, as well as periods with no snowfall,

is therefore concerning. One implication is that there will be too frequent fresh snow deposited on top of the snow pack, ice

sheets, sea ice and land surfaces, with consequences for the surface albedo. With time, the aging snow surfaces darken due575
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to snow/ice metamorphism processes and the deposition of absorbing aerosols (e.g., Picard et al., 2012; Carlsen et al., 2017).

Continuous light snowfall in the model could thus lead to a simulated overestimation of the surface brightness, which in turn

could limit sea ice melt in ESMs. Indeed, only ESMs that simulate excessive Arctic warming are able to reproduce the observed

sea ice loss in recent decades (Notz and Stroeve, 2016).

The overestimations of fsLCC and fsnow could stem from how models handle cloud microphysical processes, particularly the580

WBF process and the partitioning of cloud condensates into the liquid and ice phase. Some identified biases in ESMs may

be due to the specific parametrization schemes used in the models, which could rely on simple temperature-dependent cloud

phase partitioning. For example, models with a temperature-dependent cloud phase could simulate a fixed liquid fraction at a

given temperature within the mixed-phase range, making it impossible for them to simulate an all-ice or all-liquid cloud in that

range. Consequently, these models could tend to under- or overestimate the occurrence of sLCCs.585

Interestingly, models with more sophisticated microphysics schemes (Figs. F1 and F2) do not necessarily perform better

(Figs. 4 and 8). Larger biases in cloud phase can still occur, for example if these models do not accurately represent INPs. This

underscores how generational advancements and implementations of observational constrains can significantly influence the

comparison and interpretation of cloud and precipitation patterns.

Continuing work should be performed on the comparison between ESMs, reanalysis and observations at specific locations to590

better understand microphysical processes and their representation in ESMs and reanalysis data. Cloud microphysical scheme

development should, therefore, focus on improving these processes in order to reduce cloud phase and surface snowfall biases.

More sophisticated schemes should be explored, and ensemble studies with varied microphysical model parameterizations can

provide insights into how different parameterizations affect the representation of sLCCs and snowfall in climate simulations.

Ground and aircraft observations in connection with field campaigns at specific locations should, therefore, be increased,595

especially to improve our understanding of cloud phase, liquid and ice water content, and cloud top temperatures in regions

where sLCCs form. These field campaigns should also focus on the processes responsible for snowfall from these clouds.

Finally, as shown in the present study, satellite observations are an essential validation tool for assessing the representa-

tions of clouds and precipitation in ESMs. To ensure that future model generations are as accurate as possible, continuous

improvements to satellite retrievals are required to further refine our understanding of cloud and snowfall properties, especially600

in high-latitude regions where limitations in sun angle and ground-track are prevalent. The accurate representation of these

cloud and snowfall processes in models, validated through enhanced satellite observations, is essential for reliable simulations

of weather and climate. This accuracy is particularly important for making future predictions of the hydrological cycle, which

are essential for understanding and mitigating the impacts of climate change.

Code availability. The code used to analyze the satellite, ERA5, and CMIP6 data and to produce the figures is available via https://github.605

com/franzihe/CloudSat_ERA5_CMIP6_analysis
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Data availability. ERA5 meteorological parameters downloaded via the ERA5 CDS tool for daily statistics (C3S, 2020-11-12). CMIP6

model variables downloaded via ESGF-WCRP for 2006-2009 (https://esgf-node.llnl.gov/search/cmip6/). The standard CloudSat (Stephens

et al., 2002) and CALIPSO (Winker et al., 2010) data products (version R05) used in this study (2B-CLDCLASS-LIDAR, 2C-SNOW-

PROFILE, ECMWF-AUX) were downloaded from the CloudSat Data Processing Center’s (at Cooperative Institute for Research in the610

Atmosphere, Colorado State University, Fort Collins) website (http://www.cloudsat.cira.colostate.edu). The sea ice concentration data is

from the Institute of Environmental Physics (IUP), University of Bremen, based on the ARTIST Sea Ice (ASI) algorithm (Spreen et al.,

2008). The daily data sets (Melsheimer and Spreen, 2019a, b, 2020a, b) were downloaded for the years 2007–2010 from the data publisher

PANGAEA.

26



Appendix A: CMIP6 models and LWP calculation615

The daily averages of the total mass of liquid water (LWP) in a grid box are calculated using the hydrostatic equation in CMIP6

models, besides the models from the modeling institute MOHC. First, isobaric pressure levels are retrieved with the individual

CMIP6 hybrid sigma model formula found in Table A1. hyam and hybm represent the vertical coordinate formula term along

the dimension Nlev. psfc(i, j) is the surface air pressure for each latitude (i) and longitude (j) grid box, and p0(Nlev) the vertical

coordinate formula term: reference pressure, both in Pa for the individual model. For CMIP6 models with orographic vertical620

coordinates (UKESM1-0-LL, HadGEM3-GC31-LL, Table A1), represent bm(Nlev) the vertical coordinate formula term and

orog(i, j) the surface altitude in units of metre.

After retrieving the pressure coordinate on half isobaric pressure levels (p(i, j,Nlev− (k± 1/2))) and clw(i, j,Nlev) on the

full isobaric pressure levels (Nlev) in CMIP6 the lwp in each vertical grid box can be calculated with the hydrostatic equation.

∆p

∆Z
=−ρair(i, j,Nlev) · g625

ρair(i, j,Nlev) is the density of the air mass at full isobaric pressure level. ∆Z depicts the height difference between the half iso-

baric pressure levels, and g = 9.81ms−2 is the gravity acceleration. After the AMS Glossary of Meteorology the lwp(i, j,Nlev)

is defined as

lwp(i, j,Nlev) =

∞∫
z=0

ρair(i, j,Nlev) · clw(i, j,Nlev) · dz =
p=p0∫
0

ρair(i, j,Nlev) · clw(i, j,Nlev) ·
(
− dp

ρair · g

)

lwp(i, j,Nlev) =

p=p(i,j,Nlev−(k+1/2))∫
p=p(i,j,Nlev−(k−1/2))

clw(i, j,Nlev)

g
· dp630

The LWP(i, j) can then be calculated by summing the individual lwp(i, j,Nlev) per vertical grid box from the surface to the

top of the atmosphere. And it follows for the daily mean total liquid water path per column air in each pixel:

LWP (i, j) =

NLEV+1∑
k=0

lwp(i, j,Nlev) (A1)

=−1

g

NLEV+1∑
k=0

clw(i, j,Nlev) ·
[
p
(
i, j,Nlev− (k− 1/2)

)
− p

(
i, j,Nlev− (k+ 1/2)

)]
(A2)
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Appendix B: Variable Unit Transformation635

To compare ERA5 and CMIP6 snowfall (kgm−2h−1, Table 1) to CloudSat-CALIPSO (sfCC, we apply the following multipli-

cation to achieve the satellite surface snowfall rate in mmh−1 (Table 1). The density of water (ρwater) is about 1000 kg m−3

and 1000 mm are one metre.

sfCC =
mm

h
· 1m

1000mm
· ρwater =

m

h
· 1000kg
1000m3

=
kg

m2h
(B1)

In the ERA5 reanalysis data, the daily mean of msr has units of kgm−2s−1 (Table 1). To make ERA5 snowfall daily means640

comparable to CloudSat and CMIP6 snowfall rate, we apply the following multiplication to achieve the mean snowfall rate per

hour (msr), where we know that one hour has 3600 seconds.

sfERA =
kg

m2s
· 3600s

h
=

kg

m2h
· 3600 (B2)

The same is done for the CMIP6 snowfall flux parameter (prsn, Table 1).

sfCMIP6 =
kg

m2s
· 3600s

h
=

kg

m2h
· 3600 (B3)645
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Appendix C: Spatial distribution of fsLCC and fsnow

Figure C1. Seasonal averages of fsLCC in the NH mid-to-high latitudes between 2007 and 2010. Combined CloudSat and CALIPSO observa-

tions are shown in the first row (a-d). The last two rows are the difference plot. They are CloudSat-CALIPSO (CC) observations minus ERA5

(e-h) or CMIP6 model mean (i-l) where valid data occurs, with green (pink) values showing underestimation (overestimation) in ERA5 and

the CMIP6 model mean concerning the satellite observations. Areas, where the difference between CloudSat-CALIPSO and CMIP6 model

mean is not significant (< 95%) are marked with hatches. The area-weighted averages for the study area where CloudSat-CALIPSO has

observations are displayed in the lower-left corner of each map. The red line (in a-d) shows the average sea ice edge of 20% sea ice concen-

tration (SIC) between 2007 and 2010, for the given season.
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Figure C2. Seasonal averages of fsLCC in the SH mid-to-high latitudes. Layout and differences are identical to Figure C1.

Figure C3. The figure presents the seasonal average of fsnow in the NH. The layout and presentation resemble Figure C1.
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Figure C4. Seasonal averages of fsnow in the SH. The layout and presentation resemble Figure C1.
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Appendix D: Zonal mean of 2m temperature

Figure D1. Zonal mean 2m temperature of ECMWF-AUX (black) and ERA5 (dashed-orange) for mid-to-high latitudes.
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Appendix E: LWP threshold sensitivity - SH

Figure E1. Annual average difference plots (CloudSat-CALIPSO (CC) minus model) for fsLCC in the SH mid-to-high latitudes. The first row

represents ERA5 data (a-d), and the second row shows the CMIP6 model mean (e-h) difference. LWP thresholds applied of 3gm−2 (a, e),

5gm−2 (b, f), 10gm−2 (c, g), and 15gm−2 (d, h). The analysis in this study focuses on the LWP threshold of 5gm−2. The maps in each row

are accompanied by area-weighted averages for the study area, located in the lower-left corner of each map. The layout and area-weighted

averages are calculated the same as those in Fig. 10.
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Appendix F: Supercooled liquid fraction in CMIP6 models

Figure F1. Supercooled liquid fraction (SLF) as a function of temperature for CALIPSO (black) and the CMIP6 models used in this study

(color). Error bars on the CALIPSO SLF values correspond to one standard deviation. All values represent an area-weighted average for

lat≥ 45◦ in the Northern Hemisphere (NH, solid lines) and Southern Hemisphere (SH, dashed lines).
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Figure F2. Interquartile range of the temperature at given supercooled liquid fractions (e.g., SLF 50%, representing 50% ice and 50% liquid)

for the different models used in this study for lat≥ 45◦ over the Northern Hemisphere (NH, a) and Southern Hemisphere (SH, b).
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