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Abstract: ClimeApp is a newly developed web-based processing tool for the state-of-the-art ModE-RA paleo-10 

climate reanalysis. It presents temperature, precipitation and pressure reconstructions with global coverage and 

monthly resolution for the period 1422 to 2008 C.E. These can be visualized as maps or timeseries and compared 

with historical or other climate-related information through composite, correlation and regression functions.  

ClimeApp allows access to three data sets: 1. ModE-RA, a reanalysis that is created by assimilating early 

instrumental documentary and proxy data into an ensemble of climate model simulations. 2. ModE-Sim, the 15 

native version of the underlying ensemble simulations, i.e. prior to data assimilation. 3. ModE-RAclim, an 

alternative version of the reanalysis product. Together, these allow researchers to separate the effects of model 

simulations and observations on the reanalysis. The app is designed to allow quick data processing for 

climatologists and easy use for non-climatologists. Specifically, it aims to help bring climate into the humanities, 

where climatological data still has huge potential to advance research. This paper outlines the development, 20 

processing and applications of ClimeApp, and presents an updated analysis of the calamitous Tambora volcanic 

eruption and the 1816 ‘year without a summer’ in Europe, using the new ModE datasets.  

ClimeApp is available at https://mode-ra.unibe.ch/climeapp/. 

1 Introduction 

Interdisciplinary research is a great facilitator of scientific progress. It allows researchers to address all aspects of 25 

a problem and take a holistic view not limited to one specialised field. To assess, for instance, the impact of a 

volcanic eruption such as Mount Tambora in 1815, volcanologists may study the eruption itself (Kandlbauer and 

Sparks, 2014), climatologists use numerical models to assess the climate impact (Raible et al., 2016), historians 

look into administrative records for social impacts (Krämer, 2015), and economists and epidemiologists look for 

effects on trade and the spread of disease (Wood, 2014). By combining their results, researchers can obtain 30 

unique insights relevant to all fields, as demonstrated by Brönnimann and Krämer (2016). In recent years, 

Tambora research has focusedsing on the climate-society nexus, investigatinghas concentrated on the 

vulnerability and resilience of societies affected by the climatic shock of the Tambora eruption. TheWhile this 

global climate anomaly caused by Tambora significantly impacted crop yields and harvests, the subsequent 

impact on human societies  was modulated by socio-economic and political factors. Since such complexity 35 

requires expertise from many different field played a significant role in shaping societal reactions and 

adaptations to this extreme climate event. s, Therefore,interdisciplinary research is therefore approaches both 
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relevant and necessary for are necessary toto fully understanding how societies cope with such extreme events 

(Flückiger et al., 2023). 

To bridge disciplines as different as history and climate science, it is crucial to make data accessible to non-40 

specialists. ClimeApp is a web-based application that achieves this by giving researchers without a climatology 

background the possibility to add climate reconstruction data to their sources and analysis. It facilitates quick and 

easy processing of the ModE-RA climate reanalysis and associated datasets (Valler et al., 2024), allowing both 

climatologists and other researchers to evaluate the data without time-consuming coding. Functions for both 

casual investigation, as well as detailed statistical and source analysis, are built in. It is also possible to upload 45 

your own research – be it prices, harvest yields or mortality – as a timeseries to compare with the ModE-RA 

dataset. ClimeApp, developed using the Shiny R package (Chang et al., 2024), stands out for its simplicity and 

accessibility in presenting and processing complex data. This paper summarises the ModE-RA, ModE-Sim and 

ModE-RAclim datasets used in ClimeApp and outlines the main features of ClimeApp’s internal structure and 

external interface. We then examine the 1815 Tambora eruption and the following ‘year without a summer’ in 50 

Europe to showcase the functions and applications of both ClimeApp and the ModE data. This demonstrates how 

reanalysis data can be used to distinguish between internally and externally forced variability of the climate 

system. We conclude by expanding on the app’s potential for both the humanities and climate sciences. Detailed 

reference material for ClimeApp data processing can be found in the appendices.  
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Figure 1. Layout, functions and data flow of ClimeApp. (a) ClimeApp, displaying a global temperature anomaly map. (b) 

ClimeApp showing the same global temperatures as a timeseries. (c) Summary of the data sources used by ClimeApp, along 

with its five primary functions and current options for further data analysis.  
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2 Data Sets 60 

2.1 ModE-Sim 

ModE-Sim is an ensemble of global climate simulations, driven by external forcings. The ensemble is produced 

by inputting reconstructed volcanic aerosols, total solar irradiation and greenhouse gases into the ECHAM6 

atmosphere general circulation model (Stevens et al., 2013), with observed/reconstructed sea surface temperature 

(SST) and sea ice acting as boundary conditions. The different ensemble members are produced by using 65 

different versions of the SST and volcanic forcings, which accounts for the uncertainty in the reconstructions. 

Each member in the ModE-Sim ensemble therefore represents a possible climate state that is physically 

compatible (from the model’s perspective) with the prescribed external forcings and boundary conditions (Hand 

et al., 2023). The ModE-Sim ensemble, which is the basis/prior for ModE-RA (see below), is therefore a 

combination of externally forced signals and internal variability predicted by the model physics. Note, however, 70 

that ModE-Sim is an atmosphere-only simulation, so feedbacks between the ocean and atmosphere are not 

included. The ModE-Sim ensemble mean, used by ClimeApp, is the average over all ensemble members. 

Averaging tends to “smooth out” most of the internal variability, but does retain signals caused by external 

forcing, e.g. the climate's reaction to a volcanic eruption. On its own, ModE-Sim can be used as a tool to study 

climate variability, but in combination with ModE-RA it can also help climatologists identify how observations 75 

affect the final reanalysis (see our case study, section 4.1). 

2.2 ModE-RA 

At the time of writing, the Modern Era Reanalysis (ModE-RA) is the most comprehensive reconstruction of the 

monthly global climate of the past 600 years (Valler et al., 2024). By assimilating a huge database of climate 

observations, each ModE-Sim ensemble member is corrected/updated towards the observations, weighted by 80 

individual uncertainties in both observations and simulations. The number of observations increases rapidly 

through time, rising from a few thousand natural proxies and historical documents in the 15th century to over 

100,000 (mostly instrumental) measurements by the early 20th century. These climate observations are 

assimilated biannually for each year. Natural proxies include tree rings, ice cores, corals, speleothems and lake 

sediments, while historical proxies are gathered from weather diaries, phenological data and early ship records. 85 

Where and when records are available, this allows observation-based reconstruction of all four seasons, 

improving on previous studies which mostly focussed on the summer season. If no observations are available, 

ModE-RA is identical to ModE-Sim. Note that the ensemble mean of ModE-Sim mainly represents the model’s 

response to external forcings, but the assimilation of observations into ModE-RA brings back internal variability. 

This also means that there is increasing variability in the ModE-RA ensemble mean over time (as the number of 90 

observations increases). The spatial horizontal resolution for ModE-RA is 1.875° (longitude) by 1.865° 

(latitude), while the temporal resolution is one month. 

2.3 ModE-RAClim 

ModE-RAclim (Valler et al., 2024) is an alternative version of ModE-RA, designed to focus on the observations, 

by minimising its input from the ModE-Sim climate models. In ModE-RA, observations are assimilated into 95 

time-aligned ensemble members from ModE-Sim (i.e. for the year 1800, the basis for ModE-RA is the externally 

forced ModE-Sim states for 1800). By contrast, ModE-RAclim uses the same offline assimilation process (see 
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Valler et al., 2024 for more detail), but using non-time-aligned ModE-Sim members. Instead, for each year, a 

random sample of 100 years from any of the ModE-Sim ensemble members is used to form the ModE-RAclim 

ensemble, prior to assimilation. This means that in ModE-RAclim, the externally forced signal in the model 100 

simulations is removed from the ensemble and only added back if it appears in the observations. Hence, 

following a volcanic eruption, ModE-RA and ModE-Sim will both include the model response to stratospheric 

aerosol forcing, but any volcanic signal in ModE-RAclim will exclusively result from the observations. ModE-

RAclim is therefore useful for distinguishing whether observed climate anomalies are a consequence of the 

external forcing that was used for the model simulations or a result of data assimilation (see our case study, 105 

section 4.1). 

3 Interface 

3.1 Building a Shiny app – User Interface (UI), Server and Helpers 

R Shiny Apps have become popular not only for research in general (Gebauer et al., 2023) but particularly in 

climate science. They provide a powerful set of tools for quickly creating and deploying simple applications for 110 

presenting or processing data. Other scientific applications designed using R Shiny are described in: (Sousa, 

2019; Fajardo et al., 2020; Möller et al., 2020). There are three main components to a Shiny app: The local 

server where all the necessary data is stored, the R environment and the web interface. 

 

 115 

Figure 2. Internal Structure of ClimeApp, showing how the data storage, R environment and web interface interact. 
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In ClimeApp, ModE data from an external server is stored locally on the ClimeApp server, including some pre-

processed data to reduce loading times. All the server preparation, such as loading the R-libraries, unpacking the 

data, loading in parameters and predefined functions is done in a supporting R-file called helpers.R. The main 

app.R file consists of a UI section, where all the elements are defined, named and positioned, and a Server 120 

section where processing of inputs and plot generation is performed. When in use, the Server and web interface 

interact with each other reactively, with inputs from the web elements processed in real time and then output as 

plots or data tables. All web elements have preset inputs to generate an initial plot, which can then be altered by 

the user.  

3.2 Usability 125 

The ClimeApp web interface is designed to streamline data selection, providing all necessary information and 

options without being overly complex. The initial Welcome page displays general information about the ModE 

database and ClimeApp and gives access to five main tabs, one for each of the primary functions shown in 

Figure 1. We deliberately decided to supply only functions that are commonly used in historical climatology, but 

allow users to easily download selected ModE data for further processing. Input and customization options are 130 

selected within a tab, appearing on the same screen as the plots. For new users, it is vital not to overload the 

interface with information - be it with text or advanced options. To avoid this, we work with help texts that 

explain how plots and data are calculated, but only when selected. The interface is also streamlined by hiding 

many UI elements until they are required. Non-standard tools such as custom months, single year maps and 

additional features to customize plots are only visible when the relevant customization option or tick box is 135 

selected.  

3.3 Customization 

Having generated a plot, users have several options to customize their maps and timeseries. ClimeApp is 

designed to create graphics suitable for publication without the need for further editing in other programmes. The 

app supplies three sets of tools to customize plots: Customize your map/timeseries; Custom features; and Custom 140 

statistics. Under Customize your plot, the user can change titles, subtitles and the plot’s axis. Once selected, axis 

values will stay fixed even after a plot has been changed, making it easy to quickly compare different regions 

and time periods. Custom features adds and removes points, lines and highlights to/from the plot and includes a 

location search function (Tennekes, 2021) that can add labelled, geocoded points. Custom statistics allows users 

to add the SD ratio or % sign match statistics (see Appendix B2 in the supplementary PDF for more information) 145 

as overlays to their maps or add percentiles and moving averages to their timeseries. All customization stays, 

even when plots are altered or different variables selected, saving time when creating multiple plots. 

Customization and plot inputs can also be downloaded, saved and re-uploaded to quickly recreate previous plots. 
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 150 

Figure 3. Example of a customized map from ClimeApp, showing: (a) An anomaly map using several custom features 

(customized title, custom axis, labelled point, highlight box and statistical overlay showing regions that match a chosen criteria); 

(b). ClimeApp’s map customization options. 

3.4 Uploading/downloading data and plots  

Nearly all the plots in ClimeApp can be downloaded in multiple file formats. Plot data can also be exported for 155 

use in other programmes. In the Anomalies tab, advanced users can download multiple ModE variables as a 
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single NetCDF file, while in the Regression tab, a statistical summary of the linear regression is also available 

for download. Users can upload their own data in three of the main tabs: Composites can be created from an 

imported set of years, while tables of annual data can be uploaded for Correlation or Regression analysis. 

Uploaded files can be compared with either ModE variables or further user data, making ClimeApp a useful tool 160 

for performing simple correlation and regression analysis on your own material. Since files must be correctly 

formatted for ClimeApp to understand them, when uploading, users are shown an example image demonstrating 

how to correctly structure their file. 

3.5 Reactive functions and pre-processing 

One major benefit of Shiny apps is instant updating – as soon as a user selects new values, ClimeApp will 165 

automatically update its plots to match the new selection. This is timesaving and allows researchers to explore 

the climate data quickly and efficiently. Exceptions have been made for changing the geographical area, adding 

points, lines and highlights and using Annual Cycles function, to allow all information to be entered before 

updating the plot. To enable plots to instantly update, ClimeApp uses R Shiny’s reactive functions. These 

functions track all the variables they depend on, re-executing if one of these variables changes. This means that 170 

only sections of code where a change has been made are re-run, reducing processing power and increasing 

response time. Reactive functions chain - each passing an output to a further reactive function until the final 

reactive output is passed to the UI, updating the onscreen plot or table. 

 

To further reduce processing time, ClimeApp employs pre-processed data for common user selections. These 175 

include five seasonal averages: December-January-February (DJF); March-April-May (MAM); June-July-

August (JJA); September-October-November (SON); and Annual; and four variables: Temperature; 

precipitation; sea level pressure (SLP); and 500 hPa geopotential height (Z500). Annual means for each are 

already calculated and stored on the ClimeApp server, allowing them to be plotted without further computation. 

This considerably reduces the memory and time required for data processing and is especially valuable when 180 

users are working on large geographical areas or over long time periods. 

4 Case Study – Tambora reanalysed  

In 1815, on the Indonesian island of Sumbawa, Mount Tambora erupted. Large volumes of sulphur were injected 

into the stratosphere, forming a layer of aerosols around the globe. This layer considerably reduced incoming 

solar radiation, significantly affecting the global and particularly European climate (Brönnimann and Krämer, 185 

2016). The study of the Tambora eruption’s aftermath is a prime and example offor interdisciplinary research. as 

Already in the 19th century, research fields such as meteorology, geology, and natural history were cooperating to 

study the eruption. Despite limitations in data, expertise, and analytical tools linking climate anomalies to 

volcanic activity, this research helped to advance existing theories, such as the Ice Age hypothesis (see 

Brönnimann and Krämer, 2016). In more recent times, scientists from  theall  historical disciplines, climatology, 190 

aerosol science, geology, epidemiology and many other subjectsother disciplines have all combined their efforts 

to more collaborated to fully comprehend the mechanisms and global impacts of such a majorpast volcanic 

eruptions (Wood, 2014). Already in the 19th century, research fields, such as meteorology, geology, and natural 

history, benefited from the aftermath of this climate anomaly. Despite limitations in data, expertise, and 
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analytical tools to link such an anomaly to volcanic activity, it helped advance existing theories, such as the Ice 195 

Age hypothesis (Brönnimann and Krämer 2016). Today, uUsing the latest and most comprehensive climate data, 

(ModE-RA, ModE-Sim and ModE-RAclim), and the tools in ClimeApp, we can continue this research, takinge a 

new look at the eruption's impact.  

4.1 Tambora in ModE-RA, ModE-Sim and ModE-RAclim 

The year of 1816, following Tambora, has become known as the ‘year without a summer’, due to the extreme 200 

global temperature anomalies that followed the eruption. Using ClimeApp’s Anomalies function, we can see the 

unusually cold summer temperatures over Europe in all three ModE datasets: 

 

Figure 4. (a), (b) & (c) European temperature anomalies for boreal summer (June to, July and August, JJA) 1816, as compared 

to reference period 1799 to 1821. Showing results from ModE-RA, ModE-Sim and ModE-RAclim, respectively. (d) The 205 
standard deviation ratio (or SD ratio) between the ensembles of ModE-RA and ModE-Sim (see Source Analysis and Further 

Statistical Functions in Appendix B2 in the supplementary PDF for more information).  

A comparison between the datasets shows that the 1816 anomalies in ModE-RA and ModE-RAclim are 

essentially the same, while ModE-Sim reports considerably smaller temperature changes. This suggests that 

either certain mechanics of the Tambora eruption are not captured by the ModE-Sim ensemble, or that only part 210 

of the observed cooling can be explained by aerosol forcing. The latter might indicate that lower temperatures 

were partly due to internal climate variability. Evidence for the latter can be found in SLP and Z500 data from 

ModE-RA (see Appendix C3 in the supplementary PDF). These show a significant low-pressure anomaly over 

western Europe in 1816, which would have further cooled air temperatures. It may have also simultaneously 

caused the positive temperature anomalies over northeastern Europe, as an anticyclone around the low-pressure 215 

system drew warm air northwards from the eastern Mediterranean. The absence of low pressures in ModE-Sim 

(see also Appendix C3) suggests that these ‘additional’ temperature changes are largely The latter might indicate 

that lower temperatures were partly due to internal climate variability. not captured by the ModE-SIM ensemble 
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mean. This would support the suggestion by Auchmann et al. (2013) and Brönnimann and Krämer (2016) that 

additional cooling in the 1810s may have been attributable to the long-term effects of the 1809 ‘unknown 220 

eruption’, low solar activity and internal decadal variability in the ocean-atmosphere system (though it would 

suggest that solar activity might have played a less significant part). 

 

 

The similarity between ModE-RA and ModE-RAclim results from the profusion of data sources for this period 225 

and region - 4778 European observations were assimilated for April to September in 1816 alone (see Figure 6). 

These constrain ModE-RA and ModE-RAclim, but not ModE-Sim. We can see this from the SD ratios in Figure 

4d. The SD ratio measures the difference in spread between the ensembles of ModE-RA and ModE-Sim. An SD 

ratio of 1 means that both ensembles have the same standard deviation, i.e. nothing was assimilated or 

observations had no effect, while an SD ratio of 0 indicates an overconfident reanalysis since no uncertainty 230 

would remain. In general however, a lower SD ratio indicates where more information has been assimilated. In 

4d, we can see this over central and northern Europe, where the lower SD ratio suggests a more reliable 

reanalysis, or at least one that is closer to the observations.  

 

However, the SD ratio should not be the only measure of the dataset’s reliability. If we use ClimeApp to view 235 

global precipitation rather than temperature in 1816, we can see the disparity between the ModE datasets reverse:  

 

Figure 5. (a), (b) & (c) Global precipitation anomalies for June, July and August 1816, as compared to reference period 1799 

to 1821. Showing results from ModE-RA, ModE-Sim and ModE-RAclim respectively. (d) Standard deviation (SD) ratio of 

ModE-RA ensemble to ModE-Sim ensemble, showing significant constraint by observations only over Europe, coastal North 240 
America and SE India. 

Here, ModE-RA very closely matches ModE-Sim, but not ModE-RAclim. This is because, while the tropical 

monsoon should have been affected by Tambora (Marti and Ernst, 2009), there are few equatorial observations to 

capture this. ModE-RAclim is therefore unable to reconstruct significant changes in tropical precipitation. 

ModE-Sim meanwhile, includes physical mechanisms predicting extreme monsoon changes from volcanic 245 

aerosol forcing, and passes these on to ModE-RA. Interestingly, in the one tropical location that is more 
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constrained - southern India (see Fig. 5a) - ModE-RAclim does more closely match the predictions from ModE-

Sim. Results from both precipitation and temperature broadly agree with previous reconstructions (Brönnimann, 

2015, Fig. 4.23) and modelling (Wegmann et al., 2014, Figs. 3 and 4a). , though tThere are some regional 

differences though, such as  the absence of eastern European warming in Wegmann et al. (2014), and the 250 

presence of eastern European drying in Brönniman (2015) (as well as considerable cooling over Norway and 

Sweden) in precipitation which probablymight reflect improved modelling andor more comprehensive 

observations. 

 

 255 

Figure 6. ClimeApp ModE-RA sources plot, showing all assimilated observations for April to September 1816. By comparing 

the sources plot to the SD ratios (Figs. 4d and 5d), we can see which observations significantly constrain the ModE-RA 

ensemble for a particular variable. For example, instrumental data (red) noticeably constrains JJA temperatures in Europe (Fig. 

4d), but the documentary proxies (yellow) in Africa have only a minor effect on the ensemble (possibly because the proxies 

correlate only weakly with boreal summer temperatures). 260 

4.2 Compositing volcanic years 

To compare Tambora with other volcanic eruptions, we can use the Composites function in ClimeApp to view 

the temperature anomalies in 1816 alongside a composite of the anomalies following other major eruptions: 

Figure 7. (a) Composite of JJA temperature anomalies following the 12 largest volcanic eruptions, excluding Tambora, 265 
between 1422 and 2008, as measured by their impact on global stratospheric aerosol optical depth (Toohey and Sigl, 2017). 

Composited years are 1454, 1459, 1596, 1601, 1642, 1696, 1784, 1810, 1832, 1836, 1884 and 1992, corresponding to the 

maximum volcanic forcing following each eruption. Anomalies are calculated with respect to the three years preceding each 

composite year. (b) Temperature anomalies in 1816, following Tambora, as compared to the three years prior. 

Total Sources = 4778 
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In the ModE-RA dataset, we see considerably larger anomalies following Tambora than in the more general 270 

composite of other eruptions. While this could suggest other, non-volcanic effects on the European climate, it is 

likely that the more individual patterns of each eruption are smoothed out in the composite, generating the more 

homogeneous weaker cooling. In this case, compositing highlights the forced part of the volcanic signal, similar 

to running an ensemble of simulations. This would explain the similarity between Fig.ure 7a and Fig.ure 4b (the 

ensemble mean from ModE-Sim). The disparity may also partly result from the volcanic forcing following 275 

Tambora being approximately twice that of the composite sample or the fact that the composite volcanic years 

were also generally less constrained than 1816 and therefore closer to ModE-Sim.  

4.3 Removing the volcanic signal? 

Using ClimeApp, we can also attempt to remove the volcanic signal altogether from ModE-RA. The volcanic 

forcing data used in ModE-Sim (Toohey and Sigl, 2017), measures global volcanic forcing through reconstructed 280 

stratospheric aerosol optical depth (SAOD). ClimeApp’s linear Regression function can build a simple statistical 

model linking SAOD to European JJA temperatures. In principle this can ‘remove’ associated effects (at least 

according to the linear regression model), leaving the ‘residual’ temperature variation unrelated to volcanic 

forcing (Fig. 8c): 
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 285 

Figure 8. (a) Timeseries showing the ‘original’ European JJA temperatures (1422-2008) used to train the model and the 

predicted ‘trend’ in temperatures from the regression model. Note that both timeseries show the spatial average for each year, 

while the actual regression model consists of an original and trend for each point on the map. (b) Map showing the linear 

regression coefficients linking JJA temperature and global SAOD. (c) Residual European JJA temperatures in 1816.  
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The residuals (Fig. 8c) show significant non-volcanic anomalies in 1816, that generally match the results from 290 

the anomaly and composite analysis.  We can see the additional cooling over western Europe and concurrent 

warming of eastern Europe that may be associated with the low pressurelow-pressure system found in ModE-

RA. The regression coefficients (Fig. 8b) agree with the results from ModE-Sim, predicting a mostly 

homogenous cooling over the European landmass in response to aerosol forcing. However, any further 

conclusions are limited by the assumption of a linear relation between SAOD and JJA temperatures. This is 295 

unlikely, given the complex atmospheric dynamics governing the climate response to the radiative forcing 

(Brönnimann, 2015). Furthermore, the limited number of major eruptions reduces the reliability of any 

relationship drawn from a simple comparison of the data.  

4.4 Comparing ModE-RA to historical data 

Tambora didn’t only affect the climate, human society was also significantly impacted. At the turn of the 19 th 300 

century, grain prices were the most important indicator to measure the state of an economy (Ljungqvist et al., 

2022). Even if other factors such as demand, military conflicts and the quality of the harvest played a role, 

quantitative supply was an important determinant of price (Krämer, 2015). We would therefore expect a link 

between price data and temperatures during the growing season. This can be tested using a sample of bread price 

data from Lucerne, Switzerland and ClimeApp’s Correlation function:305 

 

Figure 9. Timeseries correlation showing JJA temperatures from 1750-1850 over central Europe and the average price of bread 

(“Weissbrot”) in Lucerne, Switzerland for the following year (Haas-Zumbühl, 1903). Timeseries correlation of r = -0.328, with 

a p value < 0.01. Prices are in Rappen per kg. Note that the following year bread price was used due to the lagged effect of 

temperature during the growing season on market prices. 310 

The timeseries correlation gives us an inverse correlation of r = -0.328. This implies a weak but general 

correlation between the growing season temperatures and grain prices, where low temperatures presumably led 

to a poor season and a spike in bread prices the following year. The connection is particularly visible after 

Tambora, where we see both a sharp rise in prices (in 1817) and a sudden temperature drop during the summer 

season of 1816. This coincided with unusually high precipitation, which may explain why we do not see a 315 

similar price spike in 1813 or 1821 when precipitation was moderate. Our results agree with previous work on 

Tambora, which demonstrated how adverse weather in Switzerland in 1816 played a crucial role in massively 

reduced crop yields. ( Flückiger et al., 2017). In the following year, this led to an increase in prices for grain and 

bread and widespread famine, particularly in eastern Switzerland (Brönnimann and Krämer, 2016). 
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5 Outlook 320 

5.1 Potential for humanities 

It is well known how intertwined climate and society have been over the last 1000 years (Pfister and Wanner, 

2021). Naturally, this has important implications for all sciences that concern themselves with humanity, but 

especially for history. An understanding of the climate can complement traditional historical approaches, adding 

a crucial dimension to our understanding of the past. As demonstrated in our case study, anomaly plots for 325 

specific years can illustrate how different regions were affected by extreme climate events. Correlations can 

measure statistical connections between climate and historical variables, ranging from crop yields and mortality 

rates to price data. Knowledge of climate history can also give us perspective on the current climate crisis, with 

historical examples employed as case studies for the impacts of a changing climate on human societies (Lamb, 

2002; Degroot et al., 2021). However, there are still challenges to interweaving the two disciplines. These 330 

include the heterogeneity of approaches, the diversity of disciplinary perspectives and often mutually 

unintelligible terminology (White et al., 2023). We can innovate to overcome these difficulties though however. 

There exists a growing collection of databases and tools for accessing documentary sources and climate data for 

use in historical climatology. Some primary examples include tambora.org (Riemann et al., 2015), Euro-Climhist 

(Pfister et al., 2017) and Climate Explorer (Trouet and van Oldenborgh, 2013). Each tool fulfils a different niche. 335 

Tambora.org and Euro-Climhist both provide a vast number of original sources and indexed data from 

(predominantly) human archives. This qualitative data - usually documentary data, but in the case of Euro-

Climhist also visual sources such as paintings – is extremely helpful for investigating and interpreting singular 

events or climatological trends. However, it is often sporadic and temporally and geographically inhomogeneous, 

hence the advantage of modelling and reanalysis products like ModE-RA and ModE-Sim. Climate Explorer 340 

meanwhile, is an excellent tool for accessing and analysing some older climate reconstructions, as well as 

modern instrumental data. However, its vast array of options and data can often be confusing for new users, and 

it does not give access to the ModE-RA very latest reanalysis data. 

 

This is where ClimeApp is able to provide a complimentary tool, utilizing a smaller range of data and functions, 345 

but via a far more user-friendly interface. ClimeApp provides highly customizable plots, along with helpful 

explanations where necessary. It also, uniquely, allows users to view all the sources behind the reanalysis data. 

Combined with the standard deviation ratios (see case study, section 4.1), these allow detailed assessment of the 

reliability and applicability of the reanalysis. For historians, this possibility to make source-attributed, 

publication suitable plots without coding skills is invaluable. Furthermore, for researchers using quantitative 350 

data, ClimeApp can be a convenient tool for correlation or regression analysis without needing external 

programmes. However, the most important feature of ClimeApp is that it uses the most extensive and modern 

global reanalysis for the climate of the last 600 years, which can be directly compared with historical socio-

economic time series. In general, the broad appeal of ClimeApp for the humanities lies in its simplification of 

accessing, visualising and analysing the latest reanalysis data.  355 

5.2 Potential for climate sciences 

We have already demonstrated some of ClimeApp’s potential for climate science in our case study, but a few 

further points are worth making here. First and foremost, ClimeApp can save researchers considerable time 



16 

 

creating field and timeseries plots that would otherwise have to be manually coded. As it incorporates many 

analysis methods used in historical climatology and paleoclimatology, climatologists studying the age before 360 

instrumental measurements will find the ModE data invaluable. Our case study showed how contrasting ModE-

RA, ModE-Sim and ModE-RAclim can give constructive insights into the causes of certain climate anomalies, 

while the source plots and SD ratio data can be used to assess the reliability and the limitations of ModE data. 

For the developers of ModE-RA, ClimeApp is particularly useful for testing their data, allowing them to quickly 

visualise and compare the datasets. Other researchers can use the app to assess new paleoclimate data, using the 365 

Correlation function to map correlations between their data and ModE-RA. For students and lecturers, we hope 

that ClimeApp makes advanced reanalysis data easily accessible for exercises and project work. Finally, 

ClimeApp can be a useful template for developing other Shiny projects, particularly those for processing and 

plotting complex data. The source code for the application is openly available (see Code availability) and can be 

freely adapted for other applications. 370 

6 Conclusions 

This paper summarized the functionality and potential of the new ClimeApp web application. It demonstrates 

how simple programsapplicationsprograms can be powerful tools to make specialized data available to all. The 

application provides historians, climatologists and other researchers quick access to state-of-the-art ModE 

climate reanalysis. Through a user-friendly interface, students and scientists can view and analyse the historical 375 

global climate with just a few clicks. Furthermore, and uniquely, ClimeApp allows detailed investigation of the 

sources used in a climate reconstruction. The ModE-RA sources tool displays the type and location of all proxies 

and documentary sources used to constrain the ModE-RA climate models, while the SD ratio statistical analysis 

quantifies their effect on the final data. RBy re-examining the Tambora eruption and the 1816 ‘year without a 

summer’ in 1816, we demonstrated how  ClimeApp can contribute to new scientific research. The tool was used 380 

to combinehow combining results from a reanalysis (ModE-RA), an ensemble of climate models ( ModE-Sim) 

and an observation-focused reconstruction ( ModE-RAclim), allowing us to both can help us interpret the 

reanalysis data and begin to separate different factors affecting the paleoclimate. In the case of Tambora, we 

identified the possible short-term effects of a low-pressure system over western Europe, which may well have 

exacerbated the volcanic cooling in 1816, while leading to warming in other areas. We also showed how 385 

ClimeApp’sthe correlation and regression functions can be used to combine ModE-RA with independent data, to 

identifying statistical relationships between climatic and non-climatic variables - in this case, volcanic forcing 

and Swiss bread prices.  

 

ClimeApp, created and developed by historians, geographers and climate scientists, is as good an example as any 390 

of the value of bridging science and humanities to advance interdisciplinary research. In this paper we have 

focussed on the app’s potential in our respective fields, but possible applications could be imagined in many of 

the social and physical sciences. Our hope is that researchers from various disciplines will benefit from using 

ClimeApp and ModE-RA, finding innovative and enlightening ways to integrate climate data into their own 

research. 395 
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Appendices 

Appendix A1: R libraries used by ClimeApp 

library(shiny) 

library(ncdf4) 400 

library(maps) 

library(shinyWidgets) 

library(RColorBrewer) 

library(shinyjs) 

library(bslib) 405 

library(readxl) 

library(xlsx) 

library(DT) 

library(zoo) 

library(colourpicker) 410 

library(tmaptools) 

library(ggplot2) 

library(sf) 

library(shinylogs) 

library(shinycssloaders) 415 

 

ClimeApp v1.0 uses R-version 4.3.2. 

Appendix B2: ClimeApp functions and data processing 

Behind the Shiny interface, the processing and analysis done by ClimeApp is relatively straightforward. 

ClimeApp utilises the set of R libraries in Appendix A1 to extract and process the raw ModE data into a format 420 

selected by the user. 

Anomalies 

The anomaly map function shows the spatial distribution of climate anomalies averaged over a user-

selected year range and month range. For example, June, July, August (JJA), 1501 to 1600 if your focus 

is boreal summer in the 16th century. The anomalies are created from 3 data products: 425 

1. Annual Means – a timeseries of annual means for each point on the map, created by averaging 

absolute ModE values across the selected month range.  

2. Reference Means – a single reference mean for each point on the map, created by averaging 

annual means across a chosen reference year range. 

3. Annual Anomalies – a timeseries of annual anomalies for each point on the map, created by 430 

subtracting the reference means from the annual means. 

The final anomalies shown are the time-averaged annual anomalies. These are plotted using the base R 

plotting functions along with the coastlines and borders from the maps package. The anomaly timeseries 

is generated by averaging the annual anomalies for each year.  
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 435 

For reference, the calculations behind each data product are as follows: 

 

The annual mean for a single year and single point on the map is given by the equation 

𝐴𝑛𝑛𝑢𝑎𝑙𝑀𝑒𝑎𝑛 = 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑉𝑎𝑙𝑢𝑒𝑠(𝑀) 

where M is the selected month range. 440 

 

The reference mean for a single year and point is given by  

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑀𝑒𝑎𝑛 = 𝐴𝑛𝑛𝑢𝑎𝑙𝑀𝑒𝑎𝑛𝑠(𝑌𝑟𝑒𝑓) 

where Yref is the selected reference year range.  

 445 

The annual anomaly for a single year and point is given by:  

𝐴𝑛𝑛𝑢𝑎𝑙𝐴𝑛𝑜𝑚𝑎𝑙𝑦 = 𝐴𝑛𝑛𝑢𝑎𝑙𝑀𝑒𝑎𝑛 − 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑀𝑒𝑎𝑛 

 

Note that in the case of ModE-RAclim, the base data is already in anomaly format, so anomalies are 

merely calculated by subtracting time-averaged anomalies from each other. 450 

 

The anomalies presented on the anomaly map and in the anomaly map data are given by 

𝐴𝑛𝑜𝑚𝑎𝑙𝑦(𝑚𝑎𝑝) = 𝐴𝑛𝑛𝑢𝑎𝑙𝑀𝑒𝑎𝑛𝑠(𝑌) − 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑀𝑒𝑎𝑛 = 𝐴𝑛𝑛𝑢𝑎𝑙𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠(𝑌) 

where Y is the selected year range. 

 455 

Anomalies presented on the timeseries map and timeseries data are given by  

𝐴𝑛𝑜𝑚𝑎𝑙𝑦(𝑡𝑖𝑚𝑒𝑠𝑒𝑟𝑖𝑒𝑠) = 𝐴𝑛𝑛𝑢𝑎𝑙𝑀𝑒𝑎𝑛𝑠(𝐿𝑜𝑛, 𝐿𝑎𝑡) − 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑀𝑒𝑎𝑛𝑠(𝐿𝑜𝑛, 𝐿𝑎𝑡)

= 𝐴𝑛𝑛𝑢𝑎𝑙𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠(𝐿𝑜𝑛, 𝐿𝑎𝑡) 

where Lon and Lat are the selected longitude and latitude range.  

Composites 460 

ClimeApp’s composite maps show the time-averaged anomalies for a set of non-consecutive years, 

which can be entered or uploaded by the user. The anomaly reference period can be a fixed set of 

consecutive years, a custom set of non-consecutive years or an individual reference period generated for 

each year based on the X (a number of years chosen by the user) years prior. Calculations and plotting 

are performed in the same way as for anomalies, except for anomalies compared to X years prior 465 

(XYP): 

1. XYP Reference Means – a set of reference means for each point on the map, one for each user-

selected year. Calculated by averaging the X preceding annual means. 

2. XYP Annual Anomalies – a set of annual anomalies for each point on the map. Created by 

subtracting the corresponding reference mean from each annual mean. 470 

To give an indication of the consistency of anomalies over the set of years in the composite, ClimeApp 

contains a ‘% sign match’ statistical tool. This marks regions where the annual anomalies that form the 

composite agree in their sign more often than a user-defined threshold, given in percent. For example, 
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for a composite of five years, with anomalies of -1°C, -5°C, 1°C, 15°C and -3°C, the displayed mean 

would be a positive 1.4°C, but only 40% of the years would match this, since 3 are in fact negative.  475 

Correlation 

The correlation function allows users to generate a map of correlation coefficients, comparing either 

ModE variables or user-uploaded timeseries. Using the cor() function from the stats R package (R Core 

Team, 2022), it can employ either the Pearson or Spearman’s Ranks correlation method. If both 

variables are in ‘field’ format, i.e. gridded map data, it performs a timeseries correlation of the annual 480 

means for each point on the map with the corresponding annual means for the second variable. If one 

variable is a timeseries however, it correlates each set of annual means with the same timeseries. In 

addition to the map, ClimeApp also produces a correlation timeseries, showing an annual timeseries of 

both variables (spatially averaged in the case of ModE variables) and a single correlation coefficient and 

p-value, calculated from those timeseries. The p-value shows the probability that the correlation was 485 

produced by random chance rather than an actual relationship between the variables. p < 0.05 is 

generally recommended for drawing legitimate conclusions. 

Regression 

In ClimeApp, regression operates in a similar way to correlation, performing a multiple linear 

regression analysis on a set of annual means. Using lm() from the stats R package, one or more 490 

independent variable timeseries are fitted to the dependent variable timeseries for each point on the map 

according to the model 

𝑉𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 = 𝛽1𝑉𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡1 + 𝛽2𝑉𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡2 +⋯+ 𝛼 + 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 

where β is the coefficient and α is the intercept. ClimeApp then plots the spatial average of the 

dependent variable, trend (β1VIndependent 1 + β2VIndependent 2 + …) and residual as a timeseries. Provided the 495 

dependent variable is a field, maps of the coefficients for each independent variable can be produced, as 

can maps of the p-values and residuals for each year.  

Annual Cycles 

This function shows the spatially averaged monthly ModE values over a given year or set of years. In 

the case of a set of years, these can be presented individually or as an average. 500 

Source Analysis and Further Statistical Functions 

The accuracy of ModE-RA is dependent on the availability and reliability of observations to constrain 

the model ensemble of ModE-Sim. To capture this, ClimeApp includes tools for visualizing the sources 

used to create ModE-RA and ModE-RAclim and the standard deviation (SD) ratio of the ModE-RA and 

ModE-Sim ensembles. The ModE-RA sources are presented as a semi-annual map showing the data 505 

points assimilated for each half-year, grouped by type and variable (see Figure 6). This allows the user 

to see where proxy, documentary or instrumental observations were integrated into the reconstruction 

and any gaps in the data. The SD ratio meanwhile, is the standard deviation of the ModE-Sim ensemble 

divided by the standard deviation of ModE-RA after the assimilation of observations: 
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𝑆𝐷𝑟𝑎𝑡𝑖𝑜 =
𝜎𝑀𝑜𝑑𝐸−𝑅𝐴𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒

𝜎𝑀𝑜𝑑𝐸−𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒

 510 

This gives a value between 0 and 1 for each month and grid point, with 1 showing no constraint (i.e. the 

ModE-RA output is the same as that of ModE-Sim and entirely generated from the models) and lower 

values showing increasing constraint by observations, meaning there are either more observations or 

that they are more ‘trusted’ by the reconstruction. The temporal mean of the SD ratio can be presented 

in ClimeApp as a contour map or grid-point overlay on the anomaly maps.  515 

 

On timeseries plots, users have the option to add percentiles and moving averages. The moving 

averages are calculated using a rolling mean of timeseries values over a number of years selected by the 

user (default 11). To generate the percentiles, a Shapiro-Wilk test (Shapiro and Wilk, 1965) is first 

conducted on the timeseries data. If the data is normally distributed, which is rare for ModE timeseries, 520 

then percentiles are calculated from the mean and standard deviation of the timeseries using the qnorm() 

function from the stats package. If the distribution is non-normal, ClimeApp instead finds the value 

corresponding to the quantile matching the users selection (i.e. for the 0.95 percentile, it returns values 

that 5% of all values are above/below), using the quantile() function from the stats package. 

  525 
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Appendix C3: Sea level pressure and 500hPa geopotential height anomalies for boreal summer (June to 

August, JJA) 1816, as compared to reference period 1799 to 1821. Showing results from ModE-RA - (a) & 

(c), and ModE-Sim - (b) & (d). 

 



22 

 

Appendix D4: Current limitations and future development 530 

The data available in ClimeApp is currently limited to ModE-RA, ModE-Sim and ModE-RAclim, and only four 

variables within those datasets. There are limited options for users to upload and process other data, but the 

format of this data is currently restricted to annual time series. The web app’s ability to host a large number of 

users at the same time is also constrained by current processing power. To address some of these issues and to 

add further functionality to ClimeApp, a four stagefour-stage development plan has been devised: 535 

 

1. Facilitation • Interactive map to look at ModE-RA sources as an access point for the ModE-RA 

feedback archive, a database detailing each used source 

• Several video tutorials to facilitate the use of ClimeApp 

• Obtain funding and increase available processing power to reduce loading times and 

facilitate multiple simultaneous users  

2. Optimization • Optimized and stream-lined plotting (e.g. various projections for global maps, 

pacific centred plotting) 

 • More options for customization (e.g. for regression and correlation) 

 • Ability to export georeferenced raster and vector files for usage in GIS 

3. Implementation • Access to individual ModE-Sim ensemble members for more detailed study 

 • Access to more variables from ModE-RA, such as wind speed and direction 

 • Possibility for users to upload their own georeferenced data for purposes of plotting, 

averaging and correlation/regression against the ModE-RA data 

4. Cooperation • API for other web-based research environments such as nodegoat (van Bree and 

Kessels, 2013) 
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Appendix E5: Experience documentation, outreach and feedback 

ClimeApp underwent extensive internal and external testing before being deployed for general use. The beta 

version was introduced during a summer school in summer 2023 (Huhtamaa and Hibberts, 2024) and later 540 

trialled at several workshops and conferences, with both historians and climatologists. The initial user 

interactions and resulting valuable feedback included (but was not limited to): The addition of help texts to 

explain the different functions and options; the implementation of an interactive map of all ModE-RA sources to 

allow detailed source evaluation; faster data processing; more options for composite analysis; the addition of 

reference maps to see the reference and absolute values for anomalies; customization options for plots; and 545 

facility for multiple simultaneous users. This feedback was documented and either implemented or road mapped 

for future development (see Appendix C3). 

 

The current version of ClimeApp has already been included in the curriculum of two courses at the University of 

Bern: Brönnimann, 2023, Climatology III (Climate variability and change); and Huhtamaa, 2023, Climate and 550 

Society in History. It will also be included in further courses at the University of Bern from 2024 onwards 

including a fourthre-e session workshop introducing ClimeApp and its applications. 

 

The full application was launched in early 2024 and presented at the EGU conference in Vienna and the Climate 

of the Past and Societal Responses to Environmental Changes conference in Bern. 555 

ClimeApp has its own feedback and suggestion email address (climeapp.hist@unibe.ch), presented on the 

Welcome page, where users can report any issues and suggest improvements. These are then considered by the 

developers before being added to the application’s Trello page (https://trello.com/b/3hKu3RlL/climeapp-

development), where users to track their suggestions and see what we are currently working on. These 

contributions are vital for making ClimeApp as useful and user-friendly as possible. 560 

7 Appendices 

Appendix 1: R libraries used by ClimeApp 

library(shiny) 

library(ncdf4) 

library(maps) 565 

library(shinyWidgets) 

library(RColorBrewer) 

library(shinyjs) 

library(bslib) 

library(readxl) 570 

library(xlsx) 

library(DT) 

library(zoo) 

library(colourpicker) 

library(tmaptools) 575 

library(ggplot2) 
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library(sf) 

library(shinylogs) 

library(shinycssloaders) 

 580 

ClimeApp v1.0 uses R-version 4.3.2. 

Appendix 2: ClimeApp functions and data processing 

Behind the Shiny interface, the processing and analysis done by ClimeApp is relatively straightforward. 

ClimeApp utilises the set of R libraries in Appendix 1 to extract and process the raw ModE data into a format 

selected by the user. 585 

Anomalies 

The anomaly map function shows the spatial distribution of climate anomalies averaged over a user-

selected year range and month range. For example, June, July, August (JJA), 1501 to 1600 if your focus 

is boreal summer in the 16th century. The anomalies are created from 3 data products: 

4. Annual Means – a timeseries of annual means for each point on the map, created by averaging 590 

absolute ModE values across the selected month range.  

5. Reference Means – a single reference mean for each point on the map, created by averaging 

annual means across a chosen reference year range. 

6. Annual Anomalies – a timeseries of annual anomalies for each point on the map, created by 

subtracting the reference means from the annual means. 595 

The final anomalies shown are the time-averaged annual anomalies. These are plotted using the base R 

plotting functions along with the coastlines and borders from the maps package. The anomaly timeseries 

is generated by averaging the annual anomalies for each year.  

 

For reference, the calculations behind each data product are as follows: 600 

 

The annual mean for a single year and single point on the map is given by the equation 

𝐴𝑛𝑛𝑢𝑎𝑙𝑀𝑒𝑎𝑛 = 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑉𝑎𝑙𝑢𝑒𝑠(𝑀) 

where M is the selected month range. 

 605 

The reference mean for a single year and point is given by  

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑀𝑒𝑎𝑛 = 𝐴𝑛𝑛𝑢𝑎𝑙𝑀𝑒𝑎𝑛𝑠(𝑌𝑟𝑒𝑓) 

where Yref is the selected reference year range.  

 

The annual anomaly for a single year and point is given by:  610 

𝐴𝑛𝑛𝑢𝑎𝑙𝐴𝑛𝑜𝑚𝑎𝑙𝑦 = 𝐴𝑛𝑛𝑢𝑎𝑙𝑀𝑒𝑎𝑛 − 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑀𝑒𝑎𝑛 

 

Note that in the case of ModE-RAclim, the base data is already in anomaly format, so anomalies are 

merely calculated by subtracting time-averaged anomalies from each other. 

 615 
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The anomalies presented on the anomaly map and in the anomaly map data are given by 

𝐴𝑛𝑜𝑚𝑎𝑙𝑦(𝑚𝑎𝑝) = 𝐴𝑛𝑛𝑢𝑎𝑙𝑀𝑒𝑎𝑛𝑠(𝑌) − 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑀𝑒𝑎𝑛 = 𝐴𝑛𝑛𝑢𝑎𝑙𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠(𝑌) 

where Y is the selected year range. 

 

Anomalies presented on the timeseries map and timeseries data are given by  620 

𝐴𝑛𝑜𝑚𝑎𝑙𝑦(𝑡𝑖𝑚𝑒𝑠𝑒𝑟𝑖𝑒𝑠) = 𝐴𝑛𝑛𝑢𝑎𝑙𝑀𝑒𝑎𝑛𝑠(𝐿𝑜𝑛, 𝐿𝑎𝑡) − 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑀𝑒𝑎𝑛𝑠(𝐿𝑜𝑛, 𝐿𝑎𝑡)

= 𝐴𝑛𝑛𝑢𝑎𝑙𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠(𝐿𝑜𝑛, 𝐿𝑎𝑡) 

where Lon and Lat are the selected longitude and latitude range.  

Composites 

ClimeApp’s composite maps show the time-averaged anomalies for a set of non-consecutive years, 625 

which can be entered or uploaded by the user. The anomaly reference period can be a fixed set of 

consecutive years, a custom set of non-consecutive years or an individual reference period generated for 

each year based on the X (a number of years chosen by the user) years prior. Calculations and plotting 

are performed in the same way as for anomalies, except for anomalies compared to X years prior 

(XYP): 630 

3. XYP Reference Means – a set of reference means for each point on the map, one for each user-

selected year. Calculated by averaging the X preceding annual means. 

4. XYP Annual Anomalies – a set of annual anomalies for each point on the map. Created by 

subtracting the corresponding reference mean from each annual mean. 

To give an indication of the consistency of anomalies over the set of years in the composite, ClimeApp 635 

contains a ‘% sign match’ statistical tool. This marks regions where the annual anomalies that form the 

composite agree in their sign more often than a user-defined threshold, given in percent. For example, 

for a composite of five years, with anomalies of -1°C, -5°C, 1°C, 15°C and -3°C, the displayed mean 

would be a positive 1.4°C, but only 40% of the years would match this, since 3 are in fact negative.  

Correlation 640 

The correlation function allows users to generate a map of correlation coefficients, comparing either 

ModE variables or user-uploaded timeseries. Using the cor() function from the stats R package (R Core 

Team, 2022), it can employ either the Pearson or Spearman’s Ranks correlation method. If both 

variables are in ‘field’ format, i.e. gridded map data, it performs a timeseries correlation of the annual 

means for each point on the map with the corresponding annual means for the second variable. If one 645 

variable is a timeseries however, it correlates each set of annual means with the same timeseries. In 

addition to the map, ClimeApp also produces a correlation timeseries, showing an annual timeseries of 

both variables (spatially averaged in the case of ModE variables) and a single correlation coefficient and 

p-value, calculated from those timeseries. The p-value shows the probability that the correlation was 

produced by random chance rather than an actual relationship between the variables. p < 0.05 is 650 

generally recommended for drawing legitimate conclusions. 
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Regression 

In ClimeApp, regression operates in a similar way to correlation, performing a multiple linear 

regression analysis on a set of annual means. Using lm() from the stats R package, one or more 

independent variable timeseries are fitted to the dependent variable timeseries for each point on the map 655 

according to the model 

𝑉𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 = 𝛽1𝑉𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡1 + 𝛽2𝑉𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡2 +⋯+ 𝛼 + 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 

where β is the coefficient and α is the intercept. ClimeApp then plots the spatial average of the 

dependent variable, trend (β1VIndependent 1 + β2VIndependent 2 + …) and residual as a timeseries. Provided the 

dependent variable is a field, maps of the coefficients for each independent variable can be produced, as 660 

can maps of the p-values and residuals for each year.  

Annual Cycles 

This function shows the spatially averaged monthly ModE values over a given year or set of years. In 

the case of a set of years, these can be presented individually or as an average. 

Source Analysis and Further Statistical Functions 665 

The accuracy of ModE-RA is dependent on the availability and reliability of observations to constrain 

the model ensemble of ModE-Sim. To capture this, ClimeApp includes tools for visualizing the sources 

used to create ModE-RA and ModE-RAclim and the standard deviation (SD) ratio of the ModE-RA and 

ModE-Sim ensembles. The ModE-RA sources are presented as a semi-annual map showing the data 

points assimilated for each half-year, grouped by type and variable (see Figure 6). This allows the user 670 

to see where proxy, documentary or instrumental observations were integrated into the reconstruction 

and any gaps in the data. The SD ratio meanwhile, is the standard deviation of the ModE-Sim ensemble 

divided by the standard deviation of ModE-RA after the assimilation of observations: 

𝑆𝐷𝑟𝑎𝑡𝑖𝑜 =
𝜎𝑀𝑜𝑑𝐸−𝑅𝐴𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒

𝜎𝑀𝑜𝑑𝐸−𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒

 

This gives a value between 0 and 1 for each month and grid point, with 1 showing no constraint (i.e. the 675 

ModE-RA output is the same as that of ModE-Sim and entirely generated from the models) and lower 

values showing increasing constraint by observations, meaning there are either more observations or 

that they are more ‘trusted’ by the reconstruction. The temporal mean of the SD ratio can be presented 

in ClimeApp as a contour map or grid-point overlay on the anomaly maps.  

 680 

On timeseries plots, users have the option to add percentiles and moving averages. The moving 

averages are calculated using a rolling mean of timeseries values over a number of years selected by the 

user (default 11). To generate the percentiles, a Shapiro-Wilk test (Shapiro and Wilk, 1965) is first 

conducted on the timeseries data. If the data is normally distributed, which is rare for ModE timeseries, 

then percentiles are calculated from the mean and standard deviation of the timeseries using the qnorm() 685 

function from the stats package. If the distribution is non-normal, ClimeApp instead finds the value 

corresponding to the quantile matching the users selection (i.e. for the 0.95 percentile, it returns values 

that 5% of all values are above/below), using the quantile() function from the stats package. 
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Appendix 3: Current limitations and future development 

The data available in ClimeApp is currently limited to ModE-RA, ModE-Sim and ModE-RAclim, and only four 690 

variables within those datasets. There are limited options for users to upload and process other data, but the 

format of this data is currently restricted to annual time series. The web app’s ability to host a large number of 

users at the same time is also constrained by current processing power. To address some of these issues and to 

add further functionality to ClimeApp, a four stage development plan has been devised: 

 695 

1. Facilitation • Interactive map to look at ModE-RA sources as an access point for the ModE-RA 

feedback archive, a database detailing each used source 

• Several video tutorials to facilitate the use of ClimeApp 

• Obtain funding and increase available processing power to reduce loading times and 

facilitate multiple simultaneous users  

2. Optimization • Optimized and stream-lined plotting (e.g. various projections for global maps, 

pacific centred plotting) 

 • More options for customization (e.g. for regression and correlation) 

 • Ability to export georeferenced raster and vector files for usage in GIS 

3. Implementation • Access to individual ModE-Sim ensemble members for more detailed study 

 • Access to more variables from ModE-RA, such as wind speed and direction 

 • Possibility for users to upload their own georeferenced data for purposes of plotting, 

averaging and correlation/regression against the ModE-RA data 

4. Cooperation • API for other web-based research environments such as nodegoat (van Bree and 

Kessels, 2013) 

Appendix 4: Experience documentation, outreach and feedback 

ClimeApp underwent extensive internal and external testing before being deployed for general use. The beta 

version was introduced during a summer school in summer 2023 (Huhtamaa and Hibberts, 2024) and later 

trialled at several workshops and conferences, with both historians and climatologists. The initial user 

interactions and resulting valuable feedback included (but was not limited to): The addition of help texts to 700 

explain the different functions and options; the implementation of an interactive map of all ModE-RA sources to 

allow detailed source evaluation; faster data processing; more options for composite analysis; the addition of 

reference maps to see the reference and absolute values for anomalies; customization options for plots; and 

facility for multiple simultaneous users. This feedback was documented and either implemented or road mapped 

for future development (see Appendix 3). 705 

 

The current version of ClimeApp has already been included in the curriculum of two courses at the University of 

Bern: Brönnimann, 2023, Climatology III (Climate variability and change); and Huhtamaa, 2023, Climate and 

Society in History. It will also be included in further courses at the University of Bern from 2024 onwards 

including a three session workshop introducing ClimeApp and its applications. 710 
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The full application was launched in early 2024 and presented at the EGU conference in Vienna and the Climate 

of the Past and Societal Responses to Environmental Changes conference in Bern. 

ClimeApp has its own feedback and suggestion email address (climeapp.hist@unibe.ch), presented on the 

Welcome page, where users can report any issues and suggest improvements. These are then considered by the 715 

developers before being added to the application’s Trello page (https://trello.com/b/3hKu3RlL/climeapp-

development), where users to track their suggestions and see what we are currently working on. These 

contributions are vital for making ClimeApp as useful and user-friendly as possible. 

Code availability 

The essential code of ClimeApp – app.R and helpers.R – is available on the projects GitHub page. 720 

https://github.com/ClimeApp/ClimeApp_development 

Data availability 

The Mode-RA database can be downloaded at: https://www.palaeo-ra.unibe.ch/data_access/ 
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