

1 **Evaluating CHASERV4.0 global formaldehyde (HCHO) simulations**
2 **using satellite, aircraft, and ground-based remote sensing observations**

3 Hossain Mohammed Syedul Hoque¹, Kengo Sudo^{1,2}, Hitoshi Irie³, Yanfeng He¹, and Md Firoz Khan⁴

4 ¹Graduate School of Environmental Studies, Nagoya University, Nagoya, 4640064, Japan

5 ²Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, 2370061, Japan

6 ³Center for Environmental Remote Sensing (CEReS), Chiba University, Chiba, 2638522, Japan

7 ⁴Department of Environmental Science and Management, North South University, Bangladesh

8

9

10

11 *Correspondence to:* Hossain Mohammed Syedul Hoque (hoquesyedul@gmail.com;
12 hoque.hossain.mohammed.syedul.u6@f.mail.nagoya-u.ac.jp)

13 **Abstract**

14 Formaldehyde (HCHO), a precursor to tropospheric ozone, is an important tracer of volatile organic
15 compounds (VOCs) in the atmosphere. Two years (2019 -2020) of HCHO simulations obtained from the
16 global chemistry transport model CHASER at a horizontal resolution of $2.8^\circ \times 2.8^\circ$ have been evaluated
17 using the Tropospheric Ozone Monitoring Experiment (TROPOMI) and multi-axis differential optical
18 absorption spectroscopy (MAX-DOAS) observations. In-situ measurements from the Atmospheric
19 Tomography Mission (ATom) in 2018 were used to evaluate the HCHO simulations for 2018. CHASER
20 reproduced the TROPOMI-observed global HCHO spatial distribution with a spatial correlation (r) of
21 0.93 and a negative bias of 7%. The model showed good capability for reproducing the observed
22 magnitude of the HCHO seasonality in different regions, including the background conditions. The
23 discrepancies between the model and satellite in the Asian regions were related mainly to the
24 underestimated and missing anthropogenic emission inventories. The maximum difference between two
25 HCHO simulations based on two different nitrogen oxide (NO_x) emission inventories was 20%.
26 TROPOMI's finer spatial resolution than that of the Ozone Monitoring Experiment (OMI) sensor reduced
27 the global model–satellite root-mean-square-error (RMSE) by 20%. The OMI and TROPOMI observed
28 seasonal variations in HCHO abundances were consistent. The simulated seasonality showed better
29 agreement with TROPOMI in most regions. The simulated HCHO and isoprene profiles correlated
30 strongly ($R = 0.81$) with the ATom observations. However, CHASER overestimated HCHO mixing ratios
31 over dense vegetation areas in South America and the remote Pacific (background condition) regions,
32 mainly within the planetary boundary layer (<2 km). The simulated seasonal variations in the HCHO
33 columns showed good agreement ($R > 0.70$) with the MAX-DOAS observations and agreed within the 1-

34 sigma standard deviation of the observed values. However, the temporal correlation ($R\sim 0.40$) was
35 moderate on the daily scale. CHASER underestimated the HCHO levels at all sites, and the peak
36 occurrence in the observed and simulated HCHO seasonality differed. The coarse model resolution can
37 potentially lead to such discrepancies. Sensitivity studies showed that anthropogenic emissions were the
38 highest contributor (up to $\sim 35\%$) to the winter-time regional HCHO levels.

39 **1 Introduction**

40 Formaldehyde (HCHO), the most abundant carbonyl compound in the atmosphere, is a high-yield
41 oxidation product of all primary biogenic and anthropogenic non-methane volatile organic compounds
42 (NMVOCs). Methane (CH_4) oxidization produces background HCHO concentrations of 0.2–1.0 ppbv
43 (Burkert et al., 2001; Singh et al., 2004; Sinreich et al., 2005; Weller et al., 2000). Along with secondary
44 sources (i.e., oxidization of NMVOCs), biomass burning, industrial processes, and fossil fuel combustions
45 are primary HCHO emission sources (Fu et al., 2008; Hak et al., 2005; Lee et al., 1997). However, the
46 oxidization of NMVOCs drives the spatial variability of HCHO on a global scale (Franco et al., 2015).
47 The HCHO removal mechanisms include photolysis at wavelengths below 400 nm, oxidization by
48 hydroxyl radicals (OH), and wet deposition. The atmospheric lifetime of HCHO is around a few hours
49 (Arlander et al. 1995). Therefore, HCHO observations can help elucidate chemical processes in the
50 atmosphere. A few examples are the following: (1) the ozone (O_3) production regime can be determined
51 from the HCHO to nitrogen dioxide (NO_2) ratio (Duncan et al., 2010; Hoque et al., 2022; Martin et al.,
52 2004); (2) midday OH levels can be quantified from the oxidation of isoprene into HCHO (Kaisar et al.,
53 2015); and (3) HCHO, being an intermediate product in oxidation chain of NMVOCs, engenders the
54 formation of carbon monoxide (CO) and carbon dioxide (CO_2). Consequently, CO chemical production
55 from NMVOCs and CH_4 can be quantified from HCHO measurements (De Smedt et al., 2021).

56

57 Given its importance, global HCHO observations started in 1995 with the launch of the nadir viewing
58 ultraviolet (UV) sensor Global Ozone Monitoring Experiment (GOME; Burrows et al., 1997). Since then,
59 numerous sensors have succeeded: SCanning Imaging Absorption Spectrometer for Atmospheric
60 CHartographY (SCIAMACHY; De Smedt et al., 2008, 2010; Wittrock et al., 2006) onboard the
61 ENVISAT satellite, Ozone Monitoring Instrument (OMI) (Levelt et al., 2018), Global Ozone Monitoring
62 Experiment – 2 (GOME-2) (Munro et al., 2016), and Ozone Mapping and Profiler Suite (González Abad

63 et al., 2016, new reference). The HCHO observations from these sensors have been used extensively to
64 evaluate models, air quality, and climate change (Chutia et al., 2019; De Smedt et al., 2010, 2012, 2015;
65 Hoque et al., 2022). The Tropospheric Ozone Monitoring Instrument (TROPOMI) (De Smedt et al., 2021;
66 Veefkind et al., 2012), launched on the European Copernicus Sentinel-5 Precursor (S5P) satellite on
67 October 13, 2017, is the recent addition to the series of nadir viewing UV sensors providing HCHO data.
68 The unprecedented original spatial resolution of $3.5 \times 7 \text{ km}^2$ (across-track \times along-track) refined to $3.5 \times$
69 5.5 km^2 on August 6, 2019, is the crucial feature of TROPOMI. Such spatial resolution is almost 16 times
70 finer than its predecessor, OMI (De Smedt et al., 2021). Such high-resolution observations will likely
71 reduce uncertainties in the HCHO products for multiple research purposes.

72

73 Several studies using the TROPOMI HCHO product have been reported in the literature. De Smedt et al.
74 (2021) and Vigouroux et al. (2020) have validated TROPOMI HCHO comprehensively against MAX-
75 DOAS and FTIR networks. Both studies have concluded that TROPOMI HCHO products have achieved
76 the pre-launch accuracy requirement of $< 40\text{--}80\%$. Ryan et al. (2021) and Chan et al. (2020) reported
77 good agreement (temporal correlation, $R > 0.70$) between TROPOMI and MAX-DOAS in Melbourne
78 and Munich. In addition to validation studies, HCHO products have been used to infer changes in the
79 global HCHO levels during the COVID-19 pandemic-led shutdown (Level et al., 2022; Souri et al., 2021;
80 Su et al., 2021), demonstrating the role of anthropogenic emission on global HCHO variability.

81 Among the multitude of applications of TROPOMI HCHO observations, few efforts have specifically
82 evaluated HCHO simulations from global chemistry transport models (CTMs). This work evaluates the
83 global Chemical Atmospheric General Circulation Model for the Study of Atmospheric Environment and
84 Radiative Forcing (CTM CHASER) (Sekiya & Sudo, 2014; Sudo et al., 2002, 2007) simulated HCHO
85 spatiotemporal distribution against TROPOMI HCHO observations. In addition, airborne and ground-
86 based observations are used to validate the simulated HCHO profiles and surface mixing ratios in a few
87 regions. CHASER simulations of NO_2 , OH , and O_3 have been evaluated against satellite and ground-
88 based observations (e.g., Sekiya & Sudo, 2014; Sekiya et al., 2018). Moreover, CHASER is a forward
89 model in the chemical reanalysis system (TCR) developed by Miyazaki et al. (2017, 2020). The model
90 simulations are performed at a horizontal resolution of $2.8^\circ \times 2.8^\circ$ (T42). Although the model can run at

91 higher resolutions, T42 is the most commonly used framework for CHASER applications. Therefore, it
92 is used for this study.

93 Hoque et al. (2022) validated CHASER-simulated NO₂ and HCHO against OMI and MAX-DOAS
94 observations for 2017. CHASER showed good skills in reproducing the OMI- (spatial correlation, $r =$
95 0.74) and MAX-DOAS- (temporal correlation $R > 0.80$) observed HCHO abundances. The study found
96 that biomass burning contributes ~50% to the HCHO levels observed at the site in Thailand. However,
97 the limitations of the study are: (1) Simulated HCHO partial column and profile were evaluated against
98 MAX-DOAS observation on a seasonal scale only, (2) Model sensitivity studies were site-specific, thus
99 providing no global statistics on emission contribution, and (3) Satellite observations were used as
100 supporting datasets; thus the model-satellite comparison has not been comprehensive. This study utilizes
101 multi-satellite (TROPOMI and OMI) HCHO observations, different NO_x emission inventories, aircraft
102 measurements, and daily and diurnal MAX-DOAS data to provide robust and comprehensive statistics
103 on the model HCHO simulations.

104

105

106 **2 Model, observations, and methods**

107 **2.1 CHASER**

108 CHASER 4.0 (ver. 4) is a global CTM that studies the atmospheric environment and radiative forcing. It
109 is coupled online with the MIROC atmospheric general circulation model (AGCM) and the SPRINTAS
110 aerosol transport model (Takemura et al., 2005, 2009). The latest version of CHASER (Ha et al., 2023;
111 He et al., 2022) entails several updates, including the formation of aerosol species and related chemistry,
112 radiation, and cloud processes.

113 Through 263 multi-phase (gaseous, aqueous, and heterogenous) chemical reactions, CHASER calculates
114 the concentrations of 92 species considering the chemical cycle of O₃ – NO_x (nitrogen oxides) – HO_x
115 (hydrogen oxides) -CH₄-CO along with oxidation of NMVOCs (Ha et al., 2023; He et al., 2022; Hoque
116 et al., 2022; Miyazaki et al., 2017; Sekiya et al., 2023). The chemical mechanism is adopted mainly from
117 the master chemical mechanism (MCM) (Jenkin et al., 2015). The stratospheric O₃ chemistry simulations
118 are based on the Chapman mechanisms, the catalytic reaction of halogen oxides, and polar stratospheric
119 clouds. The dry and wet depositions are calculated based on resistance-based parameterization (Wesley
120 et al., 1984), cumulus convection, and large-scale condensation parameterization. Advection trace

121 transport is calculated using the piecewise parabolic method (Colella & Woodward, 1984) and flux-form
122 semi-Lagrangian schemes. Tracer transport is simulated on a sub-grid scale in the framework of the
123 prognostic Arakawa–Schubert cumulus convection scheme (Emori et al., 2001) and vertical diffusion
124 scheme (Mellor & Yamada, 1974). The simulations were performed at a horizontal resolution of $2.8^\circ \times$
125 2.8° , with 36 vertical layers from the surface to approx. 50 km altitude, with a 20 min time step. At every
126 time step, meteorological fields obtained from the MIROC AGCM were nudged toward the 6-hourly
127 NCEP FNL reanalysis data.

128 CHASER incorporates emissions from biomass burning, anthropogenic sources, lightning, and soil.
129 Anthropogenic NO_x emissions for 2018 are obtained from the HTAP_v3 inventory (Crippa et al., 2023).
130 Other anthropogenic emissions are taken from the HTAPv2.2 for 2008 and the biomass burning emissions
131 from MACC-GFAS (Inness et al., 2013). The monthly soil NO_x emissions derived from Yienger and Levy
132 (1995) are constant each year. Biogenic emissions of VOCs are obtained from a process-based
133 biogeochemical model: the Vegetation Integrative Simulator for trace gases (VISIT) (Ito and Inatomi,
134 2012). VISIT is a part of the CHASER modeling framework and incorporates the biogenic flux estimate
135 scheme of Guenther et al. (1997) (Ito et al., 2022). The global isoprene emissions in VISIT and CAMS
136 global biogenic emission inventory (Sinderolova et al., 2022; based on MEGANv2.1) are 400 and 450
137 TgC/yr, respectively. Lightning NO_x production estimates are based on the parameterization of Price and
138 Rind (1992) and linked to the convection scheme of the AGCM. Global NO_x emissions in CHASER are
139 set to 43.80 TgN/yr considering industrial production (23.10 TgN /yr), biomass burning (9.65 TgN/yr),
140 soil (5.50 TgN /yr), lightning (5 TgN/yr), and aircraft (0.55 TgN/yr) as significant emission sources.
141 Annual monoterpene, acetone, and other non-methane volatile organic compound (ONMV) emissions are
142 102, 20, and 60 TgC/yr, respectively. Direct emissions of HCHO from anthropogenic sources and biomass
143 burning are not considered in CHASER. However, secondary production of HCHO from VOCs (C_2H_6 ,
144 C_3H_8 , C_2H_4 , C_3H_6 , CH_3COCH_3 , ONMV) emitted directly from anthropogenic and pyrogenic sources is
145 considered.

146 Sekiya et al. (2018) comprehensively assessed CHASER simulated NO_2 abundances using OMI
147 observations. CHASER well reproduced the ATom-observed OH spatiotemporal variation (Sekiya et al.,
148 2018). The quality of O_3 simulations has been explained in the work of Sudo et al. (2014). Ha et al. (2023)
149 and He et al. (2022) updated the heterogeneous chemistry and lightning NO_x scheme, respectively. These
150 updates have not been considered in the current study. The effect of these updates on the HCHO

151 simulations will be addressed in a separate study. Multiple simulations with varying emission inputs were
152 performed for the study. They are presented in Table 1.

153 **Table 1.** Combinations of emission inventories for different simulations used in this study

Simulation name	NO _x emissions	Biogenic emissions	Anthropogenic VOC emissions	Biomass burning
Standard	HTAP_v3	ON	ON	ON
ANI ^a	HTAP_v3	ON	Increased three-fold	ON
OLNE ^b	HTAP_v2.2	ON	ON	ON
Biogenic_off	HTAP_v3	OFF	ON	ON
Anthropogenic_off	HTAP_v3	ON	OFF	ON
Biomass_off	HTAP_v3	ON	ON	OFF

154 ^a Anthropogenic VOC emission increased by three folds (ANI), ^bSimulation using old NO_x emissions (OLNE)

155
156
157 To account for the altitude dependence of TROPOMI observations, averaging kernel (AK) information
158 obtained from the level (L2) files was applied to all simulations following the method of Sekiya et al.
159 (2018). First, the simulated HCHO profiles were sampled closest to the TROPOMI overpass of 13:30 LT
160 (Local Time). Secondly, AKs averaged on a 2.8° bin grid were applied to the sampled profiles. Then, the
161 total column was calculated. Thirdly, the AK-applied model columns on the available measurement days
162 were selected.

163 **2.2 TROPOMI**

164 The TROPOMI operational L2 offline (OFFL) HCHO vertical column density (VCD) (ver. 1.1.5.7) data
165 from 2019 to 2020 have been used for this study. The S5P TROPOMI HCHO L2 product user manual
166 (Veefkind et al., 2012) provides a detailed product description. The TROPOMI HCHO retrieval
167 algorithm is based on the DOAS technique, adapted directly from the OMI QA4ECV product retrieval
168 algorithm (De Smedt et al., 2017). The three-step retrieval algorithm was explained explicitly by De
169 Smedt et al. (2018). Slant columns were retrieved from the UV part of the spectra (Channel 3) in a 328.5–
170 358 nm fitting window. The HCHO cross-section data reported by Meller and Moortgatt (2000) were
171 used to fit the spectra. All the cross-sections were convolved with the instrument slit function (adjusted
172 after the launch) for every row separately. Spectra averaged over the tropical Pacific region from the prior
173 day were used as reference spectra for the DOAS fit (De Smedt et al., 2021; Vigouroux et al., 2020). The

174 slant columns, therefore, exceed the average Pacific background HCHO levels because they were derived
 175 from the local and reference spectrum differences. The slant columns were converted to tropospheric
 176 columns (N_v) using a look-up table of vertically resolved air mass factors (M) at 340 nm calculated with
 177 the radiative transfer model VILDORT v2.6 (Spurr, 2008). The value of M depends on the observation
 178 geometry, surface albedo, cloud properties, and a priori profiles of HCHO. The surface albedo at a spatial
 179 resolution of $1^\circ \times 1^\circ$ was extracted from the monthly OMI albedo climatology (Kleipool et al., 2008).
 180 Daily HCHO a priori profiles were obtained from TM5-MP CTM at a similar spatial resolution. The
 181 independent pixel approximation (Boersma et al., 2004) approach was applied to pixels with cloud
 182 fractions greater than 0.1. Background correction was performed based on HCHO slant columns from the
 183 five prior days over the Pacific Ocean to account for any remaining global offsets and stripes (De Smedt
 184 et al., 2021). Background HCHO contribution from CH_4 oxidation in the reference region is calculated
 185 with TM5-MP. The resulting HCHO tropospheric column is calculated using equation (1):

$$186 \quad N_v = \frac{N_s - N_{s,o}}{M} + \frac{M_o}{M} * N_{v,0}^{CTM} \quad (1)$$

187 where M_o is the air mass factor of the reference sector. Following De Smedt et al. (2021), the following
 188 filters ensured the data quality: (1) cloud fraction less than 0.3, (2) quality assurance values greater than
 189 0.5, (3) retrievals with solar zenith angle (SZA) less than 70° , (4) surface albedo less than 0.1, and (5) air
 190 mass factor greater than 0.1. The total uncertainty in the reprocessed TROPOMI HCHO columns was
 191 estimated as $\geq 90\%$ for the fire-free region (Zhao et al., 2022, and references therein). The uncertainties
 192 in the air mass factors, slant column fitting, and background HCHO, respectively, account for 75, 25, and
 193 40% of the total uncertainty. The estimated uncertainty in the retrievals in regions with strong fires is
 194 $\sim 35\%$. The filtering criteria of the TROPOMI datasets are as follows: quality assurance value (QA) >0.6 ,
 195 solar zenith angle $<70^\circ$, cloud fraction < 0.3 , AMF > 0.1 , and surface reflectivity < 0.2 .

196 TROPOMI observations are averaged spatially and temporally to the CHASER grid (T42) daily, leading
 197 to horizontal representativeness errors. However, the random horizontal representativeness errors are in
 198 the order of 5-10%, which is lower than the individual retrieval error of the satellite observations
 199 (Boersma et al., 2015). If the model horizontal resolution is increased by 50% (i.e., simulated at a
 200 horizontal resolution of $1.4^\circ \times 1.4^\circ$), the change in HCHO abundances is less than 6% (Fig S1 and Table
 201 S1 in supplementary information). The vertical sensitivity of the satellite retrievals is the most relevant
 202 source of representativeness error (Boersma et al., 2015). The current study utilizes the TROPOMI AK
 203 information to minimize the representativeness error. Therefore, the horizontal representative error will
 204 likely affect the results less than other error sources, such as uncertainties in satellite retrieval, emission
 205 inventories, and model chemical mechanisms.

206 2.3 OMI

207 The comparison study used HCHO retrievals from OMI, a nadir-viewing spectrometer on board the Aura
 208 satellite, which measures backscattering solar radiation in the spectral range of 270–500 nm (Levelt et al.,
 209 2018). OMI crosses the equator at 13:40 LT (Zara et al., 2018) and provides daily global coverage of trace
 210 gases, including HCHO, at a spatial resolution of $13 \times 24 \text{ km}^2$. For use in this study, HCHO columns

211 from 2019 to 2020, retrieved using the BIRA-IASBv14 (De Smedt et al., 2021), were obtained from the
212 Aeronomie website (i.e., https://www.temis.nl/qa4ecv/hcho/hcho_omi.php, last accessed on 01/07/2023).
213 The data-filtering criteria were cloud fraction < 0.3, SZA < 70°, quality flag =0, and cross-track quality
214 flag = 0. Like TROPOMI, OMI data were also averaged spatially and temporally to the model grid(T42).

215 **2.4 ATom-4 aircraft campaign**

216 The NASA Atmospheric Tomography (ATom) mission used a DC-8 aircraft to study the remote
217 atmosphere over the Pacific and Atlantic oceans from ~80° N to ~65° S (Wofsy et al., 2018). Repeated
218 flights measured the vertical profiles from 0.15 to 12 km to provide information related to greenhouse
219 gases, reactive and tracer species, and aerosol composition and size distribution (Kupc et al., 2018). Over
220 two years and four phases, sampling was conducted in one of the four seasons in each stage (Zhao et al.,
221 2022). Here, the 1-minute averaged measurements of HCHO and isoprene during the ATom-4 flight
222 (Fig.S2) in 2018 are used for the model evaluation. The NASA In Situ Airborne Formaldehyde (ISAF)
223 instrument (Cazorla et al., 2015) performed HCHO sampling based on the laser-induced fluorescence
224 technique. Isoprene was measured using two instruments: (a) The University of Irvine Whole Air Sampler
225 (WAS) and (b) the National Center for Atmospheric Research (NCAR) Trace Organic Gas Analyzer
226 (TOGA). WAS sampled the air every 3–5 min, with subsequent analyses in the laboratory using gas
227 chromatography (Simpson et al., 2020). TOGA sampling was conducted every 2 min with a 35 s
228 integrated sampling time (Apel et al., 2021). The uncertainty in the WAS and TOGA isoprene
229 observations are, respectively, ±10 and 15%. Measurement uncertainties in HCHO were reported as 10%.
230 The simulations have been interpolated to the observed spatial and temporal resolution following the
231 method of He et al. (2022). The observed and interpolated HCHO and isoprene vertical profiles were
232 averaged over a 300-meter bin. The Atom campaign took place between 2016 and 2018.

233 **2.5 MAX-DOAS observations**

234 HCHO columns and the volume mixing ratio (vmr) were retrieved from two-year (2019–2020) MAX-
235 DOAS observations at Phimai (15.18°N, 102.46°E, 212 m a.s.l.), Chiba (35.62°N, 140.10°E, 21 m a.s.l.),
236 and Kasuga (33.52°N, 130.47°E, 28 m a.s.l.). The MAX-DOAS observations were conducted under the
237 framework of the international air quality and sky research remote sensing (A-SKY) network (Irie, 2021).
238 The sites were selected because continuous measurements from 2019 to 2020 were available for these
239 sites. Phimai is a rural site in Thailand and experiences biomass burning influence from January to April.
240 The climate is divided into two seasons- (1) dry season (January to May) and (2) wet season (June to
241 December). Chiba and Kasuga are urban sites in central and southern Japan, respectively. The seasonal
242 classification at these sites is – Spring (March to May), Summer (June to August), Autumn (September
243 to November), and winter (December to February). The observations at these sites are described
244 elsewhere (i.e., Hoque et al., 2018a; Irie et al., 2011,2015).

245 The A-SKY MAX-DOAS system, including the instrument and algorithm, participated in the Cabauw
246 Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI) and CINDI-2 (Kreher
247 et al., 2020; Roscoe et al., 2010) campaigns. The instrumentation has been described explicitly by Irie et
248 al. (2008, 2011, 2015). A UV spectrometer (Maya2000Pro; Ocean Insight, Inc.) recorded high-resolution

249 spectra from 310–515 nm at six elevation angles (ELs) of 2°, 3°, 4°, 6°, 8° and 70°, which were repeated
250 every 15 min. The reference spectra were recorded at EL of 70° instead of 90° to avoid saturation
251 intensity. Spectra measured at all ELs were considered in the retrieved vertical profile and total columns.
252 Consequently, the choice of reference ELs has no appreciable effect on the retrieval. The systematic error
253 in the oxygen collision complex (O₄) was reduced by limiting the off-axis ELs to less than 10° (Irie et al.,
254 2015). However, this limitation reduces sensitivity above the planetary boundary layer (PBL),
255 maintaining high sensitivity in the lower layers of the retrieved profiles. The high-resolution solar
256 spectrum measured by Kurucz et al. (1984) was used for daily wavelength calibration. The spectral
257 resolution is approximately 0.4 nm at 357 and 476 nm (Hoque et al., 2022). Aerosol and trace gas columns
258 and profiles were retrieved using the Japanese vertical profile retrieval algorithm JM2 (ver. 2) (Irie et al.,
259 2011, 2015). Three-step profile and column retrievals by JM2 are explained explicitly in earlier reports
260 (e.g., Hoque et al., 2018; Irie et al., 2011, 2015). The partial VCD values are converted to the volume
261 mixing ratio (vmr) by scaling the U.S. standard atmosphere temperature and pressure data to the respective
262 site surface measurements. The estimated total error (random and systematic) in the HCHO product is 30%
263 (Hoque et al., 2022). Following Irie et al. (2011) and Hoque et al. (2018a, 2022), cloud screening was
264 performed to ensure data quality.

265 **3 Results and discussion**

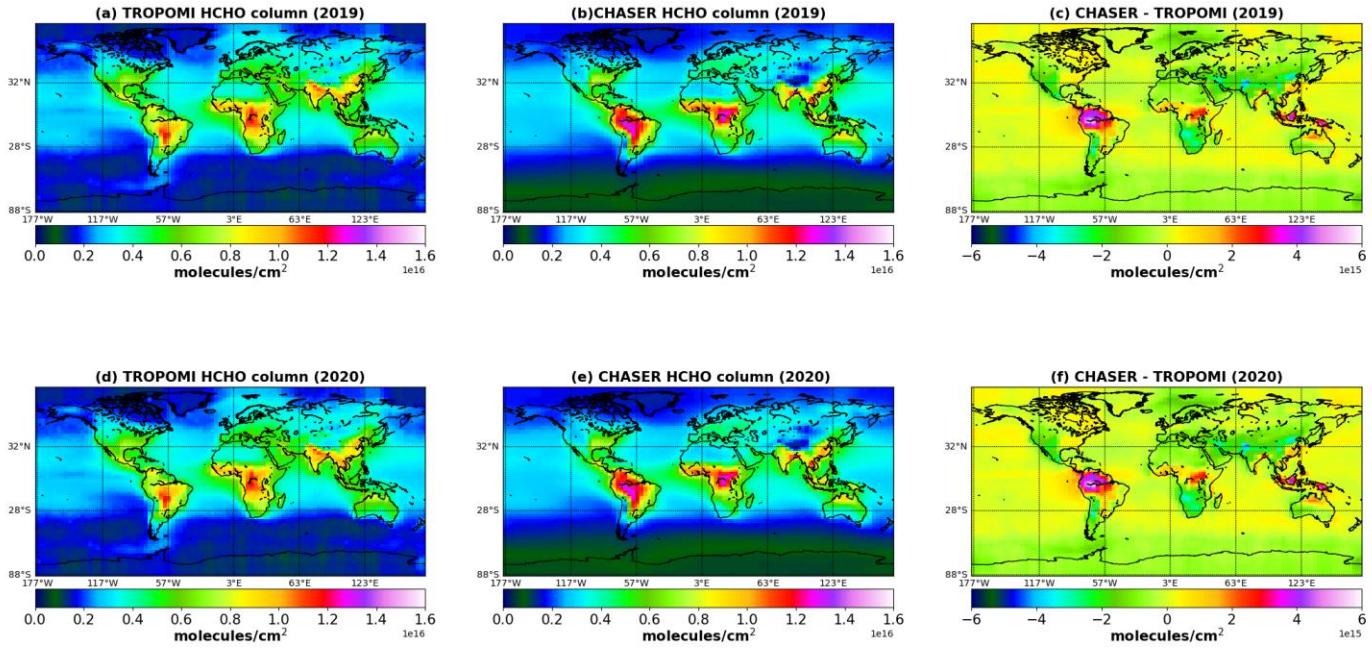
266 **3.1 Comparison of CHASER HCHO with TROPOMI observations**

267 Figure 1 presents a comparison of global distributions of annual mean HCHO columns obtained from
268 TROPOMI retrievals and standard CHASER simulations at the TROPOMI overpass time (13:30).
269 Differences between the observations and model simulations in the respective years are also depicted.
270 The statistics related to the comparison are presented in Table 2. The simulation results agree well with
271 the TROPOMI observations, with a global spatial correlation (*r*) of 0.93, mean bias error (MBE)
272 (CHASER–TROPOMI) of -0.20×10^{15} molecules cm⁻², and root-mean-square error (RMSE) of $0.75 \times$
273 10^{15} molecules cm⁻². The *r*, MBE, and RMSE values between 60° S and 60° N were, respectively, 0.92,
274 0.13×10^{15} molecules cm⁻², and 0.82×10^{15} molecules cm⁻². CHASER HCHO columns are negatively
275 biased relative to the TROPOMI retrievals. Table S2 shows the MBE and RMSE values obtained for the
276 individual months. No seasonal variation in the systematic differences was observed between CHASER
277 and TROPOMI. Biases can originate from uncertainties in the retrieval and model assumptions.
278 TROPOMI HCHO retrievals greater than 8×10^{15} molecules cm⁻² were negatively biased by 25% relative
279 to the ground-based MAX-DOAS observations (De Smedt et al., 2021), whereas direct emissions of
280 HCHO were not considered in CHASER.

281 TROPOMI and CHASER show high HCHO concentrations over South America, central Africa, India,
282 eastern China, and Southeast Asia. Simulated HCHO magnitudes in the hotspot regions were $0.8\text{--}1.4 \times$
283 10^{16} molecules cm^{-2} , slightly higher than the observed range of $0.8\text{--}1 \times 10^{16}$ molecules cm^{-2} . The dataset's
284 greatest differences ($\sim 4 \times 10^{15}$ molecules cm^{-2}) were observed over Brazil and Southeast Asia. The
285 datasets show strong congruence in the high-latitude regions. The simulated and observed HCHO
286 columns over Europe, the Middle East, Japan, and Russia were $0.3\text{--}0.6 \times 10^{16}$ molecules cm^{-2} . Simulated
287 HCHO columns ($\sim 3 \times 10^{15}$ molecules cm^{-2}) over the remote Pacific region were consistent with the
288 observations, too. The remote Pacific regions represent background conditions strongly linked to CH_4
289 oxidation. Congruence with observations in this region suggests that the simulated CH_4 estimates in the
290 remote areas are reasonable.

291

292



294 **Figure 1.** Annual mean HCHO columns ($\times 10^{16}$ molecules cm^{-2}) in 2019 and 2020 were obtained from TROPOMI
 295 retrievals (first column) and standard CHASER simulation (second column). The differences between the model
 296 and observations in the respective years are shown in the third column. The unit of difference is $\times 10^{15}$ molecules
 297 cm^{-2} .

298

299 **Table 2.** Comparison of annual mean HCHO ($\times 10^{16}$ molecules cm^{-2}) column between TROPOMI retrievals and
 300 CHASER simulations in 2019 and 2020. MBE and RMSE are the abbreviated forms of mean bias error and root
 301 mean square error, respectively. Units of MBE and RMSE are $\times 10^{15}$ molecules cm^{-2} . Correlation signifies the
 302 spatial correlation between the datasets.

303

Year	Correlation	MBE	RMSE
2019	0.93	-0.20	0.75
2020	0.93	-0.19	0.75

304

305

306

307 Figure 2 compares the observed and simulated seasonality in HCHO columns ($\times 10^{16}$ molecules cm^{-2}) in
 308 different regions. Datasets for 2019 and 2020 were used to calculate the observed and simulated monthly
 309 mean values. The MBE ($\times 10^{15}$ molecules cm^{-2}) between TROPOMI and CHASER HCHO columns in each
 310 region is shown in blue. The comparison statistics are given in Table 3. The regional boundaries are shown
 311 on the global distribution map in Fig. S3. Temporal correlations derived from daily values over two years
 312 are provided in Table S2.

313



314

315 **Figure 2.** Seasonal variation in HCHO columns ($\times 10^{16}$ molecules cm^{-2}) in eastern (a) China (E-China;
 316 30–40°N, 110–123°E), (b) eastern United States (E-USA; 32–43°N, 95–71°W), (c) western United States

317 (W-USA; 32–43°N, 125–100°W), (d) Europe (35–60°N, -10°W–30°E), (e) central Africa (C-Africa; 4°S–
318 5°N, 10° – 40°E), (f) northern Africa (N-Africa; 5–15°N, 10°W–30°E), (g) southern Africa (S-Africa; 5–
319 15°S, 10–30°E), (h) South America (S-America; 20°S – 0°N, 50–70° W), (i) India (7.5–35°N, 68–89°E),
320 (j) the Indo Gangetic Plain (IGP; 21–33°N, 72–89°E), (k) east India (E-India; 15–25°N, 80–90°E)), (l)
321 south India (S-India; 0–15°N, 63–80°E), (m) Southeast Asia (SE-Asia, 10–20°N, 96–105°E), and (n) the
322 remote Pacific region (28°S – 32°N, 117°–177°W) as inferred from CHASER simulations (blue) and
323 TROPOMI observations (red). Blue numbers denote MBE between the TROPOMI and CHASER HCHO
324 columns. The observed and simulated mean values represent the average of 2019 and 2020.

325

326

327 **(a) E-China**

328 Over E-China (Fig.2(a)), the datasets are moderately correlated spatially ($r = 0.44$), with MBE and RMSE
329 values of -0.9 and 1.62×10^{15} molecules cm^{-2} , respectively. The simulated seasonality correlates strongly
330 with the observations ($R = 0.97$), with a consistent peak (1×10^{16} molecules cm^{-2}) in the HCHO variability
331 in July. The HCHO columns' peaks are compatible with the peak in isoprene concentrations (Fig. S4),
332 manifesting a strong biogenic contribution during summer. CHASER mostly underestimated the winter-
333 time HCHO columns in this region. Liu et al. (2021) reported vehicular exhaust, solvent usage, and
334 combustion-related regional transport as the primary VOC emission sources during winter in Shanghai, a
335 megacity in eastern China. NMVOC emissions from these sources (i.e., vehicular exhaust, solvent usage,
336 and transport) are considered in the HTAPv2.2 inventory (Crippa et al., 2023). Although CHASER
337 considered HCHO production from the degradation of anthropogenic VOCs, it is likely underestimated,
338 resulting in a lower simulated winter-time HCHO column in this region.

339

340 **Table 3:** Comparison of monthly mean tropospheric HCHO ($\times 10^{16}$ molecules cm^{-2}) columns obtained
341 from TROPOMI retrievals and standard CHASER simulations. Coincident dates in 2019 and 2020 are
342 used to calculate the statistics. Units of MBE and RMSE are $\times 10^{15}$ molecules cm^{-2} . The temporal
343 correlations are derived from the seasonal means.

344

345

346

347

348

Region	MBE (model – TROPOMI)	RMSE (model – TROPOMI)	Spatial Correlation (r-value)	Temporal Correlation (R-value)
E-China	-0.91	1.62	0.44	0.97
E – USA	0.40	0.43	0.97	0.97
W-USA	-1.25	1.29	0.85	0.95
Europe	-0.74	0.92	0.73	0.93
C-Africa	1.13	1.52	0.93	0.74
N-Africa	1.10	1.26	0.87	0.83
S-Africa	-1.45	1.64	0.89	0.59
S-America	2.34	2.85	0.56	0.97
India	-1.20	1.77	0.84	0.18
IGP	-1.60	1.99	0.91	0.44
E-India	0.24	1.08	0.86	0.72
S-India	-0.36	0.52	0.96	0.34
SE-Asia	-0.77	1.22	0.71	0.87
Remote Pacific	0.002	0.13	0.86	0.76

349 **(b) Eastern USA, western USA, and Europe**

350 CHASER has well-reproduced the HCHO spatial variability in the eastern USA (E-USA; Fig.2(b);
351 $r=0.97$) and western USA (W-USA; Fig.2(c); $r=0.85$). The peaks in the HCHO variability coincide with
352 the isoprene peak in these regions (Fig. S4). The simulated amplitude of the HCHO seasonal modulation
353 in E-USA and W-USA are 74 and 62%, whereas the observed seasonal amplitudes are 74 and 65%,
354 respectively. The peak in the HCHO seasonality in E-USA is similar in both datasets ($\sim 1.2 \times 10^{16}$
355 molecules cm^{-2}). The RMSE value in the W-USA region is 15% higher than in E-USA. Although the
356 spatial correlation in Europe (Fig.2(d)) is moderate ($r=0.73$), the temporal correlation is strong ($R=0.95$).
357 The simulated and observed HCHO seasonal modulations in Europe are 60% and 62%, respectively. The
358 model–satellite discrepancies are prominent in Europe and W-USA during summer and autumn. In both
359 regions (i.e., Europe and W-USA), the biogenic and anthropogenic contribution to the total HCHO level
360 is equivalent during summer. In autumn, the anthropogenic emission contributions are higher. (Section
361 3.8). This manifests a potential model underestimation of biogenic HCHO levels in these regions, linked
362 to the uncertainties in the biogenic emission inventory and isoprene mechanism. However, the model–
363 satellite agreement is strong during the winter in these regions. During winter, anthropogenic VOC
364 emissions drive the HCHO variability in these regions (Luecken et al., 2018; Pozzani et al., 2002).
365 Therefore, the simulated contribution of anthropogenic sources to the HCHO abundances during winter
366 in these regions is reasonable.

367

368 **(c) Central, Northern, and Southern Africa**

369 Over the African regions (Fig.2 (e-g)), the spatial correlation is higher than 0.80. The African continent is
370 the single largest biomass-burning emission source (Roberts et al., 2009). The observed and simulated
371 amplitude of the HCHO seasonality in central Africa (C-Africa; Fig.2(e)) are, respectively, 45 and 21%.
372 The mean simulated and observed HCHO abundances in North Africa (N-Africa; Fig.2(f)) during the
373 biomass burning season is $\sim 1.06 \times 10^{16}$ molecules cm^{-2} , consistent with the GOME-2 and SCIAMACHY
374 observations (De Smedt et al., 2008). Figure S5 (Supplementary Information) shows the seasonal fire
375 radiative power (FRP) cycle over the three African regions. FRP, a measure of outgoing radiant heat from
376 fires, is a tracer of changes in atmospheric trace constituents related to pyrogenic emissions (Hoque et al.,

377 2018a). The observed and simulated enhanced HCHO columns in N-Africa are congruent with the high
378 FRP values, manifesting the contribution of biomass burning to the HCHO abundances. CHASER could
379 not replicate the observed HCHO seasonality over C-Africa. However, simulations show a decrease in
380 the HCHO abundances in C-Africa from January to March, consistent with the changes in the coincident
381 FRP values.

382 Over South Africa (S-Africa; Fig.2(g)), elevated TROPOMI HCHO columns are consistent with GOME-
383 2 and SCIAMACHY observations (De Smedt et al., 2008). The observed peaks in HCHO columns and
384 FRP values (Fig.S5) are consistent and thus can be attributed to biomass burning. Pyrogenic emissions
385 contribute ~36% to the high HCHO columns in this region (section 3.8). TROPOMI and CHASER have
386 captured the shift in biomass-burning seasons from northern to southern Africa, which agrees well with
387 earlier observations (i.e., GOME-2, SCIAMACHY). The observed amplitude of the HCHO seasonal
388 cycle in South and North Africa is 46%, signifying an almost two-fold increase in HCHO abundances
389 during the biomass-burning season. Earlier studies (e.g., De Smedt et al., 2008; Muller et al., 2008) found
390 that such a feature (increment by a factor of 2) exists only in the Southern African region. This likely
391 indicates an increase in fire intensity in Northern Africa.

392

393 (d) South America

394 CHASER showed moderate skill in reproducing the observed HCHO spatial distribution in South
395 America (S-America; Fig 2(h); $r = 0.56$). However, the seasonal variation in the HCHO columns is
396 strongly correlated ($R = 0.97$). The MBE and RMSE in the South American continent are 2.34×10^{15} and
397 2.385×10^{15} molecules cm^{-2} , respectively. The enhanced HCHO columns during the South American
398 biomass burning season are well reflected in the datasets. They show a distinctive seasonal cycle. The
399 observed and simulated mean HCHO columns from August through October are $\sim 1.5 \times 10^{16}$ molecules
400 cm^{-2} . CHASER estimated 46% seasonal modulation in the HCHO abundances, whereas the observed
401 modulation is 59%. The model overestimates the HCHO columns in S-America, similarly to C-Africa
402 and N-Africa, probably because of the uncertainties in biogenic emission inventories and the isoprene
403 oxidation scheme.

404

405 (e) India

406 CHASER well reproduced the observed HCHO spatial distribution in India (Fig.2 (i); $r = 0.84$), with
407 MBE and RMSE of -1.20×10^{15} and 1.775×10^{15} molecules cm^{-2} . However, the temporal correlation
408 ($R=0.18$) between the datasets is low. The observed seasonal modulation of $\sim 30\%$ manifests a less-
409 prominent seasonality in HCHO abundances in India. The correlation between temperature variations and
410 isoprene emissions in India is inhomogeneous (Starvakou et al., 2014). India has a diverse landscape,
411 including major forests over the east, northeast, and southwest regions and deserts in northwestern India
412 (Surl et al., 2018). The Indo-Gangetic Plain (IGP) stretches from Eastern Pakistan to Bangladesh and is a
413 major agricultural region in India (Kuttippurath et al., 2022). Thus, averaging the HCHO columns over a
414 diverse landscape can lead to a less prominent seasonality. Moreover, biomass burning compromises 23%
415 of India's total NMVOC (13 Tg/yr) emissions (Stewart et al., 2021). Sensitivity analysis (section 3.8)
416 estimates show biomass burning contribution to the HCHO levels in India is $\sim 2\%$., manifesting that the
417 modeled biomass burning emissions for India are underestimated. Considering the diverse Indian
418 landscape, the model satellite comparison over three regions in India (IGP, east India, and South India) is
419 shown in Fig.2 (j-l).

420

421 The model has shown good skill in reproducing the observed HCHO spatial variation in the IGP (Indo-
422 Gangetic Plain; Fig.2(j)) region ($r = 0.91$). However, the temporal correlation is moderate ($R=0.44$).
423 Several field studies (e.g., Hoque et al., 2018b) have reported biomass-burning influences during spring
424 and autumn in IGP, explaining the elevated observed HCHO columns. HCHO seasonal variation during
425 January–June is consistent in both datasets, with an R -value of 0.78. The mean observed and modeled
426 HCHO abundances during spring in IGP are, respectively, 1.19×10^{16} and 8.72×10^{15} molecules cm^{-2} .
427 However, the model could not reproduce the autumn-time biomass-burning events, reducing the overall
428 R -value in the IGP region. CHASER underestimates winter HCHO columns in the IGP region. Liquid
429 petroleum gas (LPG) usage, evaporative fuels, and garbage burning contribute significantly to winter
430 NMVOC levels in Delhi and Mohali (Kumar et al., 2021). Although NMVOC emissions from these
431 sources are considered in the simulations, they are likely underestimated in the IGP region.

432

433 Over East India (Fig.2(k)), both the spatial ($r = 0.86$) and temporal ($R = 0.72$) agreement between
434 TROPOMI and CHASER HCHO are strong. The observed and modeled amplitudes of the HCHO
435 seasonal cycle are 40%. Both datasets show enhanced HCHO levels during spring., consistent with high
436 isoprene concentrations (Fig.) Biogenic emissions are the main driver of the HCHO levels in East India;
437 however, emissions from mines are also potential sources of NO_x and VOCs (Kuttippurath et al., 2022).

438

439 Similarly, CHASER has shown a strong capability for reproducing the HCHO spatial distribution
440 ($r=0.96$) in south India (S-India; Fig..2(l)). However, the temporal correlation is low. The mean observed
441 and simulated HCHO abundances are, respectively, 4.68×10^{15} and 5.03×10^{15} molecules cm^{-2} . The
442 HCHO seasonality in S-India is less prominent than in the other two regions. The coordinates bounds
443 defined for S-India in this study compromise a large portion of the southern coastal region, which
444 experiences a tropical maritime climate with limited seasonal variations in temperature (Surl et al., 2018).
445 Such a feature can potentially lead to a less prominent HCHO seasonality in S-India.

446

447

448 (f) Southeast Asia

449 In Southeast Asia (SE-Asia; Fig.2(m)), the r -value is 0.71. The MBE and RMSE are respectively $-0.77 \times$
450 10^{15} and 1.2×10^{15} molecules cm^{-2} . During the dry season (January–April), prominent biomass burning
451 occurs in this region in many countries (e.g., Thailand, Malaysia, Indonesia, Cambodia). Such fire events
452 degrade local air quality and cause transboundary pollution (Hoque et al., 2018; Kahn et al., 2016).
453 TROPOMI and CHASER have well-captured the pyrogenic emissions-led enhanced HCHO levels. The
454 simulated and observed mean dry season HCHO columns are, respectively, 1.07×10^{16} and 1.35×10^{16}
455 molecules cm^{-2} . The observed and simulated amplitude of the seasonal cycle are, respectively, 48 and
456 60%. CHASER-reproduced columns during the dry season are underestimated. Potential reasons for such
457 discrepancies are discussed in section 3.3.

458

459 (g) Remote Pacific region

460

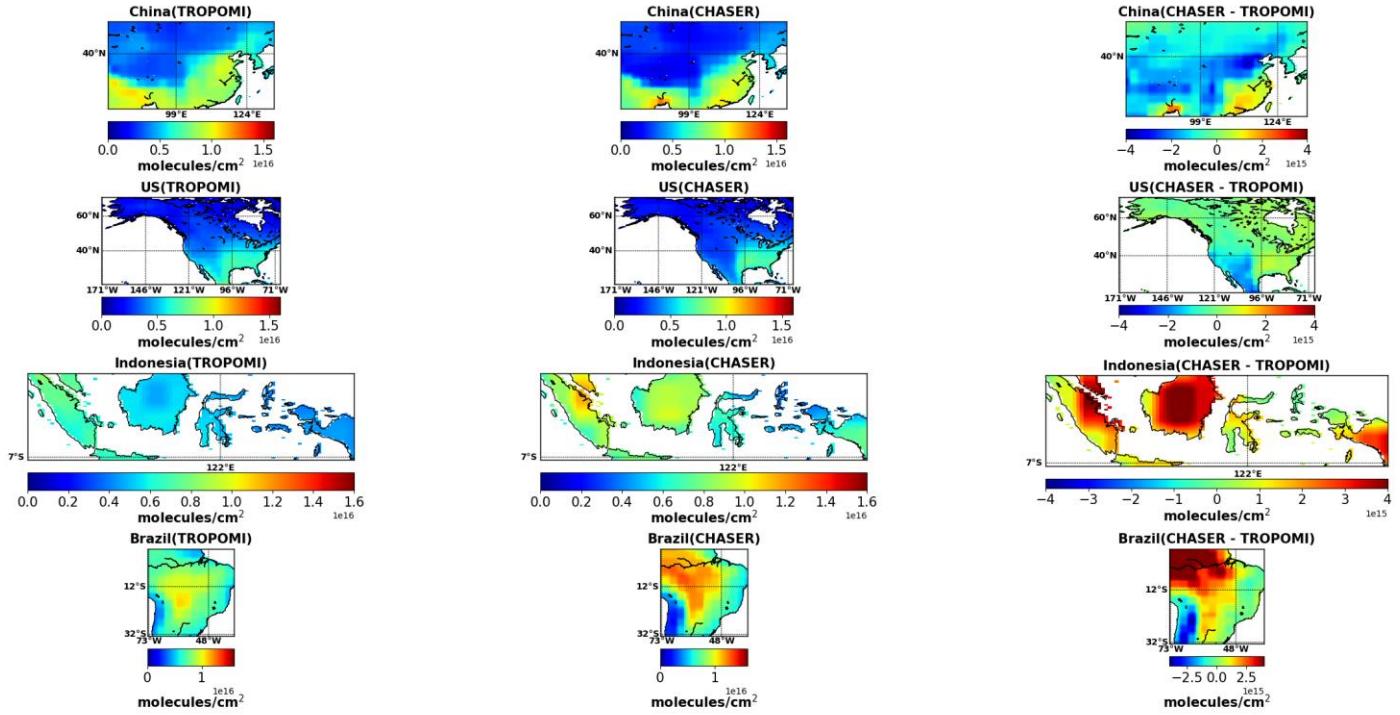
461 The datasets correlate strongly over the remote Pacific region (Fig.2 (n)), representing the background
462 condition. No prominent seasonal variation is observed in this region, which CHASER has well
463 simulated. The simulated and observed background HCHO column is 2.86×10^{15} molecules cm⁻².

464

465 **3.2 Comparison over countries with large forested areas**

466 Figure 3 shows the observed and simulated HCHO columns over countries where large forested areas are
467 located. The definition of the countries is adopted from the work of Opacka et al. (2021). The statistics
468 presented in Table 4 include regions with high and low biogenic activities. This section compares the
469 overall biogenic emissions in the defined regions with literature values and assesses their impact on model
470 performance.

471 Over China, CHASER correlates strongly with TROPOMI ($r = 0.92$), with MBE of -3×10^{15} molecules
472 cm⁻². The lowest differences between the datasets are observed primarily in the southeastern and western
473 parts of China. Shanghai, Nanjing, and Guangzhou megacities are located in southeastern China.
474 Consequently, CHASER has demonstrated good skills in the areas encompassed by multiple megacities.
475 The annual isoprene emission for China in CHASER is 34 TgC/yr, higher than that of Opacka et al. (2021)
476 (9.5–23 TgC/yr).



478 **Figure 3:** Two-year (2019 and 2020) mean CHASER (first column) and TROPOMI (second column) HCHO
 479 columns ($\times 10^{16}$ molecules $\text{cm}^{-2} \text{cm}^{-2}$) in China (18.19–53.45°N, 73.67–135.02°E), United States (18.91–45°N, 66–
 480 171°W), Indonesia (10°S–6°N, 95–142°E), and Brazil (33°S – 5.24°N, 34–73°W). The differences between the
 481 datasets are presented in the third column. Only the coincident dates among the datasets are used to calculate the
 482 annual mean data.

483

484

485

486

487

488

489

490

491 **Table 4:** Comparison of two-year mean HCHO ($\times 10^{15}$ molecules cm^{-2}) column between TROPOMI and
 492 CHASER over countries with large forested areas. The coordinate bounds of the regions are adapted from

493 Opacka et al. (2020). Correlation signifies the spatial agreement between CHASER and TROPOMI,
494 calculated from the annual mean data. The unit of MBE is $\times 10^{15}$ molecules cm^{-2}

Region	Spatial correlation	MBE (model–TROPOMI) (model vs. TROPOMI)
China	0.92	-0.84
US	0.93	-0.05
Indonesia	0.81	1.05
Brazil	0.84	1.06

495

496

497 CHASER has shown excellent skill in reproducing TROPOMI observations over the US. Along with high
498 *r*-values, the simulated magnitude of the HCHO columns is consistent with observations throughout the
499 whole region. Consequently, the bias between the datasets for the US is 2%. In CHASER, annual isoprene
500 emissions in the US and the southeastern US are 22 and 7.8 TgC/yr, respectively. Such values are within
501 the ranges reported by Stavrakou et al. (2015) and Opacka et al. (2021).

502

503 The MBE between TROPOMI and CHASER in Indonesia is 1.05×10^{15} molecules cm^{-2} . The *r*-value is
504 0.81. Indonesia's annual mean TROPOMI and CHASER HCHO abundance is 5.06×10^{15} and 6.15×10^{15}
505 molecules cm^{-2} . The most significant differences between the datasets (4×10^{15} molecules cm^{-2}) are
506 observed for Sumatra, Borneo, and Sulawesi islands. Annual isoprene emissions in Indonesia used in the
507 CHASER simulations are 42 TgC/yr. Indonesian isoprene emissions vary between 25.5 to 32 TgC/yr
508 depending on the land-use change (Opacka et al., 2021). Top-down estimates based on OMI and GOME-
509 2 observations are ~ 11 TgC/yr (Stavrakou et al., 2015). However, the 11 TgC/yr emissions are half of the
510 top-down estimates based on SCIAMACHY observations. Consequently, isoprene emissions in Indonesia

511 remain largely uncertain. However, CHASER estimates with the VISIT emissions are higher than those
512 reported in the literature, likely leading to the model overestimation in Indonesia.

513

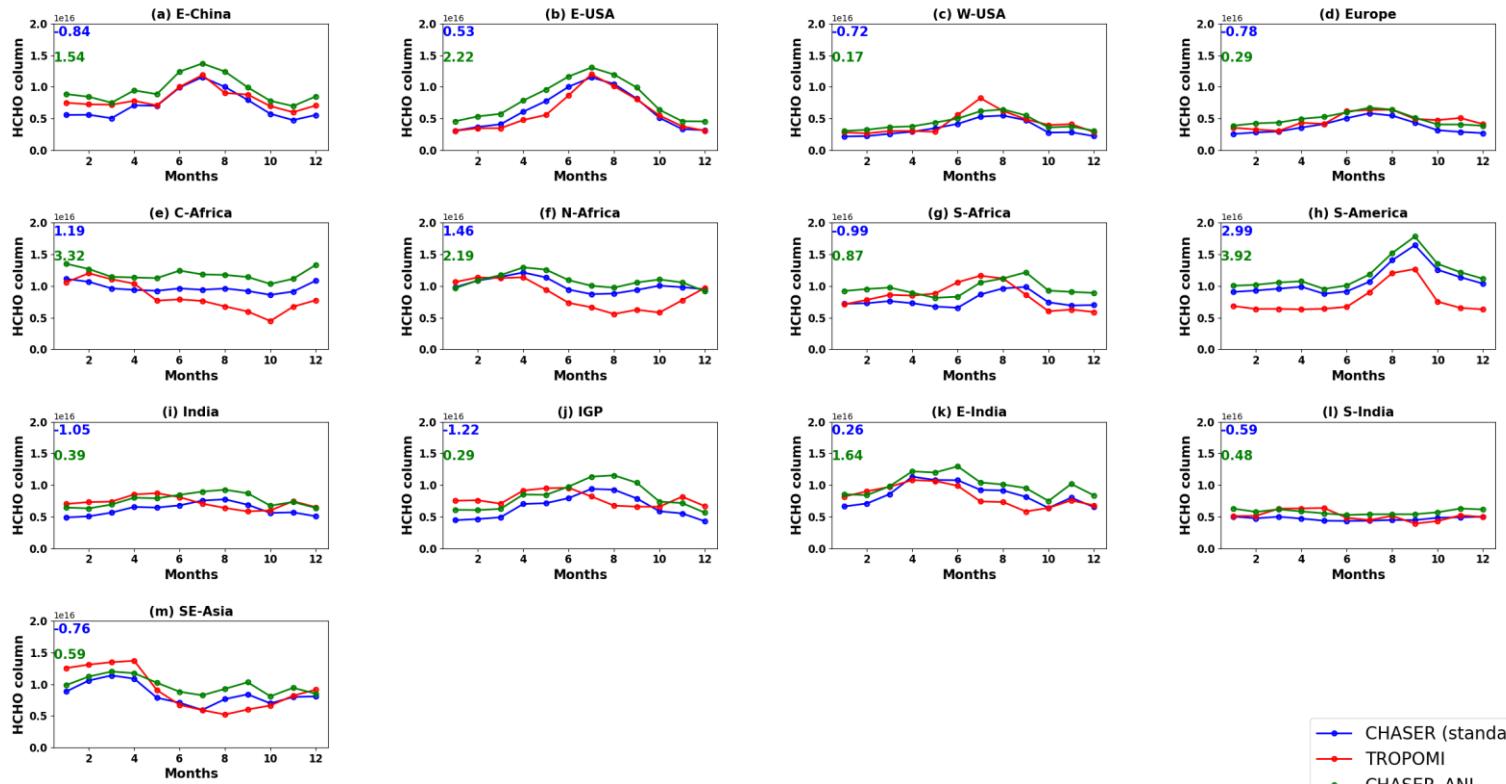
514 CHASER overestimates the HCHO columns over the Amazonia, mostly in northern Brazil. Fig.S6 shows
515 the observed and simulated seasonal HCHO variation over Brazil. Although the model reproduced the
516 temporal variability well, the magnitude was overestimated. This indicates that emission uncertainties are
517 more prominent than uncertainties related to the chemical mechanism for this region. In CHASER, annual
518 isoprene emissions over Amazonia are 67 Tg/yr, consistent with the OMI-based top-down estimates of
519 70 Tg/yr, estimated using apriori emissions from MEGAN (Stavrakou et al., 2015). However,
520 deforestation affects the VOC emissions in the Amazon (Yáñez-Serrano et al., 2020). Massive
521 deforestation in the Amazon occurred between 1985 and 2020, changing 11% of the Amazonian biome
522 (Cabarello et al., 2022). Depending on the land use and land cover change(LULCC), isoprene emissions
523 in Brazil can vary between 79. And 106.5 Tg/yr (Opacka et al., 2021). Moreover, although biogenic VOC
524 modeling in the Amazon has improved, VOC dynamics in the changing Amazonian biome are poorly
525 understood (Salzar et al., 2018; Taylor et al., 2018). Therefore, updated biogenic VOC and LULCC
526 inventories can potentially improve the model performance in Brazil.

527 In addition, CHASER isoprene emission estimates for Europe and Russia are, respectively, 17 and 15
528 TgC/yr, which are comparable to values reported in the literature (e.g., Guenther et al., 2006; Sinderolova
529 et al., 2022).

530 The discussion is based on isoprene emissions because isoprene is the dominant biogenic VOC (BVOC).
531 Although not included in the current discussion, the chemical yield of HCHO from the oxidation of other
532 BVOCs might also be a source of model uncertainty.

533

534



537 **Figure 4:** Seasonal variation of HCHO ($\times 10^{16}$ molecules cm^{-2}) in the selected regions, as inferred from standard
 538 simulations (blue), TROPOMI observations (red), and ANI estimate (green). Anthropogenic VOC emissions are
 539 increased threefold in the ANI simulations. The blue numbers denote MBE between the TROPOMI and CHASER
 540 HCHO columns. The MBE between the ANI and TROPOMI columns is shown in green. The coordinate bounds
 541 of the regions are similar to those in Fig. 2. Simulations and observations in 2019 were used to calculate the monthly
 542 mean values.

544 3.3 Uncertainties related to anthropogenic VOC emissions

545 Uncertainties in anthropogenic VOC emissions can also be crucially important. Sensitivity simulations
 546 are performed by perturbing the anthropogenic VOC emissions. Perturbation effects are relevant when
 547 the anthropogenic VOC emissions are increased by threefold or more. We select the lowest perturbed
 548 simulation (i.e., threefold increase; hereafter ANI). A better agreement between ANI and TROPOMI
 549 HCHO columns is attributed to underestimated anthropogenic VOC emissions in the standard simulation.

550 Figure 4 compares the TROPOMI HCHO columns and ANI simulations in 2019. Standard simulation
551 estimates for 2019 are also shown. The comparison statistics are provided in Table 5.

552 Over E-China (Fig.4(a)) and India (Fig.4(i)), ANI shows better agreement with TROPOMI than the
553 standard simulation during winter. In India and China, the contribution of anthropogenic emissions to the
554 NMVOC levels is more significant during the winter (Kumar et al., 2021; Liu et al., 2021). Thus, the ANI
555 simulations improve the contribution of the winter-time anthropogenic VOCs in these regions. The ANI
556 MBE and RMSE values over E-China are higher than the standard simulation. This indicates the
557 anthropogenic VOC estimates in E-China during the other seasons are reasonable. In contrast, the ANI
558 simulations reduce the MBE values in India, manifesting a higher underestimation of anthropogenic VOC
559 emissions in this region than in E-China.

560 Similar to E-China, the ANI MBE and RMSE values are higher in C-Africa, N-Africa, S-Africa, South
561 America, and E-USA. Over Europe (Fig.4(d)) and W-USA(Fig.4(c)), ANI RMSE values are lower than
562 the standard simulation. The ANI simulations replicated the observed HCHO column magnitude in both
563 regions from October to December, resulting in lower RMSE values.

564 ANI estimates during the dry season in SE Asia (Fig.4(m)) are similar to the standard simulation values,
565 indicating a small effect of anthropogenic emission uncertainties. The dry season columns are
566 overestimated when the anthropogenic VOC emissions are increased fivefold (Fig. S7). Space-based
567 observations have provided substantial evidence of increasing anthropogenic VOC emissions in Asian
568 cities (Bauwens et al., 2022). Therefore, the anthropogenic VOC emission inventory should be updated
569 to reduce the discrepancy between CHASER and TROPOMI over SE-Asia.

570

571 **Table 5:** Comparison among regional mean tropospheric HCHO ($\times 10^{16}$ molecules cm^{-2}) columns
572 inferred from TROPOMI observations, standard simulation, and ANI estimates. Units of MBE1, MBE2,
573 RMSE1, and RMSE 2 are $\times 10^{15}$ molecules cm^{-2} . The simulations and observations for 2019 were used
574 to calculate the statistics.

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

Region	MBE1 (Standard– TROPOMI)	MBE2 (ANI– TROPOMI)	RMSE1 (Standard– TROPOMI)	RMSE2(ANI– TROPOMI)
E-China	-0.84	1.54	1.40	1.74
E-USA	0.53	2.22	0.58	2.25
W-USA	-0.72	0.17	0.80	0.43
Europe	-0.78	0.29	0.92	0.67
C-Africa	1.19	3.32	1.57	3.60
N-Africa	1.46	2.19	1.61	2.30
S-Africa	-0.99	0.87	1.32	1.39
S-America	2.99	3.92	3.41	4.28
India	-1.05	0.39	1.57	1.50
IGP	-1.22	0.29	1.69	2.02
E-India	0.26	1.64	1.22	2.11
S-India	-0.59	0.48	0.69	0.58
SE-Asia	-0.76	0.59	1.16	0.78

600 **3.4 Impacts of NO_x emissions uncertainties on HCHO simulations**

601 Uncertainties in the NO_x emissions can affect the HCHO abundances through the NO_x-HO_x-VOC cycle.
602 Such effects are assessed by comparing simulations with different NO_x inventories with the TROPOMI
603 observations. The CHASER standard, OLNE, and TROPOMI HCHO columns are depicted in Fig. 5. The
604 HTAP_v3 NO_x emission inventory is replaced with the HTAP_v2.2 inventory in the OLNE simulations
605 without altering the remaining emission inventories. The differences between the two NO_x inventories
606 are – (1) HTAP-v3 inventory considers the changes in NO_x emissions from 2000 to 2018, whereas the
607 temporal coverage of HTAP_v2.2 is 2008 – 2010, and (2) Emissions in HTAP-v3 have a higher sectoral
608 disaggregation (Crippa et al., 2023). The comparison-related statistics are given in Table S3. NO_x
609 emissions from both inventories are shown in Fig. S8

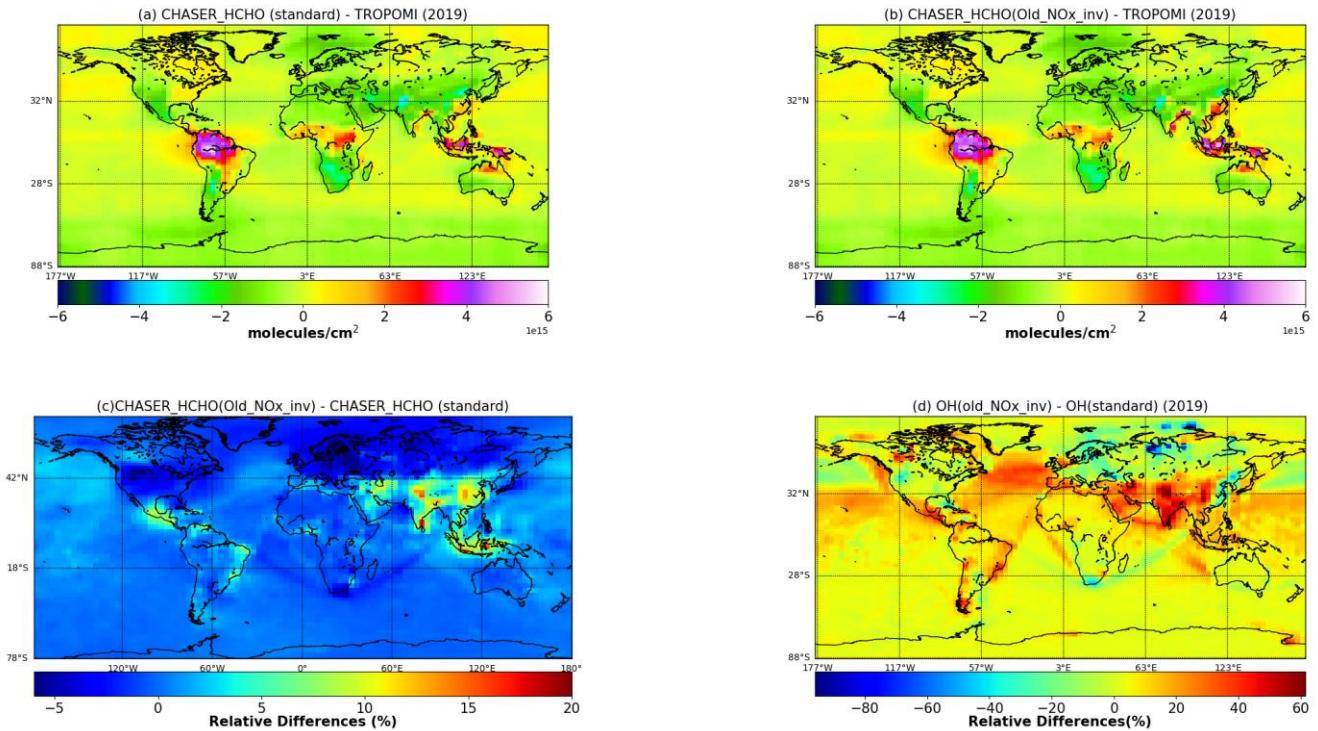
610 On a global scale, HCHO column estimates are mostly unaffected by the changes in the NO_x emission
611 inventories, manifested by the MBE values (Table 6). However, RMSE is 8% lower in the case of standard
612 simulation. OLNE estimates in the higher latitude ($>=50^{\circ}\text{N}$) are 5% lower than the standard simulations.
613 Such differences do not affect the model–satellite agreement in these regions.

614 The standard HCHO columns in India, China, and Southeast Asia are approximately 10–20% lower than
615 the OLNE estimates (Fig.5(c)). In fact, those differences are consistent with changes in the regional OH
616 estimates (Fig.5(d)). This finding implies that the changes in the NO_x emissions estimates have affected
617 the OH and HCHO abundances in these regions. Satellite data assimilation results reported by Miyazaki
618 et al. (2017, 2020) indicate that NO_x emissions in India have increased by 30% since 2008, whereas NO_x
619 emissions in China have declined since 2011 (Liu et al., 2016). Over E-China (Fig. 5(a &b)), the standard
620 simulations reduce the absolute annual mean difference between OLNE and TROPOMI of 3×10^{15}
621 molecules cm^{-2} to 1×10^{15} molecules cm^{-2} , which is consistent with the lower NO_x emissions in this region
622 in the updated inventory (Fig . S8). Over India and SE-Asia, the standard OH concentrations are ~40%
623 lower (Fig.5(d)) than the OLNE estimates, resulting in lower HCHO columns. The lower standard HCHO
624 columns can be linked to the increasing NO_x emissions in these regions (Fig.S8); however, the magnitude
625 of the change in the NO_x emissions for these regions in the updated inventory is likely overestimated.

626 In E-USA and W-USA (Table S3), the standard simulation reduces the MBE by 26% and 12%,
 627 respectively. The reduction in MBE and RMSE values in Africa and South America is less than 10%.
 628 Therefore, NO_x emission uncertainties mainly affect the HCHO simulations in India and SE Asia.

629

630



631 **Figure 5:** Annual mean HCHO columns ($\times 10^{16}$ molecules cm^{-2}) in 2019, obtained from the (a) standard and (b)
 632 OLNE simulations. The HTAP-2008 NO_x emission inventory was used instead of the HTAP-2018 inventory for
 633 the OLNE simulations (Table 1). The remaining emission inventories are similar in both simulations. (c) Global
 634 relative differences between the two HCHO simulations (OLNE–Standard). (d) Relative differences (global)
 635 between two OH (OLNE–Standard) simulations. The standard and OLNE OH simulation settings are similar to the
 636 description in Table 1. OH and HCHO simulations were obtained simultaneously.

637

638

639

640 **3.5 Comparison with OMI HCHO Observations**

641 TROPOMI was able to achieve improved precision of HCHO columns at shorter timescales (De Smedt
642 et al., 2021). The effect of such features on the comparison results is evaluated in this section. The method
643 of De Smedt et al. (2021) has been adopted to minimize the effect of different cloud retrieval algorithms
644 used for OMI and TROPOMI retrievals. Figure S9 shows the global distribution mean HCHO columns
645 obtained from TROPOMI and OMI retrievals and CHASER simulations in 2019 during the TROPOMI
646 overpass time (13:30). Only the coincident dates among the three datasets are shown. Global and regional
647 comparison statistics are presented in Table 6.

648

649 The spatial correlation between OMI and CHASER is 0.89 (Table 6) . OMI retrievals are positively biased
650 by 7% compared to CHASER. A similar bias is also observed between TROPOMI and CHASER. Despite
651 similar MBE values, TROPOMI reduces the global RMSE by 20%. Monthly MBE and RMSE values
652 between OMI and CHASER are higher than those of TROPOMI and exhibit no seasonality (Table S3).
653 The highest absolute differences between the model and OMI retrievals are observed in Amazonia in
654 Brazil, C-Africa, and SE-Asia (Fig.S9). The magnitudes of differences between the model and
655 observation in these regions are similar for both sensors. Despite the improved resolution, TROPOMI and
656 OMI show equivalent biases in regions with high HCHO levels (De Smedt et al., 2021). A regional
657 comparison among the three datasets is portrayed in Fig. 6. The red (TROPOMI–CHASER) and green
658 (OMI–CHASER) numbers are the respective MBE values.

659

660 **Table 6.** Comparison of global mean HCHO columns between satellite observations (TROPOMI and
661 OMI) and standard CHASER simulations. Units of MBE and RMSE are $\times 10^{16}$ molecules cm^{-2} . The r -
662 value signifies the spatial correlation. The statistics are based on simulation and observations for 2019.

663

Region	MBE1 (Standard– TROPOMI)	MBE2 (Standard– OMI)	RMSE1 (Standard– TROPOMI)	RMSE2 (Standard– OMI)	<i>r</i> -value (CHASER vs. TROPOMI)	<i>r</i> -value (CHASER vs. OMI)
--------	--------------------------------	----------------------------	---------------------------------	-----------------------------	--	--

Global	-0.23	-0.24	0.77	0.99	0.93	0.89
E-China	-0.84	-2.54	1.40	3.03	0.56	0.17
E-USA	0.53	-1.02	0.58	1.12	0.92	0.86
W-USA	-0.72	-2.09	0.80	2.17	0.83	0.64
Europe	-0.78	-1.31	0.92	1.60	0.77	0.67
C-Africa	1.19	0.94	1.57	1.28	0.93	0.93
N-Africa	1.46	1.42	1.61	1.59	0.81	0.79
S-Africa	-0.99	-2.59	1.32	2.75	0.86	0.84
S-America	2.99	2.02	3.41	2.61	0.47	0.56
India	-1.05	-1.19	1.57	2.66	0.85	0.66
IGP	-1.22	-2.85	1.69	3.19	0.91	0.84
E-India	0.26	-0.05	1.22	1.34	0.82	0.76
S-India	-0.59	-0.16	0.69	0.41	0.96	0.97
SE-Asia	-0.76	-0.83	1.16	1.14	0.78	0.86

665

666

667 Over E-China (Fig.6(a)), the monthly mean TROPOMI columns are \sim 22% lower than those of OMI,
668 reducing the RMSE by 53%. The simulated spatial distribution shows better congruence with the new
669 observations. TROPOMI improved the summer model–satellite agreement considerably. The magnitude
670 of the seasonal modulation in the three datasets is 50%. Both sensors show that winter HCHO levels in
671 E-China are $\sim 8 \times 10^{15}$ molecules cm^{-2} .

672

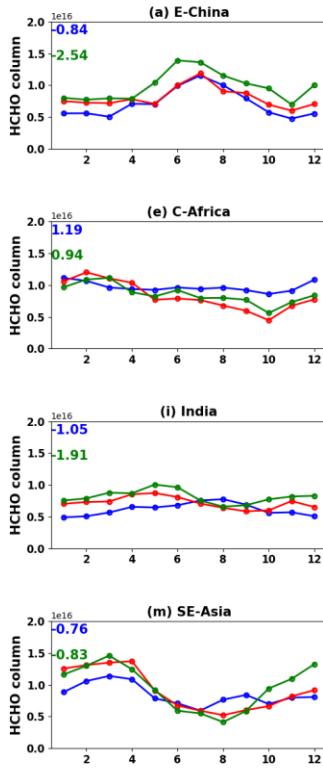
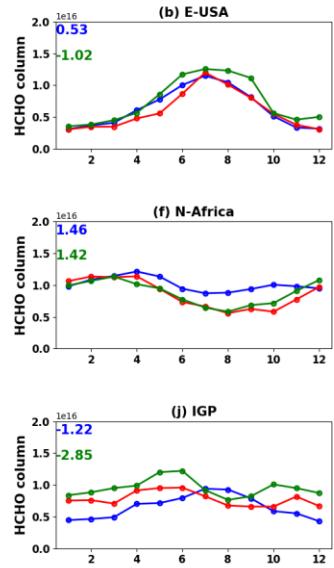
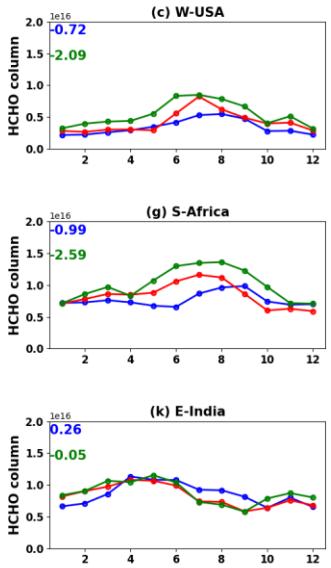
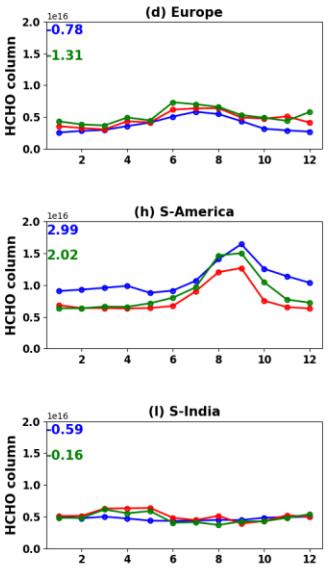
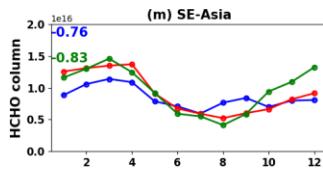
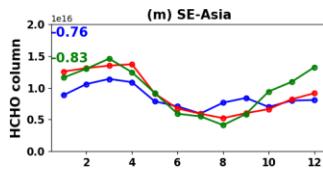
673 Over E-USA (Fig.6(b)), the *r*-value between CHASER and OMI is 0.86. CHASER columns are
674 underestimated compared to OMI, with MBE and RMSE of -1.0×10^{15} and 1.1×10^{15} molecules cm^{-2} .
675 TROPOMI reduced the model–satellite RMSE by 50% and improved the *r*-value by 6%. The most
676 significant improvements were observed during the summer and autumn.

677

678 Over the W-USA(Fig.6(c)), TROPOMI retrievals are 26% lower than OMI observations, reducing the
679 model–satellite RMSE by 63%. The spatial correlation between OMI and CHASER is moderate. The
680 simulated and TROPOMI wintertime columns are \sim 30% lower than OMI. However, the observed peak
681 in HCHO seasonality in July is consistent in the observational datasets.

682

683 OMI and TROPOMI HCHO observations over Europe(Fig.6(d)) are consistent. The seasonal cycle
684 amplitude inferred from both sensors is 60%. The simulated spatial distribution shows better agreement
685 with the TROPOMI observations, manifesting the effects of improved resolution.



687 **Figure 6:** Seasonal variation of HCHO ($\times 10^{16}$ molecules cm^{-2}) inferred from TROPOMI (red curve) and OMI (orange curve) retrievals and standard CHASER (blue curves) simulations. The region definitions are shown in Fig. 688 S2. The blue numbers signify the MBE between TROPOMI and CHASER, whereas the green numbers represent 689 the MBE between CHASER and OMI. Coincident dates in 2019 among the datasets are used to calculate the 690 monthly mean data.

692

693

694 Over C-Africa (Fig. 6(e)), the RMSE value between CHASER and OMI is $\sim 18\%$ lower than that of 695 TROPOMI. TROPOMI values are biased by 18% on the lower side compared to OMI.

696 Over N-Africa (Fig. 6(f)), OMI retrievals are moderately correlated with CHASER. The amplitude of 697 seasonal modulation inferred from CHASER, TROPOMI, and OMI are 48, 62, and 66%, respectively.

698 The RMSE and MBE between OMI and CHASER are 1.41×10^{15} and 1.59×10^{15} molecules cm^{-2} , 699 respectively. OMI retrievals are approximately 13% higher than TROPOMI. Simulated North African 700 HCHO columns show better consistency with the observations during the biomass-burning season.

701

702 Over S-Africa(Fig.6(g)), OMI HCHO columns are biased respectively by 32 and 25% on the higher side
703 compared to TROPOMI and CHASER. The simulated seasonal variabilities and spatial distribution of
704 HCHO show more relevance to TROPOMI than to OMI.

705

706 Over S-America(Fig.6(h)), the simulated peak (1.6×10^{16} molecules cm^{-2}) in the HCHO seasonality
707 shows strong congruence with the OMI observations. Despite such consistency, simulated values are
708 higher than OMI retrievals, with MBE and RMSE of $\sim 2 \times 10^{15}$ molecules cm^{-2} . Observations and
709 simulations show that the peak HCHO abundances can vary between $1.0 \times 10^{16} - 1.8 \times 10^{16}$ molecules
710 cm^{-2} in September. Although the *r*-value between OMI and CHASER is higher than that of TROPOMI,
711 the model's capability to replicate the observed spatial distribution was limited. OMI HCHO columns are
712 positively biased by 30% compared to TROPOMI, thereby reducing the model–satellite RMSE by 23%.

713

714 Over India(Fig.6(i)), CHASER HCHO columns are negatively biased by 23% compared to OMI
715 observations. Although TROPOMI minimized the model–satellite bias, seasonal discrepancies between
716 the model and observations prevail. Over the IGP region, OMI HCHO retrievals are biased by 24% and
717 36% respectively, respectively, on the higher side, compared to TROPOMI and CHASER. Both sensors
718 captured a similar HCHO seasonality in the IGP, with a modulation of 49%. Although CHASER could
719 not reproduce the seasonality, the simulated modulation is 48%. The bias between the model and
720 observations (OMI and TROPOMI) is $\sim 4\%$ in E-India and S-India. Simulated HCHO spatial variation
721 strongly correlates with the observation datasets (*r*-value of ~ 0.85). The amplitude of the seasonal
722 modulation in E-India inferred from OMI is $\sim 40\%$.

723 Over Southeast Asia(Fig.6(m)), CHASER columns are negatively biased by 19% compared to the OMI
724 columns. Despite lower biases, both datasets have a similar model–satellite discrepancies during the dry
725 season. A few reasons for the CHASER underestimation in SE Asia during the dry season have been
726 discussed in section 3.2. In addition, assumptions and uncertainties in the retrieval could also potentially
727 engender such model satellite discrepancy. Figure S10 compares CHASER and OMI SOA (González et
728 al., 2016) products. The data selection criterion is similar to the description presented in Section 2. The

729 most relevant differences between the OMI BIRA and SAO products are related to the underlying CTMs
730 that simulate the apriori profiles and the reference sector correction (Zhu et al., 2016). A comprehensive
731 list of the differences between the two products is available from Zhu et al. (2016). The comparison
732 statistics are given in Table S5. CHASER columns during the dry seasons in SE Asia show excellent
733 agreement with the OMI SOA retrievals (Fig.S10(m)). OMI SOA values during the dry season are
734 negatively biased by 7% compared to TROPOMI observations. The MBE between CHASER and SOA
735 product is 0.04×10^{15} molecules cm^{-2} . Based on the comparison with OMI SOA products, the model
736 performance during the dry season can be considered excellent. The emission estimates for SE-Asia in
737 CHASER can be regarded as reasonable, too.

738

739 Similarly, in E-China (Fig.S10(a)), the OMI SOA product reduces the bias between the model and
740 observations by 11%. The simulated wintertime columns are consistent with the SOA estimates but
741 underestimated compared to TROPOMI. The ANI estimates (Fig.4(a)) for this region are higher than the
742 SOA product, manifesting that the anthropogenic emissions in CHASER for this region are rational.
743 Therefore, uncertainties related to the retrieval procedure can also significantly affect the comparison
744 results on a regional scale.

745

746 Comparison between CHASER and OMI BIRA HCHO products shows differences from the results of
747 Hoque et al. (2022), where the simulation and observations for 2017 were used. The simulations in both
748 studies are similar. However, the OMI data in the earlier study are systematically higher, mainly causing
749 the statistically significant differences found between the study results. A detailed investigation of the
750 reasons will be addressed in a separate work.

751

752 **3.6 Validation using MAX-DOAS observations**

753

754

755

756 **3.6.1 Seasonal Variation**

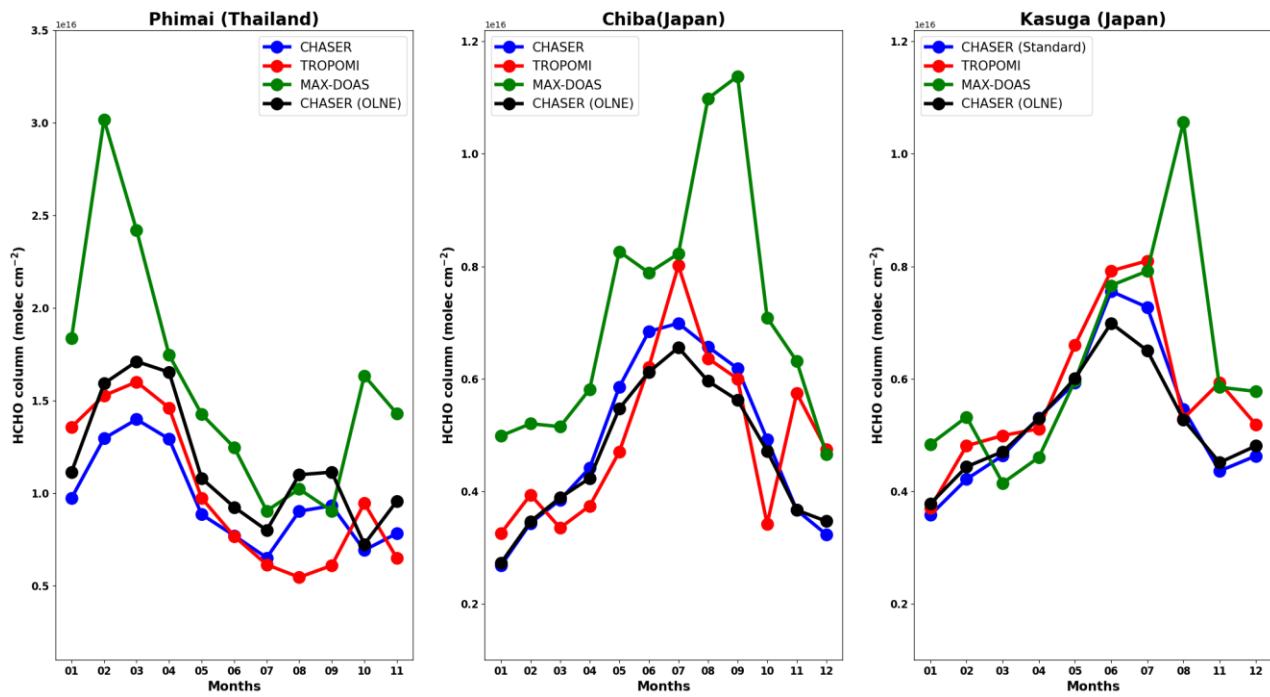
757 CHASER columns are compared with ground-based MAX-DOAS observations in Phimai, Chiba, and
758 Kasuga in Fig. 7. Coincident TROPOMI observations over the sites are used for comparative discussion.
759 The TROPOMI AK applied standard, and OLNE simulations are used. MAX-DOAS observations
760 between 12:00 and 15:00 were averaged to estimate the monthly mean columns. Only the common dates
761 among the three datasets were compared. De Smedt et al. (2021) compared the TROPOMI and A-SKY
762 MAX-DOAS datasets in Phimai and Chiba. Because the model-ground-based comparison is the primary
763 focus of this comparison effort, we do not consider the differences in the vertical sensitivity of TROPOMI
764 and MAX-DOAS. Thus, the statistics will differ from De Smedt et al. (2021).

765

766 In Phimai, standard CHASER HCHO seasonality correlates strongly ($R=0.71$) with the MAX-DOAS
767 observations; it is underestimated by 39%. However, the bias between the standard model estimates and
768 TROPOMI observations is 4%. Despite a strong correlation, TROPOMI observations are negatively
769 biased by 37% compared to the MAX-DOAS ($R=0.84$). Such underestimation might be related to the
770 coarse binning of the satellite data. Using a finer bin, De Smedt (2021) reported a negative bias of 23%
771 in Phimai.

772

773 Biomass burning-led enhancements during the dry season (January–April) are well reflected in the
774 simulations. During the wet season, MAX-DOAS, TROPOMI, and standard CHASER HCHO columns
775 are mostly lower than 1×10^{16} molecules cm^{-2} . The simulated standard HCHO peak in March is consistent
776 with the satellite observation, whereas MAX-DOAS observation shows a peak during February. During
777 the dry seasons of 2015 and 2016, the HCHO peak was observed in March (e.g. Hoque et al., 2018).
778 Consequently, such a shift in the HCHO peak might be related to fire numbers and fire radiative power
779 changes (Hoque et al., 2022).



782 **Figure 7:** Seasonal variations in HCHO ($\times 10^{16}$ molecules $\text{cm}^{-2} \text{cm}^{-2}$) columns inferred from satellite
 783 retrievals (red), model simulations (blue and black), and ground-based MAX-DOAS observations (green)
 784 in Phimai (Thailand), Chiba (Japan), and Kasuga (Japan). MAX-DOAS observations and CHASER
 785 simulations during 12:00–15:00 LT were selected for comparison. Common dates among the datasets are
 786 used to calculate the monthly mean statistics. The blue and black curves, respectively, signify the standard
 787 and OLNE simulations. TROPOMI AKs have been applied to both simulations. The simulation settings
 788 are provided in Table 1.

791 The bias between OLNE and MAX-DOAS observations is 27%. OLNE estimates agree better with the
 792 TROPOMI observations during the dry season. However, the overall bias (13%) between the model and
 793 satellite observations is higher in the case of OLNE simulations.

795 At Chiba, the simulated HCHO seasonality correlates strongly with the MAX-DOAS retrievals ($R=0.81$)
796 and is negatively biased by $\sim 31\%$. The amplitudes of seasonality inferred from the simulations, MAX-
797 DOAS observations, and TROPOMI retrievals are, respectively, 59, 60, and 34%. The MAX-DOAS,
798 TROPOMI, and CHASER HCHO columns, respectively, reach peaks in September, July, and June.
799 Similar to Phimai, the HCHO peaks in satellite and ground-based observations differ. One reason might
800 be the differences in spatial representativity. TROPOMI data used for comparison are spatially averaged
801 over 200 km, centering on the Chiba site, whereas the spatial representativity of the MAX-DOAS is
802 approx-10 km. Moreover, MAX-DOAS observations are most sensitive to altitudes near the surface,
803 whereas satellite sensitivity decreases near the surface. Consequently, the air masses sampled by the
804 instruments at the same local time might differ, leading to inconsistent observation peaks.

805

806 At Kasuga, the simulated HCHO levels are strongly correlated with the TROPOMI observations ($R =$
807 0.75) and are negatively biased by 35%. Although the correlation between the model and MAX-DOAS
808 retrievals is moderate, the bias between CHASER and MAX_DOAS retrievals is 14%. Therefore,
809 CHASER shows better agreement with MAX-DOAS than with TROPOMI. MAX-DOAS observations
810 exhibit seasonality similar to that of Chiba, with a peak HCHO column during August. Similar to Chiba,
811 the satellite-observed and CHASER peaks are observed during July and June, respectively. Chiba and
812 Kasuga sites are located near the ocean and exhibit similar HCHO variability, which has been captured
813 well in the simulations.

814

815 Although the bias between OLNE and standard simulations for Chiba and Kasuga is $\sim 4\%$, the absolute
816 difference is $\sim 1 \times 10^{15}$ molecules cm^{-2} . NO_x emissions in Japan have not changed markedly since 2005
817 (Miyazaki et al., 2017). The differences between the simulations are observed during the summer when
818 isoprene emissions are expected to peak (Hoque et al., 2018a). Because the OH estimates over Japan are
819 similar for both simulations (Fig. 5(d)), the differences are likely related to the interaction between
820 isoprene and NO_x inventories.

821

822 **3.6.2 Diurnal and Daily Variations**

823 Figure 8 compares the observed and simulated daily and diurnal variations in the surface HCHO vmr.
824 The error bars represent the 1σ standard deviation of the observed mean values. The daily variation
825 comparison entails only the standard simulations.

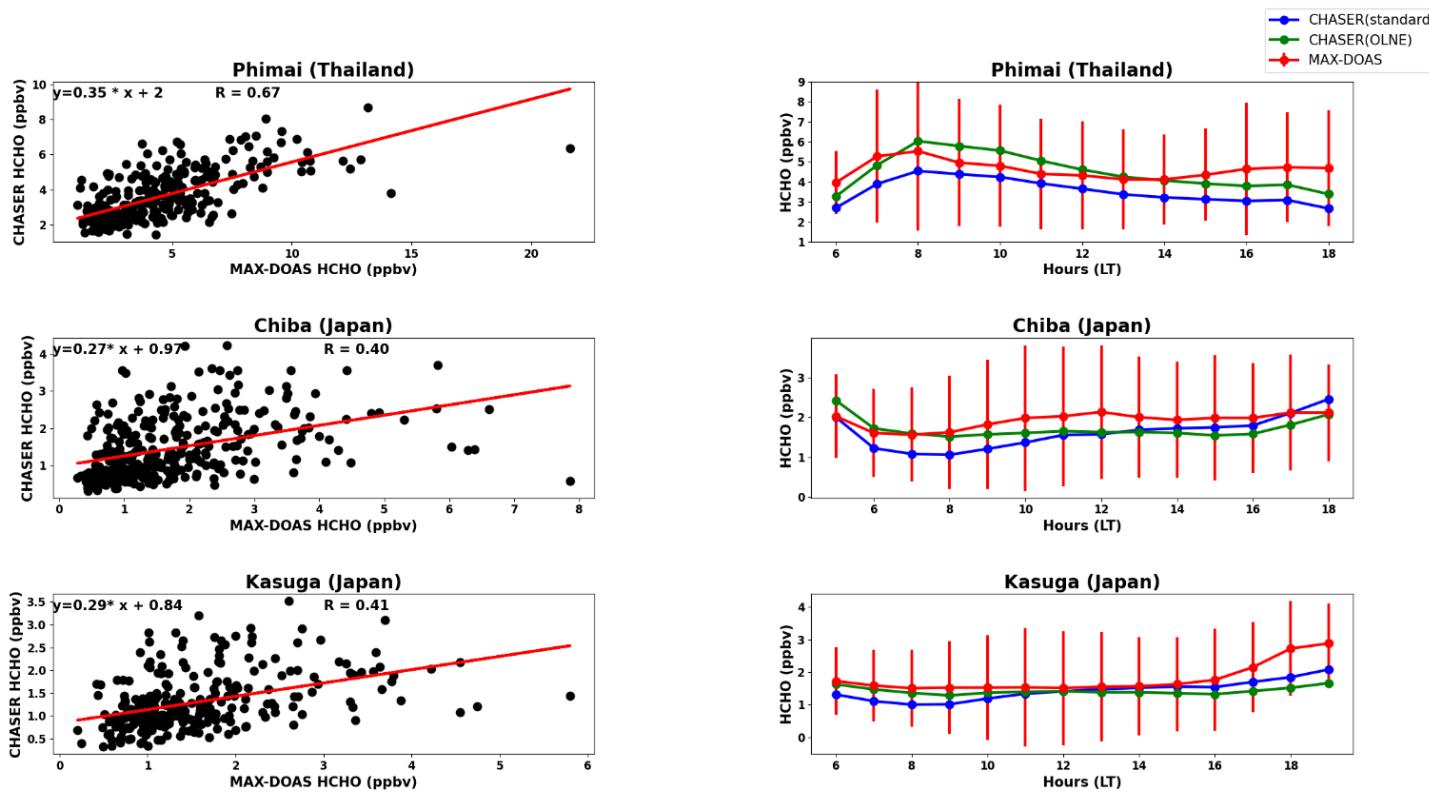
826

827 In Phimai, the daily datasets correlate well, with an R -value of 0.67. The slope of the fitted line is 0.35.
828 The observed and simulated daily mean HCHO vmr is ~4 ppbv. CHASER daily mean values are
829 negatively biased by 19% and 11%, respectively, during the dry and wet seasons. The standard diurnal
830 variations at Phimai are also well correlated with the observations ($R=0.64$). The simulated values lie
831 within the standard deviation of the observations. HCHO mixing ratios show a peak (~6 ppbv) at 8:00
832 LT in both datasets. Noontime (12:00 LT) vmr are approximately 4 ppbv, and hourly HCHO levels vary
833 between 2 and 6 ppbv. The OLNE diurnal values are 20% higher than the standard values. However, the
834 mean absolute difference between the two simulations is 1 ppbv.

835

836 The standard simulation reproduced the observed diurnal variations at Chiba, with a temporal correlation
837 of 0.79, higher than at Phimai. Both simulations are biased by 10% on the lower side compared to the
838 observations. No distinctive peak is observed in the diurnal variations. The increasing daytime HCHO
839 levels in Chiba are well reflected in the model runs. The simulated daily mean values in Chiba are
840 negatively biased by 18%, with a temporal correlation of 0.40. The slope of the fitted line to the daily
841 mean concentrations is 0.27, lower than at Phimai, suggesting a higher underestimation similar to the
842 total columns (Fig. 7).

843

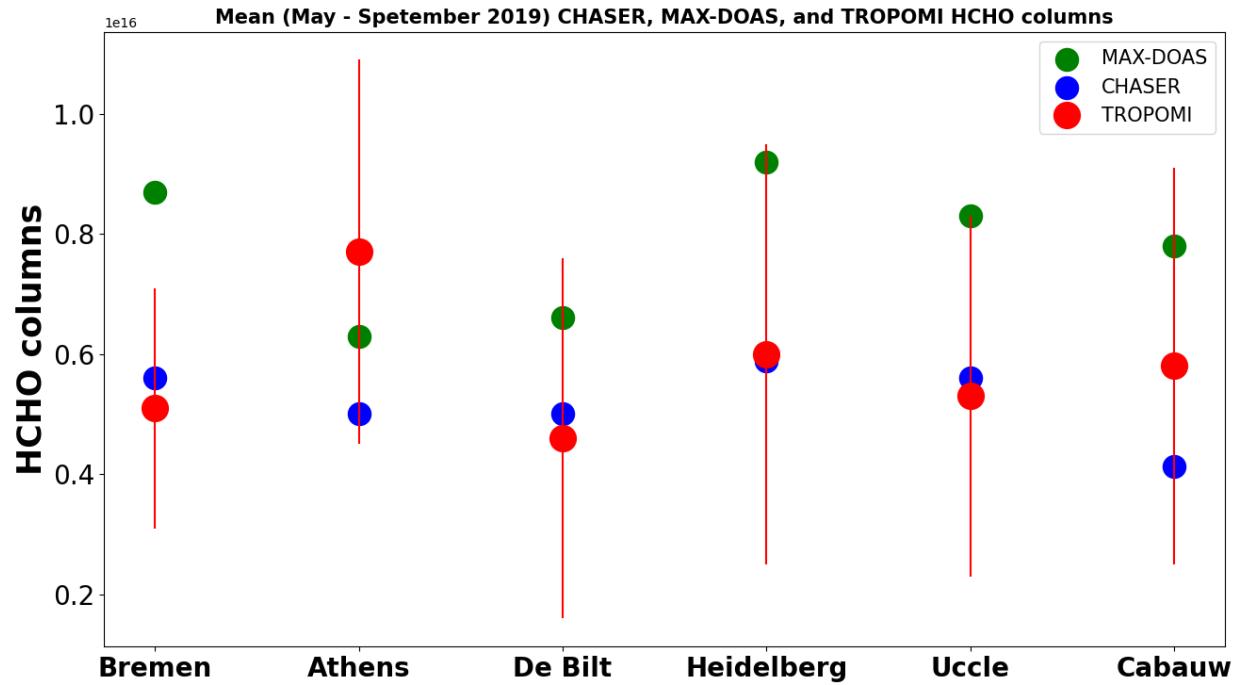


846 **Figure 8:** (left panel) Scatter plots show the correlation between the daily mean observed (MAX-DOAS) and
 847 simulated HCHO surface mixing ratios at the three sites. The standard simulations are used in the scatter plots. The
 848 linear fitted lines are shown in red. (right panel) Diurnal variations in the HCHO mixing ratios at the three sites are
 849 inferred from the MAX-DOAS observations and standard (blue) and OLNE (green) simulations. The error bars
 850 represent the 1-sigma standard deviation of the mean values estimated from the observations. Observations and
 851 simulations at the coincident date and time (local) are selected for comparison.

854 In Kasuga, modeled daily variations correlate moderately ($R=0.41$) with the observations. The effect of
 855 the NO_x inventories on the simulated diurnal variations in Kasuga is not significant. The simulated daily
 856 mean values are negatively biased by 20%, and the slope of the fitting is 0.29. Although Chiba and Kasuga

857 are similar sites, their observed diurnal variations are slightly different. However, the simulated values in
858 both cases agree with the observed standard deviation.

859



860 **Figure 9:** Scatter plot comparing CHASER (red), MAX-DOAS (green), and TROPOMI (red) HCHO columns
861 ($\times 10^{16}$ molecules cm^{-2}) at a few European sites. The MAX-DOAS observed values are taken from the work of
862 Oomen et al. (2024). These values represent the mean HCHO column from May to September in 2019. The
863 observations from 12:00 – 15:00 LT were used to calculate the mean values. Using a similar temporal filter, the
864 modeled mean values were calculated from the simulations for 2019. TROPOMI data for 2019 were filtered as
865 described in Section 2.2. The error bars signify the 1-sigma standard deviation of the TROPOMI mean HCHO
866 columns.

867

868

869

870 In addition, CHASER HCHO columns are also compared with MAX-DOAS observations reported in the
871 literature, shown in Fig.9. The observed values are obtained from Oomen et al. (2024). The observed

872 mean values represent the averages of MAX-DOAS observations between 12:00 and 15:00 LT from May
873 to September 2019. A similar temporal filter was applied to the CHASER simulations for 2019. The
874 coincident TROPOMI HCHO columns are also plotted. TROPOMI AKs are applied to the CHASER
875 values. The error bars signify the 1-sigma standard deviation of the TROPOMI mean values.

876 Like the Asian sites, CHASER underestimates the HCHO columns at the European sites. All three
877 datasets mostly agree within the 1-sigma variability range of the satellite observations. CHASER and
878 TROPOMI HCHO columns are lower than the MAX-DOAS observations except in Athens. CHASER
879 shows better agreement with the MAX-DOAS observations in Athens. De Smedt et al. (2021) reported
880 the biases between TROPOMI and MAX-DOAS observations at these sites, estimated from a daily time
881 scale. As the simulated HCHO magnitude is consistent with the TROPOMI values, biases between the
882 CHASER and MAX-DOAS HCHO columns at these sites will likely be equivalent.

883

884

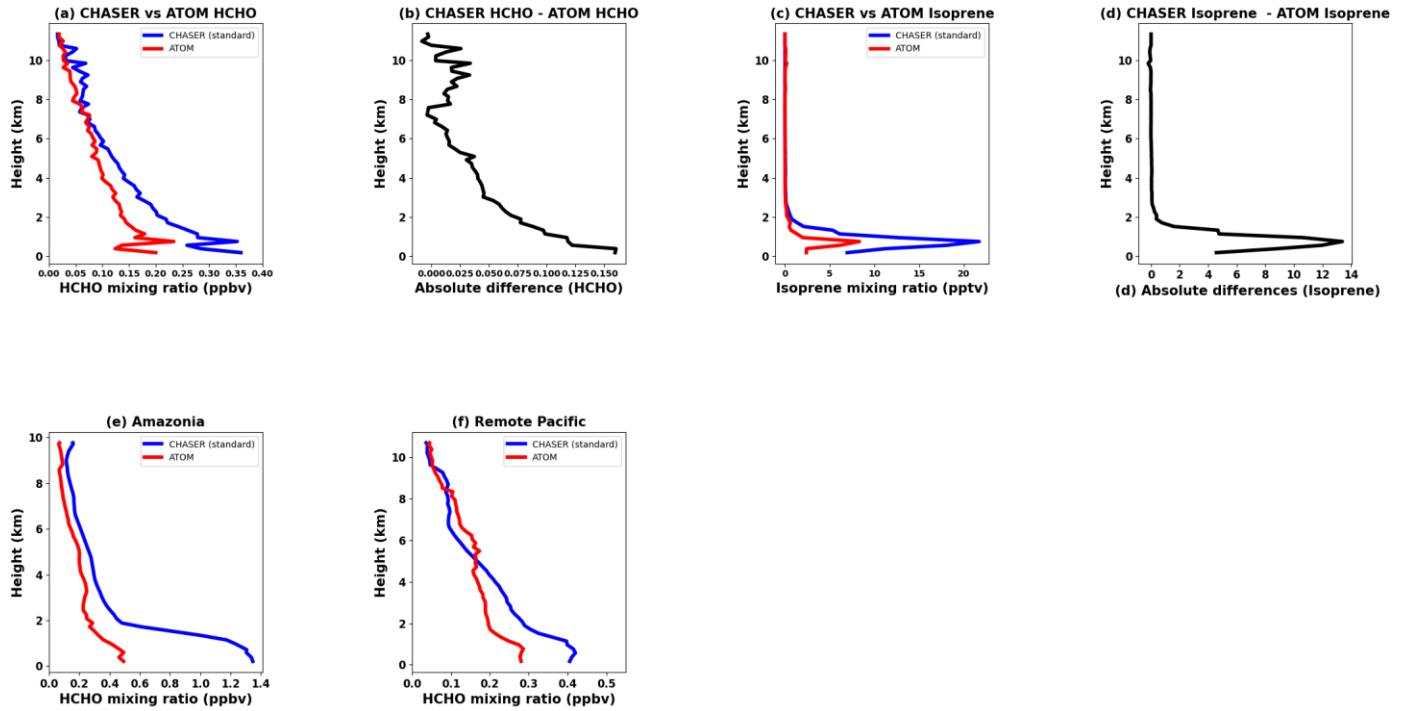
885 **3.7 Comparison with ATom-4 flight observations**

886

887 A comparison between simulated and observed HCHO and isoprene profiles along the ATom-4 flight
888 path (Fig. S2) is depicted in Fig. 10 (a and c). Only the coincident dates have been included in the
889 comparison.

890 The simulated HCHO and isoprene profiles agree well with the observations, with an *R*-value of 0.95.

891 Above and below 4 km, CHASER HCHO profiles are positively biased by 29 and



894 **Figure 10:** (top panel) Comparison between ATom observed (red) and CHASER simulated (blue) (a) HCHO, and
 895 (c) isoprene profiles along the ATom-4 flight path in 2018. The ATom-4 flight path is depicted in Fig.S2. Standard
 896 simulations are used for comparison. Simulations at the time of the ATom observations were selected. Both datasets
 897 were averaged within a 0.3 km bin. The relative differences between the observed and simulated (c) HCHO and
 898 (d) isoprene profiles are also shown. (bottom panel) Atom-4 observed, and CHASER simulated HCHO profiles
 899 over the (e) Amazonia and (f) the Remote Pacific region are compared. Amazonia (10° - 40° W, 10° S- 10° N) represents
 900 a densely vegetated region, whereas the remote Pacific region (160° - 180° W, 20° S- 20° N) represents the background
 901 HCHO conditions. The units of the HCHO and isoprene mixing ratios are, respectively, ppbv and pptv.

903 62%, respectively, compared to ATom-4 HCHO levels. The absolute difference in the isoprene profiles
 904 around 1 km is 14 pptv, which strongly correlates with the difference in the HCHO profile below 2km.
 905 This finding signifies that overestimated CHASER isoprene mixing ratios induce a positive bias in the
 906 HCHO estimates. Despite non-significant isoprene mixing ratios at altitudes greater than 2 km, both

907 datasets show considerable HCHO levels above 2 km. Zhao et al. (2022) reported a similar finding and
908 attributed enhanced CH₄ oxidation to the HCHO mixing ratios above 2 km. At higher altitudes HCHO is
909 produced through the CH₄ oxidation (i.e., CH₄ + OH) initiated CH₃O₂ (methyl peroxy radical) + CH₃O₂
910 pathway. HCHO production through this pathway is considered in CHASER. Therefore, despite the
911 differences in the magnitude, CHASER has shown good skills in reproducing the VOC profiles.

912

913 The potential reason for the higher HCHO simulated values below 2 km could be CHASER's
914 overestimated HCHO mixing ratios over South America, mainly the Amazon (Fig 2(c)). Figure 10(e and
915 f) depicts the observed and simulated HCHO profiles over the Amazon (10°-40°W, 10°S-10°N) and the
916 remote Pacific region (160°-180°W, 20°S-20°N). The HCHO profiles over the remote Pacific region
917 represent the background HCHO mixing ratio. CHASER and ATom background HCHO mixing ratios
918 within the boundary layer are 0.4 and 0.3 ppbv, respectively. The mean relative differences between the
919 two datasets within the boundary layer over Amazonia and the remote Pacific region are ~60 and ~22%,
920 indicating that the uncertainty in the contributions from the isoprene emissions to the total HCHO
921 uncertainties is higher. Above 5 km, CHASER underestimates the background HCHO mixing ratios.
922 However, simulated and TROPOMI HCHO columns over the remote Pacific regions showed consistency
923 when gridded over a similar horizontal grid (Fig. 1). Consequently, differences in the horizontal resolution
924 can cause discrepancies between the simulations and ATom observations over the remote regions. Over
925 South America, the model overestimates the observed (TROPOMI and ATom) HCHO abundances
926 irrespective of the horizontal resolution. Therefore, the biogenic emission estimates for South America in
927 CHASER should be reviewed to reduce the model-observation biases.

928

929 **3.8 Contribution estimates**

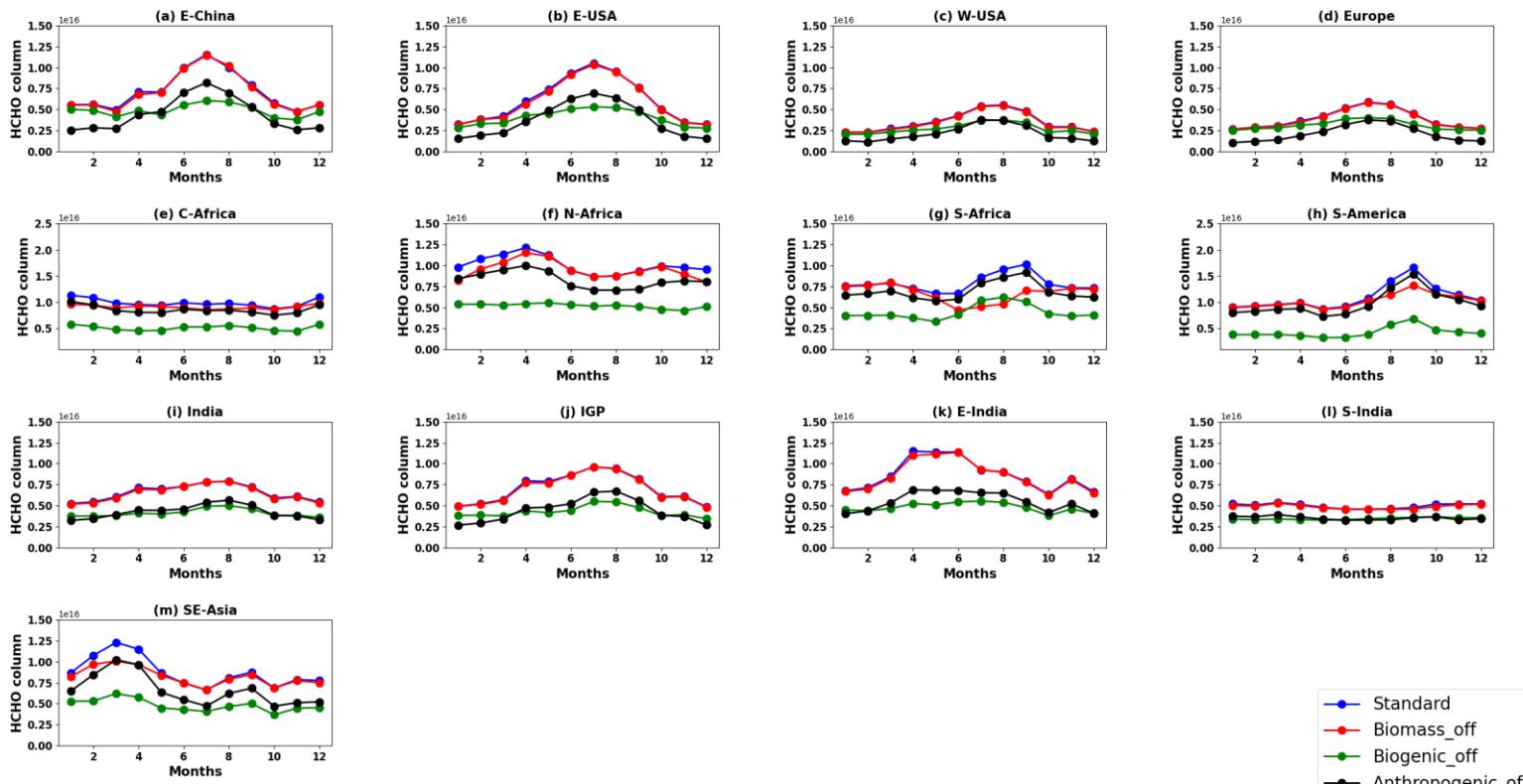
930 The contributions of different VOC emission sources to the regional HCHO abundances are presented in
931 Fig. 11. The contribution estimates are presented in Table 8. A stacked-bar plot of the annual contributions
932 of the emission sources is portrayed in Fig. S11.

933

934 Over E-China (Fig.11(a)), biomass burning has a non-significant effect on the regional HCHO columns.
 935 During summer, the biogenic and anthropogenic VOC emission contributions are 44% and 17%,
 936 respectively. In contrast, anthropogenic and biogenic contributions to the regional HCHO level during
 937 winter are 35% and 13%, respectively.

938

939 Non-significant biomass burning effects on the HCHO columns can be observed over E-USA (Fig.11(b)),
 940 W-USA(Fig.11c)), and Europe(Fig.11(d)). Biogenic emissions contribute more than 20% (35% in E-
 941 USA) in these regions. In these regions, annual anthropogenic contributions are higher than the biogenic
 942 contribution. Although the simulated winter columns in these regions are consistent with TROPOMI (Fig.
 943 2), the model values are lower during summer and autumn. Moreover, the sensitivity results show non-
 944 significant biogenic contribution during winter and autumn, which likely reduces the annual biogenic
 945 contribution estimates.



946

947 **Figure 11:** Seasonal variation of HCHO ($\times 10^{16}$ molecules cm^{-2}) inferred from different simulations. The settings
948 of the standard simulation are presented in Table 1. The model estimates shown in red, green, and blue are simulated
949 by switching off the biomass-burning, biogenic, and anthropogenic emissions. The satellite AKs have been applied
950 to all the simulations. The coordinate bounds of the regions are similar to those in Fig. 2.

951

952 In C-Africa(Fig.11(e)), biogenic emissions (48%) are the most significant contributor, followed by
953 anthropogenic emissions (13%). Although the biogenic emission contributions are equivalent in N-
954 Africa(Fig.11(f); 48%) and S-Africa (Fig.11(b); 43%), the pyrogenic contributions are twice as high in
955 the latter region. Consequently, despite similar HCHO abundances and modulation in these regions, the
956 source contributions differ.

957

958

959

960 **Table 8.** Contributions (%) of different emission sources to HCHO abundances in selected regions. The
961 respective emissions were switched off to estimate the contribution to the total HCHO abundances. The
962 contributions have been calculated with respect to the standard simulations. The satellite AKs were
963 applied to all simulations.

964

Region	Biomass-burning contribution	Biogenic contribution	Anthropogenic contribution
E-China	1.4%	32%	37%
E-USA	1.7%	35%	38%
W-USA	1.8%	23%	39%
Europe	1.2%	20%	45%

C-Africa	8%	48%	13%
N-Africa	6%	48%	17%
S-Africa	15%	43%	12%
S-America	7%	61%	10%
India	1.4%	37%	34%
IGP	1.1%	39%	37%
E-India	1.5%	44%	36%
S-India	2.1%	30%	29%
SE-Asia	6%	45%	24%

965

966

967 Biogenic emissions over South America(Fig.11(h)) contribute 61% to the regional HCHO abundances.
 968 The pyrogenic contribution during the biomass-burning period is 12%, whereas the annual contribution
 969 is 7%.

970

971 In SE-Asia(Fig.11(m)), annual anthropogenic contributions are ~20%. During the dry season, the
 972 anthropogenic, pyrogenic, and biogenic contributions are 7%, 12%, and 48%, respectively. Biogenic

973 production compromises 43% of the HCHO columns from July to December, whereas anthropogenic
974 emissions account for 9%.

975

976 In India(Fig.11(i)), annual pyrogenic emissions contribute ~2% to the HCHO levels. A similar source
977 contribution to the HCHO levels in IGP(Fig.11(j)) is also observed. The model's capability to reproduce
978 the observed HCHO seasonality in India and the IGP region was limited. Consequently, robust source
979 contribution estimates for these regions cannot be derived from the current analysis.

980 Over E-India (Fig.11(k)), 44% of the HCHO levels originate from biogenic sources, followed by
981 anthropogenic VOC emissions (36%). Similar source contributions of biogenic (30%) and anthropogenic
982 (29%) emissions are observed in S-India(Fig.11(l)). Over both regions, the pyrogenic source contribution
983 is ~2%.

984

985 **3.9 Uncertainties in the chemical mechanism**

986 Uncertainties in the chemical mechanisms affect the HCHO simulations. Representation of isoprene
987 chemistry can vary among the gas-phase chemistry mechanisms used in the CTMs. The most commonly
988 used isoprene schemes underestimate observed HCHO by at least 15% (Marvin et al., 2017). Such
989 underestimations are also strongly linked with the errors in the NO_x emission inventories (Anderson et
990 al., 2017). In addition, potential errors in the acetaldehyde emission and chemistry can also lead to
991 underestimated HCHO vmr up to 75 pptv in the lower troposphere (Anderson et al., 2017).

992

993 **4 Conclusions**

994 CHASER simulated global HCHO spatiotemporal distributions at a horizontal resolution of $2.8^\circ \times$
995 2.8° were evaluated against multi-platform observations. First, two years of simulation results (2019–
996 2020) were compared with the latest HCHO satellite observations from TROPOMI. The model-satellite
997 agreement was excellent, with a global *r*-value of 0.93 and RMSE of 0.75×10^{15} molecules cm⁻². The
998 model showed good capabilities for reproducing the HCHO columns in hotspot and background regions.
999 CHASER HCHO columns over large forested areas showed good consistency with the observations,
1000 demonstrating that the biogenic emission estimates in the model are reasonable. Simulated HCHO
1001 seasonality in a few selected regions was consistent with the observations. The model was able to

1002 reproduce the observed wintertime HCHO columns in E-USA, W-USA, and Europe, in addition to
1003 summer peaks. Disagreement between TROPOMI and CHASER was observed primarily in India, China,
1004 Amazonia, and SE Asia. Uncertainties in background HCHO columns, anthropogenic VOC emission
1005 inventories, chemical mechanisms adopted in the model, and retrieval algorithms were the potential
1006 contributors to these discrepancies. However, such uncertainties did not affect the model–satellite
1007 agreement in Africa and South America. Comparison among OMI, TROPOMI, and CHASER HCHO
1008 columns demonstrated that TROPOMI's improved spatial resolution effect was limited globally.
1009 However, in most regions, simulated HCHO seasonality showed better agreement with TROPOMI than
1010 with OMI, reducing the RMSE by up to 63%. TROPOMI retrievals were, on average, 30% lower than
1011 those of OMI.

1012 Second, CHASER simulations were compared with two-year MAX-DOAS observations of HCHO at
1013 Phimai, Chiba, and Kasuga. Daily CHASER HCHO mixing ratios showed consistency with the
1014 observations at the three sites, with R -values of 0.39–0.67. The slopes of linear fitting were lower for
1015 Chiba (0.29) and Kasuga (0.29) than for Phimai (0.37), implying lower model underestimation at the
1016 latter site. The diurnal variations at the sites were consistent with the observations. The change in the NO_x
1017 emission inventories did not affect the simulated diurnal variations.

1018 Third, simulated HCHO and isoprene profiles for 2018 were compared with ATom-4 flight observations.
1019 Despite consistent profile shapes, the model overestimated VOC mixing ratios mainly within the PBL.
1020 Uncertainties related to VOC emission inventories, background HCHO levels, and model resolution were
1021 potential reasons for the model–flight discrepancies.

1022 Lastly, sensitivity studies were conducted to estimate the contributions of the different emissions sources
1023 to the total HCHO columns in different regions. Biogenic emissions were the most significant contributor
1024 in most of the regions. In a few cases, biogenic and anthropogenic emission contributions were equivalent.
1025 In some regions, only summertime biogenic estimates were found to be reasonable.

1026

1027 **Code availability:** The CHASER source code needed to reproduce the simulations in this work is available
1028 from the repository at <https://zenodo.org/records/10892945> (Sudo et al., 2024).

1029 **Data availability:** The processed model output and observational datasets needed to reproduce the results
1030 are available from the repository at <https://zenodo.org/records/10052384> (Hoque et al., 2024). The MAX-
1031 DOAS profile and column data provided by Dr. Hitoshi Irie can be accessed from the repository(i.e., Hoque
1032 et al., 2024). TROPOMI (<https://scihub.copernicus.eu/dhus/#/home>, last access: 01 July 2023; De Smedt et
1033 al., 2021), OMI BIRA product, (https://www.temis.nl/qa4ecv/hcho/hcho_omi.php, last access: 01 July 2023;
1034 De Smedt et al., 2021) and ATom(https://daac.ornl.gov/ATOM/guides/ATOM_nav.html, last access: 01 July
1035 2023; Wofsy et al., 2018) data were obtained from the respective websites.

1036

1037 **Author contributions:** HMSH conceptualized the study, conducted the model simulations, analyzed the
1038 datasets, and drafted the manuscript. YH helped with the data processing. HI developed the JM2 code
1039 and maintained the A-SKY network. KS developed the CHASER model and supervised the study. MFK
1040 extended his expertise to explain the results. All the authors commented and provided feedback on the
1041 final results and manuscript.

1042

1043 **Conflict of Interest:** The authors declare that they have no conflict of interest

1044

1045 **Acknowledgments:** We are grateful to the TROPOMI, OMI, and ATom scientific teams for making the
1046 respective observational datasets available for public usage. The CHASER model simulations are partly
1047 performed with the supercomputer (NEC SX-Aurora TSUBASA) at the National Institute for
1048 Environmental Studies (NIES), Tsukuba, Japan. The corresponding author acknowledges the valuable
1049 advice of Dr. Kazuyakai Miyazaki (Jet Propulsion Lab, NASA) and Dr. Takashi Sekiya (JAMSTEC,
1050 Japan). The research has been supported by the Ministry of the Environment, Government of Japan
1051 (Global Environmental Research Fund (grant nos. S-12 and S-20)), the Japan Society for the Promotion
1052 of Science (KAKENHI (grant nos. JP20H04320, JP19H05669, JP19HO4235, JP23H04971,
1053 JP21K12227, JP22H03727, and JP22H05004)), the Environment Research and Technology Development
1054 Fund (JPMEERF20215005) of the Environmental Restoration and Conservation Agency of Japan, and
1055 the JAXA 3rd research announcement on the Earth observations (grant number 19RT000351).

1056

1057 **References**

1058 Anderson, D. C., Nicely, J.M., Wolfe, G. M., Hanisco, T. F., Salawitch, R. J., Canty, T. P., Dickerson,
1059 R.R., Apel, E.C., Baidar, S., Bannan, T.J., Blake, N.J., Chen, D., Dix, B., Fernandez, R.P., Hall, S.R.,
1060 Hornbrook, R.S., Huey, L.G., Josse, B., Jockel, P., Kinnison, D.E., Koenig, T.K., Le Breton, M., Marecal,
1061 V., Morgenstern, O., Oman, L.D., Pan, L.L., Percival, C., Plummer, D., Revell, L.E., Rozanov, E., Saiz-
1062 Lopez, A., Stenke, A., Sudo, K., Tilmes, S., Ullman, K., Volkamer, R., Weinheimer, A.J., and Zeng, G.:
1063 Formaldehyde in the tropical western Pacific: Chemical sources and sinks, convective transport, and
1064 representation in CAM-Chem and the CCM3 models, *J. Geophys. Res.*, 122, 201-211,
1065 <https://doi.org/10.1002/2016JD026121>, 2017

1067 Apel, E. C., Asher, E. C., Hills, A. J., and Hornbrook, R. S. : ATom: Volatile Organic Compounds
1068 (VOCs) from the TOGA instrument, Version 2, ORNL DAAC, Oak Ridge, Tennessee,
1069 USA, <https://doi.org/10.3334/ORNLDAA/1936>, 2021

1070

1071 Arlander, D., Brüning, D., Schmidt, U., & Ehhalt, D. :The tropospheric distribution of formaldehyde
1072 during TROPOZ II. *J. Atmos. Chem.*, 22(3), 251-269. <https://doi.org/10.1007/BF00696637>, 1995

1073

1074 Bauwens, M., Verreyken, B., Stavrakou, T., Müller, J., & De Smedt, I.: Spaceborne evidence for
1075 significant anthropogenic VOC trends in Asian cities over 2005–2019. *Environ. Res. Lett.*, 17(1), 015008.
1076 doi:<https://iopscience.iop.org/article/10.1088/1748-9326/ac46eb/>, 2022

1077

1078 Boersma, K. F., Eskes, H. J., and Brinksma, E. J. : Error analysis for tropospheric NO₂ retrieval from
1079 space. *J. Geophys. Res.*, 109, D04311. <https://doi.org/10.1029/2003JD003962>, 2004

1080

1081 Boersma, K. F., Vinken, G. C. M., and Eskes, H. J.: Representativeness errors in comparing chemistry
1082 transport and chemistry-climate models with satellite UV–Vis tropospheric column retrievals, *Geosci.*
1083 *Model Dev.*, 9, 875–898, <https://doi.org/10.5194/gmd-9-875-2016>, 2016.

1084 Burkert, J., Andrés-Hernández,M.D., Stöbener,D., Burrows,J.P., Weissenmayer,M., & Kraus,A. :
1085 Peroxy radical and related trace gas measurements in the boundary layer above the Atlantic Ocean.*J.*
1086 *Geophys. Res.*, 106(D6): 5457-5477. <https://doi.org/10.1029/2000JD900613>, 2001

1087

1088 Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V., Ladstätter-Weißenmayer, A., Richter, A., DeBeek,
1089 R., Hoogen, R., Bramstedt, K., Eichmann, K-U Eisinger, M., & Perner, D. : The Global Ozone
1090 Monitoring Experiment (GOME): Mission Concept and First Scientific Results. *J. Atmos. Sci.* 56(2),
1091 151-175. doi:[https://doi.org/10.1175/1520-0469\(1999\)056<0151:TGOME>2.0.CO;2](https://doi.org/10.1175/1520-0469(1999)056<0151:TGOME>2.0.CO;2), 1999

1092

1093 Caballero, C. B., Ruhoff, A. and Biggs, T.: Land use and land cover changes and their impacts on
1094 surface-atmosphere interactions in Brazil: A systematic review, *Sci. Total Environ.* 808: 152134,
1095 <https://doi.org/10.1016/j.scitotenv.2021.152134>, 2022

1096

1097 Cazorla, M., Wolfe, G. M., Bailey, S. A., Swanson, A. K., Arkinson, H. L., and Hanisco, T. F.: A new
1098 airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the
1099 troposphere and lower stratosphere, *Atmos. Meas. Tech.*, 8, 541–552, <https://doi.org/10.5194/amt-8-541-2015>, 2015.

1101

1102 Chan, K. L., Wiegner, M., van Geffen, J., De Smedt, I., Alberti, C., Cheng, Z., Ye, S., & Wenig, M. :
1103 MAX-DOAS measurements of tropospheric NO₂ and HCHO in Munich and the comparison to OMI and
1104 TROPOMI satellite observations. *Atmos. Meas. Tech.*, 13(8), 4499-4520. doi:10.5194/amt-13-4499-2020, 2020

1106

1107 Chutia, L., Ojha, N., Girach, I.A., Sahu, L.K., Alvarado, M.A.L., Burrows, J.P., Pathak, B., and Bhuyan,
1108 P.K. : Distribution of volatile organic compounds over Indian subcontinent during winter: WRF-chem
1109 simulation versus observations, *Environ. Pol.*, 252, Part A, 256-269,
1110 <https://doi.org/10.1016/j.envpol.2019.05.097>, 2019

1111

1112

1113 Colella, P., & Woodward, P. R. : The piecewise parabolic method (PPM) for gas-dynamical simulations.
1114 *J. Comput. Phys.*, 54(1), 174-201. doi:[https://doi.org/10.1016/0021-9991\(84\)90143-8](https://doi.org/10.1016/0021-9991(84)90143-8), 1984

1115

1116

1117

1118 Crippa, M., Guizzardi, D., Butler, T., Keating, T., Wu, R., Kaminski, J., Kuenen, J., Kurokawa, J., Chatani,
1119 S., Morikawa, T., Pouliot, G., Racine, J., Moran, M. D., Klimont, Z., Manseau, P. M., Mashayekhi, R.,

1120 Henderson, B. H., Smith, S. J., Suchyta, H., Muntean, M., Solazzo, E., Banja, M., Schaaf, E., Pagani, F.,
1121 Woo, J.-H., Kim, J., Monforti-Ferrario, F., Pisoni, E., Zhang, J., Niemi, D., Sassi, M., Ansari, T., and Foley,
1122 K.: The HTAP_v3 emission mosaic: merging regional and global monthly emissions (2000–2018) to
1123 support air quality modelling and policies, *Earth Syst. Sci. Data*, 15, 2667–2694,
1124 <https://doi.org/10.5194/essd-15-2667-2023>, 2023

1125

1126

1127 De Smedt, I., Pinardi, G., Vigouroux, C., Compernolle, S., Bais, A., Benavent, N., Boersma, F., Chan,
1128 K.-L., Donner, S., Eichmann, K.-U., Hedelt, P., Hendrick, F., Irie, H., Kumar, V., Lambert, J.-C.,
1129 Langerock, B., Lerot, C., Liu, C., Loyola, D., Piters, A., Richter, A., Rivera Cárdenas, C., Romahn, F.,
1130 Ryan, R. G., Sinha, V., Theys, N., Vlietinck, J., Wagner, T., Wang, T., Yu, H., and Van Roozendael, M.
1131 : Comparative assessment of TROPOMI and OMI formaldehyde observations and validation against
1132 MAX-DOAS network column measurements, *Atmos. Chem. Phys.*, 21, 12561–12593,
1133 <https://doi.org/10.5194/acp-21-12561-2021>, 2021

1134

1135

1136 De Smedt, I., Theys, N., Yu, H., Danckaert, T., Lerot, C., Compernolle, S., Van Roozendael, M., Richter,
1137 A., Hilboll, A., Peters, E., Pedergnana, M., Loyola, D., Beirle, S., Wagner, T., Eskes, H., van Geffen, J.,
1138 Boersma, K. F., & Veefkind, P. : Algorithm theoretical baseline for formaldehyde retrievals from S5P
1139 TROPOMI and from the QA4ECV project. *Atmos. Meas. Tech.*, 11, 2395–2426.
1140 <https://doi.org/10.5194/amt-11-2395-2018>, 2018, 2018

1141

1142

1143

1144

1145 De Smedt, I., Yu, H., Richter, A., Beirle, S., Eskes, H., Boersma, K.F., Van Roozendael, M., Van Geffen, J.,
1146 Lorente, A., & Peters, E. : QA4ECV HCHO tropospheric column data from OMI (Version 1.1) [Data set],
1147 Royal Belgian Institute for Space Aeronomy. <https://doi.org/10.18758/71021031>, 2017

1148

1149 De Smedt, I., Stavrakou, T., Müller, J.-F., van der A, R. J., & Van Roozendael, M. : Trend detection in
1150 satellite observations of formaldehyde tropospheric columns. *Geophys. Res. Lett.*, 37(18).
1151 doi:<https://doi.org/10.1029/2010GL044245>, 2010

1152

1153

1154 De Smedt, I., Müller, J. F., Stavrakou, T., van der A, R., Eskes, H., & Van Roozendael, M. : Twelve
1155 years of global observations of formaldehyde in the troposphere using GOME and SCIAMACHY sensors.
1156 *Atmos. Chem. Phys.*, 8(16), 4947-4963. doi:10.5194/acp-8-4947-2008, 2008

1157

1158 Duncan, B. N., Yoshida, Y., Olson, J.R., Sillman, S., Martin, R.V., Lamsal, L., Hu, Y., Pickering,K.E.,
1159 Retscher, C., Allen, D.J., & Crawford, J.H. : Application of OMI observations to a space-based indicator
1160 of NO_x and VOC controls on surface ozone formation, *Atmos. Environ.*, 44 (18),2213-2223,
1161 10.1016/j.atmosenv.2010.03.010, 2010

1162

1163

1164 Emori, S., Nozawa, T., Numaguti, A., & Uno, I. : Importance of cumulus parameterization for
1165 precipitation simulation over East Asia in June, 79(4), 939-947. doi:<https://doi.org/10.2151/jmsj.79.939>,
1166 2021

1167

1168 Franco, B., Hendrick, F., Van Roozendael, M., Müller, J.-F., Stavrakou, T., Marais, E. A., Bovy, B.,
1169 Bader, W., Fayt, C., Hermans, C. ,Lejuene, B. ,Pinardi, G. ,Sevais, C. , & Mahieu, E. : Retrievals of
1170 formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and
1171 comparisons with GEOS-Chem and IMAGES model simulations. *Atmos. Meas. Tech.*, 8(4), 1733-1756.
1172 doi:<https://doi.org/10.5194/amt-8-1733-2015>, 2015

1173

1174

1175 Fu, T. M., Jacob, D. J., Wittrock, F., Burrows, J. P., Vrekoussis, M., & Henze, D. K. : Global budgets of
1176 atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols.J.
1177 Geophys. Res., 113(D15). doi: <https://doi.org/10.1029/2007JD009505>, 2008

1178

1179 González Abad, G., Vasilkov, A., Seftor, C., Liu, X., & Chance, K. : Smithsonian Astrophysical
1180 Observatory Ozone Mapping and Profiler Suite (SAO OMPS) formaldehyde retrieval. Atmos. Meas.
1181 Tech., 9(7), 2797-2812. doi:10.5194/amt-9-2797-2016, 2016

1182 Guenther, A.: Seasonal and spatial variations in natural volatile organic compound emissions, Ecol. Appl.,
1183 7, 34–45, <https://doi.org/10.2307/2269405>, 1997.

1184

1185 Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C. :Estimates of global
1186 terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature),
1187 Atmos. Chem. Phys. 6, 3181–3210, <https://doi.org/10.5194/acp-6-3181-2006>, 2006

1188

1189 Ha, P. T. M., Kanaya, Y., Taketani, F., Andrés Hernández, M. D., Schreiner, B., Pfeilsticker, K., and
1190 Sudo, K.: Implementation of HONO into the chemistry–climate model CHASER (V4.0): roles in
1191 tropospheric chemistry: Geosci. Model Dev. 16, 927–960, <https://doi.org/10.5194/gmd-16-927-2023>,
1192 2023

1193

1194

1195 Hak, C., Pundt, I., Trick, S., Kern, C., Platt, U., Dommen, J., Ordóñez, C., Prévôt, A. S. H., Junkermann,
1196 W., Astorga-Lloréns, C., Larsen, B. R., Mellqvist, J., Strandberg, A., Yu, Y., Galle, B., Kleffmann, J.,
1197 Lörzer, J. C., Braathen, G. O., & Volkamer, R. : Intercomparison of four different in-situ techniques for
1198 ambient formaldehyde measurements in urban air. Atmos. Chem. Phys., 5(11), 2881-2900.
1199 doi:<https://doi.org/10.5194/acp-5-2881-2005>, 2005

1200 Ito, A., & Inatomi, M.: Use of a process-based model for assessing the methane budgets of global
1201 terrestrial ecosystems and evaluation of uncertainty. *Biogeosciences*, 9(2), 759-773.
1202 doi:<https://doi.org/10.5194/bg-9-759-2012>, 2012

1203

1204

1205 He, Y., Hoque, H. M. S., and Sudo, K.: Introducing new lightning schemes into the CHASER (MIROC)
1206 chemistry–climate model (2022). *Geosci. Model Dev.t*, 15, 5627–5650, <https://doi.org/10.5194/gmd-15-5627-2022>, 2022

1208

1209 Hoque, H. M. S., Sudo, K., and Irie, H., : Model and observational datasets used for evaluating CHASER simulated
1210 formaldehyde (HCHO) abundances in 2019 and 2020. [Dataset]. Zenodo.
1211 <https://doi.org/10.5281/zenodo.10052384>, 2024

1212

1213 Hoque, H. M. S., Sudo, K., Irie, H., Damiani, A., Naja, M., and Fatmi, A. M. : Multi-axis differential
1214 optical absorption spectroscopy (MAX-DOAS) observations of formaldehyde and nitrogen dioxide at
1215 three sites in Asia and comparison with the global chemistry transport model CHASER, *Atmos. Chem.*
1216 *Phys.*, 22, 12559–12589, <https://doi.org/10.5194/acp-22-12559-2022>, 2022

1217

1218

1219 Hoque, H., Irie, H., & Damiani, A. : First MAX-DOAS Observations of Formaldehyde and Glyoxal in
1220 Phimai, Thailand. *J. Geophys. Res.*, 123(17), 9957-9975. doi: <https://doi.org/10.1029/2018JD028480,a>,
1221 2018a

1222

1223 Hoque, H. M. S., Irie, H., Damiani, A., Rawat, P., & Naja, M.: First simultaneous observations of
1224 formaldehyde and glyoxal by MAX-DOAS in the Indo-Gangetic Plain region. *Sola*.
1225 doi:<https://doi.org/10.2151/sola.2018-028,b>, 2018b

1226

1227

1228

1229 Irie, H. (2021). International air quality and sky research remote sensing network (A-SKY): Its development and
1230 satellite atmosphere product validation, *Journal of the Remote Sensing Society of Japan*, 41, 5, 575-581,
1231 <https://doi.org/10.11440/rssj.41.575>, 2021a

1232

1233

1234 Irie, H., D. Yonekawa, A. Damiani, H. M. S. Hoque, K. Sudo and S. Itahashi : Continuous multi-
1235 component MAX-DOAS observations for the planetary boundary layer ozone variation analysis at Chiba
1236 and Tsukuba, Japan, from 2013 to 2019. *Prog. Earth Planet. Sci.*, 8(1): 1-11., 2021b

1237

1238

1239

1240 Irie, H., Nakayama, T., Shimizu, A., Yamazaki, A., Nagai, T., Uchiyama, A., Zaizen, Y., Kagamitani, S.,
1241 & Matsumi, Y. : Evaluation of MAX-DOAS aerosol retrievals by coincident observations using CRDS,
1242 lidar, and sky radiometer in Tsukuba, Japan. *Atmos. Meas. Tech.*, 8(7), 2775-2788.
1243 doi:<https://doi.org/10.5194/amt-8-2775-2015>, 2015

1244 Irie, H., Takashima, H., Kanaya, Y., Boersma, K., Gast, L., Wittrock, F., Brunner, D., Zhou, Y., &
1245 Rozendaal, M. V. : Eight-component retrievals from ground-based MAX-DOAS observations. *Atmos.*
1246 *Meas. Tech.*, 4(6), 1027-1044. doi:<https://doi.org/10.5194/amt-4-1027-2011>, 2011

1247

1248 Irie, H., Kanaya, Y., Akimoto, H., Iwabuchi, H., Shimizu, A., & Aoki, K. : First retrieval of tropospheric
1249 aerosol profiles using MAX-DOAS and comparison with lidar and sky radiometer measurements. *Atmos.*
1250 *Chem. Phys.*, 8(2), 341-350. doi:<https://doi.org/10.5194/acp-8-341-2008>, 2008

1251

1252

1253

1254 Jenkin, M. E., Young, J. C., & Rickard, A. R. The MCM v3. 3.1 degradation scheme for isoprene. *Atmos.*
1255 *Chem. Phys.*, 15(20), 11433-11459. doi:<https://doi.org/10.5194/acp-15-11433-201>, 2015

1256

1257 Khan, M. F., Latif, M., Saw, W., Amil, N., Nadzir, M., Sahani, M., Tahir, N.M., & Chung, J. : Fine
1258 particulate matter associated with monsoonal effect and the responses of biomass fire hotspots in the
1259 tropical environment. *Atmos. Chem. Phys.*, 16, 597–617, <https://doi.org/10.5194/acp-16-597-2016>, 2016

1260

1261 Kleipool, Q. L., Dobber, M. R., de Haan, J. F., and Levelt, P. F.: Earth surface reflectance climatology
1262 from 3 years of OMI data, *J. Geophys. Res.*, 113, D18308. <https://doi.org/10.1029/2008JD010290>, 2008

1263

1264 Kreher, K., Van Roozendael, M., Hendrick, F., Apituley, A., Dimitropoulou, E., Frieß, U., Richter, A.,
1265 Wagner, T., Lampel, J., Abuhassan, N., Ang, L., Anguas, M., Bais, A., Benavent, N., Bösch, T., Bognar,
1266 K., Borovski, A., Bruchkouski, I., Cede, A., Chan, K. L., Donner, S., Drosoglou, T., Fayt, C.,
1267 Finkenzeller, H., Garcia-Nieto, D., Gielen, C., Gómez-Martín, L., Hao, N., Henzing, B., Herman, J. R.,
1268 Hermans, C., Hoque, S., Irie, H., Jin, J., Johnston, P., Khayyam Butt, J., Khokhar, F., Koenig, T. K.,
1269 Kuhn, J., Kumar, V., Liu, C., Ma, J., Merlaud, A., Mishra, A. K., Müller, M., Navarro-Comas, M.,
1270 Ostendorf, M., Pazmino, A., Peters, E., Pinardi, G., Pinharanda, M., Piters, A., Platt, U., Postylyakov, O.,
1271 Prados-Roman, C., Puentedura, O., Querel, R., Saiz-Lopez, A., Schönhardt, A., Schreier, S. F., Seyler,
1272 A., Sinha, V., Spinei, E., Strong, K., Tack, F., Tian, X., Tiefengraber, M., Tirpitz, J.-L., van Gent, J.,
1273 Volkamer, R., Vrekoussis, M., Wang, S., Wang, Z., Wenig, M., Wittrock, F., Xie, P. H., Xu, J., Yela, M.,
1274 Zhang, C., and Zhao, X. : Intercomparison of NO₂, O₄, O₃ and HCHO slant column measurements by
1275 MAX-DOAS and zenith-sky UV–visible spectrometers during CINDI-2. *Atmos. Meas. Tech.*, 13, 2169–
1276 2208, <https://doi.org/10.5194/amt-13-2169-2020>, 2020

1277

1278 Kumar, A., Hakkim, H., Ghude, S. D., & Sinha, V. : Probing wintertime air pollution sources in the Indo-
1279 Gangetic Plain through 52 hydrocarbons measured rarely at Delhi & Mohali. *Sci. Total Environ.*, 801,
1280 149711. doi:<https://doi.org/10.1016/j.scitotenv.2021.149711>, 2021

1281

1282 Kupc, A., Williamson, C., Wagner, N. L., Richardson, M., and Brock, C. A.: Modification, calibration,
1283 and performance of the Ultra-High Sensitivity Aerosol Spectrometer for particle size distribution and
1284 volatility measurements during the Atmospheric Tomography Mission (ATom) airborne campaign.
1285 *Atmos. Meas. Tech.*, 11, 369–383, <https://doi.org/10.5194/amt-11-369-2018>, 2018

1286

1287 Kurucz, R. L., Furenlid, I., Brault, J., and Testerman, L., Solar flux atlas from 296 to 1300 nm. National
1288 Solar Observatory Atlas No. 1, Sunspot, New Mexico, 1984

1289

1290

1291 Kuttippurath, J., Abbhishhek, K., Gopikrishnan, G. S., & Pathak, M. : Investigation of long-term trends
1292 and major sources of atmospheric HCHO over India. *Environ. Chall.*, 7, 100477.
1293 doi:<https://doi.org/10.1016/j.envc.2022.100477>, 2022

1294

1295

1296 Lee, M., Heikes, B. G., Jacob, D. J., Sachse, G., & Anderson, B.: Hydrogen peroxide, organic
1297 hydroperoxide, and formaldehyde as primary pollutants from biomass burning, *J. Geophys. Res.*,
1298 102(D1), 1301-1309. doi: <https://doi.org/10.1029/96JD01709>, 1997

1299

1300 Levelt, P. F., Joiner, J., Tamminen, J., Veefkind, J. P., Bhartia, P. K., Stein Zweers, D. C., Duncan, B. N.,
1301 Streets, D. G., Eskes, H., van der A, R., McLinden, C., Fioletov, V., Carn, S., de Laat, J., DeLand, M.,
1302 Marchenko, S., McPeters, R., Ziemke, J., Fu, D., Liu, X., Pickering, K., Apituley, A., González Abad,
1303 G., Arola, A., Boersma, F., Chan Miller, C., Chance, K., de Graaf, M., Hakkarainen, J., Hassinen, S.,
1304 Ialongo, I., Kleipool, Q., Krotkov, N., Li, C., Lamsal, L., Newman, P., Nowlan, C., Suleiman, R., Tilstra,
1305 L. G., Torres, O., Wang, H., & Wargan, K., : The Ozone Monitoring Instrument: overview of 14 years in
1306 space, *Atmos. Chem. Phys.*, 18, 5699–5745, <https://doi.org/10.5194/acp-18-5699-2018>, 2018

1307

1308 Levelt, P. F., Stein Zweers, D. C., Aben, I., Bauwens, M., Borsdorff, T., De Smedt, I., Eskes, H. J., Lerot,
1309 C., Loyola, D. G., Romahn, F., Stavrakou, T., Theys, N., Van Roozendael, M., Veefkind, J. P., and
1310 Verhoelst, T.: Air quality impacts of COVID-19 lockdown measures detected from space using high
1311 spatial resolution observations of multiple trace gases from Sentinel-5P/TROPOMI, *Atmos. Chem. Phys.*,
1312 22, 10319–10351, <https://doi.org/10.5194/acp-22-10319-2022>, 2022

1313

1314

1315 Liu, F., Q. Zhang, R. J. van der A, B. Zheng, D. Tong, L. Yan, Y. Zheng and K. He : Recent reduction in
1316 NO_x emissions over China: synthesis of satellite observations and emission inventories. *Environ. Res.*
1317 *Lett.*, 11(11): 114002. doi: 10.1088/1748-9326/11/11/114002, 2016

1318

1319

1320 Liu, Y., Wang, H., Jing, S., Peng, Y., Gao, Y., Yan, R., Wang, Q., Lou, S., Cheng, T., & Huang, C.:
1321 Strong regional transport of volatile organic compounds (VOCs) during wintertime in Shanghai megacity
1322 of China. *Atmos. Environ.*, 244, 117940. doi:<https://doi.org/10.1016/j.atmosenv.2020.117940>, 2021

1323

1324 Luecken, D. J., Napelenok, S. L., Strum, M., Scheffe, R., & Phillips, S.: Sensitivity of Ambient
1325 Atmospheric Formaldehyde and Ozone to Precursor Species and Source Types Across the United States.
1326 *Environ. Sci. Tech.*, 52(8), 4668-4675. doi:10.1021/acs.est.7b05509, 2018

1327

1328 Marvin, M. R., G. M. Wolfe, R. J. Salawitch, T. P. Canty, S. J. Roberts, K. R. Travis, K. C. Aikin, J. A.
1329 de Gouw, M. Graus, T. F. Hanisco, J. S. Holloway, G. Hübner, J. Kaiser, F. N. Keutsch, J. Peischl, I. B.
1330 Pollack, J. M. Roberts, T. B. Ryerson, P. R. Veres and C. Warneke : Impact of evolving isoprene
1331 mechanisms on simulated formaldehyde: An inter-comparison supported by in situ observations from
1332 SENEX, *Atmos. Environ.* 164: 325-336, <https://doi.org/10.1016/j.atmosenv.2017.05.049>, 2017

1333

1334 Martin, R. V., Fiore, A.M., & Van Donkelaar, A. : Space-based diagnosis of surface ozone sensitivity to
1335 anthropogenic emissions, *Geophys. Res. Lett.*, 31 (6), <https://doi.org/10.1029/2004GL019416>, 2004

1336

1337

1338

1339

1340 Meller, R. & Moortgat, G. K. : Temperature dependence of the absorption cross section of HCHO between
1341 223 and 323 K in the wavelength range 225–375 nm, *J. Geophys. Res.*, 105, 7089–
1342 7102. <https://doi.org/10.1029/1999JD901074>, 2000

1343

1344 Mellor, G. L., & Yamada, T. : A hierarchy of turbulence closure models for planetary boundary layers.
1345 *J. Atmos. Sci.*, 31(7), 1791-1806. doi:[https://doi.org/10.1175/1520-0469\(1974\)031<1791:AHOTCM>2.0.CO;2](https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2). 1974

1347

1348 Miyazaki, K., Eskes, H., Sudo, K., Boersma, K. F., Bowman, K., & Kanaya, Y. : Decadal changes in
1349 global surface NO_x emissions from multi-constituent satellite data assimilation. *Atmos. Chem. Phys.*,
1350 17(2), 807-837. doi:<https://doi.org/10.5194/acp-17-807-2017>, 2017

1351

1352 Miyazaki, K., Bowman, K., Sekiya, T., Eskes, H., Boersma, F., Worden, H., Livesey, N., Payne, V. H.,
1353 Sudo, K., Kanaya, Y., & Takigawa, M. Ogochi, K. : Updated tropospheric chemistry reanalysis and
1354 emission estimates, TCR-2, for 2005–2018. *Earth Syst. Sci. Data*, 12(3), 2223-2259. doi:[10.5194/essd-12-2223-2020](https://doi.org/10.5194/essd-12-2223-2020), 2020

1356

1357 Müller, J.-F., Stavrakou, T., Wallens, S., De Smedt, I., Van Roozendael, M., Potosnak, M. J., Rinne, J.,
1358 Munger, B., Goldstein, A., & Guenther, A. B. : Global isoprene emissions estimated using MEGAN,
1359 ECMWF analyses and a detailed canopy environment model, *Atmos. Chem. Phys.*, 8, 1329–1341,
1360 <https://doi.org/10.5194/acp-8-1329-2008>, 2008

1361

1362 Munro, R., Lang, R., Klaes, D., Poli, G., Retscher, C., Lindstrot, R., Huckle, R. ,Lacan, A., Grzegorski,
1363 M., Holdak, A., Kokhanovsky, A., Livschitz, J., & Eisinger, M.: The GOME-2 instrument on the Metop
1364 series of satellites: instrument design, calibration, and level 1 data processing – an overview. *Atmos. Meas.
1365 Tech.*, 9(3), 1279-1301. doi:[10.5194/amt-9-1279-2016](https://doi.org/10.5194/amt-9-1279-2016), 2016

1366

1367 Oomen, G.-M., Müller, J.-F., Stavrakou, T., De Smedt, I., Blumenstock, T., Kivi, R., Makarova, M., Palm,
1368 M., Röhling, A., Té, Y., Vigouroux, C., Friedrich, M. M., Frieß, U., Hendrick, F., Merlaud, A., Piters, A.,
1369 Richter, A., Van Roozendael, M., and Wagner, T.: Weekly derived top-down volatile-organic-compound
1370 fluxes over Europe from TROPOMI HCHO data from 2018 to 2021, *Atmos. Chem. Phys.*, 24, 449–474,
1371 <https://doi.org/10.5194/acp-24-449-2024>, 202

1372

1373 Opacka, B., Müller, J. F., Stavrakou, T., Bauwens, M., Sindelarova, K., Markova, J., & Guenther, A. B.:
1374 Global and regional impacts of land cover changes on isoprene emissions derived from spaceborne data
1375 and the MEGAN model. *Atmos. Chem. Phys.*, 21(11), 8413–8436. doi:10.5194/acp-21-8413-2021, 2021

1376

1377

1378 Price, C., & Rind, D. : A simple lightning parameterization for calculating global lightning distributions. *J.*
1379 *Geophys. Res.*, 97(D9), 9919-9933. doi: <https://doi.org/10.1029/92JD00719>, 1992

1380

1381 Possanzini, M., Palo, V. D., & Cecinato, A. (2002). Sources and photodecomposition of formaldehyde
1382 and acetaldehyde in Rome ambient air. *Atmos. Environ.*, 36(19), 3195-3201.
1383 doi:[https://doi.org/10.1016/S1352-2310\(02\)00192-9](https://doi.org/10.1016/S1352-2310(02)00192-9)

1384

1385 Roberts, G., Wooster, M. J., and Lagoudakis, E.: Annual and diurnal African biomass burning temporal
1386 dynamics, *Biogeosciences*, 6, 849–866. <https://doi.org/10.5194/bg-6-849-2009>, 2009

1387

1388 Roscoe, H. K., Van Roozendael, M., Fayt, C., du Piesanie, A., Abuhassan, N., Adams, C., Akrami, M.,
1389 Cede, A., Chong, J., Clémer, K., Friess, U., Gil Ojeda, M., Goutail, F., Graves, R., Griesfeller, A.,
1390 Grossmann, K., Hemerijckx, G., Hendrick, F., Herman, J., Hermans, C., Irie, H., Johnston, P. V., Kanaya,
1391 Y., Kreher, K., Leigh, R., Merlaud, A., Mount, G. H., Navarro, M., Oetjen, H., Pazmino, A., Perez-
1392 Camacho, M., Peters, E., Pinardi, G., Puentedura, O., Richter, A., Schönhardt, A., Shaiganfar, R., Spinei,

1393 E., Strong, K., Takashima, H., Vlemmix, T., Vrekoussis, M., Wagner, T., Wittrock, F., Yela, M., Yilmaz,
1394 S., Boersma, F., Hains, J., Kroon, M., Piters, A., and Kim, Y. J. : Intercomparison of slant column
1395 measurements of NO₂ and O₄ by MAX-DOAS and zenith-sky UV and visible spectrometers, Atmos.
1396 Meas. Tech., 3, 1629–1646, <https://doi.org/10.5194/amt-3-1629-2010>, 2010

1397

1398

1399 Ryan, R. G., Silver, J. D., Querel, R., Smale, D., Rhodes, S., Tully, M., Jones, N., & Schofield, R.:
1400 Comparison of formaldehyde tropospheric columns in Australia and New Zealand using MAX-DOAS,
1401 FTIR and TROPOMI. Atmos. Meas. Tech., 13(12), 6501-6519. doi:10.5194/amt-13-6501-2020, 2020

1402

1403

1404 Salazar, D., Lokvam, J., Mesones, I., Vásquez Pilco, M., Ayarza Zuñiga, J. M., de Valpine, P., & Fine,
1405 P. V. A. : Origin and maintenance of chemical diversity in a species-rich tropical tree lineage. Nat. Ecol.
1406 Evol., 2(6), 983–990. <https://doi.org/10.1038/s41559-018-0552-0>, 2018

1407

1408 Sekiya, T., Miyazaki, K., Eskes, H., Bowman, K., Sudo, K., Kanaya, Y., & Takigawa, M. : The worldwide
1409 COVID-19 lockdown impacts on global secondary inorganic aerosols and radiative budget. Sci. Adv.,
1410 9(30), eadh2688. doi:doi:10.1126/sciadv.adh2688, 2023

1411

1412 Sekiya, T., Miyazaki, K., Ogochi, K., Sudo, K., & Takigawa, M. : Global high-resolution simulations of
1413 tropospheric nitrogen dioxide using CHASER V4.0. Geosci. Model Dev., 11(3), 959-988.
1414 doi:10.5194/gmd-11-959-2018, 2018

1415

1416

1417 Sekiya, T., & Sudo, K. : Roles of transport and chemistry processes in global ozone change on interannual
1418 and multidecadal time scales. J. Geophys. Res., 119(8), 4903-4921.
1419 doi:<https://doi.org/10.1002/2013JD020838>, 2014

1420

1421

1422 Simpson, I. J., Blake, D. R., Blake, N. J., Meinardi, S., Barletta, B., Hughes, S. C., Fleming, L. T.,
1423 Crawford, J. H., Diskin, G. S., Emmons, L. K., Fried, A., Guo, H., Peterson, D. A., Wisthaler, A., Woo,
1424 J.-H., Barré, J., Gaubert, B., Kim, J., Kim, M. J., Kim, Y., Knote, C., Mikoviny, T., Pusede, S. E.,
1425 Schroeder, J. R., Wang, Y., Wennberg, P. O., and Zeng, L.: Characterization, sources, and reactivity of
1426 volatile organic compounds (VOCs) in Seoul and surrounding regions during KORUS-AQ, *Elementa*, 8,
1427 37, <https://doi.org/10.1525/elementa.434>, 2020

1428

1429 Sindelarova, K., Markova, J., Simpson, D., Huszar, P., Karlicky, J., Darras, S., & Granier, C.: High-
1430 resolution biogenic global emission inventory for the time period 2000–2019 for air quality modeling.,
1431 14(1), 251-270. doi:<https://doi.org/10.5194/essd-14-251-2022>, 2022

1432

1433 Singh, H., Salas, L., Chatfield, R., Czech, E., Fried, A., Walega, J., Evans, M., Field, B., Jacob, D.,
1434 & Blake, D.: Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile organic
1435 chemicals based on measurements over the Pacific during TRACE-P.J. *Geophys. Res.* 109(D15).
1436 doi:<https://doi.org/10.1029/2003JD003883>, 2004

1437

1438 Sinreich, R., Frieß, U., Wagner, T., & Platt, U.: Multi-axis differential optical absorption spectroscopy
1439 (MAX-DOAS) of gas and aerosol distributions. *Faraday discussions.*, 130, 153-164.
1440 doi:<https://doi.org/10.1039/B419274P>, 2005

1441

1442 Souri, A. H., Chance, K., Bak, J., Nowlan, C. R., González Abad, G., Jung, Y., Wong, D. C., Mao, J., &
1443 Liu, X.: Unraveling pathways of elevated ozone induced by the 2020 lockdown in Europe by an
1444 observationally constrained regional model using TROPOMI, *Atmos. Chem. Phys.*, 21, 18227–18245,
1445 <https://doi.org/10.5194/acp-21-18227-2021>, 2021

1446

1447 Spurr, R. J. D. : LIDORT and VLIDORT: Linearized pseudo-spherical scalar and vector discrete ordinate
1448 radiative transfer models for use in remote sensing retrieval problems. *Light Scattering Reviews*, edited
1449 by: Kokhanovsky, A., 229–271, Berlin, Springer, 2008

1450

1451 Stavrakou, T., Müller, J.-F., Bauwens, M., De Smedt, I., Van Roozendael, M., Guenther, A., Wild, M.,
1452 and Xia, X.: Isoprene emissions over Asia 1979–2012: impact of climate and land-use changes, *Atmos.*
1453 *Chem. Phys.*, 14, 4587–4605, <https://doi.org/10.5194/acp-14-4587-2014>, 2014.

1454

1455 Stavrakou, T., Müller, J.-F., Bauwens, M., De Smedt, I., Van Roozendael, M., De Mazière, M.,
1456 Vigouroux, C., Hendrick, F., George, M., Clerbaux, C., Coheur, P.-F., and Guenther, A.: How consistent
1457 are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI?
1458 *Atmos. Chem. Phys.*, 15, 11861–11884, <https://doi.org/10.5194/acp-15-11861-2015>, 2015

1459

1460 Stewart, G. J., B. S. Nelson, W. J. F. Acton, A. R. Vaughan, J. R. Hopkins, S. S. M. Yunus, C. N. Hewitt,
1461 O. Wild, E. Nemitz, R. Gadi, L. K. Sahu, T. K. Mandal, B. R. Gurjar, A. R. Rickard, J. D. Lee and J. F.
1462 Hamilton: Emission estimates and inventories of non-methane volatile organic compounds from
1463 anthropogenic burning sources in India, *Atmos. Enviro. X* 11: 100115,
1464 doi:<https://doi.org/10.1016/j.aeaoa.2021.100115>, 2021

1465

1466

1467 Sudo, K., Takahashi, M., Kurokawa, J., & Akimoto, H. : CHASER: A global chemical model of the
1468 troposphere 1. Model description. *J. Geophys. Res.*, 107(D17), ACH 7-1-ACH 7-20. doi:
1469 <https://doi.org/10.1029/2001JD001113>, 2002

1470

1471

1472 Sudo, K., & Akimoto, H.: Global source attribution of tropospheric ozone: Long-range transport from
1473 various source regions. *J. Geophys. Res.*, 112(D12). doi:<https://doi.org/10.1029/2006JD007992>, 2007

1474

1475 Sudo, K. : Evaluating CHASER V4.0 global formaldehyde (HCHO) simulations using satellite, aircraft, and
1476 ground-based remote sensing observations. Zenodo, <https://doi.org/10.5281/zenodo.10892945>, 2024

1477

1478 Sun, W., Zhu, L., De Smedt, I., Bai, B., Pu, D., Chen, Y., et al. : Global significant changes in
1479 formaldehyde (HCHO) columns observed from space at the early stage of the COVID-19
1480 pandemic. *Geophys. Res. Lett.*, 48, e2020GL091265. <https://doi.org/10.1029/2020GL091265> , 2021

1481

1482 Surl, L., Palmer, P. I., & González Abad, G.: Which processes drive observed variations of HCHO
1483 columns over India? *Atmos. Chem. Phys.*, 18(7), 4549-4566. doi:<https://doi.org/10.5194/acp-18-4549-2018>, 2018

1485

1486 Takemura, T., Nozawa, T., Emori, S., Nakajima, T. Y., & Nakajima, T. : Simulation of climate response
1487 to aerosol direct and indirect effects with aerosol transport-radiation model. *J. Geophys. Res.*, 110(D2).
1488 doi:<https://doi.org/10.1029/2004JD005029>, 2005

1489

1490 Takemura, T., Egashira, M., Matsuzawa, K., Ichijo, H., Oishi, R., & Abe-Ouchi, A. : A simulation of the
1491 global distribution and radiative forcing of soil dust aerosols at the Last Glacial Maximum, *Atmos. Chem.*
1492 *Phys.*, 9(9), 3061-3073. doi:<https://doi.org/10.5194/acp-9-3061-2009>, 2009

1493

1494

1495 Taylor, T. C., McMahon, S. M., Smith, M. N., Boyle, B., Violle, C., van Haren, J., Simova, I., Meir, P.,
1496 Ferreira, L.V., de Camargo, P.B., da Costa, A.C.L., Enquist, B.J., and Saleska, S. R. : Isoprene emission
1497 structures tropical tree biogeography and community assembly responses to climate. *New Phytol.*, 220(2),
1498 435–446, <https://doi.org/10.1111/nph.15304>, 2018

1499

1500 Thornton, B. F., Wik, M., and Crill, P. M. : Double-counting challenges the accuracy of high-latitude
1501 methane inventories, *Geophys. Res. Lett.*, 43, 12,569– 12,577, doi:10.1002/2016GL071772, 2016

1502

1503 Weller, R., Schrems, O., Boddenberg, A., Gäb, S. & Gautrois, M. : Meridional distribution of
1504 hydroperoxides and formaldehyde in the marine boundary layer of the Atlantic (48° N-35° S) measured
1505 during the Albatross campaign. *J. Geophys. Res.*, 105(D11): 14401-
1506 14412. <https://doi.org/10.1029/1999JD901145>, 2000

1507

1508 Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., Eskes, H. J., de
1509 Haan, J. F., Kleipool, Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P.,
1510 Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser, H., & Levelt, P. F.: TROPOMI on the ESA
1511 Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for
1512 climate, air quality, and ozone layer applications. *Remote Sens. Environ.* 120, 70-83.
1513 doi:<https://doi.org/10.1016/j.rse.2011.09.027>, 2012

1514

1515

1516 Vigouroux, C., Langerock, B., Bauer Aquino, C. A., Blumenstock, T., Cheng, Z., De Mazière, M., De
1517 Smedt, I., Grutter, M., Hannigan, J. W., Jones, N., Kivi, R., Loyola, D., Lutsch, E., Mahieu, E., Makarova,
1518 M., Metzger, J.-M., Morino, I., Murata, I., Nagahama, T., Notholt, J., Ortega, I., Palm, M., Pinardi, G.,
1519 Röhling, A., Smale, D., Stremme, W., Strong, K., Sussmann, R., Té, Y., van Roozendael, M., Wang, P.,
1520 & Winkler, H., :TROPOMI–Sentinel-5 Precursor formaldehyde validation using an extensive network of
1521 ground-based Fourier-transform infrared stations, *Atmos. Meas. Tech.*, 13, 3751–3767,
1522 <https://doi.org/10.5194/amt-13-3751-2020>, 2020

1523

1524

1525 Vrekoussis, M., Wittrock, F., Richter, A., & Burrows, J. : GOME-2 observations of oxygenated VOCs:
1526 what can we learn from the ratio glyoxal to formaldehyde on a global scale? *Atmos. Chem. Phys.*, 10(21),
1527 10145-10160. doi:<https://doi.org/10.5194/acp-10-10145-2010>, 2010

1528

1529 Wesely, M. : Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical
1530 models. *Atmos. Environ.*, 41, 52-63. doi:<https://doi.org/10.1016/j.atmosenv.2007.10.058>, 2007

1531

1532

1533 Williams, J. E., Boersma, K. F., Sager, P. L., & Verstraeten, W. W. : The high-resolution version of TM5-
1534 MP for optimized satellite retrievals: description and validation. *Geosci. Model Dev.t*, 10(2), 721-750.
1535 doi:<https://doi.org/10.5194/gmd-10-721-2017>, 2017

1536

1537 Wittrock, F., Richter, A., Oetjen, H., Burrows, J. P., Kanakidou, M., Myriokefalitakis, S., Volkamer,R.,
1538 Berlie,S., Platt,U., & Wagner, T. : Simultaneous global observations of glyoxal and formaldehyde from
1539 space. *Geophys. Res. Lett.*, 33(16). doi:<https://doi.org/10.1029/2006GL026310>, 2006

1540

1541

1542

1543 Wofsy, S. C., Afshar, S., Allen, H. M., Apel, E., Asher, E. C., Barletta, B., Bent, J., Bian, H., Biggs, B.
1544 C., Blake, D. R., Blake, N., Bourgeous, I., Brock, C. A., Brune, W. H., Budney, J. W., Bui, T. P., Butler,
1545 A., Campuzano-Jost, P., Chang, C. S., Chin, M., Commane, R., Correa, G., Crounse, J. D., Cullis, P. D.,
1546 Daube, B. C., Day, D. A., Dean-Day, J. M., Dibb, J. E., DiGangi, J. P., Diskin, G. S., Dollner, M., Elkins,
1547 J. W., Erdesz, F., Fiore, A. M., Flynn, C. M., Froyd, K., Gesler, D. W., Hall, S. R., Hanisco, T. F., Hannun,
1548 R. A., Hills, A. J., Hintska, E. J., Hoffman, A., Hornbrook, R. S., Huey, L. G., Hughes, S., Jimenez, J. L.,
1549 Johnson, B. J., Katich, J. M., Keeling, R., Kim, M. J., Kupc, A., Lait, L. R., Lamarque, J.-F., Liu, J.,
1550 McKain, K., McLaughlin, R. J., Meinardi, S., Miller, D. O., Montzka, S. A., Moore, F. L., Morgan, E. J.,
1551 Murphy, D. M., Murray, L. T., Nault, B. A., Neuman, J. A., Newman, P. A., Nicely, J. M., Pan, X.,
1552 Paplawsky, W., Peischl, J., Prather, M. J., Price, D. J., Ray, E., Reeves, J. M., Richardson, M., Rollins,
1553 A. W., Rosenlof, K. H., Ryerson, T. B., Scheuer, E., Schill, G. P., Schroder, J. C., Schwarz, J. P., St. Clair,
1554 J. M., Steenrod, S. D., Stephens, B. B., Strode, S. A., Sweeney, C., Tanner, D., Teng, A. P., Thames, A.
1555 B., Thompson, C. R., Ullmann, K., Veres, P. R., Vieznor, N., Wagner, N. L., Watt, A., Weber, R.,
1556 Weinzierl, B., Wennberg, P. O., Williamson, C. J., Wilson, J. C., Wolfe, G. M., Woods, C. T., and Zeng,
1557 L. H. : ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols, Version 1.5, 2840.233496
1558 MB. <https://doi.org/10.3334/ORNLDAAAC/1581>, 2018

1559

1560

1561 Yáñez-Serrano, A. M., E. Bourtsoukidis, E. G. Alves, M. Bauwens, T. Stavrakou, J. Llusià, I. Filella, A.
1562 Guenther, J. E. Williams and P. Artaxo : Amazonian biogenic volatile organic compounds under global
1563 change, *Glob. Chang. Biol.* , 26(9): 4722-4751, <https://doi.org/10.1111/gcb.15185>, 2020

1564

1565

1566 Zara, M., Boersma, K. F., De Smedt, I., Richter, A., Peters, E., Van Geffen, J. H. G. M., Beirle, S., Wagber,
1567 T., Van Roozendael, M., & Marchenko, S. : Improved slant column density retrieval of nitrogen dioxide
1568 and formaldehyde for OMI and GOME-2A from QA4ECV: intercomparison, uncertainty characterization,
1569 and trends. *Atmos. Meas. Tech.*, 11(7), 4033-4058. doi:<https://doi.org/10.5194/amt-11-4033-2018>,2018

1570

1571 Zhao, T., Mao, J., Simpson, W. R., De Smedt, I., Zhu, L., Hanisco, T. F., Wolfe, G. M. ,St. Clair, J. M.,
1572 González Abad, G., Nowlan, C. R., Barletta, B., Meinardi, S., Blake, D. R., Apel, E. C., & Hornbrook,
1573 R. S. : Source and variability of formaldehyde (HCHO) at northern high latitudes: an integrated satellite,
1574 aircraft, and model study. *Atmos. Chem. Phys.*, 22(11), 7163-7178. doi:[10.5194/acp-22-7163-2022](https://doi.org/10.5194/acp-22-7163-2022), 2022

1575

1576 Zhu, L., Jacob, D. J., Kim, P. S., Fisher, J. A., Yu, K., Travis, K. R., Mickley, L. J., Yantosca, R. M.,
1577 Sulprizio, M. P., De Smedt, I., González Abad, G., Chance, K., Li, C., Ferrare, R., Fried, A., Hair, J. W.,
1578 Hanisco, T. F., Richter, D., Jo Scarino, A., Walega, J., Weibring, P., and Wolfe, G. M.: Observing
1579 atmospheric formaldehyde (HCHO) from space: validation and intercomparison of six retrievals from
1580 four satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC⁴RS aircraft observations over the
1581 southeast US, *Atmos. Chem. Phys.*, 16, 13477–13490, <https://doi.org/10.5194/acp-16-13477-2016>, 2016.

1582

1583

1584

1585