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Abstract 13 

Formaldehyde (HCHO), a precursor to tropospheric ozone, is an important tracer of volatile organic 14 

compounds (VOCs) in the atmosphere. Two years (2019 -2020) of HCHO simulations obtained from the 15 

global chemistry transport model CHASER at a horizontal resolution of 2.8° × 2.8° have been evaluated 16 

using the Tropospheric Ozone Monitoring Experiment (TROPOMI) and multi-axis differential optical 17 

absorption spectroscopy (MAX-DOAS) observations. In-situ measurements from the Atmospheric 18 

Tomography Mission (ATom) in 2018 were used to evaluate the HCHO simulations for 2018. CHASER 19 

reproduced the TROPOMI-observed global HCHO spatial distribution with a spatial correlation (r) of 20 

0.93 and a negative bias of 7%. The model showed good capability for reproducing the observed 21 

magnitude of the HCHO seasonality in different regions, including the background conditions. The 22 

discrepancies between the model and satellite in the Asian regions were related mainly to the 23 

underestimated and missing anthropogenic emission inventories. The maximum difference between two 24 

HCHO simulations based on two different nitrogen oxide (NOx) emission inventories was 20%.  25 

TROPOMI's finer spatial resolution than that of the Ozone Monitoring Experiment (OMI) sensor reduced 26 

the global model–-satellite root-mean-square-error (RMSE) by 20%. The OMI and TROPOMI observed 27 

seasonal variations in HCHO abundances were consistent. The simulated seasonality showed better 28 

agreement with TROPOMI in most regions. The simulated HCHO and isoprene profiles correlated 29 

strongly (R = 0.81) with the ATom observations. However,  CHASER overestimated HCHO mixing ratios 30 

over dense vegetation areas in South America and the remote Pacific (background condition) regions, 31 

mainly within the planetary boundary layer (<2 km). The simulated seasonal variations in the HCHO 32 

columns showed good agreement (R > 0.70) with the MAX-DOAS observations and agreed within the 1-33 

mailto:hoquesyedul@gmail.com
mailto:hoque.hossain.mohammed.syedul.u6@f.mail.nagoya-u.ac.jp


2 

 

sigma standard deviation of the observed values. However, the temporal correlation (R~0.40) was 34 

moderate on the daily scale.CHASER underestimated the HCHO levels at all sites, and the peak 35 

occurrence in the observed and simulated HCHO seasonality differed. The coarse model resolution can 36 

potentially lead to such discrepancies. Sensitivity studies showed that anthropogenic emissions were the 37 

highest contributor (up to ~35%) to the winter-time regional HCHO levels.  38 

1 Introduction 39 

Formaldehyde (HCHO), the most abundant carbonyl compound in the atmosphere, is a high-yield 40 

oxidation product of all primary biogenic and anthropogenic non-methane volatile organic compounds 41 

(NMVOCs). Methane (CH4) oxidization produces background HCHO concentrations of 0.2–1.0 ppbv 42 

(Burkert et al., 2001; Singh et al., 2004; Sinreich et al., 2005; Weller et al., 2000). Along with secondary 43 

sources (i.e., oxidization of NMVOCs), biomass burning, industrial processes, and fossil fuel combustions 44 

are primary HCHO emission sources (Fu et al., 2008; Hak et al., 2005; Lee et al., 1997). However, the 45 

oxidization of NMVOCs drives the spatial variability of HCHO on a global scale (Franco et al., 2015). 46 

The HCHO removal mechanisms include photolysis at wavelengths below 400 nm, oxidization by 47 

hydroxyl radicals (OH), and wet deposition. The atmospheric lifetime of HCHO is around a few hours 48 

(Arlander et al. 1995). Therefore, HCHO observations can help elucidate chemical processes in the 49 

atmosphere. A few examples are the following: (1) the ozone (O3) production regime can be determined 50 

from the HCHO to nitrogen dioxide (NO2) ratio (Duncan et al., 2010; Hoque et al., 2022; Martin et al., 51 

2004); (2) midday OH levels can be quantified from the oxidation of isoprene into HCHO (Kaisar et al., 52 

2015); and (3) HCHO, being an intermediate product in oxidation chain of NMVOCs, engenders the 53 

formation of carbon monoxide (CO) and carbon dioxide (CO2). Consequently, CO chemical production 54 

from NMVOCs and CH4 can be quantified from HCHO measurements (De Smedt et al., 2021). 55 

 56 

Given its importance, global HCHO observations started in 1995 with the launch of the nadir viewing 57 

ultraviolet (UV) sensor Global Ozone Monitoring Experiment (GOME; Burrows et al., 1997). Since then, 58 

numerous sensors have succeeded:  SCanning Imaging Absorption Spectrometer for Atmospheric 59 

CHartographY (SCIAMACHY; De Smedt et al., 2008, 2010; Wittrock et al., 2006) onboard the 60 

ENVISAT satellite, Ozone Monitoring Instrument (OMI) (Levelt et al., 2018), Global Ozone Monitoring 61 

Experiment – 2 (GOME-2) (Munro et al., 2016), and Ozone Mapping and Profiler Suite (González Abad 62 
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et al., 2016, new reference ). The HCHO observations from these sensors have been used extensively to 63 

evaluate models, air quality, and climate change (Chutia et al., 2019; De Smedt et al., 2010, 2012, 2015; 64 

Hoque et al., 2022). The Tropospheric Ozone Monitoring Instrument (TROPOMI) (De Smedt et al., 2021; 65 

Veefkind et al., 2012), launched on the European Copernicus Sentinel-5 Precursor (S5P) satellite on 66 

October 13, 2017, is the recent addition to the series of nadir viewing UV sensors providing HCHO data. 67 

The unprecedented original spatial resolution of 3.5 × 7 km2 (across-track × along-track) refined to 3.5 × 68 

5.5 km2 on August 6, 2019, is the crucial feature of TROPOMI. Such spatial resolution is almost 16 times 69 

finer than its predecessor, OMI (De Smedt et al., 2021). Such high-resolution observations will likely 70 

reduce uncertainties in the HCHO products for multiple research purposes. 71 

 72 

Several studies using the TROPOMI HCHO product have been reported in the literature. De Smedt et al. 73 

(2021) and Vigouroux et al. (2020) have validated TROPOMI HCHO comprehensively against MAX-74 

DOAS and FTIR networks. Both studies have concluded that TROPOMI HCHO products have achieved 75 

the pre-launch accuracy requirement of < 40–80%. Ryan et al. (2021) and Chan et al. (2020) reported 76 

good agreement (temporal correlation, R > 0.70) between TROPOMI and MAX-DOAS in Melbourne 77 

and Munich. In addition to validation studies, HCHO products have been used to infer changes in the 78 

global HCHO levels during the COVID-19 pandemic-led shutdown (Level et al., 2022; Souri et al., 2021; 79 

Su et al., 2021), demonstrating the role of anthropogenic emission on global HCHO variability. 80 

Among the multitude of applications of TROPOMI HCHO observations, few efforts have specifically 81 

evaluated HCHO simulations from global chemistry transport models (CTMs). This work evaluates the 82 

global Chemical Atmospheric General Circulation Model for the Study of Atmospheric Environment and 83 

Radiative Forcing (CTM CHASER) (Sekiya & Sudo, 2014; Sudo et al., 2002, 2007) simulated HCHO 84 

spatiotemporal distribution against TROPOMI HCHO observations. In addition, airborne and ground-85 

based observations are used to validate the simulated HCHO profiles and surface mixing ratios in a few 86 

regions. CHASER simulations of NO2, OH, and O3 have been evaluated against satellite and ground-87 

based observations (e.g., Sekiya & Sudo, 2014; Sekiya et al., 2018). Moreover, CHASER is a forward 88 

model in the chemical reanalysis system (TCR) developed by Miyazaki et al. (2017, 2020). The model 89 

simulations are performed at a horizontal resolution of 2.8° × 2.8° (T42). Although the model can run at 90 
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higher resolutions, T42 is the most commonly used framework for CHASER applications. Therefore, it 91 

is used for this study. 92 

Hoque et al. (2022) validated CHASER-simulated NO2 and HCHO against OMI and MAX-DOAS 93 

observations for 2017. CHASER showed good skills in reproducing the OMI- (spatial correlation, r = 94 

0.74) and MAX-DOAS- (temporal correlation R > 0.80) observed HCHO abundances. The study found 95 

that biomass burning contributes ~50% to the HCHO levels observed at the site in Thailand. However, 96 

the limitations of the study are: (1) Simulated HCHO partial column and profile were evaluated against 97 

MAX-DOAS observation on a seasonal scale only, (2) Model sensitivity studies were site-specific, thus 98 

providing no global statistics on emission contribution, and (3) Satellite observations were used as 99 

supporting datasets; thus the model-satellite comparison has not been comprehensive. This study utilizes 100 

multi-satellite (TROPOMI and OMI) HCHO observations, different NOx emission inventories, aircraft 101 

measurements, and daily and diurnal MAX-DOAS data to provide robust and comprehensive statistics 102 

on the model HCHO simulations.  103 

 104 

 105 

2 Model, observations, and methods 106 

2.1 CHASER 107 

CHASER 4.0 (ver. 4) is a global CTM that studies the atmospheric environment and radiative forcing. It 108 

is coupled online with the MIROC atmospheric general circulation model (AGCM) and the SPRINTAS 109 

aerosol transport model (Takemura et al., 2005, 2009). The latest version of CHASER (Ha et al., 2023; 110 

He et al., 2022) entails several updates, including the formation of aerosol species and related chemistry, 111 

radiation, and cloud processes. 112 

Through 263 multi-phase (gaseous, aqueous, and heterogenous) chemical reactions, CHASER calculates 113 

the concentrations of 92 species considering the chemical cycle of O3 – NOx (nitrogen oxides) – HOx 114 

(hydrogen oxides) -CH4-CO along with oxidation of NMVOCs (Ha et al., 2023; He et al., 2022; Hoque 115 

et al., 2022; Miyazaki et al., 2017; Sekiya et al., 2023). The chemical mechanism is adopted mainly from 116 

the master chemical mechanism (MCM) (Jenkin et al., 2015). The stratospheric O3 chemistry simulations 117 

are based on the Chapman mechanisms, the catalytic reaction of halogen oxides, and polar stratospheric 118 

clouds. The dry and wet depositions are calculated based on resistance-based parameterization (Wesley 119 

et al., 1984), cumulus convection, and large-scale condensation parameterization. Advective trace 120 
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transport is calculated using the piecewise parabolic method (Colella & Woodward, 1984) and flux-form 121 

semi-Lagrangian schemes. Tracer transport is simulated on a sub-grid scale in the framework of the 122 

prognostic Arakawa–Schubert cumulus convection scheme (Emori et al., 2001) and vertical diffusion 123 

scheme (Mellor & Yamada, 1974). The simulations were performed at a horizontal resolution of 2.8° × 124 

2.8°, with 36 vertical layers from the surface to approx. 50 km altitude, with a 20 min time step. At every 125 

time step, meteorological fields obtained from the MIROC AGCM were nudged toward the 6-hourly 126 

NCEP FNL reanalysis data. 127 

CHASER incorporates emissions from biomass burning, anthropogenic sources, lightning, and soil. 128 

Anthropogenic NOx emissions for 2018 are obtained from the HTAP_v3 inventory (Crippa et al., 2023). 129 

Other anthropogenic emissions are taken from the HTAPv2.2 for 2008 and the biomass burning emissions 130 

from MACC-GFAS (Inness et al., 2013). The monthly soil NOx emissions derived from Yienger and Levy 131 

(1995) are constant each year. Biogenic emissions of VOCs are obtained from a process-based 132 

biogeochemical model: the Vegetation Integrative Simulator for trace gases (VISIT) (Ito and Inatomi, 133 

2012). VISIT is a part of the CHASER modeling framework and incorporates the biogenic flux estimate 134 

scheme of Guenther et al. (1997) (Ito et al., 2022). The global isoprene emissions in VISIT and CAMS 135 

global biogenic emission inventory (Sinderolova et al., 2022; based on MEGANv2.1) are 400 and 450 136 

TgC/yr, respectively. Lightning NOx production estimates are based on the parameterization of Price and 137 

Rind (1992) and linked to the convection scheme of the AGCM. Global NOx emissions in CHASER are 138 

set to 43.80 TgN/yr considering industrial production (23.10 TgN /yr), biomass burning (9.65 TgN/yr), 139 

soil (5.50 TgN /yr), lightning (5 TgN/yr), and aircraft (0.55 TgN/yr) as significant emission sources. 140 

Annual monoterpene, acetone, and other non-methane volatile organic compound (ONMV) emissions are 141 

102, 20, and 60 TgC/yr, respectively. Direct emissions of HCHO from anthropogenic sources and biomass 142 

burning are not considered in CHASER. However, secondary production of HCHO from VOCs (C2H6, 143 

C3H8, C2H4, C3H6, CH3COCH3, ONMV) emitted directly from anthropogenic and pyrogenic sources is 144 

considered.  145 

Sekiya et al. (2018) comprehensively assessed CHASER simulated NO2 abundances using OMI 146 

observations. CHASER well reproduced the ATom-observed OH spatiotemporal variation (Sekiya et al., 147 

2018). The quality of O3 simulations has been explained in the work of Sudo et al. (2014). Ha et al. (2023) 148 

and He et al. (2022) updated the heterogeneous chemistry and lightning NOx scheme, respectively. These 149 

updates have not been considered in the current study. The effect of these updates on the HCHO 150 
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simulations will be addressed in a separate study. Multiple simulations with varying emission inputs were 151 

performed for the study. They are presented in Table 1. 152 

Table 1. Combinations of emission inventories for different simulations used in this study 153 

Simulation name NOx emissions Biogenic 

emissions 

Anthropogenic VOC 

emissions 

Biomass 

burning 

Standard 

ANIa 

OLNEb 

Biogenic_off   

Anthropogenic_off 

Biomass_off        

 

HTAP_v3 

HTAP_v3 

HTAP_v2.2 

HTAP_v3 

 HTAP_v3 

HTAP_v3 

 

ON 

ON 

ON 

OFF 

ON 

ON 

ON 

Increased three-fold 

ON  

ON 

OFF 

ON 

ON 

ON 

ON 

ON 

ON 

OFF 

 
a Anthropogenic VOC emission increased by three folds (ANI), bSimulation using old NOx emissions (OLNE)  154 

 155 

 156 

To account for the altitude dependence of TROPOMI observations, averaging kernel (AK) information 157 

obtained from the level (L2) files was applied to all simulations following the method of Sekiya et al. 158 

(2018). First, the simulated HCHO profiles were sampled closest to the TROPOMI overpass of 13:30 LT 159 

(Local Time). Secondly, AKs averaged on a 2.8° bin grid were applied to the sampled profiles. Then, the 160 

total column was calculated. Thirdly, the AK-applied model columns on the available measurement days 161 

were selected.  162 

2.2 TROPOMI  163 

The TROPOMI operational L2 offline (OFFL) HCHO vertical column density (VCD) (ver. 1.1.5.7) data 164 

from 2019 to 2020 have been used for this study. The S5P TROPOMI HCHO L2 product user manual 165 

(Veefkind et al., 2012) provides a detailed product description. The TROPOMI HCHO retrieval 166 

algorithm is based on the DOAS technique, adapted directly from the OMI QA4ECV product retrieval 167 

algorithm (De Smedt et al., 2017). The three-step retrieval algorithm was explained explicitly by De 168 

Smedt et al. (2018). Slant columns were retrieved from the UV part of the spectra (Channel 3) in a 328.5–169 

358 nm fitting window. The HCHO cross-section data reported by Meller and Moortgart (2000) were 170 

used to fit the spectra. All the cross-sections were convolved with the instrument slit function (adjusted 171 

after the launch) for every row separately. Spectra averaged over the tropical Pacific region from the prior 172 

day were used as reference spectra for the DOAS fit (De Smedt et al., 2021; Vigouroux et al., 2020). The 173 
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slant columns, therefore, exceed the average Pacific background HCHO levels because they were derived 174 

from the local and reference spectrum differences. The slant columns were converted to tropospheric 175 

columns (Nv) using a look-up table of vertically resolved air mass factors (M) at 340 nm calculated with 176 

the radiative transfer model VILDORT v2.6 (Spurr, 2008). The value of M depends on the observation 177 

geometry, surface albedo, cloud properties, and a priori profiles of HCHO. The surface albedo at a spatial 178 

resolution of 1° × 1° was extracted from the monthly OMI albedo climatology (Kleipool et al., 2008). 179 

Daily HCHO a priori profiles were obtained from TM5-MP CTM at a similar spatial resolution. The 180 

independent pixel approximation (Boersma et al., 2004) approach was applied to pixels with cloud 181 

fractions greater than 0.1. Background correction was performed based on HCHO slant columns from the 182 

five prior days over the Pacific Ocean to account for any remaining global offsets and stripes (De Smedt 183 

et al., 2021). Background HCHO contribution from CH4 oxidation in the reference region is calculated 184 

with TM5-MP. The resulting HCHO tropospheric column is calculated using equation (1): 185 

𝑁𝑣 =
𝑁𝑠 − 𝑁𝑠,𝑜

𝑀
+

𝑀𝑜

𝑀
∗ 𝑁𝑣,0

𝐶𝑇𝑀                                    (1) 186 

where Mo is the air mass factor of the reference sector. Following De Smedt et al. (2021), the following 187 

filters ensured the data quality: (1) cloud fraction less than 0.3, (2) quality assurance values greater than 188 

0.5, (3) retrievals with solar zenith angle (SZA) less than 70°, (4) surface albedo less than 0.1, and (5) air 189 

mass factor greater than 0.1. The total uncertainty in the reprocessed TROPOMI HCHO columns was 190 

estimated as >= 90% for the fire-free region (Zhao et al., 2022, and references therein). The uncertainties 191 

in the air mass factors, slant column fitting, and background HCHO, respectively, account for 75, 25, and 192 

40% of the total uncertainty. The estimated uncertainty in the retrievals in regions with strong fires is 193 

~35%.  The filtering criteria of the TROPOMI datasets are as follows: quality assurance value (QA)>0.6, 194 

solar zenith angle <70º, cloud fraction < 0.3, AMF > 0.1, and surface reflectivity <0.2.  195 

TROPOMI observations are averaged spatially and temporally to the CHASER grid (T42) daily, leading 196 

to horizontal representativeness errors. However, the random horizontal representativeness errors are in 197 

the order of 5-10%, which is lower than the individual retrieval error of the satellite observations 198 

(Boersma et al., 2015). If the model horizontal resolution is increased by 50% (i.e., simulated at a 199 

horizontal resolution of 1.4º × 1.4º), the change in HCHO abundances is less than 6% (Fig S1 and Table 200 

S1 in supplementary information). The vertical sensitivity of the satellite retrievals is the most relevant 201 

source of representativeness error (Boersma et al., 2015). The current study utilizes the  TROPOMI AK 202 

information to minimize the representativeness error. Therefore, the horizontal representative error will 203 

likely affect the results less than other error sources, such as uncertainties in satellite retrieval, emission 204 

inventories, and model chemical mechanisms. 205 

2.3 OMI  206 

 The comparison study used HCHO retrievals from OMI, a nadir-viewing spectrometer on board the Aura 207 

satellite, which measures backscattering solar radiation in the spectral range of 270–500 nm (Levelt et al., 208 

2018). OMI crosses the equator at 13:40 LT (Zara et al., 2018) and provides daily global coverage of trace 209 

gases, including HCHO, at a spatial resolution of 13 × 24 km2. For use in this study, HCHO columns 210 
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from 2019 to 2020, retrieved using the BIRA-IASBv14 (De Smedt et al., 2021), were obtained from the 211 

Aeronomie website (i.e., https://www.temis.nl/qa4ecv/hcho/hcho_omi.php, last accessed on 01/07/2023). 212 

The data-filtering criteria were cloud fraction < 0.3, SZA < 70˚, quality flag =0, and cross-track quality 213 

flag = 0. Like TROPOMI, OMI data were also averaged spatially and temporally to the model grid(T42).  214 

2.4 ATom-4 aircraft campaign 215 

The NASA Atmospheric Tomography (ATom) mission used a DC-8 aircraft to study the remote 216 

atmosphere over the Pacific and Atlantic oceans from ~80° N to ~65° S (Wofsy et al., 2018). Repeated 217 

flights measured the vertical profiles from 0.15 to 12 km to provide information related to greenhouse 218 

gases, reactive and tracer species, and aerosol composition and size distribution (Kupc et al., 2018). Over 219 

two years and four phases, sampling was conducted in one of the four seasons in each stage (Zhao et al., 220 

2022). Here, the 1-minute averaged measurements of HCHO and isoprene during the ATom-4 flight 221 

(Fig.S2) in 2018 are used for the model evaluation. The NASA In Situ Airborne Formaldehyde (ISAF) 222 

instrument (Cazorla et al., 2015) performed HCHO sampling based on the laser-induced fluorescence 223 

technique. Isoprene was measured using two instruments: (a) The University of Irvine Whole Air Sampler 224 

(WAS) and (b) the National Center for Atmospheric Research (NCAR) Trace Organic Gas Analyzer 225 

(TOGA). WAS sampled the air every 3–5 min, with subsequent analyses in the laboratory using gas 226 

chromatography (Simpson et al., 2020). TOGO sampling was conducted every 2 min with a 35 s 227 

integrated sampling time (Apel et al., 2021). The uncertainty in the WAS and TOGA isoprene 228 

observations are, respectively, ±10 and 15%. Measurement uncertainties in HCHO were reported as 10%. 229 

The simulations have been interpolated to the observed spatial and temporal resolution following the 230 

method of He et al. (2022). The observed and interpolated HCHO and isoprene vertical profiles were 231 

averaged over a 300-meter bin. The Atom campaign took place between 2016 and 2018.  232 

2.5 MAX-DOAS observations 233 

HCHO columns and the volume mixing ratio (vmr) were retrieved from two-year (2019–2020) MAX-234 

DOAS observations at Phimai (15.18°N, 102.46°E, 212 m a.s.l.), Chiba (35.62°N, 140.10°E, 21 m a.s.l.), 235 

and Kasuga (33.52°N, 130.47°E, 28 m a.s.l.). The MAX-DOAS observations were conducted under the 236 

framework of the international air quality and sky research remote sensing (A-SKY) network (Irie, 2021). 237 

The sites were selected because continuous measurements from 2019 to 2020 were available for these 238 

sites. Phimai is a rural site in Thailand and experiences biomass burning influence from January to April. 239 

The climate is divided into two seasons- (1) dry season (January to May) and (2) wet season (June to 240 

December). Chiba and Kasuga are urban sites in central and southern Japan, respectively. The seasonal 241 

classification at these sites is – Spring (March to May), Summer (June to August), Autumn (September 242 

to November), and winter (December to February). The observations at these sites are described 243 

elsewhere (i.e., Hoque et al., 2018a; Irie et al., 2011,2015). 244 

The A-SKY MAX-DOAS system, including the instrument and algorithm, participated in the Cabauw 245 

Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI) and CINDI-2 (Kreher 246 

et al., 2020; Roscoe et al., 2010) campaigns. The instrumentation has been described explicitly by Irie et 247 

al. (2008, 2011, 2015). A UV spectrometer (Maya2000Pro; Ocean Insight, Inc.) recorded high-resolution 248 

https://www.temis.nl/qa4ecv/hcho/hcho_omi.php
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spectra from 310–515 nm at six elevation angles (ELs) of 2°, 3°, 4°, 6°, 8° and 70°, which were repeated 249 

every 15 min. The reference spectra were recorded at EL of 70° instead of 90° to avoid saturation 250 

intensity. Spectra measured at all ELs were considered in the retrieved vertical profile and total columns. 251 

Consequently, the choice of reference ELs has no appreciable effect on the retrieval. The systematic error 252 

in the oxygen collision complex (O4) was reduced by limiting the off-axis ELs to less than 10° (Irie et al., 253 

2015). However, this limitation reduces sensitivity above the planetary boundary layer (PBL), 254 

maintaining high sensitivity in the lower layers of the retrieved profiles. The high-resolution solar 255 

spectrum measured by Kurucz et al. (1984) was used for daily wavelength calibration. The spectral 256 

resolution is approximately 0.4 nm at 357 and 476 nm (Hoque et al., 2022). Aerosol and trace gas columns 257 

and profiles were retrieved using the Japanese vertical profile retrieval algorithm JM2 (ver. 2) (Irie et al., 258 

2011, 2015). Three-step profile and column retrievals by JM2 are explained explicitly in earlier reports 259 

(e.g., Hoque et al., 2018; Irie et al., 2011, 2015). The partial VCD values are converted to the volume 260 

mixing ratio  (vmr) by scaling the  U.S. standard atmosphere temperature and pressure data to the respective 261 

site surface measurements. The estimated total error (random and systematic) in the HCHO product is 30% 262 

(Hoque et al., 2022). Following Irie et al. (2011) and Hoque et al. (2018a, 2022), cloud screening was 263 

performed to ensure data quality. 264 

3 Results and discussion 265 

3.1 Comparison of CHASER HCHO with TROPOMI observations 266 

Figure 1 presents a comparison of global distributions of annual mean HCHO columns obtained from 267 

TROPOMI retrievals and standard CHASER simulations at the TROPOMI overpass time (13:30). 268 

Differences between the observations and model simulations in the respective years are also depicted. 269 

The statistics related to the comparison are presented in Table 2. The simulation results agree well with 270 

the TROPOMI observations, with a global spatial correlation (r) of 0.93, mean bias error (MBE) 271 

(CHASER–TROPOMI) of -0.20 × 1015 molecules cm-2, and root-mean-square error (RMSE) of 0.75 × 272 

1015 molecules cm-2. The r, MBE, and RMSE values between 60° S and 60° N were, respectively, 0.92, 273 

0.13 × 1015 molecules cm-2, and 0.82 × 1015 molecules cm-2. CHASER HCHO columns are negatively 274 

biased relative to the TROPOMI retrievals. Table S2 shows the MBE and RMSE values obtained for the 275 

individual months. No seasonal variation in the systematic differences was observed between CHASER 276 

and TROPOMI. Biases can originate from uncertainties in the retrieval and model assumptions. 277 

TROPOMI HCHO retrievals greater than 8 × 1015 molecules cm-2 were negatively biased by 25% relative 278 

to the ground-based MAX-DOAS observations (De Smedt et al., 2021), whereas direct emissions of 279 

HCHO were not considered in CHASER. 280 
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TROPOMI and CHASER show high HCHO concentrations over South America, central Africa, India, 281 

eastern China, and Southeast Asia. Simulated HCHO magnitudes in the hotspot regions were 0.8–1.4 × 282 

1016 molecules cm-2, slightly higher than the observed range of 0.8–1 × 1016 molecules cm-2. The dataset’s 283 

greatest differences (~4 × 1015 molecules cm-2) were observed over Brazil and Southeast Asia. The 284 

datasets show strong congruence in the high-latitude regions. The simulated and observed HCHO 285 

columns over Europe, the Middle East, Japan, and Russia were 0.3–0.6 × 1016 molecules cm-2. Simulated 286 

HCHO columns (~3 × 1015 molecules cm-2) over the remote Pacific region were consistent with the 287 

observations, too. The remote Pacific regions represent background conditions strongly linked to CH4 288 

oxidation. Congruence with observations in this region suggests that the simulated CH4 estimates in the 289 

remote areas are reasonable. 290 

 291 

 292 
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 293 

Figure 1. Annual mean HCHO columns (× 1016 molecules cm-2) in 2019 and 2020 were obtained from TROPOMI 294 

retrievals (first column) and standard CHASER simulation (second column). The differences between the model 295 

and observations in the respective years are shown in the third column. The unit of difference is × 1015 molecules 296 

cm-2. 297 

 298 

Table 2. Comparison of annual mean HCHO (× 1016 molecules cm-2) column between TROPOMI retrievals and 299 

CHASER simulations in 2019 and 2020. MBE and RMSE are the abbreviated forms of mean bias error and root 300 

mean square error, respectively. Units of MBE and RMSE are × 1015 molecules cm-2. Correlation signifies the 301 

spatial correlation between the datasets. 302 

 303 

Year Correlation MBE RMSE 

2019 

 

2020 

0.93 

 

0.93 

-0.20 

 

-0.19 

0.75 

 

0.75 
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 304 

 305 

 306 

Figure 2 compares the observed and simulated seasonality in HCHO columns (× 1016 molecules cm-2) in 307 

different regions. Datasets for 2019 and 2020 were used to calculate the observed and simulated monthly 308 

mean values. The MBE (× 1015 molecules cm-2) between TROPOMI and CHASER HCHO columns in each 309 

region is shown in blue. The comparison statistics are given in Table 3. The regional boundaries are shown 310 

on the global distribution map in Fig. S3.  Temporal correlations derived from daily values over two years 311 

are provided in Table S2.  312 

 313 

 314 

Figure 2. Seasonal variation in HCHO columns (× 1016 molecules cm-2) in eastern (a) China (E-China; 315 

30–40°N, 110–123°E), (b) eastern United States (E-USA; 32–43°N,95–71°W), (c) western United States 316 
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(W-USA; 32–43°N, 125–100°W), (d) Europe (35–60°N, -10ºW–30°E), (e)  central Africa (C-Africa; 4°S-317 

5ºN, 10° – 40°E), (f) northern Africa (N-Africa; 5–15°N, 10°W–30°E), (g) southern Africa (S-Africa; 5–318 

15°S, 10–30°E), (h) South America (S-America; 20°S – 0°N, 50–70° W), (i) India (7.5–35°N, 68–89°E), 319 

(j) the Indo Gangetic Plain (IGP; 21–33°N, 72–89°E), (k) east India (E-India; 15–25°N, 80–90°E)), (l) 320 

south India (S-India; 0–15°N, 63–80°E), (m) Southeast Asia (SE-Asia, 10–20°N, 96–105°E), and (n) the 321 

remote Pacific region (28°S – 32°N, 117°–177°W) as inferred from CHASER simulations (blue) and 322 

TROPOMI observations (red). Blue numbers denote MBE between the TROPOMI and CHASER HCHO 323 

columns. The observed and simulated mean values represent the average of 2019 and 2020.  324 

 325 

 326 

(a) E-China  327 

Over E-China (Fig.2(a)), the datasets are moderately correlated spatially (r =0.44), with MBE and RMSE 328 

values of -0.9 and 1.62 × 1015 molecules cm-2, respectively. The simulated seasonality correlates strongly 329 

with the observations (R= 0.97), with a consistent peak (1 × 1016 molecules cm-2) in the HCHO variability 330 

in July. The HCHO columns' peaks are compatible with the peak in isoprene concentrations (Fig. S4), 331 

manifesting a strong biogenic contribution during summer. CHASER mostly underestimated the winter-332 

time HCHO columns in this region. Liu et al. (2021) reported vehicular exhaust, solvent usage, and 333 

combustion-related regional transport as the primary VOC emission sources during winter in Shanghai, a 334 

megacity in eastern China. NMVOC emissions from these sources (i.e., vehicular exhaust, solvent usage, 335 

and transport) are considered in the HTAPv2.2 inventory (Crippa et al., 2023). Although CHASER 336 

considered HCHO production from the degradation of anthropogenic VOCs, it is likely underestimated, 337 

resulting in a lower simulated winter-time HCHO column in this region. 338 

 339 

Table 3: Comparison of monthly mean tropospheric HCHO (× 1016 molecules cm-2) columns obtained 340 

from TROPOMI retrievals and standard CHASER simulations. Coincident dates in 2019 and 2020 are 341 

used to calculate the statistics. Units of MBE and RMSE are × 1015 molecules cm-2. The temporal 342 

correlations are derived from the seasonal means.  343 
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 344 

 345 

 346 

 347 

 348 

Region MBE (model – 

TROPOMI) 

RMSE (model 

– TROPOMI) 

Spatial 

Correlation (r-

value) 

Temporal Correlation (R-value) 

 

E-China 

 

E – USA 

 

W-USA 

 

Europe 

 

C-Africa 

 

N-Africa 

 

S-Africa 

 

S-America 

 

India 

 

IGP 

 

E-India 

 

S-India 

 

SE-Asia 

 

Remote Pacific 

 

-0.91 

 

0.40 

 

-1.25 

 

-0.74 

 

1.13 

 

1.10 

 

-1.45 

 

2.34 

 

-1.20 

 

-1.60 

 

0.24 

 

-0.36 

 

-0.77 

 

0.002 

 

1.62 

 

0.43 

 

1.29 

 

0.92 

 

1.52 

 

1.26 

 

1.64 

 

2.85 

 

1.77 

 

1.99 

 

1.08 

 

0.52 

 

1.22 

 

0.13 

 

 0.44 

 

0.97 

 

0.85 

 

0.73 

 

0.93 

 

0.87 

 

0.89 

 

0.56 

 

0.84 

 

0.91 

 

0.86 

 

0.96 

 

0.71 

 

0.86 

               

                 0.97 

 

                 0.97 

 

                0.95 

 

                0.93 

 

                0.74 

 

                0.83 

 

                0.59 

 

                0.97 

 

                0.18 

 

                0.44 

 

                0.72 

 

                0.34 

 

                0.87 

 

               0.76 
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(b) Eastern USA, western USA, and Europe 349 

CHASER has well-reproduced the HCHO spatial variability in the eastern USA (E-USA; Fig.2(b); 350 

r=0.97) and western USA (W-USA; Fig.2(c);  r=0.85). The peaks in the HCHO variability coincide with 351 

the isoprene peak in these regions (Fig. S4). The simulated amplitude of the HCHO seasonal modulation 352 

in E-USA and W-USA are 74 and 62%, whereas the observed seasonal amplitudes are 74 and 65%, 353 

respectively. The peak in the HCHO seasonality in E-USA is similar in both datasets (~1.2 × 1016 354 

molecules cm-2). The RMSE value in the W-USA region is 15% higher than in E-USA. Although the 355 

spatial correlation in Europe (Fig.2(d)) is moderate (r =0.73), the temporal correlation is strong (R=0.95). 356 

The simulated and observed HCHO seasonal modulations in Europe are 60% and 62%, respectively. The 357 

model–satellite discrepancies are prominent in Europe and W-USA during summer and autumn. In both 358 

regions (i.e., Europe and W-USA), the biogenic and anthropogenic contribution to the total HCHO level 359 

is equivalent during summer. In autumn, the anthropogenic emission contributions are higher. (Section 360 

3.8). This manifests a potential model underestimation of biogenic HCHO levels in these regions, linked 361 

to the uncertainties in the biogenic emission inventory and isoprene mechanism. However, the model–362 

satellite agreement is strong during the winter in these regions. During winter, anthropogenic VOC 363 

emissions drive the HCHO variability in these regions (Luecken et al., 2018; Pozzani et al., 2002). 364 

Therefore, the simulated contribution of anthropogenic sources to the HCHO abundances during winter 365 

in these regions is reasonable.  366 

 367 

(c) Central, Northern, and Southern Africa 368 

Over the African regions (Fig.2 (e-g), the spatial correlation is higher than 0.80. The African continent is 369 

the single largest biomass-burning emission source (Roberts et al., 2009). The observed and simulated 370 

amplitude of the HCHO seasonality in central Africa (C-Africa; Fig.2(e)) are, respectively, 45 and 21%. 371 

The mean simulated and observed HCHO abundances in North Africa (N-Africa; Fig.2(f))) during the 372 

biomass burning season is ~1.06 × 1016 molecules cm-2, consistent with the GOME-2 and SCIAMACHY 373 

observations (De Smedt et al., 2008). Figure S5 (Supplementary Information) shows the seasonal fire 374 

radiative power (FRP) cycle over the three African regions. FRP, a measure of outgoing radiant heat from 375 

fires, is a tracer of changes in atmospheric trace constituents related to pyrogenic emissions (Hoque et al., 376 
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2018a). The observed and simulated enhanced HCHO columns in  N-Africa are congruent with the high 377 

FRP values, manifesting the contribution of biomass burning to the HCHO abundances. CHASER could 378 

not replicate the observed HCHO seasonality over C-Africa. However, simulations show a decrease in 379 

the HCHO abundances in C-Africa from January to March, consistent with the changes in the coincident 380 

FRP values.  381 

Over South Africa (S-Africa; Fig.2(g)), elevated TROPOMI HCHO columns are consistent with GOME-382 

2 and SCIAMACHY observations (De Smedt et al., 2008). The observed peaks in HCHO columns and 383 

FRP values (Fig.S5) are consistent and thus can be attributed to biomass burning. Pyrogenic emissions 384 

contribute ~36% to the high HCHO columns in this region (section 3.8). TROPOMI and CHASER have 385 

captured the shift in biomass-burning seasons from northern to southern Africa, which agrees well with 386 

earlier observations (i.e., GOME-2, SCIAMACHY). The observed amplitude of the HCHO seasonal 387 

cycle in South and North Africa is 46%, signifying an almost two-fold increase in HCHO abundances 388 

during the biomass-burning season. Earlier studies (e.g., De Smedt et al., 2008; Muller et al., 2008) found 389 

that such a feature (increment by a factor of 2) exists only in the Southern African region. This likely 390 

indicates an increase in fire intensity in Northern Africa. 391 

 392 

(d) South America 393 

CHASER showed moderate skill in reproducing the observed HCHO spatial distribution in South 394 

America (S-America; Fig 2(h);  r = 0.56). However, the seasonal variation in the HCHO columns is 395 

strongly correlated (R = 0.97). The MBE and RMSE in the South American continent are 2.34 × 1015 and 396 

2.385 × 1015 molecules cm-2, respectively. The enhanced HCHO columns during the South American 397 

biomass burning season are well reflected in the datasets. They show a distinctive seasonal cycle. The 398 

observed and simulated mean HCHO columns from August through October are ~1.5 × 1016 molecules 399 

cm-2. CHASER estimated 46% seasonal modulation in the HCHO abundances, whereas the observed 400 

modulation is 59%. The model overestimates the HCHO columns in S-America, similarly to C-Africa 401 

and N-Africa, probably because of the uncertainties in biogenic emission inventories and the isoprene 402 

oxidation scheme. 403 

 404 
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(e) India 405 

CHASER well reproduced the observed HCHO spatial distribution in India ( Fig.2 (i); r =0.84), with 406 

MBE and RMSE of -1.20 × 1015 and 1.775 × 1015 molecules cm-2.  However, the temporal correlation 407 

(R=0.18) between the datasets is low. The observed seasonal modulation of ~30% manifests a less-408 

prominent seasonality in HCHO abundances in India. The correlation between temperature variations and 409 

isoprene emissions in India is inhomogeneous (Starvakou et al., 2014). India has a diverse landscape, 410 

including major forests over the east, northeast, and southwest regions and deserts in northwestern India 411 

(Surl et al., 2018). The Indo-Gangetic Plain (IGP) stretches from Eastern Pakistan to Bangladesh and is a 412 

major agricultural region in India (Kuttippurath et al., 2022). Thus, averaging the HCHO columns over a 413 

diverse landscape can lead to a less prominent seasonality. Moreover, biomass burning compromises 23% 414 

of India's total NMVOC (13 Tg/yr)  emissions (Stewart et al., 2021). Sensitivity analysis (section 3.8) 415 

estimates show biomass burning contribution to the HCHO levels in India is ~2%., manifesting that the 416 

modeled biomass burning emissions for India are underestimated. Considering the diverse Indian 417 

landscape, the model satellite comparison over three regions in India (IGP, east India, and South India) is 418 

shown in Fig.2 (j-l).  419 

  420 

The model has shown good skill in reproducing the observed HCHO spatial variation in the IGP (Indo-421 

Gangetic Plain; Fig.2(j)) region (r = 0.91). However, the temporal correlation is moderate (R=0.44). 422 

Several field studies (e.g., Hoque et al., 2018b) have reported biomass-burning influences during spring 423 

and autumn in IGP, explaining the elevated observed HCHO columns. HCHO seasonal variation during 424 

January–June is consistent in both datasets, with an R-value of 0.78. The mean observed and modeled 425 

HCHO abundances during spring in IGP are, respectively, 1.19 × 1016 and 8.72 × 1015 molecules cm-2. 426 

However, the model could not reproduce the autumn-time biomass-burning events, reducing the overall 427 

R-value in the IGP region. CHASER underestimates winter HCHO columns in the IGP region. Liquid 428 

petroleum gas (LPG) usage, evaporative fuels, and garbage burning contribute significantly to winter 429 

NMVOC levels in Delhi and Mohali (Kumar et al., 2021). Although NMVOC emissions from these 430 

sources are considered in the simulations, they are likely underestimated in the IGP region. 431 

 432 
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Over East India (Fig.2(k)), both the spatial (r = 0.86) and temporal (R = 0.72) agreement between 433 

TROPOMI and CHASER HCHO are strong. The observed and modeled amplitudes of the HCHO 434 

seasonal cycle are 40%. Both datasets show enhanced HCHO levels during spring., consistent with high 435 

isoprene concentrations (Fig.) Biogenic emissions are the main driver of the HCHO levels in East India; 436 

however, emissions from mines are also potential sources of NOx and VOCs (Kuttippurath et al., 2022).  437 

 438 

Similarly, CHASER has shown a strong capability for reproducing the HCHO spatial distribution 439 

(r=0.96) in south India (S-India; Fig..2(l)). However, the temporal correlation is low. The mean observed 440 

and simulated HCHO abundances are, respectively, 4.68 × 1015 and 5.03 × 1015 molecules cm-2. The 441 

HCHO seasonality in S-India is less prominent than in the other two regions. The coordinates bounds 442 

defined for S-India in this study compromise a large portion of the southern coastal region, which 443 

experiences a tropical maritime climate with limited seasonal variations in temperature (Surl et al., 2018). 444 

Such a feature can potentially lead to a less prominent HCHO seasonality in S-India.  445 

 446 

 447 

(f) Southeast Asia 448 

In Southeast Asia (SE-Asia; Fig.2(m)), the r-value is 0.71. The MBE and RMSE are respectively -0.77 × 449 

1015 and 1.2 × 1015 molecules cm-2. During the dry season (January–April), prominent biomass burning 450 

occurs in this region in many countries (e.g., Thailand, Malaysia, Indonesia, Cambodia). Such fire events 451 

degrade local air quality and cause transboundary pollution (Hoque et al., 2018; Kahn et al., 2016). 452 

TROPOMI and CHASER have well-captured the pyrogenic emissions-led enhanced HCHO levels. The 453 

simulated and observed mean dry season HCHO columns are, respectively, 1.07 × 1016 and 1.35 × 1016 454 

molecules cm-2. The observed and simulated amplitude of the seasonal cycle are, respectively, 48 and 455 

60%. CHASER-reproduced columns during the dry season are underestimated. Potential reasons for such 456 

discrepancies are discussed in section 3.3. 457 

 458 

(g) Remote Pacific region 459 
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 460 

The datasets correlate strongly over the remote Pacific region (Fig.2 (n)), representing the background 461 

condition. No prominent seasonal variation is observed in this region, which CHASER has well 462 

simulated. The simulated and observed background HCHO column is 2.86 × 1015 molecules cm-2. 463 

 464 

3.2 Comparison over countries with large forested areas 465 

Figure 3 shows the observed and simulated HCHO columns over countries where large forested areas are 466 

located. The definition of the countries is adopted from the work of Opacka et al. (2021).  The statistics 467 

presented in Table 4 include regions with high and low biogenic activities. This section compares the 468 

overall biogenic emissions in the defined regions with literature values and assesses their impact on model 469 

performance.  470 

Over China, CHASER correlates strongly with TROPOMI (r = 0.92), with MBE of -3 × 1015 molecules 471 

cm-2. The lowest differences between the datasets are observed primarily in the southeastern and western 472 

parts of China. Shanghai, Nanjing, and Guangzhou megacities are located in southeastern China. 473 

Consequently, CHASER has demonstrated good skills in the areas encompassed by multiple megacities. 474 

The annual isoprene emission for China in CHASER is 34 TgC/yr, higher than that of Opacka et al. (2021) 475 

(9.5–23 TgC/yr).  476 
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 477 

Figure 3: Two-year (2019 and 2020) mean CHASER (first column) and TROPOMI (second column) HCHO 478 

columns (× 1016 molecules cm-2 cm-2) in China (18.19–53.45°N, 73.67–135.02°E), United States (18.91–45°N, 66–479 

171°W), Indonesia (10°S–6°N, 95–142°E), and Brazil (33°S – 5.24°N, 34–73°W). The differences between the 480 

datasets are presented in the third column. Only the coincident dates among the datasets are used to calculate the 481 

annual mean data. 482 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 

Table 4: Comparison of two-year mean HCHO (× 1015 molecules cm-2) column between TROPOMI and 491 

CHASER over countries with large forested areas. The coordinate bounds of the regions are adapted from 492 
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Opacka et al. (2020). Correlation signifies the spatial agreement between CHASER and TROPOMI, 493 

calculated from the annual mean data. The unit of MBE is × 1015 molecules cm-2 494 

Region Spatial correlation 

(model vs. TROPOMI) 

MBE (model–TROPOMI) 

China 

 

US 

 

Indonesia 

 

Brazil  

0.92 

 

0.93 

 

0.81 

 

0.84 

-0.84 

 

-0.05 

 

 1.05 

 

 1.06 

 495 

 496 

CHASER has shown excellent skill in reproducing TROPOMI observations over the US. Along with high 497 

r-values, the simulated magnitude of the HCHO columns is consistent with observations throughout the 498 

whole region. Consequently, the bias between the datasets for the US is 2%. In CHASER, annual isoprene 499 

emissions in the US and the southeastern US are 22 and 7.8 TgC/yr, respectively. Such values are within 500 

the ranges reported by Stavrakou et al. (2015) and Opacka et al. (2021). 501 

 502 

The MBE between TROPOMI and CHASER in Indonesia is 1.05 × 1015 molecules cm -2. The r-value is 503 

0.81. Indonesia's annual mean TROPOMI and CHASER HCHO abundance is 5.06 × 1015 and 6.15 × 1015 504 

molecules cm-2. The most significant differences between the datasets (4 × 1015 molecules cm-2) are 505 

observed for Sumatra, Borneo, and Sulawesi islands. Annual isoprene emissions in Indonesia used in the 506 

CHASER simulations are 42 TgC/yr. Indonesian isoprene emissions vary between 25.5 to 32 TgC/yr 507 

depending on the land-use change (Opacka et al., 2021). Top-down estimates based on OMI and GOME-508 

2 observations are ~11 TgC/yr (Stavrakou et al., 2015). However, the 11 TgC/yr emissions are half of the 509 

top-down estimates based on SCIAMACHY observations. Consequently, isoprene emissions in Indonesia 510 
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remain largely uncertain. However, CHASER estimates with the VISIT emissions are higher than those 511 

reported in the literature, likely leading to the model overestimation in Indonesia. 512 

 513 

CHASER overestimates the HCHO columns over the Amazonia, mostly in northern Brazil. Fig.S6 shows 514 

the observed and simulated seasonal HCHO variation over Brazil. Although the model reproduced the 515 

temporal variability well, the magnitude was overestimated. This indicates that emission uncertainties are 516 

more prominent than uncertainties related to the chemical mechanism for this region. In CHASER, annual 517 

isoprene emissions over Amazonia are 67 Tg/yr, consistent with the OMI-based top-down estimates of 518 

70 Tg/yr, estimated using apriori emissions from MEGAN (Stavrakou et al., 2015).  However, 519 

deforestation affects the VOC emissions in the Amazon (Yáñez‐Serrano et al., 2020). Massive 520 

deforestation in the Amazon occurred between 1985 and 2020, changing 11% of the Amazonian biome 521 

(Cabarello et al., 2022). Depending on the land use and land cover change(LULCC), isoprene emissions 522 

in Brazil can vary between 79. And 106.5 Tg/yr (Opacka et al., 2021). Moreover, although biogenic VOC 523 

modeling in the Amazon has improved, VOC dynamics in the changing Amazonian biome are poorly 524 

understood (Salzar et al., 2018; Taylor et al., 2018). Therefore, updated biogenic VOC and LULCC 525 

inventories can potentially improve the model performance in Brazil. 526 

In addition, CHASER isoprene emission estimates for Europe and Russia are, respectively, 17 and 15 527 

TgC/yr, which are comparable to values reported in the literature (e.g., Guenther et al., 2006; Sinderolova 528 

et al., 2022). 529 

The discussion is based on isoprene emissions because isoprene is the dominant biogenic VOC (BVOC). 530 

Although not included in the current discussion, the chemical yield of HCHO from the oxidation of other 531 

BVOCs might also be a source of model uncertainty. 532 

 533 

 534 
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 535 

 536 

Figure 4: Seasonal variation of HCHO (× 1016 molecules cm-2) in the selected regions, as inferred from standard 537 

simulations (blue), TROPOMI observations (red), and ANI estimate (green). Anthropogenic VOC emissions are 538 

increased threefold in the ANI simulations. The blue numbers denote MBE between the TROPOMI and CHASER 539 

HCHO columns. The MBE between the ANI and TROPOMI columns is shown in green. The coordinate bounds 540 

of the regions are similar to those in Fig. 2. Simulations and observations in 2019 were used to calculate the monthly 541 

mean values.  542 

 543 

3.3 Uncertainties related to anthropogenic VOC emissions 544 

Uncertainties in anthropogenic VOC emissions can also be crucially important. Sensitivity simulations 545 

are performed by perturbing the anthropogenic VOC emissions. Perturbation effects are relevant when 546 

the anthropogenic VOC emissions are increased by threefold or more. We select the lowest perturbed 547 

simulation (i.e., threefold increase; hereafter ANI). A better agreement between ANI and TROPOMI 548 

HCHO columns is attributed to underestimated anthropogenic VOC emissions in the standard simulation. 549 
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Figure 4 compares the TROPOMI HCHO columns and ANI simulations in 2019. Standard simulation 550 

estimates for 2019 are also shown. The comparison statistics are provided in Table 5.  551 

Over E-China (Fig.4(a)) and India (Fig.4(i)), ANI shows better agreement with TROPOMI than the 552 

standard simulation during winter. In India and China, the contribution of anthropogenic emissions to the 553 

NMVOC levels is more significant during the winter (Kumar et al., 2021; Liu et al., 2021). Thus, the ANI 554 

simulations improve the contribution of the winter-time anthropogenic VOCs in these regions. The ANI 555 

MBE and RMSE values over E-China are higher than the standard simulation. This indicates the 556 

anthropogenic VOC estimates in E-China during the other seasons are reasonable. In contrast, the ANI 557 

simulations reduce the MBE values in India, manifesting a higher underestimation of anthropogenic VOC 558 

emissions in this region than in E-China.  559 

Similar to E-China, the ANI MBE and RMSE values are higher in C-Africa, N-Africa, S-Africa, South 560 

America, and E-USA. Over Europe (Fig.4(d)) and W-USA(Fig.4(c)), ANI RMSE values are lower than 561 

the standard simulation.  The ANI simulations replicated the observed HCHO column magnitude in both 562 

regions from October to December, resulting in lower RMSE values. 563 

ANI estimates during the dry season in SE Asia (Fig.4(m)) are similar to the standard simulation values, 564 

indicating a small effect of anthropogenic emission uncertainties. The dry season columns are 565 

overestimated when the anthropogenic VOC emissions are increased fivefold (Fig. S7). Space-based 566 

observations have provided substantial evidence of increasing anthropogenic VOC emissions in Asian 567 

cities (Bauwens et al., 2022). Therefore, the anthropogenic VOC emission inventory should be updated 568 

to reduce the discrepancy between CHASER and TROPOMI over SE-Asia. 569 

 570 

Table 5: Comparison among regional mean tropospheric HCHO (× 1016 molecules cm-2) columns 571 

inferred from TROPOMI observations, standard simulation, and ANI estimates. Units of MBE1, MBE2, 572 

RMSE1, and RMSE 2 are × 1015 molecules cm-2. The simulations and observations for 2019 were used 573 

to calculate the statistics. 574 

 575 

 576 
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 577 

 578 

. 579 

 580 

 581 

 582 

 583 

 584 

 585 

 586 

 587 

 588 

 589 

 590 

 591 

 592 

 593 

 594 

 595 

 596 

 597 

 598 

 599 

Region  MBE1 

(Standard– 

TROPOMI) 

MBE2 (ANI–

TROPOMI) 

RMSE1 

(Standard–

TROPOMI) 

RMSE2(ANI–

TROPOMI) 

 

E-China 

 

E-USA 

 

W-USA 

 

Europe 

 

C-Africa 

 

N-Africa 

 

S-Africa 

 

S-America 

 

India 

 

IGP 

 

E-India 

 

S-India 

 

SE-Asia 

 

-0.84 

 

0.53 

 

-0.72 

 

-0.78 

 

1.19 

 

1.46 

 

-0.99 

 

2.99 

 

-1.05 

 

-1.22 

 

0.26 

 

-0.59 

 

-0.76 

 

1.54 

 

2.22 

 

0.17 

 

0.29 

 

3.32 

 

2.19 

 

0.87 

 

3.92 

 

0.39 

 

0.29 

 

1.64 

 

0.48 

 

0.59 

 

1.40 

 

0.58 

 

0.80 

 

0.92 

 

1.57 

 

1.61 

 

1.32 

 

3.41 

 

1.57 

 

1.69 

 

1.22 

 

0.69 

 

1.16 

 

1.74 

 

2.25 

 

0.43 

 

0.67 

 

3.60 

 

2.30 

 

1.39 

 

4.28 

 

1.50 

 

2.02 

 

2.11 

 

0.58 

 

0.78 
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3.4 Impacts of NOx emissions uncertainties on HCHO simulations 600 

Uncertainties in the NOx emissions can affect the HCHO abundances through the NOx-HOx-VOC cycle. 601 

Such effects are assessed by comparing simulations with different NOx inventories with the TROPOMI 602 

observations. The CHASER standard, OLNE, and TROPOMI HCHO columns are depicted in Fig. 5. The 603 

HTAP_v3 NOx emission inventory is replaced with the HTAP_v2.2 inventory in the OLNE simulations 604 

without altering the remaining emission inventories. The differences between the two NOx inventories 605 

are – (1) HTAP-v3 inventory considers the changes in NOx emissions from 2000 to 2018, whereas the 606 

temporal coverage of HTAP_v2.2 is 2008 – 2010, and (2) Emissions in HTAP-v3 have a higher sectoral 607 

disaggregation (Crippa et al., 2023). The comparison-related statistics are given in Table S3. NOx 608 

emissions from both inventories are shown in Fig. S8 609 

On a global scale, HCHO column estimates are mostly unaffected by the changes in the NOx emission 610 

inventories, manifested by the MBE values (Table 6). However, RMSE is 8% lower in the case of standard 611 

simulation. OLNE estimates in the higher latitude (>=50ºN) are 5% lower than the standard simulations. 612 

Such differences do not affect the model–satellite agreement in these regions. 613 

The standard HCHO columns in India, China, and Southeast Asia are approximately 10–20% lower than 614 

the OLNE estimates (Fig.5(c)). In fact, those differences are consistent with changes in the regional OH 615 

estimates (Fig.5(d)). This finding implies that the changes in the NOx emissions estimates have affected 616 

the OH and HCHO abundances in these regions. Satellite data assimilation results reported by Miyazaki 617 

et al. (2017, 2020) indicate that NOx emissions in India have increased by 30% since 2008, whereas NOx 618 

emissions in China have declined since 2011 (Liu et al., 2016). Over E-China (Fig. 5(a &b)), the standard 619 

simulations reduce the absolute annual mean difference between OLNE and TROPOMI of 3 × 1015 620 

molecules cm-2 to 1 × 1015 molecules cm-2, which is consistent with the lower NOx emissions in this region 621 

in the updated inventory (Fig . S8). Over India and SE-Asia, the standard OH concentrations are ~40% 622 

lower (Fig.5(d)) than the OLNE estimates, resulting in lower HCHO columns. The lower standard HCHO 623 

columns can be linked to the increasing NOx emissions in these regions (Fig.S8); however, the magnitude 624 

of the change in the NOx emissions for these regions in the updated inventory is likely overestimated.  625 
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In E-USA and W-USA (Table S3), the standard simulation reduces the MBE by 26% and 12%, 626 

respectively. The reduction in MBE and RMSE values in Africa and South America is less than 10%. 627 

Therefore, NOx emission uncertainties mainly affect the HCHO simulations in India and SE Asia. 628 

 629 

 630 

 Figure 5: Annual mean HCHO columns (× 1016 molecules cm-2) in 2019, obtained from the (a) standard and (b) 631 

OLNE simulations. The HTAP-2008 NOx emission inventory was used instead of the HTAP-2018 inventory for 632 

the OLNE simulations (Table 1). The remaining emission inventories are similar in both simulations. (c) Global 633 

relative differences between the two HCHO simulations (OLNE–Standard). (d) Relative differences (global) 634 

between two OH (OLNE–Standard) simulations. The standard and OLNE OH simulation settings are similar to the 635 

description in Table 1. OH and HCHO simulations were obtained simultaneously. 636 

  637 

 638 

 639 
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3.5 Comparison with OMI HCHO Observations 640 

TROPOMI was able to achieve improved precision of HCHO columns at shorter timescales (De Smedt 641 

et al., 2021). The effect of such features on the comparison results is evaluated in this section. The method 642 

of De Smedt et al. (2021) has been adopted to minimize the effect of different cloud retrieval algorithms 643 

used for OMI and TROPOMI retrievals. Figure S9 shows the global distribution mean HCHO columns 644 

obtained from TROPOMI and OMI retrievals and CHASER simulations in 2019 during the TROPOMI 645 

overpass time (13:30). Only the coincident dates among the three datasets are shown. Global and regional 646 

comparison statistics are presented in Table 6. 647 

 648 

The spatial correlation between OMI and CHASER is 0.89 (Table 6) . OMI retrievals are positively biased 649 

by 7% compared to CHASER. A similar bias is also observed between TROPOMI and CHASER. Despite 650 

similar MBE values, TROPOMI reduces the global RMSE by 20%. Monthly MBE and RMSE values 651 

between OMI and CHASER are higher than those of TROPOMI and exhibit no seasonality (Table S3). 652 

The highest absolute differences between the model and OMI retrievals are observed in Amazonia in 653 

Brazil, C-Africa, and SE-Asia (Fig.S9). The magnitudes of differences between the model and 654 

observation in these regions are similar for both sensors. Despite the improved resolution, TROPOMI and 655 

OMI show equivalent biases in regions with high HCHO levels (De Smedt et al., 2021). A regional 656 

comparison among the three datasets is portrayed in Fig. 6. The red (TROPOMI–CHASER) and green 657 

(OMI–CHASER) numbers are the respective MBE values. 658 

 659 

Table 6. Comparison of global mean HCHO columns between satellite observations (TROPOMI and 660 

OMI) and standard CHASER simulations. Units of MBE and RMSE are × 1016 molecules cm-2. The r-661 

value signifies the spatial correlation. The statistics are based on simulation and observations for 2019. 662 

 663 

Region  MBE1 

(Standard– 

TROPOMI) 

MBE2 

(Standard–

OMI) 

RMSE1 

(Standard–

TROPOMI) 

RMSE2 

(Standard– 

OMI) 

r-value 

(CHASER vs. 

TROPOMI) 

r-value 

(CHASER vs. 

OMI) 
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Global 

 

E-China 

 

E-USA 

 

W-USA 

 

Europe 

 

C-Africa 

 

N-Africa 

 

S-Africa 

 

S-America 

 

India 

 

IGP 

 

E-India 

 

S-India 

 

SE-Asia 

-0.23 

 

-0.84 

 

0.53 

 

-0.72 

 

-0.78 

 

1.19 

 

1.46 

 

-0.99 

 

2.99 

 

-1.05 

 

-1.22 

 

0.26 

 

-0.59 

 

-0.76 

-0.24 

 

-2.54 

 

-1.02 

 

-2.09 

 

-1.31 

 

0.94 

 

1.42 

 

-2.59 

 

2..02 

 

-1.19 

 

-2.85 

 

-0.05 

 

-0.16 

 

-0.83 

0.77 

 

1.40 

 

0.58 

 

0.80 

 

0.92 

 

1.57 

 

1.61 

 

1.32 

 

3.41 

 

1.57 

 

1.69 

 

1.22 

 

0.69 

 

1.16 

0.99 

 

3.03 

 

1.12 

 

2.17 

 

1.60 

 

1.28 

 

1.59 

 

2.75 

 

2.61 

 

2.66 

 

3.19 

 

1.34 

 

0.41 

 

1.14 

0.93 

 

0.56 

 

0.92 

 

0.83 

 

0.77 

 

0.93 

 

0.81 

 

0.86 

 

0.47 

 

0.85 

 

0.91 

 

0.82 

 

0.96 

 

0.78 

0.89 

 

0.17 

 

0.86 

 

0.64 

 

0.67 

 

0.93 

 

0.79 

 

0.84 

 

0.56 

 

0.66 

 

0.84 

 

0.76 

 

0.97 

 

0.86 

 664 
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 665 

 666 

Over E-China (Fig.6(a)), the monthly mean TROPOMI columns are ~22% lower than those of OMI, 667 

reducing the RMSE by 53%. The simulated spatial distribution shows better congruence with the new 668 

observations. TROPOMI improved the summer model–satellite agreement considerably. The magnitude 669 

of the seasonal modulation in the three datasets is 50%. Both sensors show that winter HCHO levels in 670 

E-China are ~8 × 1015 molecules cm-2. 671 

 672 

Over E-USA (Fig.6(b)), the r-value between CHASER and OMI is 0.86. CHASER columns are 673 

underestimated compared to OMI, with MBE and RMSE of -1.0 × 1015 and 1.1 × 1015 molecules cm-2. 674 

TROPOMI reduced the model–satellite RMSE by 50% and improved the r-value by 6%. The most 675 

significant improvements were observed during the summer and autumn. 676 

 677 

Over the W-USA(Fig.6(c)), TROPOMI retrievals are 26% lower than OMI observations, reducing the 678 

model–satellite RMSE by 63%. The spatial correlation between OMI and CHASER is moderate. The 679 

simulated and TROPOMI wintertime columns are ~30% lower than OMI. However, the observed peak 680 

in HCHO seasonality in July is consistent in the observational datasets. 681 

 682 

OMI and TROPOMI HCHO observations over Europe(Fig.6(d))  are consistent. The seasonal cycle 683 

amplitude inferred from both sensors is 60%. The simulated spatial distribution shows better agreement 684 

with the TROPOMI observations, manifesting the effects of improved resolution. 685 
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 686 

Figure 6: Seasonal variation of HCHO (× 1016 molecules cm-2) inferred from TROPOMI (red curve) and OMI 687 

(orange curve) retrievals and standard CHASER (blue curves) simulations. The region definitions are shown in Fig. 688 

S2. The blue numbers signify the MBE between TROPOMI and CHASER, whereas the green numbers represent 689 

the MBE between CHASER and OMI. Coincident dates in 2019 among the datasets are used to calculate the 690 

monthly mean data. 691 

 692 

 693 

Over C-Africa(Fig.6(e)), the RMSE value between CHASER and OMI is ~18% lower than that of 694 

TROPOMI. TROPOMI values are biased by 18% on the lower side compared to OMI.  695 

Over N-Africa(Fig.6(f)), OMI retrievals are moderately correlated with CHASER. The amplitude of 696 

seasonal modulation inferred from CHASER, TROPOMI, and OMI are 48, 62, and 66%, respectively. 697 

The RMSE and MBE between OMI and CHASER are 1.41 × 1015 and 1.59 × 1015 molecules cm-2, 698 

respectively. OMI retrievals are approximately 13% higher than TROPOMI. Simulated North African 699 

HCHO columns show better consistency with the observations during the biomass-burning season. 700 
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 701 

Over S-Africa(Fig.6(g)), OMI HCHO columns are biased respectively by 32 and 25% on the higher side 702 

compared to TROPOMI and CHASER. The simulated seasonal variabilities and spatial distribution of 703 

HCHO show more relevance to TROPOMI than to OMI. 704 

 705 

Over S-America(Fig.6(h)), the simulated peak (1.6 × 1016 molecules cm-2) in the HCHO seasonality 706 

shows strong congruence with the OMI observations. Despite such consistency, simulated values are 707 

higher than OMI retrievals, with MBE and RMSE of ~2 × 1015 molecules cm-2. Observations and 708 

simulations show that the peak HCHO abundances can vary between 1.0 × 1016 – 1.8 × 1016 molecules 709 

cm-2 in September. Although the r-value between OMI and CHASER is higher than that of TROPOMI, 710 

the model's capability to replicate the observed spatial distribution was limited. OMI HCHO columns are 711 

positively biased by 30% compared to TROPOMI, thereby reducing the model–satellite RMSE by 23%. 712 

 713 

Over India(Fig.6(i)), CHASER HCHO columns are negatively biased by 23% compared to OMI 714 

observations. Although TROPOMI minimized the model–satellite bias, seasonal discrepancies between 715 

the model and observations prevail. Over the IGP region, OMI HCHO retrievals are biased by 24% and 716 

36% respectively, respectively, on the higher side, compared to TROPOMI and CHASER. Both sensors 717 

captured a similar HCHO seasonality in the IGP, with a modulation of 49%. Although CHASER could 718 

not reproduce the seasonality, the simulated modulation is 48%. The bias between the model and 719 

observations (OMI and TROPOMI) is ~ 4% in E-India and S-India. Simulated HCHO spatial variation 720 

strongly correlates with the observation datasets (r-value of ~0.85). The amplitude of the seasonal 721 

modulation in E-India inferred from OMI is ~40%. 722 

Over Southeast Asia(Fig.6(m)), CHASER columns are negatively biased by 19% compared to the OMI 723 

columns. Despite lower biases, both datasets have a similar model–satellite discrepancies during the dry 724 

season. A few reasons for the CHASER underestimation in SE Asia during the dry season have been 725 

discussed in section 3.2. In addition, assumptions and uncertainties in the retrieval could also potentially 726 

engender such model satellite discrepancy. Figure S10 compares CHASER and OMI SOA (González et 727 

al., 2016) products. The data selection criterion is similar to the description presented in Section 2. The 728 
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most relevant differences between the OMI BIRA and SAO products are related to the underlying CTMs 729 

that simulate the apriori profiles and the reference sector correction (Zhu et al., 2016). A comprehensive 730 

list of the differences between the two products is available from Zhu et al. (2016). The comparison 731 

statistics are given in Table S5. CHASER columns during the dry seasons in SE Asia show excellent 732 

agreement with the OMI SOA retrievals (Fig.S10(m)). OMI SOA values during the dry season are 733 

negatively biased by 7% compared to TROPOMI observations. The MBE between CHASER and SOA 734 

product is 0.04 × 1015 molecules cm-2. Based on the comparison with OMI SOA products, the model 735 

performance during the dry season can be considered excellent. The emission estimates for SE-Asia in 736 

CHASER can be regarded as reasonable, too. 737 

 738 

Similarly, in E-China (Fig.S10(a)), the OMI SOA product reduces the bias between the model and 739 

observations by 11%. The simulated wintertime columns are consistent with the SOA estimates but 740 

underestimated compared to TROPOMI. The ANI estimates (Fig.4(a)) for this region are higher than the 741 

SOA product, manifesting that the anthropogenic emissions in CHASER for this region are rational. 742 

Therefore, uncertainties related to the retrieval procedure can also significantly affect the comparison 743 

results on a regional scale. 744 

 745 

Comparison between CHASER and OMI BIRA HCHO products shows differences from the results of 746 

Hoque et al. (2022), where the simulation and observations for 2017 were used. The simulations in both 747 

studies are similar. However, the OMI data in the earlier study are systematically higher, mainly causing 748 

the statistically significant differences found between the study results. A detailed investigation of the 749 

reasons will be addressed in a separate work. 750 

 751 

3.6 Validation using MAX-DOAS observations 752 

 753 

 754 

 755 
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3.6.1 Seasonal Variation 756 

CHASER columns are compared with ground-based MAX-DOAS observations in Phimai, Chiba, and 757 

Kasuga in Fig. 7. Coincident TROPOMI observations over the sites are used for comparative discussion. 758 

The TROPOMI AK applied standard, and OLNE simulations are used. MAX-DOAS observations 759 

between 12:00 and 15:00 were averaged to estimate the monthly mean columns. Only the common dates 760 

among the three datasets were compared. De Smedt et al. (2021) compared the TROPOMI and A-SKY 761 

MAX-DOAS datasets in Phimai and Chiba. Because the model-ground-based comparison is the primary 762 

focus of this comparison effort, we do not consider the differences in the vertical sensitivity of TROPOMI 763 

and MAX-DOAS. Thus, the statistics will differ from De Smedt et al. (2021).  764 

 765 

In Phimai, standard CHASER HCHO seasonality correlates strongly (R=0.71) with the MAX-DOAS 766 

observations; it is underestimated by 39%. However, the bias between the standard model estimates and 767 

TROPOMI observations is 4%. Despite a strong correlation, TROPOMI observations are negatively 768 

biased by 37% compared to the MAX-DOAS (R=0.84). Such underestimation might be related to the 769 

coarse binning of the satellite data. Using a finer bin, De Smedt (2021) reported a negative bias of 23% 770 

in Phimai. 771 

 772 

Biomass burning-led enhancements during the dry season (January–April) are well reflected in the 773 

simulations. During the wet season, MAX-DOAS, TROPOMI, and standard CHASER HCHO columns 774 

are mostly lower than 1 × 1016 molecules cm-2. The simulated standard HCHO peak in March is consistent 775 

with the satellite observation, whereas MAX-DOAS observation shows a peak during February. During 776 

the dry seasons of 2015 and 2016, the HCHO peak was observed in March (e.g. Hoque et al., 2018). 777 

Consequently, such a shift in the HCHO peak might be related to fire numbers and fire radiative power 778 

changes (Hoque et al., 2022). 779 
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 780 

 781 

Figure 7: Seasonal variations in HCHO (× 1016 molecules cm-2 cm-2) columns inferred from satellite 782 

retrievals (red), model simulations (blue and black), and ground-based MAX-DOAS observations (green) 783 

in Phimai (Thailand), Chiba (Japan), and Kasuga (Japan). MAX-DOAS observations and CHASER 784 

simulations during 12:00–15:00 LT were selected for comparison. Common dates among the datasets are 785 

used to calculate the monthly mean statistics. The blue and black curves, respectively, signify the standard 786 

and OLNE simulations. TROPOMI AKs have been applied to both simulations. The simulation settings 787 

are provided in Table 1. 788 

 789 

 790 

The bias between OLNE and MAX-DOAS observations is 27%. OLNE estimates agree better with the 791 

TROPOMI observations during the dry season. However, the overall bias (13%) between the model and 792 

satellite observations is higher in the case of OLNE simulations. 793 

 794 
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At Chiba, the simulated HCHO seasonality correlates strongly with the MAX-DOAS retrievals (R=0.81) 795 

and is negatively biased by ~31%. The amplitudes of seasonality inferred from the simulations, MAX-796 

DOAS observations, and TROPOMI retrievals are, respectively, 59, 60, and 34%. The MAX-DOAS, 797 

TROPOMI, and CHASER HCHO columns, respectively, reach peaks in September, July, and June. 798 

Similar to Phimai, the HCHO peaks in satellite and ground-based observations differ. One reason might 799 

be the differences in spatial representativity. TROPOMI data used for comparison are spatially averaged 800 

over 200 km, centering on the Chiba site, whereas the spatial representativity of the MAX-DOAS is 801 

approx—10 km. Moreover, MAX-DOAS observations are most sensitive to altitudes near the surface, 802 

whereas satellite sensitivity decreases near the surface. Consequently, the air masses sampled by the 803 

instruments at the same local time might differ, leading to inconsistent observation peaks. 804 

 805 

At Kasuga, the simulated HCHO levels are strongly correlated with the TROPOMI observations (R = 806 

0.75) and are negatively biased by 35%. Although the correlation between the model and MAX-DOAS 807 

retrievals is moderate, the bias between CHASER and MAX_DOAS retrievals is 14%. Therefore, 808 

CHASER shows better agreement with MAX-DOAS than with TROPOMI. MAX-DOAS observations 809 

exhibit seasonality similar to that of Chiba, with a peak HCHO column during August. Similar to Chiba, 810 

the satellite-observed and CHASER peaks are observed during July and June, respectively. Chiba and 811 

Kasuga sites are located near the ocean and exhibit similar HCHO variability, which has been captured 812 

well in the simulations. 813 

 814 

Although the bias between OLNE and standard simulations for Chiba and Kasuga is ~4%, the absolute 815 

difference is ~1×1015 molecules cm-2. NOx emissions in Japan have not changed markedly since 2005 816 

(Miyazaki et al., 2017). The differences between the simulations are observed during the summer when 817 

isoprene emissions are expected to peak (Hoque et al., 2018a). Because the OH estimates over Japan are 818 

similar for both simulations (Fig. 5(d)), the differences are likely related to the interaction between 819 

isoprene and NOx inventories.  820 

 821 
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3.6.2 Diurnal and Daily Variations 822 

Figure 8 compares the observed and simulated daily and diurnal variations in the surface HCHO vmr. 823 

The error bars represent the 1σ standard deviation of the observed mean values. The daily variation 824 

comparison entails only the standard simulations. 825 

 826 

In Phimai, the daily datasets correlate well, with an R-value of 0.67. The slope of the fitted line is 0.35. 827 

The observed and simulated daily mean HCHO vmr is ~4 ppbv. CHASER daily mean values are 828 

negatively biased by 19% and 11%, respectively, during the dry and wet seasons. The standard diurnal 829 

variations at Phimai are also well correlated with the observations (R=0.64). The simulated values lie 830 

within the standard deviation of the observations. HCHO mixing ratios show a peak ( ~6 ppbv) at 8:00 831 

LT in both datasets. Noontime (12:00 LT) vmr are approximately 4 ppbv, and hourly HCHO levels vary 832 

between 2 and 6 ppbv. The OLNE diurnal values are 20% higher than the standard values. However, the 833 

mean absolute difference between the two simulations is 1 ppbv. 834 

 835 

The standard simulation reproduced the observed diurnal variations at Chiba, with a temporal correlation 836 

of 0.79, higher than at Phimai. Both simulations are biased by 10% on the lower side compared to the 837 

observations. No distinctive peak is observed in the diurnal variations. The increasing daytime HCHO 838 

levels in Chiba are well reflected in the model runs. The simulated daily mean values in Chiba are 839 

negatively biased by 18%, with a temporal correlation of 0.40. The slope of the fitted line to the daily 840 

mean concentrations is 0.27, lower than at Phimai, suggesting a higher underestimation similar to the 841 

total columns (Fig. 7). 842 

 843 
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 844 

 845 

Figure 8: (left panel) Scatter plots show the correlation between the daily mean observed (MAX-DOAS) and 846 

simulated HCHO surface mixing ratios at the three sites. The standard simulations are used in the scatter plots. The 847 

linear fitted lines are shown in red. (right panel) Diurnal variations in the HCHO mixing ratios at the three sites are 848 

inferred from the MAX-DOAS observations and standard (blue) and OLNE (green) simulations. The error bars 849 

represent the 1-sigma standard deviation of the mean values estimated from the observations. Observations and 850 

simulations at the coincident date and time (local) are selected for comparison. 851 

 852 

 853 

In Kasuga, modeled daily variations correlate moderately (R=0.41) with the observations. The effect of 854 

the NOx inventories on the simulated diurnal variations in Kasuga is not significant. The simulated daily 855 

mean values are negatively biased by 20%, and the slope of the fitting is 0.29. Although Chiba and Kasuga 856 
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are similar sites, their observed diurnal variations are slightly different. However, the simulated values in 857 

both cases agree with the observed standard deviation. 858 

 859 

Figure 9: Scatter plot comparing CHASER (red), MAX-DOAS (green), and TROPOMI (red) HCHO columns 860 

( ×1016 molecules cm-2) at a few European sites. The MAX-DOAS observed values are taken from the work of 861 

Oomen et al. (2024). These values represent the mean HCHO column from May to September in 2019. The 862 

observations from 12:00 – 15:00 LT were used to calculate the mean values. Using a similar temporal filter, the 863 

modeled mean values were calculated from the simulations for 2019. TROPOMI data for 2019 were filtered as 864 

described in Section 2.2. The error bars signify the 1-sigma standard deviation of the TROPOMI mean HCHO 865 

columns. 866 

 867 

 868 

 869 

In addition, CHASER HCHO columns are also compared with MAX-DOAS observations reported in the 870 

literature, shown in Fig.9. The observed values are obtained from Oomen et al. (2024). The observed 871 
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mean values represent the averages of  MAX-DOAS observations between 12:00 and 15:00 LT from May 872 

to September 2019. A similar temporal filter was applied to the CHASER simulations for 2019. The 873 

coincident TROPOMI HCHO columns are also plotted. TROPOMI AKs are applied to the CHASER 874 

values. The error bars signify the 1-sigma standard deviation of the TROPOMI mean values.  875 

Like the Asian sites, CHASER underestimates the HCHO columns at the European sites. All three 876 

datasets mostly agree within the 1-sigma variability range of the satellite observations. CHASER and 877 

TROPOMI HCHO columns are lower than the MAX-DOAS observations except in Athens. CHASER 878 

shows better agreement with the MAX-DOAS observations in Athens. De Smedt et al. (2021) reported 879 

the biases between TROPOMI and MAX-DOAS observations at these sites, estimated from a daily time 880 

scale. As the simulated HCHO magnitude is consistent with the TROPOMI values, biases between the 881 

CHASER and MAX-DOAS HCHO columns at these sites will likely be equivalent. 882 

 883 

 884 

3.7 Comparison with ATom-4 flight observations 885 

 886 

A comparison between simulated and observed HCHO and isoprene profiles along the ATom-4 flight 887 

path (Fig. S2) is depicted in Fig. 10 (a and c). Only the coincident dates have been included in the 888 

comparison.  889 

The simulated HCHO and isoprene profiles agree well with the observations, with an R-value of 0.95. 890 

Above and below 4 km, CHASER HCHO profiles are positively biased by 29 and  891 
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 892 

 893 

Figure 10: (top panel) Comparison between ATom observed (red) and CHASER simulated (blue) (a) HCHO, and 894 

(c) isoprene profiles along the ATom-4 flight path in 2018. The ATom-4 flight path is depicted in Fig.S2.  Standard 895 

simulations are used for comparison. Simulations at the time of the ATom observations were selected. Both datasets 896 

were averaged within a 0.3 km bin. The relative differences between the observed and simulated (c) HCHO and 897 

(d) isoprene profiles are also shown. (bottom panel) Atom-4 observed, and CHASER simulated HCHO profiles 898 

over the (e) Amazonia and (f) the Remote Pacific region are compared. Amazonia (10º-40ºW,10ºS-10ºN) represents 899 

a densely vegetated region, whereas the remote Pacific region (160º-180ºW, 20ºS-20ºN) represents the background 900 

HCHO conditions. The units of the HCHO and isoprene mixing ratios are, respectively, ppbv and pptv. 901 

 902 

62%, respectively, compared to ATom-4 HCHO levels. The absolute difference in the isoprene profiles 903 

around 1 km is 14 pptv, which strongly correlates with the difference in the HCHO profile below 2km. 904 

This finding signifies that overestimated CHASER isoprene mixing ratios induce a positive bias in the 905 

HCHO estimates. Despite non-significant isoprene mixing ratios at altitudes greater than 2 km, both 906 
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datasets show considerable HCHO levels above 2 km. Zhao et al. (2022) reported a similar finding and 907 

attributed enhanced CH4 oxidation to the HCHO mixing ratios above 2 km. At higher altitudes HCHO is 908 

produced through the CH4 oxidation (i.e., CH4 + OH) initiated CH3O2 (methyl peroxy radical) + CH3O2 909 

pathway. HCHO production through this pathway is considered in CHASER. Therefore, despite the 910 

differences in the magnitude, CHASER has shown good skills in reproducing the VOC profiles. 911 

 912 

The potential reason for the higher HCHO simulated values below 2 km could be CHASER's 913 

overestimated HCHO mixing ratios over South America, mainly the Amazon (Fig 2(c). Figure 10(e and 914 

f) depicts the observed and simulated HCHO profiles over the Amazon (10º-40ºW,10ºS-10ºN) and the 915 

remote Pacific region (160º-180ºW, 20ºS-20ºN). The HCHO profiles over the remote Pacific region 916 

represent the background HCHO mixing ratio. CHASER and ATom background HCHO mixing ratios 917 

within the boundary layer are 0.4 and 0.3 ppbv, respectively. The mean relative differences between the 918 

two datasets within the boundary layer over Amazonia and the remote Pacific region are ~60 and ~22%, 919 

indicating that the uncertainty in the contributions from the isoprene emissions to the total HCHO 920 

uncertainties is higher. Above 5 km, CHASER underestimates the background HCHO mixing ratios. 921 

However, simulated and TROPOMI HCHO columns over the remote Pacific regions showed consistency 922 

when gridded over a similar horizontal grid (Fig. 1). Consequently, differences in the horizontal resolution 923 

can cause discrepancies between the simulations and ATom observations over the remote regions. Over 924 

South America, the model overestimates the observed (TROPOMI and ATom) HCHO abundances 925 

irrespective of the horizontal resolution. Therefore, the biogenic emission estimates for South America in 926 

CHASER should be reviewed to reduce the model-observation biases. 927 

 928 

3.8 Contribution estimates 929 

The contributions of different VOC emission sources to the regional HCHO abundances are presented in 930 

Fig. 11. The contribution estimates are presented in Table 8. A stacked-bar plot of the annual contributions 931 

of the emission sources is portrayed in Fig. S11. 932 

 933 



43 

 

Over E-China (Fig.11(a)), biomass burning has a non-significant effect on the regional HCHO columns. 934 

During summer, the biogenic and anthropogenic VOC emission contributions are 44% and 17%, 935 

respectively. In contrast, anthropogenic and biogenic contributions to the regional HCHO level during 936 

winter are 35% and 13%, respectively. 937 

 938 

Non-significant biomass burning effects on the HCHO columns can be observed over E-USA (Fig.11(b)), 939 

W-USA(Fig.11c)), and Europe(Fig.11(d)). Biogenic emissions contribute more than 20% (35% in E-940 

USA) in these regions. In these regions, annual anthropogenic contributions are higher than the biogenic 941 

contribution. Although the simulated winter columns in these regions are consistent with TROPOMI (Fig. 942 

2), the model values are lower during summer and autumn. Moreover, the sensitivity results show non-943 

significant biogenic contribution during winter and autumn, which likely reduces the annual biogenic 944 

contribution estimates. 945 

  946 



44 

 

Figure 11: Seasonal variation of HCHO (× 1016 molecules cm-2) inferred from different simulations. The settings 947 

of the standard simulation are presented in Table 1. The model estimates shown in red, green, and blue are simulated 948 

by switching off the biomass-burning, biogenic, and anthropogenic emissions. The satellite AKs have been applied 949 

to all the simulations. The coordinate bounds of the regions are similar to those in Fig. 2. 950 

 951 

In C-Africa(Fig.11(e)), biogenic emissions (48%) are the most significant contributor, followed by 952 

anthropogenic emissions (13%).  Although the biogenic emission contributions are equivalent in N-953 

Africa(Fig.11(f); 48%) and S-Africa (Fig.11(b); 43%), the pyrogenic contributions are twice as high in 954 

the latter region. Consequently, despite similar HCHO abundances and modulation in these regions, the 955 

source contributions differ. 956 

 957 

 958 

 959 

Table 8. Contributions (%) of different emission sources to HCHO abundances in selected regions. The 960 

respective emissions were switched off to estimate the contribution to the total HCHO abundances. The 961 

contributions have been calculated with respect to the standard simulations. The satellite AKs were 962 

applied to all simulations. 963 

 964 

Region Biomass-burning 

contribution 

Biogenic contribution Anthropogenic 

contribution 

E-China 

 

E-USA 

 

W-USA 

 

Europe 

 

1.4% 

 

1.7% 

 

1.8% 

 

1.2% 

 

32% 

 

35% 

 

23% 

 

20% 

 

37% 

 

38% 

 

39% 

 

45% 
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C-Africa 

 

N-Africa 

 

S-Africa 

 

S-America 

 

India 

 

IGP 

 

E-India 

 

S-India 

 

SE-Asia 

8% 

 

6% 

 

15% 

 

7% 

 

1.4% 

 

1.1% 

 

1.5% 

 

2.1% 

 

6% 

48% 

 

48% 

 

43% 

 

61% 

 

37% 

 

39% 

 

44% 

 

30% 

 

45% 

13% 

 

17% 

 

12% 

 

10% 

 

34% 

 

37% 

 

36% 

 

29% 

 

24% 

 965 

 966 

Biogenic emissions over South America(Fig.11(h)) contribute 61% to the regional HCHO abundances. 967 

The pyrogenic contribution during the biomass-burning period is 12%, whereas the annual contribution 968 

is 7%. 969 

 970 

In SE-Asia(Fig.11(m)), annual anthropogenic contributions are ~20%. During the dry season, the 971 

anthropogenic, pyrogenic, and biogenic contributions are 7%, 12%, and 48%, respectively. Biogenic 972 
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production compromises 43% of the HCHO columns from July to December, whereas anthropogenic 973 

emissions account for 9%. 974 

 975 

In India(Fig.11(i)), annual pyrogenic emissions contribute ~2% to the HCHO levels. A similar source 976 

contribution to the HCHO levels in IGP(Fig.11(j)) is also observed. The model's capability to reproduce 977 

the observed HCHO seasonality in India and the IGP region was limited. Consequently, robust source 978 

contribution estimates for these regions cannot be derived from the current analysis. 979 

Over E-India (Fig.11(k)), 44% of the HCHO levels originate from biogenic sources, followed by 980 

anthropogenic VOC emissions (36%). Similar source contributions of biogenic (30%) and anthropogenic 981 

(29%) emissions are observed in S-India(Fig.11(l)). Over both regions, the pyrogenic source contribution 982 

is  ~2%. 983 

 984 

3.9 Uncertainties in the chemical mechanism 985 

Uncertainties in the chemical mechanisms affect the HCHO simulations. Representation of isoprene 986 

chemistry can vary among the gas-phase chemistry mechanisms used in the CTMs. The most commonly 987 

used isoprene schemes underestimate observed HCHO by at least 15% (Marvin et al., 2017). Such 988 

underestimations are also strongly linked with the errors in the NOx emission inventories (Anderson et 989 

al., 2017). In addition, potential errors in the acetaldehyde emission and chemistry can also lead to 990 

underestimated HCHO vmr up to 75 pptv in the lower troposphere (Anderson et al., 2017).  991 

 992 

4 Conclusions 993 

CHASER simulated global HCHO spatiotemporal distributions at a horizontal resolution of 2.8° × 994 

2.8°were evaluated against multi-platform observations. First, two years of simulation results (2019–995 

2020) were compared with the latest HCHO satellite observations from TROPOMI. The model-satellite 996 

agreement was excellent, with a global r-value of 0.93 and RMSE of 0.75 × 1015 molecules cm-2. The 997 

model showed good capabilities for reproducing the HCHO columns in hotspot and background regions. 998 

CHASER HCHO columns over large forested areas showed good consistency with the observations, 999 

demonstrating that the biogenic emission estimates in the model are reasonable. Simulated HCHO 1000 

seasonality in a few selected regions was consistent with the observations. The model was able to 1001 
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reproduce the observed wintertime HCHO columns in E-USA, W-USA, and Europe, in addition to 1002 

summer peaks. Disagreement between TROPOMI and CHASER was observed primarily in India, China, 1003 

Amazonia, and SE Asia. Uncertainties in background HCHO columns, anthropogenic VOC emission 1004 

inventories, chemical mechanisms adopted in the model, and retrieval algorithms were the potential 1005 

contributors to these discrepancies. However, such uncertainties did not affect the model–satellite 1006 

agreement in Africa and South America. Comparison among OMI, TROPOMI, and CHASER HCHO 1007 

columns demonstrated that TROPOMI's improved spatial resolution effect was limited globally. 1008 

However, in most regions, simulated HCHO seasonality showed better agreement with TROPOMI than 1009 

with OMI, reducing the RMSE by up to 63%. TROPOMI retrievals were, on average, 30% lower than 1010 

those of OMI. 1011 

Second, CHASER simulations were compared with two-year MAX-DOAS observations of HCHO at 1012 

Phimai, Chiba, and Kasuga. Daily CHASER HCHO mixing ratios showed consistency with the 1013 

observations at the three sites, with R-values of 0.39–0.67. The slopes of linear fitting were lower for 1014 

Chiba (0.29) and Kasuga (0.29) than for Phimai (0.37), implying lower model underestimation at the 1015 

latter site. The diurnal variations at the sites were consistent with the observations. The change in the NOx 1016 

emission inventories did not affect the simulated diurnal variations. 1017 

Third, simulated HCHO and isoprene profiles for 2018 were compared with ATom-4 flight observations. 1018 

Despite consistent profile shapes, the model overestimated VOC mixing ratios mainly within the PBL. 1019 

Uncertainties related to VOC emission inventories, background HCHO levels, and model resolution were 1020 

potential reasons for the model–flight discrepancies. 1021 

Lastly, sensitivity studies were conducted to estimate the contributions of the different emissions sources 1022 

to the total HCHO columns in different regions. Biogenic emissions were the most significant contributor 1023 

in most of the regions. In a few cases, biogenic and anthropogenic emission contributions were equivalent. 1024 

In some regions, only summertime biogenic estimates were found to be reasonable. 1025 

 1026 

Code availability: The CHASER source code needed to reproduce the simulations in this work is available 1027 

from the repository at https://zenodo.org/records/10892945 (Sudo et al., 2024). 1028 

Data availability: The processed model output and observational datasets needed to reproduce the results 1029 

are available from the repository at https://zenodo.org/records/10052384 (Hoque et al., 2024). The  MAX-1030 

DOAS profile and column data provided by Dr. Hitoshi Irie can be accessed from the repository(i.e., Hoque 1031 
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2023; Wofsy et al., 2018) data were obtained from the respective websites.  1035 
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