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Abstract 13 

Fires are a key component of the global carbon cycle and humans are changing their 14 

characteristics. Fire emission monitoring is important to keep track of those changes and 15 

TROPOMI satellite observations of tropospheric nitrogen dioxide, carbon monoxide and the 16 

absorbing aerosol index can be used to quantify and verify the accuracy and precision of global 17 

wildfire emission estimates on a daily basis. Here we use TROPOMI observations to evaluate 18 

a new fire emission database based on Global Fire Atlas input for the Sense4Fire project (GFA-19 

S4F) and from the Copernicus Atmosphere Monitoring (CAMS) Global Fire Assimilation 20 

System (GFAS) for a number of test regions worldwide representative of the most important 21 

wildfire type environments. The main focus is on Amazon and Cerrado biomes (tropical rain 22 

forests and deforestation) during August-September 2020, but analyses are also made for a 23 

region in sub-Saharan Africa (savannah) as well as two regions in Siberia (steppe and boreal 24 

forests/tundra). GFA-S4F and GFAS fire emissions are used as input for global atmospheric 25 

composition model simulations based on IFS-COMPO, i.e. an extension of ECMWF’s 26 

Integrated Forecasting System (IFS) for simulating atmospheric composition. Comparing the 27 

model output with the TROPOMI observations then provides an indirect check on the realism 28 

of these emission estimates. Furthermore, for tropospheric nitrogen dioxide the IFS-COMPO 29 

model simulations are also used to estimate the model sensitivity of tropospheric nitrogen 30 

dioxide columns with respect to fire emission changes. This local relationship is used to 31 

optimize the fire NOx emissions directly using the TROPOMI nitrogen dioxide observations. 32 

The results reveal that for small fires emission nitrogen dioxide estimates are realistic on 33 

average albeit with a large spread, i.e. for individual fires emissions can be significantly under 34 

or overestimated regardless of emission database. However, for large fires nitrogen dioxide 35 

emissions are systematically and largely overestimated in all four regions. The overestimation 36 

can be an order of magnitude or even more. For area total nitrogen dioxide emissions this “large 37 
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fire bias” is of minor importance, i.e. total nitrogen dioxide emissions are dominated by small 38 

fires. The GFA-S4F emission estimates were characterized by a larger positive bias for large 39 

fire NO2 emission cases compared to GFAS. The source of this bias is not well understood. 40 

With optimized NO2 emissions by direct adjustment of emission using TROPOMI nitrogen 41 

dioxide observations the large positive bias can efficiently be resolved. Combined with an 42 

update of soil NOx emissions – causing too low background NOx levels – a fairly good 43 

agreement between IFS-COMPO and TROPOMI was reached.  44 

Carbon monoxide was generally underestimated using GFAS emission (~50% on average 45 

for the selected regions). Updating carbon monoxide emissions over the Amazon region by 46 

incorporating more Sentinel satellite data (GFA-S4F) did reduce this fire CO bias significantly 47 

(to ~25% on average).  48 

Overall, the results show that TROPOMI data allows for systematically identifying 49 

uncertainties and errors in satellite-data based fire emissions. The results also suggest that the 50 

use of dynamic emission factors may further improve satellite based global emissions 51 

inventories. In addition, the results also highlight that the use of TROPOMI data could be much 52 

more detailed and refined towards assessing individual fires on a daily basis for better 53 

understanding fire dynamics and to improve and diversify fire emission factors.  54 
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1. Introduction 55 

Disturbance of vegetation by fire - anthropogenic or natural - is a major contributor to the 56 

amount of carbon (as carbon dioxide or methane) present in the atmosphere (Lasslop et al., 57 

2019; Bowman et al., 2020; McLauchan et al., 2020). Vegetations fires are also important for 58 

the natural cycle of vegetation growth in many parts of the world and burning vegetation is a 59 

practice also used by humans in farming. The associated time scales can vary from several 60 

weeks to hundreds of years depending on vegetation type and speed of regrowth. Wildfire 61 

extremes and associated smoke can be disrupting to livelihoods as for example in Australia 62 

2019 (Boer et al., 2020; Filkov et al., 2020) or the US West Coast 2020 (Higuera and 63 

Abatzoglou, 2021). 64 

Satellite sensors can provide a number of key pieces of information to characterize 65 

vegetation fires (Chuvieco et al., 2019, 2020; Wooster et al., 2021). These include detection of 66 

thermal anomalies indicative of active fires, the energy released (fire radiative power or FRP), 67 

the loss of vegetation expressed as a change in surface reflectance indicative of burnt area and 68 

fire severity, or biomass loss, and observations of aerosols or atmospheric trace gases directly 69 

associated to, and traceable back to, fire events. Each individual dataset contains valuable fire 70 

information in itself but a greater understanding of the role of vegetation fires globally can be 71 

obtained by combining these datasets into one information system. Although several satellite-72 

derived fire emission databases exist, there continues to be a need to develop additional 73 

validation methodologies and data products to advance our understanding of satellite-derived 74 

estimates of individual fire behavior (Andela et al., 2019, 2022; Andreae, 2019). 75 

Earth observation can also help in constraining fire emission estimates. In particular carbon 76 

monoxide (CO) has been used for evaluation of fire emission estimates with various 77 

techniques, including formal emission inversions (Hooghiemstra et al., 2011; Yin et al., 2015), 78 
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mass budget analyses (Huijnen et al., 2016), Gaussian plume modelling (Adams et al., 2019) 79 

as well as estimating fire CO2 emissions using carbon monoxide as a proxy (Peiro et al., 2022). 80 

Likewise aerosol and formaldehyde (HCHO) observations have been used as fire emission 81 

proxies (Petrenko et al., 2012; Konovalov et al., 2014; Stavrakou et al., 2015; Bauwens et al., 82 

2016). However, in any of these methods the estimated carbon emissions are subject to 83 

uncertainties in bottom-up emission estimates due to emission factors, the dynamics of the 84 

emission process in the atmosphere and tracer lifetime. Limitations to data quality and the 85 

spatio-temporal coverage of satellites further hamper in depth analysis of fire emissions to 86 

larger regional to continental scales for many studies and trace gases (Alvarado et al., 2011; 87 

Mebust et al., 2011, 2013, 2014; Young and Paton-Walsh, 2011; Castellanos et al., 2014; 88 

Schreier et al., 2014; Tanimoto et al., 2015; Whitburn et al., 2015; Sitnov and Mokhov, 2017; 89 

Lee et al., 2019; Adams et al., 2019; Lin et al., 2020). 90 

The launch of the TROPOMI instrument on board of Polar orbiting Sentinel-5p satellite in 91 

October 2017, with at that time unprecedented spatial resolution, data accuracy and precision, 92 

has opened up a whole new range of possibilities for monitoring and studying fires. Several 93 

research papers have been published in recent years exploring the use of TROPOMI CO and 94 

NO2 often in conjunction with FRP data from other satellites (Li et al., 2020; Griffin et al., 95 

2021; 2023; Jin et al., 2021; van der Velde et al., 2021; Stockwell et al., 2022; Wan et al., 2023; 96 

see the Appendix for a brief summary of all these papers). These studies highlight the potential 97 

of using TROPOMI data for assessing fire emissions. However, they also all note that their 98 

studies are only first exploratory steps using TROPOMI and that more research is needed and 99 

warranted while approaches could be expanded, extended and refined. 100 

The ESA Sense4Fire project (S4F) explores the suite of the Sentinel satellite instruments 101 

using a novel synergetic approach to derived global fire emissions based on the characterization 102 
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of individual fires and their behavior, eventually to better constrain total carbon emissions and 103 

emission factors. Atmospheric chemical composition modelling is used as an interface between 104 

Sentinel 2 and sentinel 3 based emissions vs. TROPOMI observations.  105 

The objective of this study is to evaluate daily emission estimates of NO2 and CO from the 106 

Global Fire Atlas (GFA-S4F) and the Global Fire Assimilation System (GFAS) by using them 107 

as input for atmospheric chemistry model simulations. The model results are compared with 108 

TROPOMI observations of NO2 and CO to assess the realism of these emission estimates. The 109 

method described above is an indirect validation method in which the atmospheric composition 110 

modelling results act as interface between the emission estimates and the TROPOMI data. We 111 

therefore also apply an innovative approach for further updating and improving the emission 112 

estimates that makes more direct use of TROPOMI observations. 113 

2 Data and methods 114 

2.1 TROPOMI data 115 

The Sentinel-5 precursor satellite, launched on 13 Oct. 2017 in an ascending sun-116 

synchronous polar orbit, with an equator crossing at about 13:30 local time, carries the 117 

TROPOspheric Monitoring Instrument (TROPOMI; Veefkind et al., 2012). Sentinel-5p is one 118 

of the Sentinel satellites of the European Copernicus Program dedicated to monitoring 119 

atmospheric composition. TROPOMI is a spectrometer that provides measurements in four 120 

channels – ultraviolet (UV), visible (VIS), near infrared (NIR) and shortwave infrared (SWIR) 121 

- of several atmospheric trace gases including NO2 and CO and of cloud and aerosol 122 

properties. The TROPOMI instrument is unique in several ways because it combines near-daily 123 

global coverage with a wide spectral range, UV/VIS/NIR foot prints of 3.5×5.5 km2 at nadir 124 
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(3.5×7 km2 before 6 August 2019), SWIR footprints of 5.5×7 km2 at nadir (7×7 km2 before 6 125 

August 2019) and a very large signal-to-noise ratio.  126 

2.1.1 Tropospheric nitrogen dioxide (NO2) 127 

In this paper we use the TROPOMI NO2 offline data from data processor version 2.3.1 and 128 

algorithm version 1.5.0. The operational TROPOMI NO2 product is described in van Geffen et 129 

al. (2020). Detailed information can be found in the Product README File (PRF; Eskes and 130 

Eichmann, 2021), the Product User Manual (PUM; Eskes et al., 2022) and the Algorithm 131 

Theoretical Basis Document (ATBD; van Geffen et al., 2021).  132 

Validation of TROPOMI tropospheric NO2 columns for the biomass burning regions that 133 

S4F focuses on is missing due lack of ground-based stations in those areas. The general 134 

validation results for comparison with ground-based data (Verhoelst et al., 2021; Lambert et 135 

al., 2023) indicate a negative bias for the tropospheric column data with a median value of 28% 136 

with a range of 13% for rather clean locations to 40% over extremely polluted sites. The largest 137 

differences occur during winter at higher latitudes (van Geffen et al., 2022). Note that these 138 

biases fall (well) within the mission requirement of less than 50% bias. On the other hand, 139 

given the lack of validation sites in the areas of interest of this paper – and in particular in the 140 

tropical rain forest Amazon region and the south-of-the-equator African Savannah region it is 141 

unclear how large TROPOMI tropospheric NO2 columns biases are in those regions and 142 

whether the validation would improve with the updated algorithm. 143 

2.1.2 Carbon Monoxide (CO) 144 

The TROPOMI CO total column retrieval algorithm derives data in the 2315–2338  nm 145 

spectral range of the SWIR part of the solar spectrum and retrieves the CO values for clear-sky 146 

conditions over land and low clouds over the ocean (Borsdorff et al., 2014; Landgraf et al., 147 
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2016; Schneising et al., 2019). TROPOMI CO measurements are sensitive to the integrated 148 

amount of CO along the light path, including the contribution of the planetary boundary layer, 149 

making them particularly suitable for detecting surface sources of CO.  150 

The operational TROPOMI CO retrieval deploys a profile scaling approach where a CO 151 

reference profile is scaled to fit the TROPOMI reflectance measurements. For this, global, 152 

monthly averaged vertical CO a priori profiles are used from the chemical transport model 153 

TM5 (Krol et al., 2005). The forward calculation of the TROPOMI spectral measurements 154 

account for light scattering by clouds and aerosols in the atmosphere and thus simultaneously 155 

retrieves trace gas columns and effective parameters describing the cloud contamination of the 156 

measurements (height scattering layer, scattering optical thickness) as demonstrated by Vidot 157 

et al. (2012).  158 

In this paper we use the TROPOMI CO offline data from data processor version 1.3.2 and 159 

algorithm version 1.2.0. As recommended in the TROPOMI README file (Landgraf et al., 160 

2022a) and the product user manual (PUM; Apituley et al., 2022), we only use data with quality 161 

assurance values (qa_values) larger than 0.5. More details about the algorithm can be found in 162 

the Algorithm Theoretical Basis Document (ATBD; Landgraf et al., 2022b) that provides a 163 

detailed reanalysis description of the implementation of the CO retrieval.  164 

TROPOMI CO validation papers consistently report only small and mostly random biases 165 

up to an order of magnitude smaller than the standard deviation of differences when compared 166 

to ground-based observations, data and other satellite data. Correlations are generally high, and 167 

biases are generally in the order of a few percent or less (Borsdorff et al., 2018, Martínez-168 

Alonso et al., 2020; Sha et al., 2021; Lambert et al., 2023). The differences fall well within the 169 

TROPOMI mission requirements on accuracy (<15 %) and precision (<10 %) in CO total 170 

columns. The data does suffer from striping issues and instrument effects in the area of the 171 
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South Atlantic Anomaly (SAA). For CO there is one validation site in the S4F Amazon area of 172 

interest: Porto Velho. Validation results for Porto Velho reveal an excellent correlation (0.96) 173 

and small bias (0.51%) in total CO columns of the offline data product (Lambert et al., 2023). 174 

2.1.3 Absorbing Aerosol Index (AAI) 175 

The AAI is a well-established satellite data product that has been produced for several 176 

different satellite instruments spanning a period of more than 30 years. The AAI was first 177 

calculated as a correction for the presence of aerosols in column ozone measurements made by 178 

the TOMS instruments (Herman et al., 1997; Torres et al., 1998) because it was observed that 179 

ozone values were too high in typical regions of aerosol emission and transport. The AAI is 180 

based on spectral contrast in the ultraviolet spectral range for a given wavelength pair, where 181 

the difference between the observed reflectance and the modeled clear-sky reflectance results 182 

in a residual value. When this residual is positive, it indicates the presence of UV-absorbing 183 

aerosols, like dust, smoke, or volcanic ash. Clouds yield near-zero residual values, and negative 184 

residual values can be indicative of the presence of non-absorbing aerosols (e.g., sulfate), as 185 

shown by sensitivity studies of the AAI (de Graaf et al., 2005; Penning de Vries et al., 2009). 186 

Unlike satellite-based aerosol optical thickness measurements, the AAI can also be calculated 187 

in the presence of clouds so that daily global coverage is possible. This is ideal for tracking the 188 

evolution of episodic aerosol plumes from dust outbreaks, volcanic eruptions, and biomass 189 

burning. For this study, we use the TROPOMI AAI data for the wavelength pair 340–380 nm. 190 

For more details about the TROPOMI AAI retrieval algorithm, see Stein-Zweers (2016). In 191 

this paper we use the TROPOMI AAI offline data from data processor version 1.3.2 and 192 

algorithm version 1.2.0. 193 

2.2 Methods 194 
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We use fire emission data from two emissions inventories based on satellite data: the Global 195 

Fire Atlas (GFA; Andela et al., 2017, 2019, 2022) emissions and the Global Fire Assimilation 196 

System emissions (GFAS; Kaiser et al., 2012). We further use IFS-COMPO atmospheric 197 

chemistry and transport model simulations (Huijnen et al., 2019; Williams et al., 2022), 198 

TROPOMI data (Veefkind et al., 2012), and the innovative β-method for updating emissions 199 

based on TROPOMI data (Lamsal et al., 2011; Castellanos et al., 2014). We also perform a 200 

number of IFS-COMPO model experiments varying emissions or model processes/parameters 201 

in order to better understand differences we find between IFS-COMPO and TROPOMI. The 202 

particular experiments will be described in more detail later on (Table 2). 203 

We perform an analysis in four study regions (see Appendix Fig. A1 and later Table 2) that 204 

show a large variation of biomes and fire types. The main focus of this study is the 205 

Amazon/Cerrado region; other regions are south-equatorial Africa savannahs, north Siberian 206 

boreal forests and tundra, and central Siberian steppes. For the S4F project four 5°×5° areas 207 

were selected to limit the high computation demand for calculating satellite data-based 208 

emissions. However, given the IFS-COMPO resolution of 0.5°, a daily 5°×5° area would 209 

frequently yield too little data for meaningful statistics. Hence why for this study we expanded 210 

the coverage of the four regions (see later Table 2) to derive sufficient daily comparison data 211 

of IFS-COMPO with TROPOMI data for meaningful statistics. Note that for the 212 

Amazon/Cerrado we will refer to both the smaller and larger region, also to accommodate 213 

future S4F research and publications. 214 

2.2.1 Global Fire Atlas - based emissions 215 

The Global Fire Atlas approach tracks individual fire events-based Moderate Resolution 216 

Imaging Spectroradiometer (MODIS) burned area (Andela et al., 2019) or Visible Infrared 217 

Imaging Radiometer Suite (VIIRS) active fire data (Andela et al., 2022). The VIIRS-based 218 
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method was developed to fill the need for a near–real-time approach for tracking contributions 219 

from deforestation, forest, agricultural, and savanna fires to burned area and carbon emissions. 220 

The approach was applied to the Amazon and Cerrado region, defined as the area 25°S-EQ, 221 

85°W-30°W, for the years 2019 and 2020 although here we only will focus on emissions for 222 

August and September 2020. Here we apply emissions factors derived from Andreae et al. 223 

(2019) to translate carbon emissions to NOx and CO emissions for each fire type. The following 224 

emissions factors (grams trace gas per kg matter burned) were used for grasslands and savanna 225 

fires (69.2 and 2.49 g kg-1), small clearing and agricultural fires (102 and 3.11 g kg-1), forest 226 

fires (98 and 1.94 g kg-1), and deforestation fires (99 and 4.63 g kg-1) for NOx (as NO) and CO, 227 

respectively. 228 

2.2.2 GFAS fire emissions 229 

The Global Fire Assimilation System (GFAS; Kaiser et al., 2012) estimates dry matter 230 

combustion rates by multiplying FRP and biome-specific emission factors. The global 231 

distribution of FRP observations is obtained from the MODIS instruments on board the Terra 232 

and Aqua satellites and are then assimilated into the GFAS system. The gaps in FRP 233 

observations, which are mostly due to cloud cover and spurious FRP observations of volcanoes, 234 

gas flares, and other industrial activity, are corrected or filtered in the GFAS system. Eight 235 

biome-specific emission factors are used based on linear regressions between the GFAS FRP 236 

and the dry matter combustion rate of Global Fire Emission Database (GFED) version 3.1 in 237 

each biome (see later Table 2 and Fig. 3 in Kaiser et al. (2012)). The biomass burning emission 238 

of a given species is then calculated by multiplying the dry matter combustion rate with an 239 

emission factor of that species.  240 

2.2.3 IFS-COMPO 241 
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As outlined in the introduction this study uses an atmospheric chemical composition model 242 

(IFS-COMPO, previously known as "C-IFS" (Flemming et al., 2015)) as an interface between 243 

Sentinel 2 and sentinel 3 based emissions and TROPOMI observations. IFS-COMPO is an 244 

extended version of ECMWF's Integrated Forecasting System that was developed as part of 245 

the global component of CAMS which includes modeling and assimilation of atmospheric 246 

composition (aerosols, trace gases and greenhouse gases). Here we use a version of IFS-247 

COMPO which is set to simulate tropospheric chemistry and aerosol but excluding data 248 

assimilation of atmospheric composition (see Appendix). 249 

IFS-COMPO is run at a horizontal resolution of T511 (approximately 40 km grid cell), with 250 

137 vertical levels and a time step of 900s. This default configuration of IFS-COMPO uses 251 

CAMS-GLOB-ANT v5.3 anthropogenic emissions (Soulie et al., 2023), together with CAMS-252 

GLOB-BIO v3.1 biogenic emissions, and soil NOx emissions based on POET. The GFASv1.4 253 

emissions, with updated emission factors for CO and NO, are applied globally. A series of 254 

sensitivity experiments have been conducted, primarily testing the sensitivity in the fire input 255 

emissions (Tables 1 and 2). To compare TROPOMI observations with IFS-COMPO output we 256 

take into account all relevant aspects that are required when matching observation data to 257 

model data including averaging kernels. Only TROPOMI observations with quality assurance 258 

threshold above 0.75 are used, as recommended by the NO2 product user manual. This concerns 259 

observations with cloud radiance fraction of less than 0.5 and excludes retrievals with ground 260 

pixels covered with snow/ice, as well as problematic retrievals. 261 

The model fields are interpolated in time to match with local overpass time of TROPOMI 262 

and the averaging kernel is applied to the model NO2 profile. The collocated model-observation 263 

pairs are gridded on a common 0.5°×0.5° output field (or different resolution, which is 264 

configuration setting), and only written to output files if a threshold coverage of 50% of the 265 

https://doi.org/10.5194/egusphere-2024-732
Preprint. Discussion started: 19 April 2024
c© Author(s) 2024. CC BY 4.0 License.



13 
 

grid cell is reached. The averaging is done by an area-weighted approach, hence taking into 266 

account the area of the TROPOMI-pixel that is within the model grid box (Douros et al., 2023). 267 

Similar to the evaluation of IFS-COMPO NO2, we use TROPOMI observations of CO total 268 

columns to evaluate model CO columns, selecting observations with quality assurance 269 

threshold above 0.5. The model total column fields are interpolated in time to match with local 270 

overpass time of TROPOMI. The same grid for collocation is used as was adopted for the 271 

evaluation against TROPOMI NO2, again only grid cells with a threshold coverage of 50% are 272 

used. Also the area averaging is the same as done for NO2. 273 

Because the TROPOMI CO column data is nearly uniformly sensitive to height (Borsdorff 274 

et al., 2014) we will assume for comparison with IFS-COMPO that TROPOMI CO column 275 

data represents a true vertical column so that no weighting or sensitivity correction on IFS-276 

COMPO CO data needs to be applied. 277 

2.2.4 β-method 278 

The basic approach followed in this paper is to use the IFS-COMPO model as 279 

“intermediate” between the fire emission databases based on GFA or the GFAS emissions 280 

database on the one end and the TROPOMI observations on the other end. 281 

The IFS-COMPO model, however, also allows for applying a different approach to use 282 

TROPOMI observations to modify and update model emissions by using the model simulations 283 

to derive the local relationship between emissions and satellite measurements (Lamsal et al., 284 

2011; Castellanos et al., 2014). Although models like IFS-COMPO may simulate incorrect 285 

trace gas amounts due to errors in fire emission estimates, they are capable of realistically 286 

simulating changes in column amounts caused by changes in emissions. By performing a 287 

baseline model simulation and a “perturbed emission” simulation, a local column-emission 288 
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sensitivity parameter β can be derived as function of space and time that connects changes in 289 

column amounts (∆TCNO2) to changes in emissions (∆E):  290 

ΔE

𝐸
=  β 

ΔTCNO2

TCNO2

  291 

Then, differences in measured and modelled columns can be converted into differences in 292 

emissions relative to the baseline emissions by multiplication with the β parameter yielding an 293 

updated TROPOMI-based emission estimate. Here, we use the β-method to assess to what 294 

extent the prior fire NOx emission databases can be updated with this method to close the gap 295 

between model simulations of fire NOx emission plumes and TROPOMI observations of NO2. 296 

For this we run sensitivity experiments where we scale down the prior fire emissions (either 297 

GFAS or GFA-S4F) by 20%, and use the resulting change in tropospheric NO2 columns to 298 

compute local and daily varying β values.  299 

The β value is determined by local atmospheric chemistry conditions and background NOx 300 

emissions in IFS-COMPO. A β value of one (1.0) indicates that the relative change in emissions 301 

corresponds with a similar relative change in tropospheric NO2 columns. β values < 1.0 302 

indicating relatively low sensitivity of fire emission changes to column changes (β values > 1.0 303 

indicative of the opposite). Very small β-values indicate limited sensitivity of emissions to 304 

changes in column values, very large β-values indicate high sensitivity of emissions to small 305 

changes in column values. Hence why β-values close to 1.0 are preferred and why we also limit 306 

β-values to the 0.25-4.0 range.  307 

To ensure that the β field only relate to fire emissions we additionally apply a filtering 308 

procedure to exclude instantaneous values of β when prior emissions are smaller than 0.1 mg 309 

m-2 d-1 and model NO2 columns are smaller than 2×1015 molecules cm-2, and additionally take 310 

https://doi.org/10.5194/egusphere-2024-732
Preprint. Discussion started: 19 April 2024
c© Author(s) 2024. CC BY 4.0 License.



15 
 

the local median value of β computed based a two-month time series (August-September 2020). 311 

Over the Amazon, more than 97% of the median β values fall within the 0.5-2.0 range with 312 

60% within the 1.0-1.5 range (see Appendix Fig. A2). Note that on average β-values get closer 313 

to 1.0 for larger tropospheric NO2 column values indicating that the larger emissions, the more 314 

linear and straightforward the relation between emissions and NO2 column values. 315 

Applying the β-method comes with a number of caveats and limitations. It does require 316 

prior emissions to be present for a given grid location in the IFS-COMPO model if the 317 

emissions are to be updated. This is a different approach from for example emission inversion 318 

methods that do not require any a priori information (Mijling et al., 2013; Ding et al., 2017). 319 

Also, given the differences in spatial resolution between IFS-COMPO, TROPOMI data and 320 

the emission databases need to be kept in mind. The β-method only allows to translate 321 

TROPOMI column enhancements into emission optimization within the (coarser) model grid 322 

resolution, which is valid for trace gases with sufficiently short lifetime such as NO2. 323 

Furthermore, the β-method assumes that column amounts and emissions vary linearly which 324 

may not always be the case. Hence why β values close to a value of 1.0 are preferred and large 325 

changes in emissions far beyond the 20% model emission perturbation should be carefully 326 

considered. In principle non-linear relationships between column amounts and emissions could 327 

be overcome by applying the method iteratively albeit at the cost of requiring more model 328 

simulations and thus time. Nevertheless, once the model simulations have been performed the 329 

β-method provides a straightforward method to use TROPOMI data for a rapid first order 330 

update of prior emissions. 331 

3. Results 332 

3.1 Amazon 333 
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Fig. 1 show a SUOMI-NPP VIIRS image for 11 September 2020 over the selected 334 

Sense4Fire Amazon region as well as the larger Amazon region. They reveal a pattern typical 335 

for this Amazon region during this time of the year. There are widespread fires and smoke 336 

plumes visible over regions where deforestation is taking place. There is some shallow 337 

convection present, but weather conditions are mainly dry. Smoke from the fires covers a large 338 

region in the Amazon (Fig. 1, lower panel), resulting in accumulation of pollution with the 339 

Andes mountains to the west acting as a barrier for transport of pollution out of the region. 340 
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 341 

Figure 1. (a) SUOMI-NPP VIIRS RGB image on 11 September 2020 over the Amazon region 342 

between 50°W-55°W, 9°S-14°S. Image obtained from NASA WorldView based on the python 343 

script by Brian Blaylock (Univ. Utah, 2015); (b) as Fig. 1a but for 50°W-70°W, 5°S-25°S. The 344 

area of Fig. 1a is denoted by the white square. 345 
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 346 

Figure 2. TROPOMI measurements of tropospheric NO2 column (original resolution a 347 

regridded to the CO grid), the CO total column and the AAI on 11 September 2020 for the 348 

region shown in Fig. 1 (upper panel). The open green circles depict coincident NPP-VIIRS 349 

FRP measurements with the radius of the circles representing the magnitude of the FRP 350 

(arbitrary unit). Only measurements with TROPOMI NO2 quality flag values > 0.5 are shown. 351 

The regridding of tropospheric NO2 column was done using a python based coregistration 352 

algorithm (M. Sneep, KNMI, personal communication, 2023; available on request). Pixels in 353 

which the cloud pressure was within 4% of the surface pressure were also included to in 354 

particular allow for pixels with enhanced NO2 over low altitude smoke, following van der A et 355 

al. (2020).  356 
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Fig. 2 shows TROPOMI observations over the same region as Fig. 1 (upper panel). Many 357 

fire emission plumes can be discerned in tropospheric NO2, CO and the AAI data. On close 358 

inspection the plumes generally emanate from where SUOMI-NPP FRP indicates fire events 359 

(wind direction was east-north-east). Close to fires tropospheric NO2 is enhanced which rapidly 360 

drop to background column values typically within 5-10 TROPOMI pixels, approximately 25-361 

50 km distance and reflecting the relative short lifetime of tropospheric NO2 of a few hours at 362 

maximum in this moist and sunlit region. For CO and the AAI the plumes extend much further 363 

reflecting the much longer lifetime of both parameters relative to tropospheric NO2. On the 364 

timescales of plume advection (hours to a day) CO and AAI act as passive tracers with plume 365 

variations dominated by turbulence and dispersion. For tropospheric NO2 photochemical 366 

equilibrium and chemical loss also plays a role. The tropospheric NO2 data also reveal that for 367 

large AAI values and thus optically thick smoke no accurate tropospheric NO2 column values 368 

(low quality flag value) could be retrieved even though total NO2 data do show enhanced total 369 

NO2 over the smoke (not shown). Thick smoke is considered a cloud in the tropospheric NO2 370 

retrieval algorithm, hence the low data quality flag value.  371 

Fig. 3 show the 2-D probability distributions of daily TROPOMI NO2, CO, and AAI for 372 

the large Amazon region of Fig. 1 for the entire month of September. As expected based on 373 

Fig. 2, CO and AAI correlate well whereas tropospheric NO2 hardly correlates with either. 374 
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Comparing these distributions for different months for the same region in 2019 and 2020 shows 375 

that August and September are the dominant Amazon fire months (see Appendix Fig. A4). 376 

Figure 3. 2D histogram of daily September 2020 TROPOMI data for AAI and CO (upper 377 

panel), CO and NO2 (middle panel) and AAI and NO2 (lower panel) for the same region as 378 
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shown in Fig. 2. For the upper panel the AAI and CO data are biases corrected on a daily basis, 379 

i.e. each day the median value of the daily probability distribution is subtracted. See Appendix 380 

Fig. A3 for the same figure without the bias correction. NO2 data is not bias corrected (middle 381 

and lower panel) and CO data for the lower panel is also not corrected, see Appendix Fig. A3 382 

for the same figure with the CO bias correction as applied for the upper panel of Fig. 3 here. 383 

AAI data is unitless, CO data is in 1018 molecules cm-2, NO2 data is in 1015 molecules cm-2 384 
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Figure 4. Tropospheric NO2 columns for the larger Amazon region (Fig. 1, lower panel) for 386 

the IFS-COMPO simulation using GFAS emissions and applying the corresponding 387 

TROPOMI NO2 averaging kernel (upper left) and without applying the averaging kernel 388 

(middle left) with the corresponding IFS-COMPO grid averaged tropospheric NO2 389 

observations (lower left). Differences between IFS-COMPO and TROPOMI in the upper right 390 

panel (absolute) and middle right panel (relative) and corresponding scatter plot and associated 391 

statistics (lower right panel). The small region from Fig. 1 are indicated by the black box. 392 

SUOMI-NPP VIIRS FRP are in the bright green circles as in Fig. 2. The statistics in the lower 393 

right plot display the correlation coefficients for all data points (Pearson’s and Spearman’s); 394 

the corresponding ordinary linear regression and orthogonal distance regression (ODR; in red); 395 

and the same statistics but for observations averaged in twenty equally distributed TROPOMI 396 

data intervals (“box mean”; in grey and in italics). 397 

 398 

Figure 5. GFAS emissions at 0.1°×0.1° (lower plot) and summed at 0.5°×0.5° right plot for 399 

the large Amazon region as shown in Fig. 1 (lower panel). 400 

Fig. 4 shows a comparison of the IFS-COMPO model simulation configured with its default 401 

settings as also operated in CAMS (GFAS emissions displayed in Fig. 5) and TROPOMI 402 

observed tropospheric NO2 columns for the same day and large Amazon region as in Fig. 1. 403 
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There is a reasonable correlation between observed and modeled tropospheric NO2 columns 404 

(0.67 and 0.78 for respectively RPEARSON and RSPEARMAN) but the associated orthogonal linear 405 

regression coefficient (RC) is significantly larger than one (1.43). Averaging tropospheric NO2 406 

column data to account for the spread in the distribution of data points improves the correlations 407 

(0.88/0.95) but the large RC remains (1.8). For this day there is a cluster of fires and plumes 408 

south and southwest (14°S-18°S, 60°W-50°W) of the smaller Amazon region of Fig. 1 where 409 

all IFS-COMPO values overestimate tropospheric NO2. On the other end, outside of major fire 410 

areas IFS-COMPO tends to underestimate observed tropospheric NO2, possibly linked to soil 411 

NOx emissions, which will be discussed later. The difference plots show that locally differences 412 

between model simulations and observations can easily be 100% or more. 413 

To explore the presence of systematic biases all collocated daily data for August and 414 

September 2020 for the larger Amazon region of Fig. 1 were combined into 2D histograms 415 

shown in Fig. 6. The statistics reveal a fair correlation of 0.47 and 0.72 with a relatively small 416 

uncertainty range and a RC of almost 0.80. Averaging data similar as done in Fig. 4 improves 417 

the comparison with correlations of 0.88 and 0.97 and a larger orthogonal linear RC of 0.90. 418 

More or less similar numbers are found for the smaller Amazon region. Visual inspection of 419 

Fig. 6, however, reveals that there is a significant model bias for large tropospheric NO2 420 

columns, i.e. IFS-COMPO overestimates tropospheric NO2 columns and differences can be 421 

multiple factors up to an order of magnitude or more. The opposite, IFS-COMPO more than 422 

an order of magnitude smaller than TROPOMI hardly occurs (see Appendix Table A1). 423 

Strongly enhanced IFS-COMPO tropospheric NO2 column values in this region are 424 

predominantly associated with fire emissions rather than emissions from other sources. Hence, 425 

the IFS-COMPO “large tropospheric NO2 column” bias is thus associated with larger fire 426 

emissions.  427 
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 428 

Figure 6. 2D histogram of TROPOMI observed and IFS-COMPO simulated tropospheric NO2 429 

columns for daily observations throughout August and September 2020 for the larger amazon 430 

region (Fig. 1). The black line indicates the regression coefficient for all data, the grey line 431 

(“box-mean”) when IFS-COMPO data are averaged within twenty TROPOMI bins (only with 432 

more than ten data points in a particular TROPOMI bin). The lower panel displays the same 433 

distribution as in the upper panel but color coded according to the average GFAS NO2 emission. 434 

Note that distributions between both differ slightly as occasionally for a TROPOMI - IFS-435 

COMPO comparison the corresponding GFAS emissions are zero (used in the lower plot).  436 
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To further explore this IFS-COMPO “large tropospheric NO2 column” bias a number of 437 

IFS-COMPO model experiments were performed (see Tables 1 and 2 and Appendix Table A1). 438 

Replacing the GFAS fire NOx emissions in IFS-COMPO with GFA NOx emissions 439 

(experiments GFA, GFA.IFSCYCLE, GFA.SOIL; Appendix Fig. A5) resulted in larger 440 

observed differences. Although correlations remained similar, lower regression coefficients 441 

indicate larger differences between observations and model outcomes. 442 

Another test was to put a hard cap on NOx emissions (see Appendix Fig. A6). For 443 

BASE.CAP0.1 the NOx emission cap was set at 1•10-10 kg m-2 s-1 (~0.1 mg m-2 d-1), for 444 

BASE.CAP0.3 this was 3•10-10 kg m-2 s-1 (~0.3 mg m-2 d-1; both with GFAS emissions) while 445 

for GFA.CAP0.3 the same 3•10-10 kg m-2 s-1 emission cap was used but for the GFA-S4F 446 

emissions. Although capping the emissions obviously reduces the presence of the “large 447 

tropospheric NO2 column” bias it did not significantly improve the correlation and even 448 

worsened the regression coefficients. 449 

An alternative approach was to directly use TROPOMI NO2 column data to constrain 450 

emissions (BASE.BETA, GFA.BETA; Appendix Figs. A6 and A7) using the β-method that 451 

was introduced in section 2.5. This indeed improves the regression results and especially for 452 

the GFA-S4F emissions the “large tropospheric NO2 column” bias is strongly reduced (number 453 

of strongly deviating IFS-COMPO pixels reduced by an order of magnitude) with orthogonal 454 

linear regression coefficients much more in line with the baseline results for GFAS (BASE): 455 

for instance, the spearman correlation coefficient is 0.75 for both experiments with the β-456 

method applied, where it was 0.60 for the reference GFAS experiment (Table 1). The fact that 457 

overall very similar results are achieved with the β-method, independent of the prior emissions, 458 

gives confidence in its procedure which to first order is independent of the prior emissions. 459 

Nevertheless, these experiments fail in improving the RC (RC = 0.729, 0.739 for experiments 460 

https://doi.org/10.5194/egusphere-2024-732
Preprint. Discussion started: 19 April 2024
c© Author(s) 2024. CC BY 4.0 License.



27 
 

with β-method, and RC = 0.764 for the BASE experiment), pointing at a common negative 461 

model bias largely independent of fire emissions.  462 

These results indicate that a large portion of the remaining negative model bias was not 463 

affected and optimized during the fire NOx optimization procedure, and therefore is likely 464 

attributed to other emissions than fires. In particular the soil NOx emissions in the default 465 

configuration of IFS-COMPO CY48R1 are identified to be comparatively low. For that reason 466 

a set of IFS-COMPO simulations was performed with updated soil NOx emissions, both 467 

without, and with optimized fire NOx emissions (IFS-COMPO experiments GFA.SOIL and 468 

GFA.BETA.SOIL see Table 1, Appendix Figs. A5 and A7). Solely updating the soil NOx 469 

emissions had a limited effect on the statistics (RC = 2.15 in GFA.SOIL vs. 2.11 in 470 

GFA.IFSCYCLE), indicating that the biases due to fire NOx emissions in GFA-S4F are 471 

dominating. But combined with β-optimization the statistics improved and especially the 472 

orthogonal linear regression coefficients approached the value of one (RC = 0.953 in 473 

GFA.BETA.SOIL, vs 0.939 in GFA.BETA). 474 
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Figure 7. Panels (A, B) as Fig. 6 but for the Africa region (10°E-30°E and 5°S-25°S). IFS-476 

COMPO simulations with GFAS emissions and updated soil NOx emissions; panels (C, D) as 477 

panels (A, B) but with β-optimized GFAS emissions; panels (E, F) as panels (A, B) but for the 478 

Siberia tundra region (125°E-145°E, 55°N-75°N); panels (G, H) as panels (A, B) but with β-479 

optimized GFAS emissions for the Siberia tundra region (125°E-145°E, 55°N-75°N). 480 

3.2 Other regions: sub-equatorial African savannahs, Siberian steppes and tundra 481 

The quality of GFAS fire NOx emissions, and the optimization based on the β-method was 482 

further explored for a selection of other regions (a sub-equatorial region in Africa, a Siberia 483 

tundra region and a Siberia steppe region, see Appendix Fig. A2). This choice was motivated 484 

by the very different vegetation types, soils characteristics and weather and climatological 485 

conditions of each region: sub-equatorial Africa fires are dominated by savannahs and arid 486 

shrublands; the Siberia tundra fires are dominated by wet evergreen forest and tundra 487 

vegetation; the Siberian steppe fires are dominated by vast grasslands. They therefore provide 488 

clues as to whether the agreement and discrepancies found for the Amazon/Cerrado region 489 

generally hold or are just a regional phenomenon. For these other regions we solely rely on the 490 

IFS-COMPO simulations with GFAS emissions and updated soil NOx emissions while 491 

comparing results with and without β-optimization. Table 2 summarized the results for these 492 

three regions. 493 

For sub-equatorial Africa (Fig. 7 panels A – D), observed and modeled tropospheric NO2 494 

columns have a similar dynamical range, a similar spread and variability, and a similar 495 

dependence of larger tropospheric NO2 columns over regions with larger emissions. However, 496 

the IFS-COMPO simulations significantly and systematically underestimate tropospheric NO2 497 

columns  498 
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Table 1. Overview of statistics of the comparison of IFS-COMPO simulated and TROPOMI 500 

observed tropospheric NO2 column over the larger Amazon region (like Figs. 6-7-8). All 501 

simulations used the CBM5 atmospheric chemistry scheme. Several simulations also make use 502 

of a subgrid-scale emission plume chemistry-dispersion parameterization scheme (SGS) that 503 

accounts for the fact that most emission plumes are significantly smaller than the CAMS/CIFS 504 

grid size, and that plume chemistry thus is a subgrid scale process. Sensitivity tests revealed 505 

that this subgrid scale parameterization had only minor impacts on simulated NO2 and CO. 506 

Box-mean data refers to the statistics of the average values. The four-character IDs refers to 507 

the ECMWF supercomputer simulations and are included here for traceability purposes.  508 

 509 
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Table 2. As Table 1 but for baseline simulations and other regions for both tropospheric NO2 511 

and CO. All simulations used the CBM5 atmospheric chemistry scheme and the subgrid-scale 512 

emission plume chemistry-dispersion parameterization (SGS, see caption Table 1).  513 

* Amazon “large”  =  70°W - 50°W    25°S-5°S 514 

* Amazon “small”  =  55°W - 50°W    14°S-9°S 515 

* Africa   =  10°E -  30°E    25°S-5°S 516 

* Siberia-tundra = 125°E - 145°E   55°N-75°N 517 

* Siberia-steppe  =  40°E -  60°E   40°N-60°N 518 

 519 

which is opposite from the Amazon/Cerrado region. Updating GFAS emissions using the β-520 

optimization significantly improves the comparison, in particular the regression coefficient. 521 

For Siberia the conditions are very different from those in the Amazon and Africa. First of 522 

all, the dynamical range of tropospheric NO2 columns is much smaller (compare Figs. 6 and 523 

Fig. 7 panels E – H and Fig. 8 panels A - D) and there are fewer fires as evidenced by a limited 524 

number of points outside of the main probability distribution. Especially for the Siberia Steppe 525 

region fire emissions are very small. Although both Siberia regions show a tropospheric NO2 526 

column bias not dissimilar from those in Africa, applying the β-optimization does not result in 527 

a large improvement unlike for the Amazon and Africa regions. Given that there are fewer fires 528 

in Siberia in the particular period studied here, this may not be that surprising as there are not 529 

many fire-affected regions and thus tropospheric NO2 columns to β-optimize. Note that the 530 

tropospheric NO2 columns for Siberia (especially tundra) and fire NO2 emissions are much 531 

smaller than those for the Amazon/Cerrado and Africa. Which is unlike CO for which column 532 

values and emissions are comparable (see next section, Table 2 and Appendix Fig. A8). This 533 

reflects differences in fire characteristics: boreal vegetation is wetter and burning will be more 534 
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incomplete (more CO and smoke) and at much lower temperatures (less NO2) (Andreae, 2019; 535 

van Wees et al., 2022).  536 

 537 

Figure 8. Panels (A, B) as Fig. 6 but for the S4F Siberia steppe region (40°E-60°E, 40°N-538 

60°N); panels (C, D) as panels (A, B) with β-optimized GFAS emissions but for the S4F 539 

Siberia steppe region (40°E-60°E, 40°N-60°N) 540 

3.3 Carbon Monoxide 541 

Next we present the comparison of the IFS-COMPO simulations of CO – see further Table 542 

2. In this case the number of IFS-COMPO tests was limited to comparing IFS-COMPO either 543 

with GFAS or GFA CO emissions. Overall, for all regions there is a good correlation between 544 

modeled and observed total CO columns, better than for NO2. This likely reflects the simpler 545 

chemistry and longer lifetime of CO, causing CO to vary on larger spatial scales that are easier 546 
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for IFS-COMPO to capture. For all regions IFS-COMPO nevertheless consistently and 547 

significantly underestimates CO columns by 20-70%. However, and importantly, the 548 

regression coefficient when using GFA-S4F emissions over the Amazon region significantly 549 

improves the comparison to the level that the observations and model results compare very 550 

well. A small bias may remain but given that the GFA-S4F CO emission data was only 551 

available over the Amazon region and for example not the entire South American continent 552 

and combined with the long CO lifetime the remaining small bias may simply be the results of 553 

lack of updating emissions outside of the S4F Amazon region (missing advection of additional 554 

CO outside of the area of interest). This suggests that despite the larger bias in terms of NO2, 555 

the prior emission estimates of dry-matter burned in GFA-S4F over the amazon are likely better 556 

than GFAS, and the discrepancy with respect to TROPOMI NO2 points rather at uncertainties 557 

in the NOx emission factor. 558 

3.4 Time series 559 

Finally, a key question regarding the fire NO2 emissions results discussed here is how much 560 

in particular the “large tropospheric NO2 column” bias really matters. To answer that question, 561 

Fig. 9 shows the daily total NO2 emissions for the Amazon region for four different emission 562 

databases: GFAS, GFA-S4F and the β-optimized emissions for both. 563 

The comparison first reveals that the temporal variability in NO2 emissions for the Amazon 564 

in GFAS and GFA-S4F are very comparable. There are some differences, but overall temporal 565 

variability in emissions as well as the amplitude of emissions are similar. The second notable 566 

result is that the β-optimization has a significant impact on in particular the GFA-S4F NO2 567 

emissions, and provides results that are very similar compared to the other estimates (GFAS 568 

and GFAS β-optimized) in terms of temporal variability, while the area-and time-averaged 569 

emission totals, quantified in terms of daily mean emissions, are overall reduced. It was shown 570 
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previously that the GFA-S4F NO2 emissions significantly worsened “large tropospheric NO2 571 

column” bias. The β-optimization nevertheless can largely correct for this bias. This is a 572 

valuable result as it allows - at least to first order – to independently provide an estimate of the 573 

fire NOx emissions based on TROPOMI observations for evaluation and verification of bottom-574 

up emission databases. The impact of the “large tropospheric NO2 column” bias on emission 575 

totals nevertheless is rather small. Total NOx emissions differ on average by 10% or less. That 576 

indicates that not only a small subset of larger fires which appear over-estimated in GFA-S4F 577 

is important to match the emission totals, but also a larger, dominating subset of smaller fires, 578 

with low NOx emissions, which may be under-estimated in GFA-S4F.  579 
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 580 

Figure 9. Daily total NO2 emissions over the larger Amazon region for August and 581 

September 2020. GFAS emissions in black (BASE), β-optimized GFAS emissions in blue 582 

(BASE.BETA), GFA emissions in red (GFA), β-optimized GFA emissions in green 583 

(GFA.BETA). 584 

For Africa and the Siberia tundra regions – where only a comparison with β-optimized 585 

emission is available for GFAS data – results are similar (Appendix Fig. A9). For the Siberia 586 

steppe region absolute emissions (~0.11-0.12 Tg day-1) are approximately an order of 587 
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magnitude smaller compared to those for the Siberia tundra region (0.75 Tg day-1) and 588 

approximately two orders of magnitude smaller than those for Africa and the Amazon (~8 Tg 589 

day-1). Comparing the various emission datasets with TROPOMI tropospheric NO2 590 

observations reveal a fair to strong spatial correlation ranging between 0.568 and 0.993 591 

depending on emission database and regions (R2, Pearson and Spearmon; see Appendix Table 592 

A2), except for the Siberia steppe region. This reflects the limited number of fires in the Siberia 593 

steppe region and a limited number of days for the Siberian steppe region where β-optimized 594 

emissions differ from the GFAS emissions (Appendix Fig. A9) indicating that for most days 595 

there are no fires and thus no NOx emission updates. 596 

4. Discussion 597 

Using bottom-up fire NOx and CO emission estimates in the IFS-COMPO model and then 598 

comparing results with TROPOMI data revealed the existence of two significant biases in 599 

bottom-up emission estimates. GFAS emissions were used as a “state of the art” global fire 600 

emission database, the emission data developed in the S4F project in order to update bottom-601 

up fire emissions using remote sensing data not used in for example GFAS.  602 

Overall, the results of the Amazon IFS NOx simulations and sensitivity tests can be 603 

summarized as follows. 604 

• IFS-COMPO simulations with GFAS emissions results in an overestimation of 605 

tropospheric NO2 columns over fire regions, especially for large fires, the so-called “large 606 

tropospheric NO2 column” bias 607 

• IFS-COMPO simulations with GFAS systematically underestimate background 608 

tropospheric NO2 columns, possibly pointing to an underestimation of soil NOx emissions 609 
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• IFS-COMPO simulations GFA-S4F emissions worsen the “large tropospheric NO2 610 

column” bias resulting in a significantly larger structural IFS-COMPO NO2 column bias 611 

• capping the NOx emissions largely reduces the “large tropospheric NO2 column” bias but 612 

worsens the statistics, in particular the regression of modeled vs. observed tropospheric 613 

NO2 columns 614 

• optimizing the fire NO2 emissions based on TROPOMI NO2 observations using the IFS-615 

based β-method drastically improves the IFS-COMPO results, in particular for the GFA-616 

S4F emissions, but does not completely close the gap between model and TROPOMI 617 

observations 618 

• updating the soil emissions alone does not improve the IFS-COMPO simulations results 619 

• combining the β-optimized fire emissions together with updated soil NOx emissions yielded 620 

the best results both in terms for correlations and regression coefficients 621 

Note that the persistent “large-tropospheric-NO2-column” bias regardless of using GFAS or 622 

GFA-S4F emissions implies its cause is not satellite-data based vegetation characteristics but 623 

possibly emission factors that are used to translate these vegetation characteristics to trace gas 624 

emission amounts. For example, NOx emissions associated with burning and combustion are 625 

strongly temperature dependent and highly non-linear. Only when combustion takes place at 626 

very high temperatures larger than 1500° Celsius can N2 break down into atomic N that can 627 

recombine with O2 to form NO and NO2, the so-called Zeldovich mechanism. These are 628 

temperatures associated with the blue-flaming phase of fires. Given that laboratory 629 

measurements of fire NOx emission factors necessarily are restricted to small fires it is 630 

conceivable that those emission factors are not representative for large fires. Jin et al. (2021) 631 

recently showed that - using TROPOMI NO2 data - fire NOx emission factors appear much 632 

more variable with a much larger dynamical range than currently assumed and used.  633 

https://doi.org/10.5194/egusphere-2024-732
Preprint. Discussion started: 19 April 2024
c© Author(s) 2024. CC BY 4.0 License.



40 
 

Secondly, based on the comparison of IFS-COMPO results and TROPOMI data, CO 634 

emissions were consistently largely underestimated by GFAS for the four regions we explored 635 

(biased low by 20 - 70%) even though the spatial correlation between observed and modeled 636 

CO total columns was very good with correlations (R2) exceeding 0.85 for all regions and cases. 637 

Using the GFA-S4F CO emissions rather than the GFAS emissions for the Amazon improved 638 

the spatial correlation while on average significantly decreasing the bias, possibly even 639 

eradicating the bias depending on the method with which the data was evaluated. That does not 640 

mean all issues were resolved as there was an approximately 25% standard deviation in the 641 

differences of modeled and observed CO total columns indicating that locally discrepancies 642 

between emissions and observations remain. Nevertheless, the results strongly suggest that the 643 

(larger) CO emissions in GFA-S4F are more realistic than those from GFAS. Note that the 644 

underestimation of background values of atmospheric CO is a common problem with many 645 

atmospheric chemistry models (Gaubert et al., 2020), not just IFS-COMPO, and that this 646 

underestimation likely has multiple causes (Inness et al., 2022).  647 

Bottom-up fire CO emission estimates have for decades continued to be rather uncertain 648 

for various reasons and despite significant amounts of research on the topic (Andreae, 2021). 649 

Important culprits are the characterization of land cover types, fuel conditions as well as fire 650 

dynamics and weather conditions. For many bottom-up fire-emission parameters there is 651 

insufficient in situ data or empirical data and observations to constrain emissions. An important 652 

source of uncertainty is the satellite observation-based characterization of land cover type. 653 

While there are now many satellites observation Earth’s surface and many more methods and 654 

approaches to characterize the land cover type, considerable differences between land use and 655 

land cover datasets remain (Liu et al., 2021; see further Khaldi et al. (2022) and references 656 

therein). Another important source of uncertainty are satellite-based fuel loads and fuel 657 
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conditions. Observations to constrain these parameters are typically only available once every 658 

10 days or worse as clouds can further limit satellite observations of these parameters.  659 

Finally, although the first S4F results are very promising towards improving fire emissions, 660 

the approach presented here is built on generic statistics: combining many fires and the effect 661 

of many fires and reduce the analysis results to a few statistics. Although valuable, this 662 

approach does not make optimal use of the rich information density of the satellite data. If 663 

many uncertainties are related to fire specific properties and conditions then further refinement 664 

and analysis of individual fires – as to some extent explored for NO2 in Jin et al., (2021) - 665 

would be a worthy approach. This, however, requires stepping away from gridded and averaged 666 

data and change thinking towards fires as single and unique spatial structures. Each fire, each 667 

structure, would be associated with specific characteristics: its fuel load, vegetation type(s), 668 

fuel moisture, area, moisture, weather conditions, and emission plume characteristics. The 669 

GFA-S4F data is a step in this direction as the emission data is provided per fire structure 670 

(polygons) and each fire was associated with other fire characteristics from GFA-S4F data 671 

based on Sentinel-2 and Sentinel-3 data. However, for TROPOMI data such an approach is still 672 

lacking. Fire emission plumes would have to be identified first and then linked to a fire. 673 

Automated detection of TROPOMI-based (fire) emission plumes has only started to be 674 

developed in recent years (Kurchuba et al., 2021; Finch et al., 2022; Goudar et al., 2023; Schuit 675 

et al., 2023), especially thanks to the recent advance of data-intensive artificial intelligence 676 

analysis techniques, but has the potential to further advance satellite-data-based estimates of 677 

fire emissions.  678 

5. Conclusions. 679 

The Sense4Fire project aims to increase the scientific understanding of fire dynamics and 680 

their role in the carbon cycle by integrating observations from the Sentinels into new Earth 681 
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observation products. This paper presents a first analysis of TROPOMI satellite observations 682 

of fire plumes affecting atmospheric composition, and the use of trace gas (CO, NO2) from 683 

TROPOMI together with IFS-COMPO model simulations and to evaluate and optimize 684 

satellite-based fire CO and NOx emissions.  685 

TROPOMI allows for observing single fire emission plumes (NO2, CO, AAI) on a daily 686 

basis with unprecedented accuracy and spatial resolution. Results show that CO and AAI 687 

correlate very well, but not with NO2, related to the much shorter lifetime of NO2. Visually 688 

there is also an excellent agreement with VIIRS RGB imagery.  689 

The analysis of August-September 2020 daily TROPOMI data and IFS-COMPO model 690 

results over the Amazon/Cerrado region reveal significant biases in bottom-up emission data 691 

of CO and NOx. For simulated NO2 a significant positive bias for large-fire cases over the 692 

Amazon/Cerrado region was identified attributed to the GFAS fire emissions, while CO 693 

emissions were significantly underestimated. Note that total NOx emissions are dominated by 694 

small fires with only a small contribution from the few large fires but that this large fire bias is 695 

nevertheless of concern as it reflects a lack of understanding.  696 

These biases could not be attributed to the IFS-COMPO model resolution or sub-grid plume 697 

chemistry processes. When using fire emissions from the GFA-S4F system which incorporates 698 

more advanced geo-information that tracks individual fires the evaluations against TROPOMI 699 

CO total columns were significantly improved, but the NO2 tropospheric column evaluations 700 

worsened by showing an increased positive model bias. This suggests that not only there is a 701 

considerable uncertainty in the dry-matter-burned estimates, but also in the emission factors 702 

that define the ratio between CO and NOx emissions.  703 
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A scaling approach was adopted to constrain bottom-up fire NOx emissions with 704 

TROPOMI NO2 observations, which relies on the local sensitivity of tropospheric NO2 column 705 

changes with respect to NOx emission changes (the β-method). This brought the emission 706 

variability much closer in line with those from GFAS, independent of which prior emission 707 

estimate was used. Feeding any of the optimized fire NOx emissions back into the model indeed 708 

led to a significant improvement and disappearance of the positive bias associated to large 709 

emission sources, while the background model bias was unaffected. Combined with improved 710 

soil NOx emissions results are on average further improved. This illustrates that emission types 711 

of different origin can be optimized independently, and that both emission types need to be 712 

optimized to match the model simulations with the observations.  713 

Overall results presented here show that advanced use of geo-information from the suite of 714 

ESA Sentinel satellites helps improve and constrain fire emissions, although not perse by 715 

relying solely on satellite data-based bottom-up emissions – for instance a careful assessment 716 

of emission factors is needed. On the other hand, the focus of this paper as well as the first 717 

phase of the S4F project has been on average and cumulative statistics. Although those statistics 718 

could be improved, that approach does not address many uncertainties and discrepancies at 719 

local spatial scales and the level of individual fires. Also, in depth understanding of the biases 720 

that were identified is still lacking and requires additional research. Fortunately, the suite of 721 

ESA Sentinel satellites allows for much more detailed in-depth analysis of fires and the S4F 722 

project will be extended to further explore its results and provide more detailed analyses of 723 

fires and their contributing factors. 724 
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 1156 

Appendix 1157 

 1158 

Application of Sentinel-5p TROPOMI data for fire monitoring  1159 

The launch of the Polar orbiting TROPOMI instrument on board of the Sentinel-5p (S5p) 1160 

satellite in October 2017 with at that time unprecedented spatial resolution, data accuracy and 1161 

precision has opened up a whole new range of possibilities for monitoring and studying fires. 1162 

Several research papers have been published in recent years exploring the use of TROPOMI 1163 

data for those particular applications. 1164 

Li et al. (2020) used TROPOMI CO data for a selection of 41 wildfires across the United 1165 

States for a 15-month period in 2018-2019 to assess geostationary GOES-R FRP-based fire 1166 

emissions. CO emissions from TROPOMI data were estimated using a CO column mass budget 1167 

approach. They found a very good agreement between emissions based on both methods for 1168 

this selection of US wildfires. 1169 

Van der Velde et al. (2021) presented a first analysis of daily TROPOMI NO2/CO ratios 1170 

uncovering spatio-temporal differences “that point to distinct differences in biomass burning 1171 

behavior”. Although they used daily (single fire) TROPOMI data they extracted data on 1172 
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regional to continental scale regions to derive statistical relationships. Using chemistry-1173 

transport model simulations and bottom-up GFEDv4 fire emissions they found the model 1174 

results to be broadly consistent with the TROPOMI observations. 1175 

Griffin et al. (2021) focused on a few selected North American fires in TROPOMI data to 1176 

estimate fire NOx emissions using plume model simulations while also comparing with in situ 1177 

field campaign data from the FIREX-AQ campaign. They found that there is a good agreement 1178 

between satellite observation and in situ data and that TROPOMI NO2 data can be used to 1179 

determine single fire NOx emissions. 1180 

Jin et al. (2021) calculated vegetation-specific NOx emissions and FRP emission factors 1181 

based on a large selection of isolated single fire emission plumes using TROPOMI and 1182 

Gaussian plume modelling. They found significant differences between previously reported 1183 

and observed emission factors suggesting a much larger variability amongst different fires than 1184 

generally assumed. 1185 

Stockwell et al. (2022) used aircraft data to estimate fire emissions for five different fires 1186 

and compared them with geostationary observations of FRP and burned area as well as 1187 

emissions of carbon monoxide based on TROPOMI data. They found a strong correlation 1188 

between the emissions based on the in-situ data and the emissions based on the TROPOMI 1189 

data. 1190 

Griffin et al. (2023) use TROPOMI CO data to create a global database of single or local 1191 

fire burning CO emissions for the period 2019-2021 to avoid smoke and cloud obscuring 1192 

effects of FRP measured by satellite instruments like MODIS and VIIRS. In addition, they also 1193 

use TROPOMI CO data to derive emission factors (“emission coefficients”), i.e. the amount of 1194 

CO emission as a function of FRP. They find a large range of biome dependent emission factors 1195 
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for different types of forests and conclude that simple biomes classifications for estimating fire 1196 

emissions are insufficient and that, if anything, further biomes distinction and refinement is 1197 

warranted. They also note that more information on the burning stage of a fire and temporal 1198 

fire development is crucial for improving fire emission estimates, which with the use of polar 1199 

orbiting satellite instruments is hampered by the once or twice per day overpass.  1200 

Wan et al. (2023) analyzed TROPOMI NO2 and CO data for the massive Australian 2020 1201 

“New Year’s bushfire event” with a focus on deriving emission ratios and emission factors for 1202 

different vegetation types. They note that TROPOMI data can help identify the relative 1203 

contributions of different flaming phases over larger regions. 1204 

All these studies highlight the potential of using TROPOMI data for assessing fire 1205 

emissions. They also all note that their studies are the first exploratory steps using TROPOMI 1206 

and that more research is needed and warranted while approaches could be expanded, extended 1207 

and refined. 1208 

The S4F project explores the suite of the Sentinel satellites using a novel synergetic 1209 

approach to derived global fire emissions based on the characterization of individual fires and 1210 

their behavior, eventually to better constrain total carbon emissions and emission factors. The 1211 

ESA Sentinels have a huge potential to observe and quantify fire dynamics in terms of pre-fire 1212 

surface conditions (vegetation cover and fuel moisture content), fire behavior (FRP, burned 1213 

area, fire size) and fire effects on the atmosphere (fire emissions of trace gases and aerosols). 1214 

However, this combined potential has not yet been exploited even though there is a clear need 1215 

for such an integrated synergetic approach.  1216 

  1217 

https://doi.org/10.5194/egusphere-2024-732
Preprint. Discussion started: 19 April 2024
c© Author(s) 2024. CC BY 4.0 License.



65 
 

 1218 

IFS COMPO  1219 

The default tropospheric chemistry of IFS-COMPO as used here is based on CY48R1 as 1220 

described in https://www.ecmwf.int/en/elibrary/81374-ifs-documentation-cy48r1-part-viii-1221 

atmospheric-composition. Organic chemistry for trace gases up to propane is modeled 1222 

explicitly, while lumped tracers are used for specific types of functional groups to model the 1223 

oxidation of higher volatile organic compounds (Huijnen et al., 2010; Williams et al., 2013). 1224 

The updated isoprene oxidation parameterization is documented in Williams et al. (2022). 1225 

Photolysis rates in the troposphere are computed using the modified band approach (MBA) 1226 

(Williams et al., 2006, 2012). The tropospheric chemistry mechanism consists of 71 trace gases 1227 

and 127 gas-phase reactions, 30 photolysis rates, 3 heterogeneous reactions and 2 aqueous 1228 

phase reactions. It is solved based on Kinetic PreProcessor (KPP) routines, using the four stages 1229 

and third-order Rosenbrock solver (Sandu and Sander, 2006).  1230 

The aerosol component in IFS-COMPO is described in Rémy et al. (2022) and is based on 1231 

a bulk-bin aerosol scheme. It simulates mass mixing ratio of the tracers for sea salt, desert dust, 1232 

organic matter (OM), black carbon (BC), sulfate, nitrate, ammonium, and secondary organic 1233 

aerosol (SOA), and is coupled to the tropospheric chemistry scheme for the formation of 1234 

secondary organic and inorganic aerosol. In all, the aerosol module consists of 16 tracers, which 1235 

are subject to processes such as hygroscopic growth, ageing, sedimentation. 1236 
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Table A1. Overview of IFS-COMPO-COMPO simulations used in this paper for the larger 1238 

Amazon region: four-letter/number IFS-COMPO simulation ID, fire emission database, 1239 

other emission specifics and IFS-COMPOIFS-COMPOversion. Right columns indicate the 1240 

IFS-COMPO simulation comparison with TROPOMI data statistics of the ratio between 1241 

simulated and observed daily tropospheric NO2 columns for certain data selections. 1242 

Indicated are the number of IFS-COMPO grids meeting the selection criteria (N) and the 1243 

mean and median ratios. Data selections: IFS-COMPO > 20×1015 molecules cm-2 and 1244 

TROPOMI < 20×1015 molecules cm-2; IFS-COMPO < 20×1015 molecules cm-2 and 1245 

TROPOMI > 20×1015 molecules cm-2 IFS-COMPO > 10×1015 molecules cm-2 and 1246 

TROPOMI < 10×1015 molecules cm-2; IFS-COMPO < 10×1015 molecules cm-2 and 1247 

TROPOMI > 10×1015 molecules cm-2 1248 

  1249 
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 R2 

[PEARSON] 

R2 

[SPEARMAN] 

R2 

[PEARSON] 

R2 

[SPEARMAN] 

AMAZON 

 NO2 CO 

BASE vs BASE.BETA 0.925 0.900   

GFA vs GFA.BETA 0.774 0.757   

BASE vs GFA.BETA 0.631 0.556   

BASE vs GFA 0.709 0.586 0.680 0.539 

BASE.BETA vs GFA.BETA 0.774 0.690   

GFA vs BASE.BETA 0.689 0.568   

 

 BASE vs BASE.BETA  

AFRICA 0.978 0.976   

SIBERIA tundra 0.908 0.845   

SIBERIA steppe 0.249 0.309   

Table A2. Spatial correlations of emissions databases used in this study for the four 20°×20° 1250 

degree regions (Table 2). Note that the “BASE” simulation uses GFAS emissions. The lower 1251 

three row contain the correlations for the non-Amazon regions for which only GFAS and β-1252 

optimized GFAS is available. 1253 
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 1254 

Figure A1. Location of the S4F test areas for the development of methods. Source: © Google 1255 

Maps 2024, Satellite Basemap, global view, https://www.google.com/maps/, 26-03-2024 1256 
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 1257 

Figure A2. (A) Spatial distribution of IFS-COMPO values of the median β-factor over the 1258 

Amazon region based on: [1] daily simulation data for August-September 2020 [2] for model 1259 

grids with emissions larger than 1•10-10 kg m-2 s-1 and [3] model grid NO2 column values larger 1260 

than 2×1015 molecules cm-2. (B) Histogram of data displayed in panel (A). 1261 

 1262 
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 1263 

Figure A3. (A) As Fig. 3, upper panel but without applying a daily median value bias 1264 

correction for both the TROPOMI daily AAI and CO data. (B) as Fig. 3, middle panel,, upper 1265 

panel but with applying a daily median value bias correction for TROPOMI CO data.  1266 
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Figure A4. As Fig. 3, upper panel (2D histogram of TROPOMI NO2 tropospheric columns and 1268 

CO total columns, the latter bias corrected using the daily median CO total column value) but 1269 

for all individual months between June and October and for both 2019 and 2020. 1270 
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Figure A5. As Fig. 5 but for (A, B) the smaller Amazon region as displayed in Figs. 1 and 2; 1273 

(C, D) as Fig. 5 but with GFA-S4F fire emissions; (E, F) as Fig. 5 but with GFA-S4F fire 1274 

emissions and for IFS-COMPO version CY48R1; (G, H) As Fig. 5 but with GFA-S4F 1275 

emissions over the Amazon region and with updated soil NOx emissions. Note that outside of 1276 

the Amazon (25°S-EQ, 85°W-30°W) GFAS emission are used instead of the GFA-S4F 1277 

emissions. 1278 

 1279 
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Figure A6. As Fig. 5 but for (A, B) GFAS fire emissions capped at 1•10-10 kg m-2 s-1; (C, D) 1281 

GFAS fire emissions capped at 3•10-10 kg m-2 s-1; (E, F) GFA-S4F fire emissions capped at 1282 

3•10-10 kg m-2 s-1; (G, H) β-optimized GFAS emissions. 1283 

 1284 

Figure A7. As Fig. 5 (A, B) but for (A, B) β-optimized GFA-S4F emissions and (C, D) β-1285 

optimized GFA-S4F emissions and with updated soil NOx emissions 1286 
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Figure A8. Comparison of IFS-COMPO and TROPOMI CO - similar to Figs. 6-7-8 but - for 1288 

four different regions based on GFAS emission (IFS-COMPO run BASE). For the Amazon 1289 

region also results from the IFS-COMPO simulation with GFA-S4F emissions are presented 1290 

(second panel; IFS-COMPO run GFA). Statistics are summarized in Table A2. 1291 
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Figure A9. Absolute and relative differences in regional daily NOx emissions as in Fig. 9 but 1294 

for (A, B) the sub-equatorial Africa region, (C, D) the Siberia tundra region and (E, F) the 1295 

Siberia steppe region. See Appendix Fig. A1 for the location of these regions. 1296 
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