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Abstract.  Vertically-resolved  information  on  aerosol  particles  represents  a  key  aspect  in  many  atmospheric  studies,

including aerosol-climate interactions and aerosol impacts on air quality and human health. This information is primarily

derived by lidar active remote sensing, in particular with extensive networks currently in operation worldwide. In Italy, the

Institute of Atmospheric Sciences and Climate (ISAC) of the National Research Council (CNR) established a network of

Automated Lidar-Ceilometers (ALCs), ALICENET, in 2015. Since then, ALICENET grew up as a cooperative effort of

Italian institutions dealing with atmospheric science and monitoring, and currently includes instruments run by regional

Environmental Protection Agencies, Universities, Research Centres and private companies. In the current configuration, the

network makes use of both single-channel  ALCs and dual channel,  polarisation-sensitive systems ALCs (referred to as

PLCs). The systems operate in very different environments (urban, coastal, mountainous and volcanic areas) from Northern

to Southern Italy, thus allowing the continuous monitoring of the aerosol vertical distribution across the country. ALICENET

also  contributes  to  the  EUMETNET program E-PROFILE,  filling  an  Italian  observational  gap  compared  to  other  EU

Member States, these generally running extended ALCs networks through National Meteo Services. In this work, we present

the ALICENET infrastructure  and the specifically-developed data processing centralised at  CNR-ISAC, converting raw

instrumental data into quantitative, quality controlled information on aerosol properties, ranging from attenuated backscatter

to  aerosol  mass  and vertical  stratifications.  This  setup allows to get  insights  into the 4D aerosol  field over  Italy with

applications from near real-time monitoring to long-term analyses, examples of which are reported in this work. Specific

comparisons  of  the  ALICENET  products  to  independent  measurements  obtained  with  different   techniques,  such  as

particulate matter (PM) concentrations from in-situ samplers and aerosol optical depth (AOD) from sun photometers, are

also  included  here,  revealing  the  good performances  of  the  ALICENET algorithms.  Overall,  ALICENET represents  a
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valuable  resource  to  extend  the  current  aerosol  observational  capabilities  in  Italy  and  in  the  Mediterranean  area,  and

contributes to bridge a gap between atmospheric science and its application to specific sectors, among which air quality,

solar energy, aviation safety. 

1. Introduction

Aerosols influence the Earth system and human life in several ways. They affect the planetary radiation budget directly by

extinction  of  solar  radiation  and  indirectly  by  modification  of  cloud properties  and  lifetime,  thus  also  influencing  the

hydrological cycle (IPCC, 2022). Deteriorating Air Quality (AQ), atmospheric particles of both anthropogenic and natural

origin are also a main concern for human health (WHO, 2021). Furthermore, high aerosol loads reduce visibility and, during

major  events  such  as  desert  dust  storms,  volcanic  eruptions,  and  wide  forest  fires,  can  damage  aircraft  engines,  thus

representing a threat  to the aviation sector (e.g. Flentje et al.,  2010; Papagiannopoulos et al, 2020, Brenot et al.,  2021;

Monteiro et al.,  2022, Ryder et al.,  2024). The vertical aerosol distribution is a key aspect to correctly quantify aerosol

effects on climate and human activities, this being related to radiative transfer and atmospheric heating rates (e.g., Fasano et

al., 2021; Fountoulakis et al. 2022), aerosol-cloud-precipitation interactions (e.g., Napoli et al., 2022), particle dispersion and

transformation processes (e.g., Curci et al.,  2015; Gobbi et al., 2019; Diémoz et al., 2019a,b), the state of high-altitude,

pristine environments (e.g., Balestrini et al., 2024).

Active remote sensing through lidar sensors is a very efficient tool to provide range-resolved, accurate profiles of aerosol

properties (e.g., Gobbi et al., 2001; Tesche et al. 2009; Ansmann et al., 2011). In the last decades, both ground-based and

space-based lidar systems have been developed and widely used for scientific research purposes, and they are expected to

play an increasingly important  role in climate  and public health studies(Remer et al.,  2024).  From space,  the recently

dismissed NASA-CNES CALIOP sensor onboard  CALIPSO (Winker  et  al.,  2010)  provided one  of  the most  valuable,

vertically-resolved, global aerosol datasets (2006-2023), that is expected to be extended by the just launched ESA-JAXA

mission EarthCARE (Cloud,  Aerosol  and Radiation Explorer,  Illingworth et  al.,  2015).  From the ground,  lidar  remote

sensing is often performed in the framework of globally distributed research networks. In Europe, a wide Aerosol Research

Lidar Network (EARLINET, Pappalardo et al., 2010) has been developed in the last decade, which is currently an important

component  of the European  Strategy  Forum on Research  Infrastructures  -  Aerosol,  Clouds,  and Trace  Gases  Research

Infrastructure  (ESFRI  -  ACTRIS).  Such  a  research-oriented  network  runs  high  power,  multi-wavelength  Raman  lidar

systems,  which were  not  designed  for  monitoring  purposes.  In  fact,  EARLINET lidar  measurements  are  generally  not

performed continuously, and the spatial density of the measuring sites is still insufficient to capture the high spatio-temporal

variability characterising aerosols. 

In the last two decades, the use of automatic, low-energy, affordable and robust single-channel elastic lidars, referred to as

Automated Lidar-Ceilometers (ALCs), spread out. These systems emit single-wavelength laser pulses, mostly in the infrared

range, and measure the time- (thus range-) dependent radiation that is elastically backscattered by atmospheric components

(molecules, aerosols, cloud droplets/ice crystals). ALCs were originally conceived to only monitor the ‘cloud ceiling’, but
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recent  technological  improvements  enabled  ALCs  to  provide  continuous  information  on  aerosol  profiles  within  the

troposphere, including the boundary layer region, albeit with a lower Signal-to-Noise Ratio (SNR) compared to high-power

research lidars. This favoured the development of extended networks of such systems worldwide, among which the NASA

Micro-Pulse Lidar Network (MPLnet; Welton et al., 2018), the US Environmental Protection Agency (EPA) network for

Photochemical  Assessment  Monitoring  Stations  (PAMS;  Caicedo  et  al.,  2020),  or  the  Asian  Dust  and  aerosol  lidar

observation network (ADnet; Shimizu et al., 2016). In Europe, several Member States currently run dense ALC networks for

monitoring purposes, mostly managed by national meteorological services, such as the DWD in Germany (Flentje et al.,

2021) and the MetOffice in the UK (Osborne et al., 2022). Recently, ACTRIS started considering automatic low-power

lidars as useful tools within its Aerosol Remote Sensing (ARS) component, although these systems are not yet included in

the  relevant  ‘minimum’  or  ‘optimal’  setups  recommended  by  ACTRIS-ARS

(https://www.actris.eu/topical-centre/cars/announcements-resources/documents,  last  access:  25-07-2024).  Most   ALC

observations at EU level are currently  collected and further exploited in the framework of the E-PROFILE program run by

the  European  Meteorological  Services  Network  EUMETNET

(http://www.eumetnet.eu/activities/observations-programme/current-activities/e-profile/,  last  access:  25-07-2024).  The

development of such an extended ALC observational capacity was further accelerated after the eruption of the Icelandic

volcano Eyjafjallajökull in 2010, which disrupted air transport  due to the lack of readily accessible information on the

horizontal and vertical displacement of the aerosol plume (Flentje et al., 2010, Mortier et al., 2013). Moreover, ALCs have

been proven to be extremely useful in support of AQ evaluations, providing information on the vertical dilution of pollutants,

transboundary  transport  of  particles  from medium-to-long-range  distances  (e.g.,  Rizza  et  al.,  2017;  Bucci  et  al.,  2018;

Diémoz et al., 2019a,b), secondary aerosol formation (e.g., Curci et al., 2015), or even particles reaching the boundary layer

through evaporating rain (virgas, e.g., Karle et al., 2023). However, with few exceptions, standard Air Quality Monitoring

Networks  (AQMNs)  in  the  EU currently  miss  such  profiling capability.  The feasibility  of  filling  this  gap  is  currently

explored in the framework of the EC-H2020 Project RI-URBANS (https://riurbans.eu, last access: 25-07-2024), aiming at

the development of service tools in support to AQ monitoring in European urban areas and pollution hotspots. In fact, the

current ALC technology has been proven to be mature enough to allow a robust retrieval of the planetary boundary layer

height (Kotthaus et al.,  2023),  a key parameter in AQ, and evaluations are currently ongoing at  the EU level to assess

readiness of ALC-based retrievals for quantitative Particulate Matter (PM) monitoring (e.g., Shang et al., 2021; Osborne et

al., 2024). The recently completed EC Action PROBE (PROfiling the atmospheric Boundary layer at European scale; Cimini

et al., 2020; Kotthaus and Bravo Aranda, 2024) supported by the European Cooperation in Science and Technology (COST)

was key to promote and coordinate such activities, which are now further explored within the E-PROFILE and ACTRIS

communities.

In Italy, an effort to coordinate ALC activities at national level and contribute to E-PROFILE has been done by the National

Research Council - Institute of Atmospheric Sciences and Climate (CNR-ISAC), which set up the ALICENET network in

2015 (https://www.alice-net.eu/, last access: 25-07-2024), filling an observational gap over Italy. 
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The ALICENET measurements are particularly relevant in for Mediterranean area,  this being a climatic hotspot (IPCC,

2022) affected  by a  complex mixture  of  atmospheric  circulations  (e.g.,  Lelieveld  et  al.,  2002)  and aerosol  types (e.g.,

Barnaba and Gobbi,  2004; Di Iorio et al.,  2009; Andres  Hernandez et  al.,  2022).  ALICENET is conceived as an open

consortium  with  increasing  contributions  from  several  collaborating  Partners,  among  which  regional  Environmental

Protection Agencies, Universities, Research Institutions, and private companies.

The  present  work aims  at  presenting the  ALICENET infrastructure  and  its  data  processing  chain,  designed  to  derive

quantitative and quality checked vertically-resolved information on aerosol properties and layering. The  ALICENET data

processing, centralised at CNR-ISAC, allows the homogeneous retrieval of aerosol properties from North to South Italy. It is

based  on  specifically  developed  algorithms,  taking  benefit  from  past  and  ongoing  collaborations  with  the  EU  ALC-

community, particularly in the framework of the EC COST Actions TOPROF (2013-2016) and PROBE (2019-2024), the

H2020 Project RI-URBANS (2021-2015), and the E-PROFILE initiative (2019-2023, 2024-2028). 

The  work is  organised as follows. Section 2 describes the  ALICENET  infrastructure. Section 3  introduces the main data

processing  steps  and  includes  different  examples  of  the  relevant  ALICENET products  and  accuracy.  To  facilitate  the

reading, the detailed technical aspects of each processing step were included in separated supplement sections (S1-S6), these

being thus targeted to readers interested in a deep understanding of the processing chain, and possibly in reproducing it. Sect.

4 shows three  examples of the near-real time ALICENET monitoring capability, while Sect. 5 summarises the ALICENET

achievements and some foreseen future developments within the network.

2. ALICENET sites and instruments

The ALICENET stations are geographically distributed from the North to the South of the Italian peninsula as shown in Fig.

1. The network configuration allows the monitoring of aerosol vertical profiles over a wide range of environmental and

atmospheric conditions (e.g. urban, coastal and mountain) within the Mediterranean area. In fact, some stations are located in

highly anthropised areas, such as those in the Po Valley and main urban/industrial sites in Italy (Milan, Genova, Turin,

Florence, Rome, Taranto), some operate in coastal sites (e.g. Genova, Taranto, Lamezia Terme, Messina, Capo Granitola,

Catania), and other at high-altitude (> 550 m asl) stations (Aosta, Mt Cimone, Potenza, Mt. Etna). Most sites are frequently

impacted by desert dust advections, particularly relevant in Central and Southern Italy (e.g. Barnaba et al., 2017; Gobbi et

al., 2019; Barnaba et al., 2022), and by both short- and long-range transport of biomass burning plumes (e.g. Barnaba et al.,

2011). Volcanic plumes are also registered in the ALICENET southernmost sites, mainly in the 5 stations located at the

foothills of the Etna volcano, and in the Messina and Lamezia Terme stations, due to their proximity to the other active

sicilian volcano of Stromboli.
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Figure 1: Location and naming of the ALICENET stations (panel a, bullets). The yellow rectangle over Sicily in panel a) is zoomed in

panel b) to show location of the 5 stations in the Etna volcano area, from the northern to the southern foothills, down to the city of Catania.

Background Map credits: a) EUMETSAT, and b) © Google Maps.
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For homogeneity of operations, since the beginning of the ALICENET activities (set as 1 st January 2016), it was agreed to

operate standardised systems across the network choosing the ones that allow to probe at least up to the middle troposphere,

also  for  calibration  purposes  (e.g.,  Wiegner  et  al.,  2014;  see  also  Sect.  3.2).  The  single-channel,  bistatic  CHM15k

instruments manufactured by Lufft (formerly Jenoptik ESW and now Ott Hydromet) were selected for this purpose. These

are bi-static ALCs with a Nd:YAG solid-state laser emitting linearly polarised light at 1064 nm, with a  5-7 kHz repetition

rate, a maximum vertical resolution of 5 m and a maximum range of 15 km. The only exception in this instrumental setup

was a modified-CHM15K prototype with polarisation-sensitive capabilities designed and developed in 2013 by Jenoptik

ESW in collaboration with CNR-ISAC in the framework of the EC Life+ DIAPASON project (Gobbi et al., 2019). This first

ever polarisation-sensitive ALC (hereafter PLC) was conceived to explore the possibility of producing an affordable, robust

system to be widely used in the identification and profiling of non-spherical (e.g. mineral dust) aerosol layers. The prototype

PLC was tested in Rome (Italy),  where  it  has  been operating successfully  since then (e.g.,  Gobbi et  al.,  2019; Andres

Hernandez et al., 2022), but was never marketed by Lufft. More recently, PLC systems have been made available on the

market  by  Vaisala  (CL61  systems,  operating  at  910  nm)  and,  due  to  the  important  capability  of  such  instruments  to

discriminate particle sphericity/non sphericity, these are being progressively included in ALICENET.

For both CHM15k ALCs and CL61 PLCs, the signal is characterised by high temporal and vertical resolution, with some

variability depending on the system type and configuration (e.g., in ALICENET the CHM15k standard configuration implies

a vertical and temporal resolutions of 15 m and 15 s, respectively). A summary table with details on the ALICENET sites

and instrumentation operating therein is provided in Table 1. It includes indication of the beginning of operations in each site

of the ALICENET network (joining date), or the operating period for those systems no longer active. Some systems joined

the network very recently and are thus indicated as ‘ready to go’ as instrumental set up and data transfer to the ALICENET

database is currently in progress.

6

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

11
12



Table 1: ALICENET sites from northern to southern Italy, and relevant details.
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3. ALICENET data processing and relevant products

The ALICENET data processing chain is summarised in Fig. 2, with indication of main inputs and outputs. It starts with

generation  of  standardised  and  harmonised  data  files  from  instrumental  raw  data  (using  the   raw2l1  tool,

https://gitlab.in2p3.fr/ipsl/sirta/raw2l1,  last  access:  25-07-2024),  and  then  proceeds  with  pre-processing  and  calibration

procedures, the inversion of the ALC signal into aerosol properties, and the detection of aerosol layers. It is convenient to

first introduce the main equations and variables used in the description of the different steps.  

As in any elastic backscatter lidar, the raw signal P(r,t) recorded by the ALC is a function of the distance from the emitter

(range, r) and of the observation time t, and can be described through the lidar equation:

P (r ,t )=r−2Ovl CL (𝛽 p (r ,t )+𝛽m (r ,t ) )e
−2∫

0

r

(𝛼p ( r ' ,t )+𝛼m ( r ' ,t ))dr '                                                              (1)

Equation 1 includes the particle (p) and molecule (m) backscatter ( ) and extinction ( ) coefficients at the laser wavelength,𝛽 𝛼
and some instrumental factors, embedded into the instrument-specific calibration coefficient CL. Furthermore, particularly

for bistatic systems (i.e., the CHM15k), measurements in the near range (generally < 500-700 m) are affected by signal

losses due to the incomplete superposition (overlap) of the laser beam and the receiver field of view. The term Ovl in Eq. 1

therefore indicates the instrument-specific overlap function used to correct  the signal loss in the near range. Equation 1

allows to simply derive the total (i.e., aerosol + molecules) attenuated backscatter, 𝛽att, as follows:

𝛽att (r ,t )= P (r , t )r2

Ovl (r , t )CL ( t )
=(𝛽 p (r ,t )+𝛽m (r ,t ) ) e

−2∫
0

r

(𝛼p ( r ' ,t )+𝛼m ( r ' ,t ))dr '
                                                (2)

 

The complete  ALICENET data  processing  chain  (Fig.  2)  includes  pre-processing  procedures  (namely  cloud screening,

denoising, and overlap correction;  Sect.  3.1),  the absolute calibration (to determine CL and, in turn,  𝛽att;  Sect.  3.2),  the

quantitative retrieval of aerosol optical (𝛽p and αp) and physical (surface area, Sp, volume, Vp, and mass concentrations, Mp or

PM) properties (Sect. 3.3) using an ALICENET-original approach, and the detection of aerosol layers (Mixed, Continuous,

and Elevated Aerosol  Layers,  MAL, CAL, and EALs,  respectively)  through the ALICENET automatic Aerosol  LAyer

DetectIoN algorithm (ALADIN; Sect. 3.4). The full processing chain is currently applied to CHM15k systems since, as

mentioned above, these were the ones firstly implemented in the network. A similar scheme is under development for CL61

systems, for which data processing is currently limited to the cloud screening and denoising, the absolute calibration to

monitor the stability of the instrument, and the detection of aerosol layers.
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Figure 2: Scheme of the ALICENET processing chain from the raw (L0) data to aerosol products (L1-L3). The different colours in the

processing box are used to indicate inversion steps valid for CHM15k (light green), CL61 (cyan), or both (dark green) systems. This same

colour code (bounding box) is used for relevant output data products, which are further coloured from light to dark orange indicating

processing level, from the more basic L1 quantities (Range-Corrected Signal, RCS, and depolarisation, δ v, profiles), through the L2 total

attenuated backscatter (𝛽att) to the L3 aerosol optical (particle backscatter, 𝛽p, and extinction, αp) and physical (particle surface area, Sp,

volume, Vp, and mass concentrations, Mp or PM) properties and layers (Mixed, Continuous, and Elevated Aerosol Layers, MAL, CAL, and

EALs, respectively).

The ALICENET processing chain is completely automatic and allows continuous monitoring of the aerosol field over Italy,

with L1/L2 data visualisation accessible in near-real time through a dedicated website (https://www.alice-net.eu/, last access:

25-07-2024).  Selected examples of  this monitoring capability  are provided in Sect.  4.  The more advanced,  quantitative

retrieval of aerosol properties and layering (L3 products) is currently performed in post-processing and is planned to be

released in the future through the ALICENET website.
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3.1 Pre-processing

After the input data format harmonisation, the first pre-processing steps are aimed at avoiding cloud, precipitation, and noise

contamination in aerosol retrievals (Sect. 3.1.1). Then data need to be corrected for overlap artefacts (Sect. 3.1.2) before

proceeding with the determination of the instrument-specific calibration coefficient (Sect. 3.2). The way these preliminary

steps are performed within ALICENET is described hereafter.

3.1.1 Cloud-screening and denoising

At the ALC laser wavelengths clouds generally produce complete extinction of the laser beam above the cloud base. Only in

case of optically thin clouds the laser beam is partially transmitted above the cloud base, although in most cases the return

signal has a too low SNR to be employed for aerosol retrievals. The cloud-screening applied to the ALICENET data exploits

the cloud base height identified by the ALC firmware, with additional requirements to avoid the presence of cloud droplets

frequently observed below the cloud base. Technical details of this procedure are reported in supplement S1.

Cloud-screened  profiles  are  then  downscaled  and  denoised  to  improve  accuracy  of  the  aerosol  retrievals.  Indeed,  as

mentioned above, the ALC signal is generally collected with high temporal and vertical resolution and features a decrease of

the SNR along the profile. Denoising is performed by computing signal mean and standard deviation over specific time and

range windows, and filtering those data where the SNR (defined as the ratio between the mean and the standard deviation) is

below a given threshold. A minimum SNR of 20% is generally set for aerosol retrievals within ALICENET. The temporal

resolution of the downscaled data is tuned depending on the time scales of the processes to be investigated. It may range

from 1 min for the investigation of boundary layer dynamics up to 3 hours for the identification of aerosol loaded/aerosol

free regions in the upper troposphere, such as within the absolute calibration procedure.

3.1.2 Overlap correction

For bistatic systems such as CHM15k, an overlap correction of the signal in the near range is required (see Eq. 1). This is

particularly important when ALC data are used for surface AQ applications, and especially in those conditions in which

particulate matter is confined in the lowermost atmospheric levels. An instrument-specific overlap function accounting for

signal losses is generally provided by the manufacturer (Ovlman(r)). However, it has been demonstrated that changes in the

instrument sensitivity rather  require the use of an instrument-specific,  temperature-dependent overlap correction. Within

ALICENET, the derivation of such an overlap correction is largely based on the procedure developed by Hervo et al. (2016).

Full  details  on  its  implementation  in ALICENET including  additional  quality  control and  quality  assurance  criteria

(QC/QA.OVL) added to the Hervo et al. (2016) procedure are described in supplement  S2. The result is an instrument-,

range- and temperature-dependent ‘overlap model’ Ovlmodel(r,T) to be used in Eq. 1.

10

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

19
20



Figure 3 shows an example of application of the overlap model on ALC data collected in Rome-Tor Vergata on 12 August

2019. This date was selected because of the high diurnal variation (15 K) of the instrument internal temperature. In Fig. 3,

the continuous (24h) 𝛽att profiles derived using both the manufacturer overlap function (panel a) and the ALICENET overlap

model (panel b) are shown. It is evident that the temperature-dependent overlap model is effective in correcting the false-

gradient and the aerosol overestimation in the lowermost 500 m coming from the manufacturer function.

Figure 3: Overlap-corrected ALC profiles using: (a) the manufacturer overlap function, and (b) the ALICENET overlap correction. Data

refer to the ALICENET Rome-Tor Vergata site on 12/08/2019.

11

229

230

231

232

233

234

236
237

238

21
22



A further effort to evaluate the ability of this overlap correction procedure to provide reliable results was conducted in the

ALICENET mountain site of Aosta,  by exploiting the clean,  nearly-molecular  conditions often registered at  this alpine

station.  In  fact,  due  to  its  location,  Aosta  is  frequently  characterised  by  relatively  low aerosol  concentrations  in  the

lowermost levels, in particular during Föhn events (e.g., Mira-Salama et al., 2008). This makes it possible to compare the

overlap-corrected 𝛽att profiles with a theoretical  molecular profile at very low altitudes. To perform this exercise,  Föhn-

related, aerosol-free conditions of 3-to-6 hours were identified by exploiting multi-sensor aerosol datasets (namely, surface

PM10 concentrations measured by an Optical Particle Counter, OPC, and sun photometer-derived Aerosol Optical Depth,

AOD)  and  meteorological  parameters  (wind,  pressure,  Relative  Humidity)  from  the  AQMN  of  ARPA  Valle  d’Aosta

(Diémoz et al., 2021). For each of these selected cases, the mean 𝛽att profiles retrieved using both the manufacturer and the

ALICENET overlap correction were compared with a theoretical molecular profile. Figure 4 shows results for two cases

(referring to 25 May 2021 and 6 October 2021) characterised by different values of the instrument internal temperature (308

K and 292 K, respectively) and very low aerosol loads both at the surface (PM10 < 6 and 5 μg m-3, respectively) and along the

atmospheric column (AOD at 1020 nm < 0.04 and 0.03, respectively).
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Figure 4:  𝛽att profiles at 1064 nm derived using the manufacturer overlap function (black line) and the ALICENET overlap correction

(blue line) in two nearly-molecular conditions registered in Aosta on: (a) 25 May 2021 (5-8 UTC), and (b) 6 October 2021 (9-12 UTC).

The shaded areas represent the 𝛽att standard deviations within the selected time windows. A reference, molecular-only 𝛽att profile is also

reported (green line).

Overall, the results show that, while the manufacturer overlap function is unable to properly account for signal losses and

leads  to  unphysical  values  lower  than  the  molecular  profile  in  the  firsts  750  m,  the  𝛽att profiles  retrieved  using  the

ALICENET overlap correction reasonably approach the nearly-homogeneous, nearly-molecular theoretical profiles expected

in the selected episodes down to the ground.
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3.2 Absolute calibration

Aim of the absolute calibration is the derivation of the calibration coefficient CL (see Eq. 1), which is required to convert the

ALC signal into quantitative aerosol information. The ALICENET calibration procedure is based on the comparison of the

pre-processed ALC signal with a theoretical  molecular profile in aerosol-free atmospheric regions (Rayleigh calibration;

Klett, 1985), typically in the middle troposphere. The procedure, which is fully automatic, is made in  two steps: a) search

for the best-suitable molecular window, and b) computation of the calibration coefficient. It was built on the E-PROFILE

algorithm, although some specificities and quality controls (QC.CAL) were introduced in both steps. Full description of the

technical implementation of these steps is given in the supplement S3.

Hereafter, we show two examples of successful calibrations (Fig. 5a, b) and the multi-annual record of CL (Fig. 5c) derived

from three ALICENET systems in northern, central, and southern Italy (Aosta, Roma, and Messina, respectively). Figures 5a

and 5b refer to the ALICENET calibrations of the CHM15k in Aosta on 21 May and 25 October 2017, selected as these

spring and autumn nighttime calibrations correspond to CL close to the maximum and minimum values over the year 2017

(see Fig. 5c). Figure 5c gives a more general overview of the long-term results of the calibration procedure, further revealing

that  the three CL time series  feature  a similar  seasonal  cycle,  as also observed in other  European ALC networks (e.g.,

Buxmann,  2024).  The  reasons  for  such  a  yearly  cycle  are  currently  under  investigation  within  the  European  ALC

community, also taking advantage of recent activities conducted within the EC COST Action PROBE (e.g., Van Hove and

Diémoz, 2024).
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Figure 5: (a, b) Examples of application of the ALICENET calibration procedure, referring to the nighttime range-corrected signals from

the  Aosta  CHM15k on  21  May and  25  October  2017,  with  indication  of  the  selected  molecular  windows and  derived  calibration

coefficients  (CL ).  (c)  Multi-annual (2016-2022) time series of  CL derived for the CHM15k systems operating in Aosta,  Rome, and

Messina, and associated Loess fits (lines) used to derive the CL values used in the operational, all-year-round data inversions.
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The CL values used within ALICENET inversions are currently obtained by filtering out the seasonal cycle and keeping only

the long-term trends related to slow instrument changes (details are given in supplement S3). Once the main driver of the C L

seasonality will be better identified, it will be taken into account in the calibration procedure. For now, we prefer to use the

described approach and estimate the uncertainty associated with this CL variability (see Sect. 3.3.3).

3.3 Retrieval of aerosol properties

This section describes the ALICENET inversion of the aerosol optical (Sect. 3.3.1) and physical (Sect. 3.3.2) properties.

Specific  examples  of  the  aerosol  products  at  different  ALICENET  sites  are  also  given  and  compared  to  a  series  of

independent datasets in order to evaluate the relevant retrieval procedure performances.

3.3.1 Aerosol optical properties

The aerosol backscatter and extinction profiles are calculated from the total attenuated backscatter (𝛽att) profile based on the

forward Klett inversion (Wiegner and Geiβ, 2012; 2014) of Eq. 1. Since both 𝛽p and αp are unknown in Eq. 1, an assumption

on the relationship linking the two variables is necessary to solve the Klett inversion. Within ALICENET, we do not fix an

a-priori, vertically-constant extinction-to-backscatter ratio (also referred to as Lidar Ratio, LR), as often done in elastic lidar

retrievals. Instead, the aerosol extinction is linked to backscatter through a specific functional relationship (α p=αp(𝛽p)) already

presented and discussed in Dionisi et al. (2018). This was obtained at the CHM15k operating wavelength (1064 nm) based

on a large set of simulated optical properties from a continental-type aerosol model. Details on the implementation of the

functional relationship within the forward Klett inversion are given in supplement S4.1.

It is important to note that, with this procedure,  no ancillary data (e.g. co-located sunphotometer-AOD) and no a-priori

assumption (e.g. selection of the LR constant value to be used) is needed in the retrieval. Therefore, a-posteriori comparison

to co-located sunphotometer-AOD provides a way to check the performance of the ALICENET optical properties retrievals

These  comparisons  were  performed  using  both  short-  and  long-term  datasets  thanks  to  some  co-located  or  closeby

AERONET (https://aeronet.gsfc.nasa.gov/, last access: 25-07-2024) or SKYNET (https://www.skynet-isdc.org/, last access:

25-07-2024) sun-photometers. Specific examples are shown in Figs. 6 and 7, respectively.

Figure 6a shows the aerosol extinction profiles derived from the Rome-Tor Vergata ALC during the EMERGE-EU field

campaign in July 2017 (Andrés Hernandez et al., 2022), while in Fig. 6b the corresponding ALC-derived AOD (blue) is

compared with the one measured by the co-located AERONET sun photometer (grey). 

16

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

31
32



Figure 6: (a) Aerosol extinction profiles in Rome-Tor Vergata retrieved by the ALICENET inversion during the EMERGE campaign in

July 2017, and (b) comparison between the ALICENET-derived AOD and the co-located AERONET L2 data. Both ALICENET and

AERONET AODs are hourly averaged (error bars are the AOD standard deviations within the averaging interval).

Figure 6 shows that the time series of the two independent datasets, both averaged at an hourly resolution, agree within the

expected AERONET (Giles et  al.,  2019) and ALICENET (Sect.  3.3.3) uncertainties.  Exceptions are found during days

strongly impacted by transport of Saharan dust (e.g., 9  July 2017). This is expected because, as mentioned, the functional

relationship employed in the inversion was optimised for a continental-type aerosol and does not properly describe the

different backscatter-to-extinction relation in presence of non-spherical particles (e.g., Barnaba and Gobbi, 2001). Also note

that, despite using L2 AERONET data, the maximum sunphotometer AOD value on July 9 corresponds to a cloud-screened
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time window in the ALC record. The extension of the ALICENET retrieval approach to other aerosol types and relevant

testing is however planned for the future, also taking advantage of the depolarisation measurements capabilities of PLCs

operating within the network.

Figure  7  shows  a  multi-annual  (2016-2022),  multi-site  (Aosta,  Roma,  Messina)  comparison  between  ALC  and

sunphotometer AOD. AERONET L2 data were used in Rome-Tor Vergata and Messina, while SKYNET AOD data in Aosta

were derived taking into account the temperature correction of the POM-02 photometer as described in Uchiyama et al.

(2018). The AOD data were matched in time (measurements within 5 min one from the other) and averaged in time (15 min

average).  The  overall  number  of  pairs  considered  in  each  site  is  reported  in  Fig.  7.  This  comparison  shows  that  the

ALICENET retrieval is able to quantify the actual aerosol load in a variety of conditions. Infact, the number of data pairs

lying within ± 0.01 ± 0.15*AODsunphotometer from the 1:1 line is 84% in Aosta, 73% in Rome, and 70% in Messina. Some

ALC overestimations are mainly due to instrumental noise at higher altitudes, while underestimations are mainly related to

the presence of non continental aerosol types, such as dust and marine particles in Messina, or shallow aerosol layers in the

blind overlap region (i.e.,  below 225 m a.g.l.),  as  is  the case of  Aosta during winter  (see  Fig.  9).  The effects  of  non

continental aerosol types is better illustrated in the supplement S4.1 (Fig. S4), where the same data are shown together with

their associated Ångstrøm Exponents.

Figure 7:  Long-term (2016-2022) comparison between the AOD derived by ALICENET (at 1064 nm) and AERONET/SKYNET sun

photometers (at 1020 nm) in (a) Aosta, (b) Rome Tor Vergata, and (c) Messina. Colours refer to the data density. The black line is the

linear fit. Fit slope and Pearson’s correlation coefficients are reported in each panel together with the total number of data pairs (samples).

Gray dashed lines delimit deviations of  ± 0.01 ± 0.15*AODsunphotometer from the 1:1 line.
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3.3.2 Aerosol physical properties

Aerosol physical  properties  such as particle  surface  area and volume (Sp and Vp) are also derived based on functional

relationships linking these to aerosol backscatter and provided in Dionisi et al. (2018). Being of particular interest for AQ

applications, aerosol mass concentrations (Mp) can then be derived from the estimated aerosol volume as M p  = ρp Vp, using

an a-priori aerosol density ρp. It is worth highlighting that remote sensing aerosol retrievals provide aerosol properties in

‘unperturbed’ atmospheric conditions, i.e., including hygroscopic effects. Conversely, most in-situ instrumentation (as those

operating in AQMN in compliance to the EU AQ Directive) generally provide dry particulate matter mass values. Therefore,

a RH ‘adjustment’ is necessary when comparing the ALC-based aerosol properties (including mass) to dry in-situ data (e.g.

Barnaba et al., 2010). Details on the hygroscopic correction used within ALICENET are reported in the supplement S4.2. In

the following, we show both a short- (Fig. 8) and long- (Fig. 9) term comparison between the M p retrieved by ALICENET

using ALC data collected in Aosta and in-situ reference measurements.

In  Fig.  8,  the  Mp values  at  3500  m  a.s.l.  extracted  from  ALC  aerosol  profiles  are  compared  with  the  aerosol  mass

concentrations measured by an OPC at the Testa Grigia - Plateau Rosa observatory (western Alps, 35 km-East of Aosta, see

Fig. S5 in supplement S4 for details on site relative locations) in June 2022. This period was selected because in summer

secondary hygroscopic particles from the Po Basin are regularly transported to the western Alps, reaching altitudes > 4 km

a.g.l. (Diémoz et al., 2019 a,b). In fact, June 2022 registered both medium-range transport of Po Valley pollution and long-

range transport of desert dust to Plateau Rosa. Figure 8 shows the 30-days temporal evolution of the ALC-based M p (bullets)

in the ALC vertical bin 3500 ± 200 m a.s.l. over Aosta and the corresponding values from OPC (grey line). The aerosol

density used to derive both ALC and OPC aerosol mass concentrations was 1.2 (1.6) g cm -3 in the presence of non-dust

(dust-dominated) aerosol  mixtures  (Diémoz et  al.,  2019b).  Moreover,  assuming desert  dust  as mainly hydrophobic,  the

hygroscopic  correction  as  described  in  supplement  S4.2  was  only  applied  to  ALC  data  in  non-dust  conditions.  This

discrimination was done using the linear volume depolarisation ratio (δv) profiles of a co-located PLC and assuming that

aerosol mixtures associated with δv < (>) 15% are dominated by secondary (dust) particles. Overall, Fig. 8 shows that the

two mass concentration series exhibit similar time evolution, with good agreement both in low aerosol conditions (e.g. 6-15

June 2022), and during transport events increasing the local aerosol load. In the considered period, main transport events

were associated with desert-dust intrusions (e.g., 3-5, 18-22, and 27-28 June 2022) and Po Valley pollution advections (e.g.,

13-14, and 25-26 June 2022). This result is very promising considering that the horizontal distance between the ALC/PLC-

probed column and the Plateau Rosa station is > 30 km and that the in-situ OPC measurements may also be influenced by

local dynamics and surface emissions.
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Figure 8: Aerosol mass concentrations derived in the month of June 2022 from the Aosta ALC (bullets) and from in situ instrumentation

(grey line). In particular, ALC values refer to the vertical layer 3500 ± 200 m a.s.l. and colour code indicates depolarisation values from

the co-located PLC (δv). In-situ PM10 concentrations were derived from an OPC at the mountain (3500 m a.s.l.) observatory ‘Testa Grigia’

(Plateau Rosa, 35-km from Aosta, data courtesy of Stefania Gilardoni, CNR-ISP).

A longer comparison for the ALICENET aerosol mass product is reported in Fig. 9. It shows  the 1-year (2021) record of

ALC-derived  Mp  at ground level and the corresponding in situ, surface PM10 concentrations derived by OPC measurements

in Aosta downtown, 4 km away from the Aosta ALC (Diémoz et al., 2021). Data are shown in terms of daily median values

and corresponding 25-75 percentiles. To convert volume into mass, the aerosol density was set to 1.5 g cm -3, while to convert

the ALC-derived wet aerosol mass (blue) into dry aerosol mass (purple), the hygroscopic correction (see Eqs. S4.1, S4.2)

was applied using surface-level RH measurements and a constant  exponent of 0.2. Both ρ𝛾 p and  values are representative𝛾
for a mean continental  aerosol type, i.e.,  the one expected to dominate in Aosta.  As can be observed, the ALICENET

retrieved Mp is able to reproduce the variability of the in-situ measured PM10, with some underestimations in the winter

months. We investigated these underestimations further and found these are mainly attributable to: a) the shallow (i.e., few

tens of metres), frequent temperature inversions occurring during winter in the Alpine valleys and capping aerosols in the

lowermost levels (e.g., Giovannini et al., 2020), and b) the higher wintertime local emissions in the urban site of Aosta

downtown with respect to the semi-rural site where the ALC is operating (Diémoz et al., 2019b).
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Figure 9:  One-year (2021) dataset of surface aerosol mass concentrations as derived by the ALICENET ALC inversion and by OPC

measurements in Aosta. Data refer to daily median values (points) and relevant 25-75 percentiles (vertical bars). ALC-based data are both

those derived from the ALICENET retrieval (wet) and corresponding ones further corrected to dry values (see the supplement S4). 

 

3.3.3 Estimated uncertainty of aerosol properties retrievals

The previous  sections describe  the  ALICENET efforts  to  exploit  the  great  potential  of  ALC in providing  quantitative

aerosol-related geophysical parameters, and demonstrate the good performances of the current algorithms. Nonetheless, due

to several factors also discussed above, the expected uncertainties associated with the output products range from 20% for

the attenuated backscatter (product L2 in Fig.1) to 50% for the aerosol mass (L3 in Fig. 1). The main factors are listed

hereafter. 

1) the instrumental noise of the signal. This factor depends on the instrument status and mainly impacts the retrievals  in the

middle-upper troposphere. 

2) the overlap correction applied to the signal. As discussed, this factor is critical in the lowermost levels and accurate

instrument-specific, overlap-correction models are necessary to derive quantitative information in the first 800 m. Accuracy

of the retrievals in this vertical region depends on the statistical and physical representativeness of the ensemble of overlap

functions from which the overlap model is derived (supplement S2).

3) the variability of the instrument calibration coefficient. This third factor (see Sect. 3.2), directly impacts the accuracy

of 𝛽att. For example, it is found by error propagation that changes of 30% in the instrument calibration coefficient (which are

quite usual in some ALICENET and E-PROFILE stations) translates into a variability in  𝛽att up to 20%.
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4) the accuracy  of  the functional  relationships used in ALICENET to link the aerosol  backscatter  to  the other  aerosol

properties, impacting the estimation of αp, Sp, Vp, Mp and, to a lesser extent, 𝛽p. This factor strongly depends on the actual

aerosol conditions: the functional relationships can give a good estimate of the aerosol properties in presence of continental

aerosols, while in presence of non-continental particles they are less accurate (a relative error of 30-40% was derived by

Dionisi et al., 2018). As mentioned, extension of the ALICENET approach to include other aerosol types is foreseen for the

next  future.  In  particular,  exploitation of  the PLC depolarisation profiles  for  aerosol-typing will  drive  the selection of

aerosol-type specific functional relationships (e.g. Gobbi et al., 2002).

Concerning the retrieval of aerosol mass concentrations, the assumed particle densities are a major source of uncertainty, and

the accuracy of the retrieval depends on the possibility to better constrain the aerosol density profiles, e.g., through ancillary

data, including depolarisation information.

Overall, the above factors result in instrument-, time- and range-dependent uncertainties of the ALC-based aerosol optical

and physical properties. The expected uncertainty with an optimal SNR up to at least 7 km a.g.l., an overlap error < 10% in

the lowermost levels, and in presence of continental aerosol types is of 20% for 𝛽att, 30-40% for AOD, reaching 50% for

aerosol mass.

3.4 The ALICENET automatic Aerosol LAyer DetectIoN algorithm (ALADIN)

As already mentioned,  a  main advantage  of  ALCs is  their  ability to operate  continuously,  which allows detecting and

tracking the variability of the aerosol vertical stratifications at multiple timescales using aerosol as passive tracers.  This

information can be beneficial for several sectors, among which AQ and meteorology (e.g., Moreira et al., 2019; Ravnik et

al., 2024; Körmöndi et al., 2024), aviation (e.g., Osborne et al., 2019; Salgueiro et al., 2023), atmospheric research (e.g.,

Jozef et al., 2024). 

Commonly identified  atmospheric stratifications based on ALC data analysis include the Atmospheric Boundary Layer and

the Mixed Layer (ABL and ML, respectively, e.g., Poltera et al., 2017; Kotthaus et al., 2020; Caicedo et al., 2020), and

lofted aerosol layers in the free troposphere (e.g., Adam et al., 2020). The ABL is a thermodynamic layer connected to the

Earth’s surface and capped by a temperature inversion, while the ML is an ABL sublayer mixed by turbulent fluxes (Stull,

1988; Kotthaus et al., 2023).

However, it should be noticed that aerosols are 'delayed' tracers of atmospheric dispersion processes and may not always

consistently represent the thermodynamic state of the atmosphere (Haeffelin et al., 2012). The tracking of thermodynamic

layers through aerosol lidars can be complicated by superimposing phenomena such as large-to-medium scale advections,

natural and anthropogenic emissions, particle physico-chemical transformations. These processes may remove or transport

particles in specific atmospheric ranges (e.g., Collaud Coen et al., 2018; Diémoz et al., 2019a), modulate the daily cycle of

aerosol profiles (e.g., Diémoz et al., 2021), form aerosol layers within and above the ABL (e.g., Curci et al., 2015; Sandrini

et al., 2015), thus decoupling the aerosol-related and thermodynamic stratifications. This decoupling is expected to be further
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enhanced over complex terrain (e.g., Serafin et al., 2018) and/or over regions affected by multiple natural and anthropogenic

sources, as is the case of the Italian territory.

For all these reasons, the choice for aerosol layers detection and naming in ALICENET was to keep a clear link to the

aerosol field allowing its identification, avoiding a terminology traditionally based on thermodynamics. In particular, we

develop  a  novel  Aerosol  LAyer  DetectIoN  (ALADIN)  tool  to  automatically  derive  aerosol  layering  information  from

ALCs/PLCs across the network, this targeting the following aerosol layers:

1. the Continuous Aerosol Layer (CAL): it  is the layer extending from the ground level and characterised by the

continuous presence of aerosols;

2. the Mixed Aerosol Layer (MAL): it is a CAL sublayer within which aerosols are mixed by surface-driven turbulent

fluxes;

3. Elevated Aerosol Layers (EALs): they are lofted aerosol layers which lie above the MAL, and either within or

above the CAL.

Within ALADIN, each layer type (CAL, MAL, and EALs) is detected from ALC/PLC L2 data using a specific methodology.

The CAL is determined by comparing the aerosol and the molecular 𝛽att profiles. The identification of the MAL is based on

Dynamic Time Warping (DTW, Giorgino et al., 2009) and variance analyses of the ALC profiles. The detection of EALs is

performed  with  Continuous  Wavelet  Transform  (CWT,  Du  et  al.,  2006)  and  iterative  techniques.  Full  details  on  the

ALADIN procedures, as well as a schematic description of the ALADIN processing flow are reported in supplement S5.

Figure 10 shows the ‘layering mask’ corresponding to  the same ALC data shown in Fig. 6.  It includes the ALADIN output

discriminating the CAL, MAL, and EALs,  plus  the aerosol-free  (i.e.,  molecular,  MOL),  and cloud-screened  (CLOUD)

regions as inferred from the overall ALICENET processing. In this episode, the EALs above 3 km a.g.l. are mostly due to

minor (July 7-8 and 10-11) and major (July 9) Saharan dust intrusions, while the ones between 1-3 km a.g.l. to fire plumes

(e.g.,  July 11; Andrés  Hernandez et al.,  2022) and/or to aerosol formation and growth within the residual layer during

nighttime (e.g., July 5-6).
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Figure 10: Aerosol layering mask derived from the ALADIN processing on the CHM15k operating in Rome - Tor Vergata in the same

period presented in Fig. 6. The mask discriminates the following layers: the continuous aerosol layer (CAL), the mixed aerosol layer

(MAL) and elevated aerosol layers (EALs). Aerosol-free (i.e., molecular, MOL) and cloud-screened (CLOUD)  regions as identified in the

overall ALICENET processing are also shown.

Further discrimination of aerosol layers in terms of aerosol type could be derived exploiting PLC δ v profiles. In fact, the

inclusion of the PLC depolarisation information within the ALICENET processing is in progress, this representing a first

step to automate the aerosol typing capacity within the network (thus complementing the aerosol layer typing capacity from

more complex lidar systems, e.g., Nicolae et al., 2018; Córdoba-Jabonero et al., 2018).

Routine  application  of  the  automated  ALADIN  tool  on  a  daily  basis  also  allows  to  get  statistics  of  vertical  aerosol

stratifications in the atmosphere.  An example of this long-term application is presented in Figure 11, which shows the

monthly- and daily-resolved cycle of MAL and CAL heights over Rome-Tor Vergata derived from the 2016-2022 ALC

dataset (continuous lines are median values while shaded areas represent  25th-75th percentiles). Figure 11 clearly shows the

marked yearly cycle of the  CAL height (minimum in winter and maximum in summer), due to the increased convection and

photochemistry in the warmest months (e.g. Barnaba et al., 2010). As expected, all over the year the MAL shows a marked

daily cycle, with maximum heights in summer (about 2 km thick in July-August) doubling those in winter (about 1 km in

December-January).  A  similar  statistics  of  turbulent  kinetic  energy  (TKE)  from  a  co-located  ultrasonic  anemometer

(magenta lines) is also reported as a proxy for convection, which is the main driving factor of the MAL temporal evolution.

Note that in this Figure the time axis is reported as Central European Time (CET) to better highlight the diurnal variability of

the addressed quantities. 
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Figure 11: Monthly and daily resolved statistics (median, and 25-75 percentiles as shaded dashed areas) of the MAL and CAL heights

(left y-axis) derived from the ALADIN tool application over the multi-annual (2016-2022) dataset of the CHM15k in Rome Tor Vergata.

Similar statistics of the turbulent kinetic energy (TKE) derived from a co-located ultrasonic anemometer (violet) are also plotted (right y-

axis) as a proxy of convection intensity and timing.

A follow up work presenting a more detailed multi-annual analysis of the ALC-based aerosol properties and layering in

selected ALICENET sites from North to South Italy,  in synergy with in-situ aerosol  measurements  and model (ERA5,

CAMS) products, is currently in progress (Bellini et al., 2024, in preparation).

4. Potential of 4D near-real time aerosol monitoring

A  main  advantage  of  lidar-ceilometers  networks  is  their  continuous,  near  real-time  monitoring  capability.   In  fact,

ALICENET  has been already exploited in past events to follow the evolution and characterise specific aerosol transport

features and/or to quantify the impact of aerosol dynamics on local aerosol concentrations, mostly in synergy with other

tools and measuring techniques as in-situ aerosol observations, ground-based passive remote sensors, satellites or models

(Gobbi et al., 2019; Diémoz et al., 2019a,b; Di Bernardino et al., 2021; Rizza et al., 2017, 2022; Tositti et al., 2022; Andres

Hernandez et al., 2022). This section describes, through some recently recorded showcases, the potential of this near real

time 4-dimensional ALICENET  monitoring at the national scale, particularly useful for nowcasting, warnings and alerts in

case of noteworthy events.

4.1 Po Valley local dust front (14 April 2020)

In a previous study (Diemoz et al., 2019a,b), the operational use of ALICENET provided observation-based evidence of the

export of pollutants from the Northern Italy Po Valley to surrounding areas. The phenomenon, previously observed by lidar

profiling performed at the EC-JRC in Ispra (about 60 km northwest of  Milan, Barnaba et al., 2010), was further analysed
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and quantified thanks to the ALICENET combination of sites (Milan and Aosta, i.e., within and at the border of the Po

Valley). That study demonstrated  that such pollution-rich advections markedly affect PM-related AQ even in the ‘pristine’

mountain environments mainly transporting hygroscopic particles of secondary origin. However, transport of particles of

primary origin (particularly from soil-related sources) across the Po Valley has been also observed, particularly during dry

periods. Figure 12 shows an example of such events (14 April 2020), largely impacting regional AQ and visibility.

Figure 12: (a) Total attenuated backscatter profiles at Aosta and Milan-Bicocca sites on 14/04/2020; (b) central Milan webcam (Source:

Arzaga meteorological observatory, https://www.osservatorioarzaga.it/) showing the rapid decrease of visibility on 14/04/2020 (from top

to bottom: 16:08, 16:15, 16:20, 16:25 UTC), (c) Po Valley satellite true colour image (14/04/2020 18:10 UTC; Credits: EUMETSAT) with

indication  of  the  regional  dust  front  (orange  arrow),  and  (d)  10  m wind  speed  and  direction  simulated  by  WRF over  North  Italy

(14/04/2020 17:00 UTC, data courtesy of Stefano Federico CNR-ISAC) illustrating the extension of the gust and wind fronts. The arrival

of the dust front in Milan at 16:20 UTC and in Aosta at 20:40 UTC is clearly visible from ALC profiles in panel a.

This episode was due to an extended (about 100 km) gust front originating from the cold and intense Bora winds from East,

as well as to anomalous dry conditions affecting Europe in April 2020. Resuspended, soil-originated particles from the
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cultivated fields were transported across the whole Po Valley as also visible from space (Fig. 12c). ALC profiles (Fig. 12a)

well  captures the timing of the plume's arrival in Milan (as also seen from central Milan webcams, Fig. 12b) and show the

vertical extent of the particle-rich layer associated with the episode. As also revealed by satellite measurements (Fig. 12c)

and model simulations (Fig. 12d), after impacting the Milan area, the plume continued to travel westward and was detected

by the ALC in Aosta 4 hours later, indicating a wind speed > 12 m/s.

4.2 Advection of Saharan dust and Canadian fire plumes over Italy (19-28 June 2023)

The Mediterranean area is frequently affected by the transport of desert dust from North Africa and the Middle East (e.g.,

Barnaba and Gobbi, 2004; Querol et al., 2009; Basart et al., 2012a; Greilinger et al., 2019; Gama et al., 2020). In Italy, these

events are estimated to reach the ground on 10% (Northern regions) to over 30% (Southern regions) of the days in a year,

and to impact on surface daily-mean PM10 concentrations with 10-15 µg/m3 (Barnaba et al, 2022). Transport of fire plumes

from global-to-medium distances is also an important contributor to aerosol loads in Europe. A significant contribution is

given by forest fires regularly developing during boreal summers in Canada (e.g., Ceamanos et al., 2023; Shang et al., 2024),

and a major contribution from agricultural fires in Eastern Europe and Russia has also been detected over the continent,

particularly in spring and summer (Barnaba et al., 2011). Summer 2023 was particularly impacted by multiple episodes of

severe wildfires in central Canada. Almost 480 megatonnes of carbon were emitted, resulting in a major impact on AQ

across  Canada and the Northern  US.  The plumes have also been  observed  to  be regularly transported towards  Europe

(https://atmosphere.copernicus.eu/copernicus-canada-produced-23-global-wildfire-carbon-emissions-2023,  last  access:  6-3-

2024). Figure 13 shows a composite of measurements collected at multiple ALICENET sites across the country during a 10-

days period (19-28 June 2023) affected by both desert-dust (time-altitude windows identified by orange boxes) and forest-

fire plumes (time-altitude windows identified by magenta boxes). More specifically, this period was characterised by the

intrusion of Saharan dust to Southern to Northern Italy (19-24 June 2023), followed by the transport of Canadian fire plumes

over Central and Northern Italy (27-28 June 2023). The ALC profiles (𝛽att and δv) at the 7 selected ALICENET sites (central

panel in Fig. 13) allow to follow the spatio-temporal evolution of the different aerosol layers and identify the relevant aerosol

type. The Saharan dust layers were firstly observed over South-West Italy (Capo Granitola, June 19 in the morning), then

moving westward to Messina and Catania  (June 19, afternoon), and northward to Turin, Aosta, Milano, Mt. Cimone, where

the dust plume is detected in the evening. All over Italy, the dust plume affects atmospheric layers up to 7 km altitude,

reaching down to the surface on June 20. In fact, the PLC systems clearly indicate the presence of irregularly-shaped mineral

particles aloft (depolarisation values δv  > 30%) and mixing with local (mainly spherical) particles, with δv  ~10-20% when

reaching the lowermost levels.
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Figure 13:  Vertical profiles of total attenuated backscatter  𝛽att (for both ALCs & PLCs) and volume depolarisation δv (for PLCs) as

recorded at selected, North-to-South ALICENET sites in the period 19-28 June 2023, affected by Saharan dust and Canadian fire plumes

(orange and magenta boxes, respectively).

The Canadian fire plumes were firstly observed by ALICENET systems operating in North-Western Italy (Aosta, Turin) on

27 June 2023 in the range 2-7 km a.s.l. Then travelled through the whole Po Valley, being clearly observed in Milan and Mt.

Cimone. Being mainly composed of processed particles, these long-range transported fire plumes do not show increased

depolarisation, and appear as thinner aerosol layers with respect  to the ones typically associated with dust layers. These

vertically resolved measurements  well  complement the information that can be gathered from satellites.  For instance,  a

comparison between ALICENET data and MSG and Metop retrievals was conducted with respect to the dust event  (e.g.,

https://vuser.eumetsat.int/resources/case-studies/dust-transport-from-the-sahara-to-the-mediterranean, last access: 6-3-2024).

At the same time, vertical aerosol profiling also provides an observational verification of the picture that can be obtained by

modelling tools. In this respect, Fig. 14 shows the CAMS EU forecast maps (Ensemble model) for two dates within the

temporal window addressed, i.e.: 22/06/2023 (dust intrusion, left panels) and 27/06/2023 (Canadian fires, bottom panels), at
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two altitude levels (100 and 3000 m a.g.l.,  top and bottom panels respectively).  The horizontal evolution of the aerosol

advections qualitatively agrees with the ALICENET observations. It is more difficult to correctly model the aerosol vertical

distribution, due to both their coarse vertical resolution and simplified parameterizations of the aerosol-related atmospheric

processes (e.g., Koffi et al., 2016). Indeed, remote sensing observations by ALC/PLC represent an added value for both AQ

monitoring and modelling. In fact, specific efforts are currently ongoing in the assimilation of ceilometer information into

the IFS (Integrated  Forecasting  System)/CAMS (e.g.,  the  H2020 CAMs AERosol  Advancement  (CAMAERA) Project,

https://camaera-project.eu/, last access: 25-07-2024).

Figure 14: CAMS EU forecast of the total PM10 and PM10-dust component concentrations during the desert dust (22/06/2023 00:00 UTC

- left panels) and the Canadian fires (27/06/2023 21:00 UTC - right panels) events of Figure 13,  top (bottom) panels referring to 100 m

(3000 m) altitude.

4.3 Aerosol particles from the Mt. Etna eruption (13-14 August 2023)

A recent  showcase from the Etna volcano eruption is reported in Figure 15 to highlight the important information that

ALC/PLC observations  can  provide  in  volcanic  areas  to  complement  in  situ,  satellite-based  and  modelling  data  (e.g.,
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Corradini et al., 2018, Scollo et al., 2019, Bedoya-Velásquez et al., 2022) . During the night between 13 and 14 August 2023,

this Europe's most active volcano erupted, its Southeast Crater emitting a volcanic cloud that the PLC in Nicolosi detected to

reach up to 5 km at 21 UTC (Fig 15a). On August 13, at 20:41 UTC, a Volcano Observatory Notice for Aviation (VONA)

was issued by INGV (https://www.ct.ingv.it/Dati/informative/vona/VONA_Etna_202308132041Z_2023005708E01.pdf, last

access: 06-03-2024) with a ‘red alert’ for aviation. VONA are short, plain-English messages aimed at dispatchers, pilots, and

air-traffic controllers to inform them of volcanic unrest and eruptive activity that could produce ash-cloud hazards. In fact,

flights serving Catania were halted. The most intense phase of the eruption occurred between 01:40-02:30 UTC, when PLC

depolarisation reached values > 40% indicating a predominance of  irregular ash particles. The ash plume was then observed

to rapidly reach the ground, while moving southward in the Mediterranean Sea (Fig 15b). In fact, less than 5 hours after the

beginning of the eruption the plume was detectable east of Malta. In agreement with the ALC record, the VONA issued by

INGV at 05:54 UTC indicates that no ash plumes were produced and that the volcanic ash was confined in the summit areas

of  the  volcano,  this  corresponding  to  an  orange  Aviation  colour  code

(https://www.ct.ingv.it/Dati/informative/vona/VONA_Etna_202308140554Z_2023005808F01.pdf, last access: 06-03-2024).
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Figure 15: (a) Total attenuated backscatter, 𝛽att, plus volume depolarisation, δv, profiles observed at the ALICENET Etna Nicolosi site on

13-14/08/2023;  (b)  METEOSAT  Natural  Colour  Enhanced  RGB  (SEVIRI)  image  referring  to  14/08/2023,  05:15  UTC  (Credits:

EUMETSAT).

5 Conclusions and and future perspectives

In this work we present ALICENET, the Italian network of automated lidar-ceilometers (ALCs) operating from North to

South across the peninsula. It is a cooperative network set up by CNR-ISAC in 2015, and currently running with active

contributions from several regional EPAs, Universities, Research Centres and private companies. The network contributes to

fill an Italian observational gap at the EU level, where most Member States generally run extended ALC networks managed

by  national  meteorological  agencies  (e.g.  the  German  weather  service,  DWD,  running  over  100  instruments,

https://www.dwd.de/EN/research/observing_atmosphere/composition_atmosphere/aerosol/cont_nav/aerosolprofiles.html,
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last access 25-07-2024). Since its set up, the ALICENET network kept expanding (Table 1),  and currently covers very

different environments (urban, coastal, mountainous and volcanic areas), thus providing information in a large spectrum of

atmospheric conditions and aerosol regimes. ALICENET promoted a standardisation of instruments and an homogeneous

data processing specifically developed within the network. It mainly runs single-channel ALCs (CHM15k systems by Ott

Hydromet)  but  is  progressively  introducing   polarisation-sensitive  systems (PLCs)  recently  commercialised  by  Vaisala

(CL61) to further  exploit  the ability  of  these  systems to discriminate among aerosol  types.  Since  the beginning of  the

ALICENET activities, particular care has been devoted to data retrievals and exploitation, this also taking advantage of

technical/scientific exchanges within European initiatives, such as the EC Cost Actions TOPROF (2013-2016) and PROBE

(2019-2024), the ongoing EUMETNET program E-PROFILE (2020-2028) and the EC H2020 Project RI-URBANS (2021-

2025). In this context, ALICENET developed a specific, centralised and automated data processing chain with associated

data quality control (QC) procedures, as presented in detail in this work. The data processing steps were either refined from

previously published work (e.g. Hervo et al., 2016, Dionisi et al., 2018), or are completely new, as the automatic aerosol

layers detection algorithm (ALADIN). Overall, the processing chain includes signal correction and calibration procedures

(Sects.  3.1,  3.2),  the  aerosol  properties  inversion  (Sect.  3.3),  and  the  identification  of  vertical  stratifications  (Mixed,

Continuous and Elevated Aerosol Layers, MAL, CAL and EALs, respectively, Sect. 3.4). Output products with different

levels of complexity and associated uncertainties are thus provided (Fig. 2). These range from more basic L1 quantities (as

the Range-Corrected Signal, RCS, and, where applicable, depolarisation, δv), through the L2 total attenuated backscatter 𝛽att

to the L3 aerosol optical (𝛽p, αp and thus AOD) and physical (Sp, Vp, and Mp) properties plus vertical layering. 

Level 1 and Level2 products are provided in near real time on a dedicated website (https://www.alice-net.eu/, last access: 25-

07-2024), while L3 products are obtained offline and are currently only available upon request. Examples of product types

are reported in Sect. 3 and 4. For L3 products, this work also includes direct comparisons with relevant, independent data

(in-situ or remote sensing, depending on the variable addressed), showing that the ALICENET data processing is able to

provide robust and quantitative aerosol information, within the discussed limits of the data accuracy (Sect. 3.3.3). In fact,

long-term comparisons of aerosol mass retrievals with surface PM10 data show mean discrepancies of 35%, while AOD

comparisons to thousands of relevant data points from co-located sun photometers show correlation coefficients > 0.8 and fit

slopes ranging between  0.8-1.0, depending on the site location. 

Efforts to evaluate the ALICENET retrieval  performances are constantly performed as well as comparisons to different

inversion approaches and tools.  For example,  a preliminary algorithm intercomparison exercise was recently performed

within  PROBE  to  evaluate  differences  in  the  outcomes  produced  by  different  national  networks  in  the  EU  (namely:

ALICENET - Italy, MetOffice - UK, V-PROFILE - Norway, DWD - Germany; Osborne et al., 2024). An additional analysis

of the ALICENET L3 products is currently in progress based on multi-annual datasets of selected ALICENET systems

located across Italy and relevant comparisons to independent data and models (Bellini et al., 2024, in preparation).

Next steps foreseen within the network are: a) a better characterisation of the instruments artefacts and calibration, b) the

extension of the ALICENET ALC retrieval methodology to different aerosol types, c) the development of a full retrieval for
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PLCs (CL61),  further  exploiting the depolarisation information to identify aerosol  types.  Since the CL61 operates  at  a

different wavelength with respect to CHM15k, the evaluation of water vapour absorption corrections (e.g., Wiegner and

Gasteiger, 2015), and the definition of new, wavelength specific functional relationships (e.g. Dionisi et al., 2018) to be used

within the data  inversion process  are  also required  and will  be explored.  The feasibility  of  a  regular  dissemination of

ALICENET L3 products via the network website in addition to the near-real time L1 and L2 ones is also under evaluation. 

Overall, ALICENET represents a valuable resource to complement the aerosol observational capabilities in Italy with the

unique capacity of continuous 4D monitoring. The maturity of both instrumental technologies and  data processing tools as

the ones  described  here  suggest  that  ALC/PLCs could fruitfully  contribute  to  aerosol  measurements  within   European

Research Infrastructures (e.g. ACTRIS) and/or  air quality monitoring networks (AQMNs). 

At the national level, ALICENET also intends to bridge a gap between the research-oriented and the operational use of

active aerosol remote sensing in several  sectors,  among which: a) air quality (AQ), b) radiative budget/solar energy, c)

aviation safety, thus representing a good example of earth observation science applications for society. Its outputs were

already proven to be also useful in validation of models and satellite products.

Of particular interest for the AQ sector are the abilities of the ALC/PLC-based ALICENET data to: i) automatically identify

medium-to-long range aerosol advections and estimate the relevant contribution to surface PM10 concentrations,  and ii)

provide continuous information on particulate  matter  layering,  including the Mixing Aerosol  Layer (MAL),  i.e.  on the

atmospheric volume in which locally emitted particles are diluted (e.g., Kotthaus et al., 2023), and the Elevated Aerosol

Layers (EALs) reaching the surface. The effectiveness of using these ALC/PLC abilities in support of standard AQMNs is

being currently explored within the ongoing EC H2020 Project RI-URBANS, aimed at developing an air quality monitoring

system that complements those currently available. In this framework, tests of upscaling the ALICENET tools to other urban

sites  in  the  EU are  in  progress  (e.g.,  Barnaba  et  al.,  2024).  Concerning  the  other  applications  mentioned  above,  the

continuous ALC-based information on the aerosol properties vertical distribution and layering is useful to better estimate the

relevant  radiative  effects  (beneficial  for  example  within an  operational  short-term solar  forecasting  system based  on a

multisensor approach, e.g. Papachristopoulou et al., 2024), for validation of/assimilation in models (e.g. Chan et al., 2018;

Valmassoi et al., 2023), or for the provision of near-real time alerts for aviation safety during specific extreme events such as

desert dust storms and volcanic eruptions (e.g., Papagiannopoulos et al., 2020). Continuous aerosol monitoring capabilities

of ALC/PLC systems and availability of relevant long-term records is also expected to be particularly important  in the

verification of satellite aerosol products including  vertical layering  (e.g., Janicke et al., 2023), considering that aerosol

vertical  profiles  and  planetary  boundary  layer  are  recognised  as  priority  targeted  observable  for  space-based  Earth

observation programs (e.g. NASEM, 2018) and that the joint ESA-JAXA mission EarthCare with a lidar instrument onboard

was recently successfully launched (e.g., van Zadelhoff et al., 2023).
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List of acronyms

ABL: Atmospheric Boundary Layer

ACTRIS: Aerosol, Clouds, and Trace Gases Research Infrastructure

AERONET: Aerosol Robotic Network

ALADIN: Aerosol LAyer DetectIoN algorithm

ALC: Automated Lidar-Ceilometer

ALICENET: Automated LIdar-CEilometer NETwork

AQ: Air Quality

AQMN: Air Quality Monitoring Network

AOD: Aerosol Optical Depth

ARS: Aerosol Remote Sensing

BG test: Breusch-Godfrey test

CAL: Continuous Aerosol Layer

CAMAERA: CAMs AERosol Advancement

CAMS: Copernicus Atmosphere Monitoring Service

CHM15k: Lufft automated lidar-ceilometer instrument

CL61: Vaisala polarisation sensitive lidar-ceilometer instrument

CNR-ISAC: National Research Council - Institute of Atmospheric Sciences and Climate

CWT: Continuous Wavelet Transform

DTW: Dynamic Time Warping

DWD: German Weather Service

EAL: Elevated Aerosol Layer

EARLINET: Aerosol Research Lidar Network

EarthCARE: Cloud, Aerosol and Radiation Explorer

EC: European Community

ECMWF: European Centre for Medium-Range Weather Forecasts

EPA: Environmental Protection Agency

E-PROFILE: EUMETNET program coordinating the measurements of wind, aerosol and cloud profiles from radars and

lidars

ERA5: fifth generation ECMWF reanalysis for the global climate and weather

ESA: European Space Agency

ESFRI: European Strategy Forum on Research Infrastructures

EUMETNET: European Meteorological Services Network
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IFS: Integrated Forecasting System

INGV: Istituto Nazionale di Geofisica e Vulcanologia

JAXA: Japan Aerospace Exploration Agency

LR: Lidar Ratio

MAL: Mixed Aerosol Layer

ML: Mixed Layer

MPLnet: Micro-Pulse Lidar Network 

NASA: National Aeronautics and Space Administration

NASA-CALIPSO: NASA-CNES CALIOP sensor onboard CALIPSO

OPC: Optical Particle Counter

PLC: Polarisation-sensitive automated Lidar-Ceilometer

PM: Particulate Matter

PROBE: PROfiling the atmospheric Boundary layer at European scale

QA: Quality Assurance

QC: Quality Control

QC.CAL: Quality Control applied within the absolute calibration procedure

QC.EAL: Quality Control applied within the ALADIN detection of elevated aerosol layers

QC.OVL: Quality Control applied within the overlap correction procedure

RI-URBANS: EC H2020 project aimed at developing advanced service tools for air quality monitoring networks

RH: Relative Humidity

SNR: signal-to-noise  ratio

SKYNET: ground-based radiation observation network dedicated to aerosol-cloud-solar radiation interaction researches

TOPROF: Towards Operational ground based PROFiling with ceilometers, doppler lidars and microwave radiometers

VONA: Volcano Observatory Notice for Aviation

WHO: World Health Organization

Data availability: The presented datasets will be made freely accessible and linked to a doi, should the revision process lead

to a positive outcome.
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