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Abstract. Remote hail detection and hail size estimation using weather radar observations has the advantage of wide spatial

coverage and high spatial and temporal resolution. Switzerland National Weather Service (MeteoSwiss) uses two radar-based

hail metrics: the probability of hail at the ground (POH) to assess the presence of hail, and the maximum expected severe

hailstone size (MESHS) to estimate the largest hailstone diameter. However, radar-based metrics are not direct measurements

of hail and have to be calibrated with and verified against ground-based observations of hail, such as crowdsourced hail5

reports. Switzerland benefits from a particularly rich and dense dataset of crowdsourced hail reports from the MeteoSwiss app.

We combine a new spatiotemporal clustering method (ST-DBSCAN) with radar reflectivity to filter the reports and use the

filtered reports to verify POH and MESHS in terms of the Hit Rate, False Alarms Ratio (FAR), Critical Success Index (CSI),

and Heidke Skill Score (HSS). Using a 4 km × 4 km maximum upscaling approach, we find FAR values between 0.3 and 0.7

for POH and FAR > 0.6 for MESHS. For POH, the highest CSI (0.37) and HSS (0.52) are obtained for a 60% threshold, while10

for MESHS the highest CSI (0.25) and HSS (0.4) are obtained for a 2 cm threshold. We find that the current calibration of POH

does not correspond to a probability and suggest a recalibration based on the filtered reports.

Copyright statement. TEXT

1 Introduction

Remote hail detection and hail size estimation using weather radar observations is done operationally in several countries (see,15

e.g.,chapter 4 of Allen et al., 2020, for a review). A big advantage of using radar observations is their wide spatial coverage

and their high spatial and temporal resolution (Punge and Kunz, 2016; Allen et al., 2020).

Weather-radar-based hail metrics can be classified into two categories: single-polarization and dual-polarization (Ryzhkov

and Zrnic, 2019). Single polarization metrics are solely based on horizontal reflectivity (ZH) while dual-polarization radar per-

mits the computation of polarimetric variables such as ZDR or KDP (Kumjian, 2013a). Polarimetric variables provide additional20

observations about the size, shape, and orientation of the hydrometeors (Kumjian, 2013a, b; Ortega et al., 2016; Ryzhkov and

Zrnic, 2019). Such polarimetric variables can be used in fuzzy-logic classification algorithms to improve the quality of hail
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detection and size estimation compared to single-polarization metrics (Ryzhkov et al., 2013; Al-Sakka et al., 2013; Ortega

et al., 2016; Besic et al., 2016; Steinert et al., 2021).

However, single-polarization metrics are still used operationally by weather services: for example, the Hail Detection algo-25

rithms HDA in the United States (Witt et al., 1998) or the maximum expected size of hail (MESH) in Australia (Ackermann

et al., 2024). Moreover, as long-time series of single polarization data exist, they permit the computation of long-term hail

statistics (see, e.g., Saltikoff et al., 2010; Cintineo et al., 2012; Skripniková and Řezáčová, 2014; Punge and Kunz, 2016;

Lukach et al., 2017).

Two single-polarisation radar-based hail metrics are operationally used in Switzerland by the national weather services30

MeteoSwiss: i) the Probability Of Hail (POH; Foote et al., 2005) based on the Waldvogel criteria (Waldvogel et al., 1979)

and its subsequent link to a probability (Witt et al., 1998) is used to estimate the presence of hail of any size at the ground

(operational since 2008); and ii) the Maximum Expected Severe Hailstone Size (MESHS; Joe et al., 2004) based on Treloar

(1998) is used to estimate the maximum hailstone size at the ground, for hailstone diameters equal to or larger than 2 cm

(operational since 2009). Both metrics are based on the height difference between the highest altitude at which a certain radar35

reflectivity is measured (45 dBZ for POH, 50 dBZ for MESHS) and the 0°C altitude, which is a proxy for the area where hail

can grow by collecting supercooled water droplets (Doswell, 2001; Allen et al., 2020).

The radar-based hail metrics form the basis of the Swiss hail climatology (NCCS, 2021) and were used to study hail variabil-

ity and hail storm characteristics (e.g. Nisi et al., 2016, 2018; Madonna et al., 2018; Schmid et al., 2023). They are also used by

insurance companies for damage assessments. Moreover, they were recently used as target variables in a deep learning model40

for thunderstorm prediction (Leinonen et al., 2023) and for the improvement of the operational MeteoSwiss thunderstorms

nowcasting and warning system TRT (Hering et al., 2004, 2022).

However, those radar-based metrics are proxies and not direct measurements of hail on the ground. Consequently, they have

to be initially calibrated with and further verified against ground-based observations of hail. Ground-based observations are

challenging to gather because hailstorms are scarce and most of them have a small spatial extension (see, e.g.: Brimelow,45

2018). In Switzerland, hailstorms occur 2 to 4 times per square kilometer per year in the regions where hail is most frequent

(Fig. 4a), and typically last less than ten minutes locally (Kopp et al., 2023). Consequently, calibration and verification of

radar-based hail algorithms are based on a limited number of observations. Waldvogel et al. (1979) used 195 storm cells in

Switzerland, among which only 33 were hail-producing cells to verify their criteria. They found that the criteria detected all

hail cells (a 100% hit rate) but that half of the identified cells never produced hail (a 50% false alarm ratio). Treloar (1998)50

used 27 hailstorms in the area of Sydney to propose the initial version of MESHS and Joe et al. (2004) verified it qualitatively

with a single day of data in Australia.

To our knowledge, only Barras et al. (2019) verified MESHS by calculating the percentage of matches between MESHS

values and crowdsourced observations but did not quantify the potential false alarms of MESHS. On the other hand, several

versions of the Waldvogel criteria and of the POH metric have been verified in various countries (e.g. Kessinger et al., 1995;55

Holleman, 2001; Kunz and Kugel, 2015; Nisi et al., 2016; Puskeiler et al., 2016; Barras et al., 2019). Pooled together, those

studies gave more robust results but still had two limitations.
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First, all of them used a distance buffer to match the actual location of an observation and the radar detection. Kessinger

et al. (1995) used a 15 km influence region consistent with the underlying storm definition process. Holleman (2001) chose

a 12.5 km positioning tolerance, Kunz and Kugel (2015) a 10 km grid cell and Puskeiler et al. (2016) a 5 km × 5 km area60

around the radar grid point, both to account for the spatial resolution of their observations (at the district or postal code level).

Car insurance reports used by Nisi et al. (2016) needed to focus on large urban areas of Switzerland. The use of a physically

based distance buffer is necessary to account for the potential wind drift of hail. However, using significantly larger values can

artificially increase the actual hit rate H and reduce the actual FAR.

Looking at 12 severe hailstorms that have occurred in Switzerland, Hohl et al. (2002) found that the best correlation between65

radar-derived hail kinetic energy and hail damage claims was achieved for wind drifts of 3 to 4.3 km. Analyzing data from

seven severe storms in Australia’s metropolitan Sydney and Brisbane areas, Schuster et al. (2006) found a wind drift ranging

from 2 to 2.8 km. More recently, Ackermann et al. (2024) applied a virtual advection algorithm to 30 hail events that happened

between 2010 and 2022 in Australia and found that most events had an estimated wind drift of less than 2 km and that none

of them had a wind drift above 4 km. Such values are lower than most distance buffers used in the literature to evaluate the70

performance of POH.

The second limitation is related to the nature of the observations; often, insurance damage claims were used as ground

truth for the validation (Holleman, 2001; Hohl et al., 2002; Kunz and Kugel, 2015; Nisi et al., 2016; Puskeiler et al., 2016).

Insurance claims are limited to inhabited areas where there is sufficient coverage (Kunz and Kugel, 2015; Punge and Kunz,

2016) and they are influenced by the asset vulnerability. Damages to vehicles usually occur for hailstones with diameters > 275

cm (Hohl et al., 2002). While blinds can be damaged by hailstones of 2.5 cm (Stucki and Egli, 2007), windows and tiles require

hailstones of 4 cm or more (Púčik et al., 2019). Consequently, hailstorms producing hail smaller than such diameters will not

be documented in insurance claims, while being identified by weather radars, leading to wrong false alarms in the validation

statistics (Kunz and Kugel, 2015).

Another important question relates to the current calibration of the POH metric used in Switzerland. It is based on the80

third-order polynomial fit by Foote et al. (2005) based in turn on the original observations of Waldvogel et al. (1979). Those

observations were made in Switzerland in 1977 using a dense network of hailpads during the Grossversuch IV field campaign

(Federer et al., 1986). Since then, no study has been conducted in Switzerland to verify how the probabilities of hail from POH

correspond to current observations and if POH has to be recalibrated.

Since May 2015, users of the free MeteoSwiss app can report hail using a dedicated function (Barras et al., 2019). They85

can choose from a predetermined set of size categories (see Table 1), and their smartphone GPS location and time are used to

locate and timestamp the report. A 2022 market survey showed that the MeteoSwiss app had a 56% penetration rate among

the Swiss population (approx. 8.9 million people; FSO GEOSTAT, 2022), with more than 4.5 million downloads (personal

communication from MeteoSwiss). As of October 15, 2023, more than 250000 reports have been collected (Fig. 1) over the

Swiss territory (approximately 40000 km2), making it a particularly rich and dense ground-based hail observation dataset.90

Crowdsourced observations can contain wrong reports, both intended (jokes) or unintended and must be filtered to keep only

plausible hail occurrences. This is done by identifying suspicious reporting patterns and by checking that a convective cell

3



was present in the neighborhood of the report (as explained further in section 2.5). In a previous study by Barras et al. (2019),

convective cell environments were identified requiring a minimum radar reflectivity of 35 dBZ. However, this filtering method

renders the observations dependent on the same radar signal used to compute the hail metrics to be verified. Therefore, we95

test a spatio-temporal clustering method (ST-DBSCAN; Birant and Kut, 2007) based solely on the data to remove implausible

reports.

The aims of this paper are i) to filter crowdsourced hail observations and ii) to make a detailed verification of POH and

MESHS and to suggest a potential recalibration of POH. More specifically, we address the following questions:

– What are the advantages and limitations of the spatio-temporal clustering method to filter crowdsourced hail observa-100

tions?

– What is the skill of POH and MESHS in terms of the hit rate (H), false alarm rate (FAR), Critical Success Index (CSI)

and Heidke Skill Score (HSS)?

– What is the sensitivity of H, FAR, CSI and HSS for POH and MESHS to the distance buffer and to the filtering method?

– Is POH adequately calibrated to be used as a probability of hail at the ground?105

– How could POH be recalibrated based on the filtered crowdsourced reports?

We introduce the radar and crowdsourced data in sections 2.1 and 2.2. We present our approach to minimize wrong false

alarms in section 2.3 and our choice of verification period in section 2.4. We discuss the filtering of the crowdsourced data

in 2.5. We present our approaches for verification in section 2.6. The results of the verification of POH and MESHS with the

maximum upscaling approach are presented and discussed in sections 3.1 and 3.2, respectively. The verification of POH as a110

probability is presented and discussed in section 3.3 and the recalibration of POH is suggested in section 3.4. Finally, general

conclusions and further developments are discussed in section 4. Appendix B follows the first study using crowdsourced reports

in Switzerland (Barras et al., 2019) to estimate the fraction of matches with POH and MESHS and makes a comparison with

their results.

Figure 1. Yearly number of hail crowdsourced reports from the MeteoSwiss app.
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2 Data and Methods115

2.1 Radar data and radar-based hail metrics

The Swiss weather radar network is composed of 5 identical, dual-polarisation, C-band Doppler radars: 2 on the northern side

of the Alps mountain ridge, 2 inside the Alps, and 1 on their southern side (see Fig. 1 of Germann et al., 2022). All radars are

on mountain tops but shielding of the radar beam can occur below 3 km height. This is not a major issue for hail detection

and sizing as the relevant altitude range over which the corresponding radar metrics are computed is mostly higher (for more120

details see Nisi et al., 2016). The antenna scan program has a high resolution in time (5 minutes) and in the vertical direction

(20 elevation angles), which is typically more than in other countries (for more details see Germann et al., 2022). This large

number of elevation angles makes Switzerland a unique region to verify POH and MESHS which are based on the vertical

structure of radar echoes.

The 45 and 50 dBZ echo top height products (ET45 and ET50) are used to calculate POH and MESHS, respectively. ET45125

and ET50 represent the highest altitude at which a radar reflectivity of at least 45 and 50 dBZ, respectively, is measured. Both

echo tops are calculated from a three-dimensional composite of the five radars, and the resulting value is then used to compute

POH or MESHS. ET45, ET50, POH, and MESHS are two-dimensional, gridded Cartesian products with a horizontal resolution

of 1 km × 1 km and a temporal resolution of 5 minutes.

The finite temporal resolution of the radar products can produce striped patterns (or "jumping cells") in case of fast-moving130

hailstorms (see, for example, Fig. 3 of Kunz and Kugel, 2015). An advection correction routine to interpolate between time

steps and obtain a smoothed signal is usually applied (see, e.g., Lukach et al., 2017). Currently, no advection correction is

applied to the products from the Swiss radar network, but the problem of jumping cells is significantly alleviated by the fast

scan strategy of the radar network (Germann et al., 2022). The antenna rotation speed is comparatively high (3 to 6 rotations per

minute), and the scan program uses an interleaved approach with two half-volume scans, completed every 2.5 min with 20 full135

sweeps achieved in only 5 minutes (see Fig. 14 of Germann et al., 2022). Cartesian radar products such as POH and MESHS

combine the two most recent half-volume scans and hence take advantage of the interleaved approach. Visual inspections of

several daily POH and MESHS maps did not reveal any visible jumping cells over the regions considered in this study.

The POH and MESHS metrics require information on the environmental freezing level height (H0). H0 is retrieved from

the Consortium for Small-Scale Modeling numerical weather prediction model (COSMO-1E COSMO, 2021). Operational140

COSMO runs by MeteoSwiss were used in this study. The horizontal resolution of H0 is the same as the echo tops, and its

temporal resolution is 1 h. The H0 value of an hour (e.g. 15 UTC) is used to compute the radar metrics for all 5-minute time

steps within the hour (15:00 UTC, 15:05 UTC, ..., 15:55 UTC) without interpolation.

The POH metric implemented at MeteoSwiss (Trefalt et al., 2022) is the third-order polynomial fit developed by Foote et al.

(2005) based on the Waldvogel et al. (1979) data:145

y =−1.20231+1.00184(ET45−H0)− 0.17018(ET45−H0)
2 +0.01086(ET45−H0)

3 (1)
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with ET45 and H0 in kilometers. Figure 2 shows the polynomial fit and the corresponding step function. For example,

a value of ET45−H0 = 4.2 km corresponds to POH = 80%. POH = 0% for ET45−H0 < 1.65 km and POH = 100% for

ET45−H0 ≥ 5.8 km.

Figure 2. Polynomial fit by Foote et al. (2005) used for POH.

The MESHS metric implemented at MeteoSwiss (Trefalt et al., 2022) follows the nomogram from Joe et al. (2004) based150

on Treloar (1998). It estimates the maximum hail size on the ground based on the values of ET50 and H0 according to the set

of equations in chapter 3.1.4 of Trefalt et al. (2022).

Figure 3 shows the corresponding functions for 2, 4, and 6 cm hail size as a function of ET50 and H0 in meters.

Figure 3. Functions upon which the MESHS algorithm is based for 2, 4, and 6 cm maximum hail size. MESHS depends on the relation

between H0 [m] on the x-axis and ET50 [m] on the y-axis.

For more information about the implementation of POH and MESHS at MeteoSwiss, the reader is referred to Trefalt et al.

(2022).155

The maximum column reflectivity product (CZC) is defined as the largest reflectivity measured for a given 5-minute time

step (i.e.: a full 20-elevation volume scan) at a given location. CZC is also a three-dimensional composite of the five radars. It
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is used as a filter to determine if crowdsourced reports were sent in the neighborhood of a convective environment (see the B19

filter definition in section 2.5).
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Table 1. Successive crowdsourced hail report size category schemes.

Initial scheme Current scheme (old labels) Current scheme (current labels)

(05.2015 - 09.2017) (09.2017-10.2021) (11.2021-today)

No hail No hail No hail

Smaller than coffee bean < 1 cm (smaller than coffee bean)

Coffee bean Coffee bean 1 cm (coffee bean)

One Swiss franc coin One Swiss franc coin 2 cm (One Swiss franc coin)

Five Swiss franc coin Five Swiss franc coin 3 cm (Five Swiss franc coin)

Larger than five Swiss franc coin Golf ball 5 cm (Golf ball)

Tennis ball > 7 cm (Tennis ball)

2.2 Crowdsourced data160

The crowdsourcing function of the MeteoSwiss app was introduced in May 2015, and allows users to report the hail size

category, time, and location using their smartphone. Each size category is labeled with a reference object. The function was

introduced in May 2015 with an initial category scheme, which was extended in September 2017. Then, during October 2021,

an explicit size in centimeters was added to the category labels (see Table 1). Before that, the size range corresponding to each

category was not explicitly mentioned to the user. The purpose of the category "Smaller than coffee bean" was to specifically165

identify other types of hydrometeors smaller than hail according to its WMO definition (< 0.5 cm; World Meterological

Association, 2017), such as graupel or sleet. The explicit addition of the size label "< 1 cm" to this category introduced an

uncertainty on the type of hydrometeor reported by the user after October, 2021. For this reason, we do not exclude this

category to remove potential graupel and sleet observations but rather focus on a specific period of the year (see section 2.4).
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2.3 Approaches for minimizing wrong false alarms170

"Wrong false alarms" happen at locations where the radar products indicate the presence of hail and hail reached the ground

but no crowdsourced reports are submitted because no user of the app is around to report. To minimize the number of artificial

false alarms, we restrict our verification to (i) densely populated regions, to (ii) the time period where the reporting function

was easily accessible (2020 onward), and (iii) to the daylight hours when users are awake.

The population density is derived from the Swiss Federal Statistical Office population estimation for 2021 (FSO GEOSTAT,175

2022). In a first step, the initial population numbers per 100 m2 are aggregated and summed on the same Cartesian grid as the

radar metrics (1 km × 1 km). Then, two densely populated regions are delineated using two distinct approaches.

For the first region, we start by retaining only grid cells with more than 100 inhabitants. This threshold is based on the

assumption that if a person can see up to 100 m around, then a hundred people can cover akm2, provided that they are

equally distributed in space. Considering a higher threshold would strongly reduce the area and make it too discontinuous. A180

morphological dilation operation using a 3 km × 3 km structuring element is further applied to each grid cell to remove small

holes in the populated areas and make the region as continuous as possible. The dilation also allows for neighboring pixels to

be included, accounting for the potential wind drift of hail. Finally, only continuous areas of 200 km2 or more are retained, to

remove small isolated areas mainly located in valleys. The resulting region is called Swiss100 and encompasses 20142 km2

(Fig. 4b, green area). This region has the advantage of being large and including part of the area where hail is most frequent in185

Switzerland. However, it also includes some less-populated areas and narrow valleys where hailstorms have less chance to be

reported.

For those reasons, we also consider an extended urban area of 1000 km2 centered over Zurich, Switzerland’s most populated

city, including several other smaller cities. This region is called ZRH (red rectangle in Fig. 4c). Only a few isolated km2 of the

ZRH region have less than 100 inhabitants (see Fig. 4b), such that all hailstorms are likely to be reported. However, it covers190

only a limited portion of Switzerland.

We consider only reports sent under the current category scheme (see Table 1) to avoid the uncertainty of reconciling

data from both schemes. From September 2017 to July 2020, the reporting function was more difficult to find to test if it

would reduce the number of fake or joke reports (Barras et al., 2019). However, while the report quality improved, this also

significantly reduced the number of reports during those years (see Fig. 1). Consequently, our verification uses data from 01195

August 2020 to 15 October 2023, to ensure a sufficient report density for the clustering algorithm to work.

Finally, we limit our analysis to the daylight hours to ensure enough users are awake to make reports. Switzerland uses

Central European Summer Time (CEST) during the summer, which is two hours ahead of Coordinated Universal Time

(UTC+02:00:00). Consequently, we compute the daily maximum of the radar metric between 6:00:00 UTC to 21:00:00 UTC

(e.g.: 8:00:00 and 23:00:00 CEST) and consider only reports sent between 6:00:00 UTC to 21:15:00 UTC (we allow a 15-200

minute delay for the user to send a report). We note that less than 6% of the reports are sent between 21:15:00 UTC and

6:00:00 UTC (the interested reader is referred to Fig. 5 of Barras et al. (2019) for a distribution of the reports per UTC hour).
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Figure 4. (a) Mean number of yearly hail days in 2013-2021. (b) Map of Switzerland showing the Swiss100 (green area) and ZRH (red

rectangle) regions. The purple patches show the main urban areas of Switzerland according to the Natural Earth populated areas dataset

(Patterson, T. and Vaughn Kelso, N., 2023). (c) Zoom on the ZRH region (© swisstopo, public.geo.admin.ch).

Applying those restrictions, we are left with 157795 reports for the Swiss100 region and 18500 for the ZRH area (first two

lines of Table 2).
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2.4 Choice of verification period205

The hail or convective season in Switzerland is usually defined as the summer half-year from April to September (Nisi et al.,

2016; NCCS, 2021). We found that the season with the largest number of reports without a corresponding POH signal (misses)

was spring. Indeed, 8 days among the 10 days with the largest number of misses over the Swiss100 region occurred in March,

April, or May. Since October 2021, users have had the option to upload a picture with their report. A visual inspection of some

of the pictures sent by users on the spring days with many misses revealed that most of the reports corresponded to ice particles210

< 5 mm in diameter, sleet, or graupel. This is coherent with the environmental conditions prevailing in spring that do not allow

for deep convective storms that usually produce hail (Doswell, 2001).

POH and MESHS were originally designed and calibrated using only hail cases from the summer months (June, July and

August): Waldvogel et al. (1979) explicitly discarded cases of graupel/sleet showers originating from cold lows while the hail

observations used by Treloar (1998) have diameters ≥ 5 mm. Consequently, we decided to focus on the summer season (June215

to August) to remove the ice particles < 5 mm in diameter and sleet cases happening in spring and make the verification in

conditions similar to their calibration. Nevertheless, we note that the number of misses (and hence the hit rate) would be slightly

lower if one considers the entire convective season. The remaining reports are 106923 for the Swiss100 region and 10941 for

the ZRH region (Table 2).
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2.5 Filtering methods for the crowdsourced reports220

First, the data is preprocessed according to the following filters: any duplicate of the same user ID, time (rounded to 5 min-

utes), coordinates (rounded to 1 km), and size is removed. Suspicious reporting patterns are identified according to the filters

described in Barras et al. (2019) with an additional filter identifying users sending more than 4 reports per day. This additional

filter was added to remove potential spamming cases, assuming that a user will send a single report per hailstorm and that it

would be very unlikely for a user to encounter more than 4 different hailstorms during the same day. The corresponding reports225

are removed. We also apply the time filter to discard reports with more than 30 minutes difference between the submission time

and event time (in case the user manually changed the time). Finally, we compare two distinct methods to check the plausibility

of the remaining preprocessed reports:

– The reflectivity filter from Barras et al. (2019): only reports with CZC ≥ 35 dBZ within 4 km radius and 15 min time are

kept (B19 filter)230

– A new spatio-temporal clustering approach (ST-DBSCAN Birant and Kut, 2007) proposed in this paper (Hail Report

Clustering or HRC filter)

ST-DBSCAN was first introduced by Birant and Kut (2007) as an extension of the existing DBSCAN algorithm (Ester et al.,

1996) to data with time dimension. DBSCAN stands for Density-Based Spatial Clustering of Applications with Noise. It can

discover clusters of data with arbitrary shapes and does not require predetermining the number of clusters. We use the Python235

implementation of the algorithm presented by Cakmak et al. (2021) as the basis for the hail report clustering (HRC) filter.

The principle of the HRC filter is that if two reports are within a given distance (EpsD) and time window (EpsT), they are

grouped together. Then, if a minimum number of reports are grouped together, they are labeled as a cluster and only clustered

reports are retained while the others are removed. The idea behind keeping only clustered reports is that if several users located

in the same spatial neighborhood send hail observations within a short time window then the plausibility that hail occurred is240

increased compared to single, isolated reports.

During preliminary tests of the clustering algorithm (not shown), we noticed that increasing the minimum number of reports

to form a cluster was equivalent to decreasing EpsD and EpsT, as both resulted in fewer reports being clustered. Hence, we

decided to fix this minimum number to a reasonable value and only vary EpsD and EpsT. In our case, we require at least 5

grouped reports to form a cluster because it is large enough to be confident that hail occurred (5 different users reporting hail245

independently) and because values of ten or more would be too restrictive with respect to the density of users according to our

tests.

We illustrate the HRC filter and discuss the choice of the EpsD and EpsT parameters in the following section.
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2.5.1 Illustration of the HRC and B19 filters: example of 20 June 2021

Figure 5a shows the hail observations of 20 June 2021. This day featured widespread and intense hail activity with several250

storms crossing the northern part of Switzerland from southwest to northeast. An extended region of large MESHS values

(red areas) enclosed by the daily maximum POH contour (in green) is visible. 4164 crowdsourced reports were sent. Figure

5b shows when the crowdsourced reports were sent. Groups of reports sent during the same UTC hour have the same color,

and reports sent before or after stand out with their different color. Such time outliers can be intended false reports (jokes)

or non-intended errors made by users. Non-intended errors can be made when a user witnesses hail, and cannot report at the255

moment but does so several hours later and forgets to change the report’s time (or location) manually.

Figure 6a shows the results of the application of the clustering algorithm with a distance parameter (EpsD) of 12 km and a

time parameter (EpsT) of 12 minutes. The clustering algorithm creates groups of reports similar to those identified in Fig. 5b

(colored dots) and removes the time and distance outliers (grey dots). We can apply the B19 filter to the same data (Fig. 6b)

and compare the results of the two filters. Most reports are either retained (green dots, 3321 reports) or removed (grey dots, 557260

reports) by both filters. 124 reports are retained by the HRC filter but removed by the B19 filter. Potential gaps in the CZC radar

product can impact the B19 filter. However, as we work with composites from the five radars, each pixel within Switzerland

is usually seen by at least two or more radars from different directions, hence minimizing such gaps. Assuming that the B19

filter has very limited gaps, and as it is unlikely that hail occurs below 35 dBZ, those reports are likely intended false reports

or non-intended errors. This is one limitation of the HRC filter: it can retain clusters composed of false reports and errors, or,265

more likely, retain false reports or errors accidentally clustered with correct reports. However, 124 reports represent a small

fraction ( 3%) of the total reports. Finally, 162 reports are removed by the HRC method while retained by the B19 method.

2.5.2 Parameters of the HRC filter

Whether a report is included in a cluster depends on the EpsD and EpsT parameters. We consider the 3 following sets of

parameters to assess the sensitivity of our results to the choice of parameters:270

– 8 km distance and 8 minutes maximum time (8km/8min)

– 12 km distance and 12 minutes maximum time (12km/12min)

– 16 km distance and 16 minutes maximum time (16km/16min)

The pairs of distance and time correspond to a 60 kmh-1 propagation velocity of the storm, allowing the capture of fast-

moving hailstorms in Switzerland (Nisi et al., 2018). They also account for the fact that users may not send their reports275

immediately when they see hail. We also looked at shorter distances and times but found that they were too small to capture all

the relevant reports. In contrast, larger distances and times resulted in clustering unrelated reports.
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Figure 5. (a) Hail observations of 20 June 2021: POH ≥ 80% areas (green contours), daily maximum MESHS (red color scale), location of

crowdsourced reports (purple dots, largest sizes are darker), sensor impacts (yellow to red dots). (b) 4164 crowdsourced reports of 20 June

2021, colored according to the UTC hour at which they were sent.
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Figure 6. (a) 4164 crowdsourced reports of 20 June 2021. Colored dots show clustered reports (EpsD = 12 km and EpsT = 12 min) and grey

dots show reports that are not part of a cluster. (b) 4164 crowdsourced reports of 20 June 2021. Green dots show the reports retained by both

the HRC and the B19 filter; Red dots show the reports only retained by the HRC filter; Blue dots show the reports only retained by the B19

filter; Grey dots show the reports removed by both filters.
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2.5.3 Motivations for using the HRC and B19 filters

The B19 filter efficiently removes reports sent without a storm occurring at the report location and time. However, it is not fully

independent from the POH and MESHS products which use the 45 dBZ and 50 dBZ echotops, respectively. On the other hand,280

the HRC filter relies solely on the data itself, making it fully independent from the verified radar metrics. The main limitation

of the HRC filter is that it assumes that the app coverage and the population density are sufficient to generate enough reports to

be clustered. The precautions taken to minimize wrong false alarms described in section 2.3 also help ensure that those criteria

are met.

If we apply the B19 and HRC filters to the complete set of reports (first line of table 2), we find that they agree on 87%285

(EpsD = 8 km, EpsT = 8 minutes) to 96% (EpsD = 16 km, EpsT = 16 minutes) of the reports (i.e. the report is either retained

or removed by both filters. Both filters can also be combined by clustering only reports retained by the B19 filter, or by first

applying the HRC filter and then the B19 filter on the retained clustered reports. We also test the latter combination (B19 +

HRC). Such a combination is not fully independent from the radar metrics. However, it removes part of the false reports and

errors that may have been clustered with correct reports, further improving the quality of the observations.290
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2.6 Verification framework

We verify the hail radar metrics against the hail observations from the crowdsourced reports using a maximum upscaling

approach (see eg. Ebert, 2008) to incorporate the distance buffer. We start by considering each day of the period and compute

a hail radar detection grid and a hail observations grid. Cells of the radar detection grid where the daily maximum value of

the radar metric is equal to or above a certain threshold are set to 1 (1-cell), and the other cells are set to 0 (0-cell). For POH,295

threshold values ranging from 1% to 100% with intermediate steps of 10% are considered, whereas MESHS values of 2, 3, 4,

and 6 cm are considered. Cells of the observations grid with at least one filtered crowdsourced report are set to 1, and the other

cells are set to 0. Days without at least one grid cell of the region with either a hail observation or a hail radar detection are

discarded.

Hail radar detection and observation grids are computed on consecutively larger squared areas of 1 × 1, 2 × 2, up to 10 × 10300

grid cells (1, 4, up to 100 km2, respectively) by taking the maximum over that area, the 1 × 1 area simply being a grid cell by

grid cell comparison. We then build a contingency table of detections and observations as follows (Hogan and Mason, 2011):

An area with radar detection confirmed by an observation is classified as a hit (A). An area with radar detection not confirmed

by an observation is classified as a false alarm (B). An area without radar detection but with an observation is classified as a

miss (C). Finally, an area without radar detection and an observation is considered a correct negative (D). The second row of305

Fig. 7 illustrates this approach using a 3 × 3 grid cells area on two initial situations.

From these outcomes, the hit rate (H), false alarm ratio (FAR), critical success index (CSI) and Heidke skill score (HSS) are

calculated as follows (Hogan and Mason, 2011):

H =
A

A+C
FAR=

B

A+B
CSI =

A

A+B+C

310

HSS =
2 ∗ (A ∗D−B ∗C)

(A+C) ∗ (C +D)+ (A+B) ∗ (B+D)
=

PC −PCrand

1−PCrand
PC =

A+D

A+B+C +D

The range of H, FAR, CSI is from 0 to 1, with 1 for a perfect detection for H and CSI, and 0 for FAR. The range of

HSS is −∞ to 1, with 1 for a perfect detection. H is sensitive to hits but ignores false alarms, increasing with overdetecting

events. FAR is sensitive to false alarms but ignores misses, increasing with underdetecting events. CSI measures the fraction315

of correct detections and includes false alarms and misses. HSS is a forecast skill score based on the proportion correct (PC),

which quantifies the accuracy of the radar metric detection compared to a random detection (PCrand). PC considers the correct

rejections (or the nonevents) and thus estimates the ability of the radar metric to correctly predict such nonevents, which

happens frequently as hail is rare. An HSS greater than 0 means that the detection metric has a better skill than random

detection. The maximum upscaling approach hence helps us to verify the performance and skill of the radar metric.320

We use a different approach to verify that POH is calibrated as probability. We would like to answer the question: What is

the probability of observing hail given that a POH signal detects hail within a certain distance? Holleman (2001) suggested
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that a hail detection method (the Waldvogel criteria or any other) can be used to produce a probability of hail defined as POH

= 1 - FAR, where FAR is the false alarm ratio as defined above. A radar grid cell value above a certain threshold indicates a

probability of hail which is equal to 1 - FAR at that threshold. 1 - FAR is also called the Success Ratio (see, e.g.: Roebber,325

2009).

The FAR values calculated using the maximum upscaling approach could also be used to compute the probability of ob-

serving hail. However, the results would depend on the shape of the upscaling area and on how the shape is applied to the

observation and radar grids (border effects). We prefer to use a quantity that depends only on the relative position of the ob-

servations and radar detections, which we call FARprob to avoid any confusion with the FAR computed with the upscaling330

approach.

FARprob is the ratio of radar signals matching a crowdsourced report within a given spatial and temporal neighborhood (one

day in this case). Each 1-cell of the radar grid is considered a hit if the distance between the center of the cell and a report

location is within a matching distance. Otherwise, it is a false alarm. FARprob is simply the number of false alarms divided

by the total number of 1-cell of the radar grid. The third row of Fig. 7 illustrates the computation of FARprob using a 1 km335

matching distance.

This approach is similar to the one used in Barras et al. (2019) to compute the fraction of matches that we discuss in B.

In this case, each 1-cell of the observations grid is considered a hit if the distance between the report location and the center

of a 1-cell of the radar grid is within the matching distance. The fraction of matches is simply the number of hits divided by

the total number of observations. The fourth row of Fig. 7 illustrates the computation of the fraction of matches using a 1 km340

matching distance.

FARprob is not suitable to verify the performance and skill of the radar metric because a single observation cell can be used

to match several radar cells. The fraction of matches is also not suitable for verification because a single radar cell can be used

to match several observation cells.

Finally, two sets of crowdsourced reports are considered for the verification: one with all the size categories (complete set)345

to verify POH and another with categories > 2 cm (One Swiss franc coin, Five Swiss franc coin, Golf ball and Tennis ball;

hereafter the > 2 cm set) for verifying MESHS. For this second set, the clustering algorithm is performed only with the four

selected categories. Table 2 shows the corresponding number of reports by region, filtering method and set.
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Figure 7. Illustrations of the maximum upscaling approach (second row) and of the calculation of FARprob (third row) and the fraction of

matches (bottom row, see appendix B) for two initial situations (A) and (B). In (A): H = 0.56, FAR = 0.17 initially; H = 0.5, FAR = 0 after

applying a 3 km × 3 km maximum uspcaling; FARprob = 0 and fraction of matches = 78% for a 1 km matching distance. In (B): H = 0.71,

FAR = 0.29 initially; H = 1, FAR = 0 after applying a 3 km × 3 km maximum uspcaling; FARprob = 0.14 and fraction of matches = 86% for

a 1 km matching distance.
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Table 2. Number of crowdsourced reports per region, season and filtering method from 01.08.2020 to 15.10.2023. In parenthesis: reports

with size > 2 cm.

Region Time period Filtering method Observations number

Complete set (> 2 cm set)

Swiss100 Year None 157795 (42904)

ZRH Year None 18500 (3908)

Swiss100 Summer None 106923 (35147)

ZRH Summer None 10941 (2928)

Swiss100 Summer HRC 8km/8min 80757 (23707)

Swiss100 Summer HRC 12km/12min 84792 (24938)

Swiss100 Summer HRC 16km/16min 87804 (25944)

Swiss100 Summer B19 92467 (29019)

Swiss100 Summer B19 + HRC 8km/8min 80499 (23568)

Swiss100 Summer B19 + HRC 12km/12min 83945 (24673)

Swiss100 Summer B19 + HRC 16km/16min 86047 (25474)

ZRH Summer HRC 8km/8min 8302 (1726)

ZRH Summer HRC 12km/12min 8616 (1812)

ZRH Summer HRC 16km/16min 8876 (1885)

ZRH Summer B19 9213 (2212)

ZRH Summer B19 + HRC 8km/8min 8283 (1722)

ZRH Summer B19 + HRC 12km/12min 8516 (1799)

ZRH Summer B19 + HRC 16km/16min 8692 (1853)
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3 Results and Discussion

3.1 Verification of POH with the upscaling approach350

In this section, we use the maximum upscaling approach to analyze the skill of POH in terms of the hit rate (H), false alarm

ratio (FAR), critical success index (CSI), and Heidke skill score (HSS), as a function of the POH threshold. The complete set

of observations is used (all report sizes). We assess the sensitivity of the results to the upscaling area and to the filtering method

and compare our results with previous studies.

The results for the Swiss100 and ZRH region are comparable and most of the conclusions are identical for both. Therefore,355

we discuss in detail the results for the ZRH region in this section, while the figures for the Swiss100 region are shown in

appendix A. We chose to discuss the ZRH region because we think that it has a higher and smoother population density

compared to the Swiss100 region, which likely leads to a better estimate of the false alarm ratio.

Figure 8 shows the results using the B19 + HRC 8km/8min filter for various upscaling areas, an upscaling area of 1 km ×
1 km being equivalent to the original grid resolution. The FAR, CSI and HSS improve when increasing the upscaling area,360

while H remains almost constant. The fact that H does not improve more significantly with increasing upscaling area might

seem counterintuitive at first sight, but it is a consequence of the patterns of the observations and detections grids. For example,

applying a 3 km × 3 km upscaling on the situation (A) of Fig. 7 results in a decrease of H from 0.56 to 0.5, while the same

upscaling on the situation (B) of Fig. 7 results in an increase of H from 0.71 to 1. The largest improvement occurs when passing

from the original grid cell resolution to a 2 km × 2 km area, and going from a 5 km × 5 km to a 10 km × 10 km results only365

in minor improvement.

As mentioned in the introduction, most previous studies implicitly incorporated this wind drift effect because the spatial

resolution of their observations (or radar detections) was coarser (10 km or more). We would like to use a distance buffer that

correctly reflects the wind drift effects. Considering that most studies reported wind drift distances below 4 km, while Hohl

et al. (2002) documented values reaching up to 4.3 km for hailstorms in Switzerland, we selected a 4 km × 4 km area as a370

compromise to further assess the skill of POH.

Figure 9 compares the results of the different filtering methods considering a 4 km × 4 km area. For the HRC methods,

H and, to a lesser extent, FAR increase with decreasing space and time parameters. We have seen that smaller distance and

time parameters are more stringent conditions for reports to be clustered, thus reducing the number of hail observations for

verification. With fewer observations, false alarms from the radar metrics are more likely to occur. The higher H corresponding375

to smaller distance and time parameters might be explained by the fact that clustering effectively removes spatial outliers

corresponding to (wrong) observations made far from a hailstorm.

The B19 method (blue curve in Fig. 9) has the lowest (worst) H and the lowest (best) FAR. This method filters out fewer

reports than the HRC methods, explaining its low FAR, and potentially keeps more wrong reports, explaining the low H. We

see that applying the B19 filter on top of the HRC filter (B19 + HRC) has a very limited impact on all scores. In fact, the HRC380

8km/8min (red) and B19 + HRC 8km/8min (pink) curves are superimposed for all scores (Fig. 9).
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The FAR values for a 4 km × 4 km area are between 0.3 (B19 filter and 100% threshold) and 0.7 (B19 + HRC 8km/8min

and 1% threshold), reaching 0.45-0.55 for the best corresponding HSS values (0.48-0.52, Fig. 9). This is lower than in some

previous studies verifying POH despite their use of a coarser grid resolution. Kunz and Kugel (2015) found values between

0.7 and 0.8 for a 10 km grid cell, using 15 years of hail damage claims to buildings in Baden-Württemberg, Germany. Nisi385

et al. (2016) found values between 0.49 and 0.95 for 25 urban areas, each being 10’s of km2 wide, using car insurance reports

between 2003 and 2012. Such higher FAR values are likely explained by the fact that buildings and cars are damaged by

hailstones at least larger than 2 cm. In contrast, crowdsourced reports capture all hail sizes and have better area coverage.

Holleman (2001) found slightly lower FAR values (0.2 to 0.5) using observations from weather stations and damage reports

from agricultural insurance companies between May and September 2000. However, they accounted for the fraction of unre-390

ported events in their approach and allowed for a positioning tolerance of 12.5 km. Puskeiler et al. (2016) found slightly lower

FAR values (0.2 to 0.6) for their dataset of hail damage claims to buildings, and 5 km × 5 km area.

We also note that Waldvogel et al. (1979) reported a FAR of 0.5 using data from hailpads, and considering individual storms.

Kessinger et al. (1995) verified four hail detection algorithms, including a version of POH, and found FAR values smaller than

0.06 for all of them (0.04 for POH). Such values are surprisingly low compared to the rest of the literature and might be due395

to their consideration of hydrometeors < 5 mm as hail, their 15 km influence region, or their storm selection process, which is

not detailed in the above-mentioned reference.

The CSI and HSS values are very close for the six methods incorporating HRC (Fig. 9), while the values for the B19 method

alone are visibly lower. The highest CSI (0.37) and HSS (0.52) are reached with the B19 + HRC 8km/8min filter at a threshold

of 60%. Both Holleman (2001) and Nisi et al. (2016) found slightly higher optimal CSI: 0.42 and 0.45, respectively, while400

Kunz and Kugel (2015) found a much lower CSI (< 0.2) and HSS (< 0.3). Puskeiler et al. (2016), on the other hand, found

higher HSS values reaching up to 0.7.

For the Swiss100 region CSI and HSS peak at 80% (see appendix A). It is interesting to note that the optimal threshold for

the Swiss100 region according to CSI and HSS corresponds to the one that has often been used in the literature to derive hail

days (Nisi et al., 2016, 2018; Madonna et al., 2018; NCCS, 2021). We also note that both CSI and HSS for the ZRH region are405

almost constant between thresholds of 1% to 80%, such that the 80% is also close to optimal for this region.
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Figure 8. POH hit rate (H, top left panel) and False alarm ratio (FAR, top right panel), Critical Success Index (CSI, bottom left) and Heidke

Skill Score (HSS, bottom right) for the ZRH region, using the B19 + HRC 8km/8min filter applied on the complete set of observations,

stratified by upscaling area (colored curves).
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Figure 9. POH hit rate (H, top left panel) and False alarm ratio (FAR, top right panel), Critical Success Index (CSI, bottom left) and Heidke

Skill Score (HSS, bottom right) for the ZRH region, using the complete set of observations and an upscaling area of 4 km × 4 km, stratified

by filtering methods (colored curves).
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3.2 Verification of MESHS with the upscaling approach

We proceed similarly to the previous section to analyze the skill of MESHS. We use the > 2 cm set of observations and keep

the size categories equal to or larger than the verified MESHS threshold: One Swiss franc, Five Swiss franc, Golf ball and

Tennis ball for MESHS 2 cm; Five Swiss franc, Golf ball, and Tennis ball for 3 cm; Golf ball and Tennis ball for 4 cm; and410

Tennis ball for 6 cm. We mention here that the reports of the Tennis ball size category might be less reliable as this category

supposedly contains most of the joke reports (Barras et al., 2019). Therefore all results for the MESHS 6 cm threshold should

be taken with care. The results for the Swiss100 region are also shown in appendix A.

Figure 10 shows the results using the B19 + HRC 8km/8min filter for the different upscaling areas. As for POH, the FAR,

CSI and HSS improve when increasing the upscaling area, but the effects on H depend on the MESHS threshold. All scores415

worsen with increasing MESHS thresholds, except for the 6 cm threshold of the 10 km × 10 km area where all scores strongly

improve compared to the 4 cm threshold. As mentioned above, the results for 6 cm should be taken with care. We note that this

effect is not visible for the Swiss100 region (see Fig. A3 in Appendix A).

Figure 11 compares the results of the different filtering methods considering a 4 km × 4 km area. As in the case of POH, the

B19 + HRC 8km/8min filter (pink curve) gives the better scores, and the B19 filter alone has the worst scores. The difference420

is particularly striking for H. The FAR is comparable between all methods and remains relatively high (between 0.6 and 0.85).

The same high level of false alarms was also reported by Schmid et al. (2023), who used MESHS to calibrate insurance hail

damage impact functions for buildings and cars. To our knowledge, no other study looked at the FAR of MESHS.

The high FAR of MESHS raises the question of whether MESHS is useful in estimating the maximum hail size. The answer

to this question is not straightforward. First, we note that by definition MESHS is the "Maximum Expected Severe Hail Size"425

over a 1 km2 grid cell and that the largest hailstone over this area might just not be observed by the MeteoSwiss app users,

even in densely populated areas. Second, it is not clear if this maximum expected size should always occur, or if this is only

a necessary but not sufficient condition. In other words, does a MESHS value of 4 cm mean that the conditions for producing

a 4 cm hailstone are met, but it won’t systematically happen; or does it mean that a hailstone of such a diameter should be

produced in all cases? In the first case, not observing a 4 cm hailstone is not a false alarm, whereas it is in the second. For430

MESHS to be useful, its corresponding hailstone size should be observed at least more often than not, which means a FAR

value of 0.5 or lower.

The CSI and HSS values for MESHS are again extremely similar for the six methods incorporating HRC (Fig. 11), while the

values for the B19 method alone are lower. The highest CSI (0.26) and HSS (0.41) are reached with the B19 + HRC 8km/8min

filter for a 2 cm threshold. A CSI below 1/3 means that for every hit, the detection metric produces at least 1 false alarm and 1435

miss, which can be considered poor detection. However, we note that despite high FAR and low CSI values, HSS systematically

remains greater than 0, meaning that MESHS has more skill than random detection.

Finally, we also point out that the sample size of the observations gets smaller as the MESHS size threshold increases. For

example, the sample size using the B19 + 8km/8min clustering filter for the ZRH region has 1722 observations for 2 cm, 296

for 3 cm, 75 for 4 cm, and 20 for 6 cm over the ZRH region and 23568, 6607, 2176, and 386 respectively for the Swiss100440
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region. This is significantly less than the complete set of observations (see Table 2) used for POH but still significantly more

than the sample size used to define MESHS originally (e.g.: 27 observations; Treloar, 1998).

Figure 10. MESHS hit rate (H, left panel) and False alarm ratio (FAR, right panel), Critical Success Index (CSI, bottom left) and Heidke

Skill Score (HSS, bottom right) for the ZRH region, using the B19 + HRC 8km/8min filter applied on the > 2 cm set of observations, stratified

by upscaling area (colored curves). Each MESHS size threshold is verified against size categories equal to or larger than the threshold.
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Figure 11. MESHS hit rate (H, left panel) and False alarm ratio (FAR, right panel), Critical Success Index (CSI, bottom left) and Heidke

Skill Score (HSS, bottom right) for the ZRH region, using the > 2 cm set of observations and an upscaling area of 4 km × 4 km, stratified by

filtering methods (colored curves). Each MESHS size threshold is verified against size categories equal to or larger than the threshold.
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3.3 Verification of POH as a probability

In this section, we compute FARprob as a function of the POH threshold over both the ZRH and Swiss100 region. The complete

set of observations is used (all report sizes). We assess the sensitivity of the results to the matching distance and to the filtering445

method and briefly comment on how they differ from the results obtained with the upscaling approach. FARprob is analyzed to

determine if the current POH calibration is comparable to a probability as suggested by Holleman (2001).

Figure 12 shows the results using the B19 + HRC 8km/8min filter for different matching distances, a matching distance of 0

km (blue curve) corresponding to the original grid resolution (and therefore also to an upscaling area of 1 km × 1 km). FARprob

improves (decreases) with increasing matching distance. The decrease in FARprob remains significant up to 4 km (and even450

for larger distances, not shown). This might indicate that POH overestimates the hailswath area, as increasing the matching

distance will convert the false alarm grid cells surrounding a report into hits. This overestimation was also noticed for MESHS

by Schmid et al. (2023).

FARprob is lower for the ZRH region (Fig. 12, right panel) than for the Swiss100 region (Fig. 12, left panel). This is because

the ZRH region is more densely populated than the Swiss100 region. Some areas of the Swiss100 region might be less populated455

or even without population, due to the dilation operation on the original cell selection based on a density of 100 people per

km2. With a higher average population density and fewer subareas without population, it is less likely for an actual hailstorm

to be missed over the ZRH region. We note here that H and FAR obtained with the upscaling approach are also lower for the

ZRH region than for the Swiss100 region (see Fig. 8 in section 3.1 and Fig. A1 in A).

We selected a matching distance of 2 km to account for the wind drift of hail and to further compare the results of the460

different filtering methods in Fig. 13. The results are consistent with those obtained with the upscaling approach (Fig. 9). The

largest FARprob is reached by the B19 + HRC 8km/8min filter (pink curve), while the smallest FARprob is obtained by the B19

filter alone (blue curve).

The definition POH = 1−FARprob works properly if the maximum and minimum value of FARprob are close to 1 and 0,

respectively. Based on the results from Fig. 12 and 13, we see that the range of values covered by the FARprob curves are too465

restrained to compute a probability. The curves having a maximum FARprob close to 0.9 have a minimum of 0.7 and those

having a minimum FARprob close to 0.2 never get higher than 0.6. Consequently, a recalibration of POH is necessary to have a

well-defined probability. This is done in section 3.4.
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Figure 12. POH FARprob for the Swiss100 (left) and ZRH (right) regions, using the B19 + HRC 8km/8min filter and stratified by matching

distance (colored curves).

Figure 13. POH FARprob for the Swiss100 (left) and ZRH (right) regions, using a matching distance of 2 km and stratified by filtering

methods (colored curves).
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3.4 Recalibration of POH

The results of section 3.3 suggest that the initial range of ET45−H0 values used for POH (1.65 to 5.8 km) is not wide enough470

to compute a probability from the quantity POH = 1−FARprob. In this section, we consider values ranging from -3000 m to

12000 m for ET45−H0, and compute POH = 1−FARprob for each interval of 500 m, using a 2 km matching distance. We

apply the same matching distance approach as described in section 2.6 except that in this case, ET45−H0 must be within an

interval of x and x + 500 m (with x = -3000, -2500, -2500,...,11500 m) and not above some threshold. The choice of the interval

(-3000 m, 12000 m) is based on the distribution of the ET45-H0 values. The lowest and highest values of ET45-H0 for reports475

filtered with the B19 + HRC 8km/8min filter over the Swiss100 region are -4.56 km and 11.91 km, respectively. Large negative

values of ET45-H0 correspond to cases where ET45 is undefined and set to 0 and H0 is high. Hence, values of H0 above 3000

m without reflectivity correspond to a clear sky and high-temperature conditions, where hail is not expected.

Figure 14 shows the results for the ZRH (orange) and Swiss100 (blue) regions using a B19 + HRC 8km/8min filtering

method, compared to the original POH curve (grey, see 1). The orange and blue curves are cubic fits (Eq. 3 and Eq. 5) based480

on the data of the respective region and are shown on Eq. 3 and Eq. 5) with the uncertainty of each parameter. We also tested

quadratic fits, but they exhibited slightly higher uncertainty. We preferred cubic fits because their two inflection points more

accurately represent the shape of the cumulative probability distribution of the data.

yZRH =0.1581(±0.0131)+0.0876(±0.0048) · (ET45−H0)+ 0.0069(±0.0016) · (ET45−H0)
2 (2)

− 0.0007(±0.0001) · (ET45−H0)
3 (3)485

ySwiss100 =0.0603(±0.0137)+0.0628(±0.0050) · (ET45−H0)+ 0.0122(±0.0016) · (ET45−H0)
2 (4)

− 0.0098(±0.0001) · (ET45−H0)
3 (5)

Compared to the original POH calibration, we see that according to the observed data, non-zero probabilities exist for values

of ET45−H0 ≤ 1.65 km and that the probability is less than 100% for ET45−H0 = 5.8 km. The new fits are less steep than the

original one and lead to higher probabilities of hail for ET45−H0 < 2 km and lower probabilities for ET45−H0 > 3 km. The490

use of an extended range of ET45−H0 values results in curves more consistent with a probability, which flatten around 0 and

1, contrary to the original curve. We note that negative values of ET45−H0 still correspond to a non-zero probability of hail.

Such cases could still be related to users reporting graupel or sleet that may still happen in summer. Another likely explanation

is that (small) hail can still occur at maximum column reflectivity slightly below 45 dBZ. In such cases, ET45 is not defined

and set to 0. With a typical freezing level height in summer being above 3000 m, this can lead to the negative values observed495

for ET45−H0.

The probability for the Swiss100 region is lower by approx. 10%-15% than for the ZRH region for the same ET45−H0

value. This is related to the lower level of false alarms of the ZRH region compared to the Swiss100 region (see Fig. 13) and,

as discussed in section 3.3, most likely related to the higher population density of the ZRH region. The Swiss100 calibration is
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Figure 14. Recalibration of POH for the ZRH (orange) and Swiss100 (blue) regions using a B19 + HRC 8km/8min filtering method and a 2

km matching distance. The grey curve is the original POH calibration.

likely more robust because of its larger sample size and is more representative of Switzerland, while the level of false alarms500

for the ZRH calibration might be more realistic.

The calibration is relatively stable with respect to the choice of the filtering method, as shown by Fig. 15, but it strongly

depends on the choice of the matching distance as can be seen in Fig. 16. Indeed, the matching distance is an integral part of

the definition of the probability metric. Strictly speaking, Eq. 3 and Eq. 5 give "the probability of observing hail within a 2 km

radius from the center of a grid cell having a given value of ET45−H0". The probability of observing hail in the neighborhood505

of a given point increases (decreases) with increasing (decreasing) matching distance, which is what Fig. 16 shows.

The original definition of POH did not explicitly incorporate the notion of distance and was likely assumed to be implicitly

related to the spatial resolution of the radar grid (1 km2). The choice of the matching distance depends on the user’s needs. In

our case, we wanted to have the shortest possible distance so that the information is still useful on a local scale while having

a well-defined cumulative probability distribution of the data. The 2 km matching distance satisfied those criteria. We would510

not recommend going below 2 km, which corresponds to the average wind drift value reported in Ackermann et al. (2024), the

most recent study analyzing wind drift effects. The recalibrated POH incorporates the matching distance in its definition but

still has the spatial resolution of the radar grid. Indeed, two adjacent grid cells have different 2 km neighborhoods, so they can

have different values of the recalibrated POH.

Finally, we note that all the curves in Fig.15 and Fig. 16 are cubic fits shown for comparison and illustration purposes, but515

that we did not test fits of other polynomial orders (quadratic or linear) which might be more appropriate in some cases.
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Figure 15. Recalibration of POH for the ZRH region using a 2 km matching distance and for the different filtering methods (colored curves).

The grey curve is the original POH calibration.

Figure 16. Recalibration of POH for the ZRH region using a B19 + HRC 8km/8min filtering method and for different matching distances

(colored curves). The grey curve is the original POH calibration.
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4 Summary, conclusions and outlook

We present a verification of two single polarization radar-based hail metrics used in Switzerland (POH and MESHS) and

suggest a recalibration of POH using a large and dense sample of crowdsourced hail reports gathered through the reporting

function of the MeteoSwiss app. Taking advantage of the high horizontal spatial resolution of the Swiss weather radar network520

(1 km) and of the density and precise GPS positioning of the crowdsourced observations, we can use shorter distances than in

previous studies to match our observations with the radar detections.

We make our verification on densely populated regions, only during the daylight hours and during the period when the app

penetration rate was the highest to minimize the number of wrong false alarms from the radar.

As crowdsourced observations can contain intended (jokes) or unintended (misuse) wrong reports, we compare two filtering525

methods: one based on radar reflectivity (B19) and another new spatio-temporal clustering approach (ST-DBSCAN) based

solely on the data (HRC). While the B19 has the lowest (best) FAR, we find that the HRC methods systematically lead to a

higher H, CSI, and HSS and that combining both methods further improves H. We conclude that spatiotemporal clustering

can advantageously replace reflectivity as a filter and make the filtered observations fully independent from the radar metrics.

This method could be applied to other types of crowdsourced observations that require filtering, with an appropriate choice of530

parameters depending on population density. However, the use of this method also supposes that a majority of people make

correct observations, such that the clustering of wrong observations is limited.

We find lower FAR values (0.3 - 0.7) than in most previous studies verifying POH (Holleman, 2001; Kunz and Kugel, 2015;

Nisi et al., 2016; Puskeiler et al., 2016) using insurance claim data, even though considering a verification grid of smaller

dimensions (4 km × 4 km). This is because hail of at least 2 cm is required to damage cars or buildings, whereas crowdsourced535

reports include all hail sizes and have better area coverage.

The highest CSI (0.37) and HSS (0.52) values are obtained with a threshold of 60% for the ZRH region (80% for the

Swiss100 region), using the B19 + HRC 8km/8min. As CSI and HSS values are almost constant for thresholds between 1%

and 80% for the ZRH region, this confirms the appropriateness of the 80% threshold to derive hail days in Switzerland (Nisi

et al., 2016, 2018; Madonna et al., 2018; NCCS, 2021).540

To our knowledge, we present the first assessment of the skill of MESHS using a contingency table of detections and

observations. We found high FAR values (> 0.6) for all thresholds and methods. The comparison of MESHS and observed

hail size at the ground exhibits a large spread. The highest CSI (0.25) and HSS (0.4), obtained for a 2 cm threshold, are lower

than for POH. However, while we focused on regions with high population density, we acknowledge that it is more difficult to

conclude that the largest hailstone over a MESHS grid cell (1 km2) has indeed been observed than just verifying the presence545

of hail.

We find that the current calibration of POH does not correspond to a probability, because the range of POH = 1−FARprob

values does not cover the [0,1] interval. We suggest a recalibration of POH based on the filtered crowdsourced observations

which effectively cover the [0,1] interval by using a wider range of ET45−H0 values. This recalibration is robust with respect

to the filtering method and explicitly incorporates the matching distance (2 km) in its definition.550
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We focused on the summer months and the recalibration should hence be further tested during the entire convective season

(April to September). The curves for the two regions should be further compared, to determine which one is the most appropri-

ate. Operationally, we also recommend the use of a step function based on our polynomial fit to reflect the related uncertainty

and to set it to 0% when ET45−H0 < 0 km to focus on areas where the probability is > 10-20%.

A more detailed analysis of the situations leading to misses and false alarms could contribute to further improvements in555

POH and MESHS. However, their skill will remain limited because they don’t capture all the relevant processes involved in

hail formation. In that sense, the use of polarimetric radar variables such ZDR or KDP (see e.g. Kumjian, 2013a; Besic et al.,

2016) could help identify the hydrometeors species and delineate the updraft strength and horizontal extension (Doswell, 2001;

Kumjian, 2013b; Allen et al., 2020). However, individual hailstone trajectories within the updraft (Dennis and Kumjian, 2017;

Kumjian and Lombardo, 2020) and the microphysical local conditions (Pruppacher and Klett, 2010) which are especially560

relevant for estimating the sizes of hailstones are much more challenging to observe via operational radars that have to cover

large domains and serve many different types of applications at the same time. This explains why the skill of MESHS is below

that of POH and, more generally, why estimating the presence of hail is easier than estimating its size.

Code availability. The python code used in this study is available on the following github page: https://github.com/jekopp-git/radar_metric_

verifications565

Data availability. TEXT

Code and data availability. TEXT

Sample availability. TEXT

Video supplement. TEXT

Appendix A: Verification with the upscaling approach for the Swiss100 region570

This section presents the results of the verification of POH and MESHS with the upscaling approach for the Swiss100 region.

Compared to the ZRH region, we found slightly higher values for the hit rate and false alarm rate, resulting in slightly lower

values for the CSI and HSS, for both radar metrics. For POH, the highest values for the CSI (0.32) and the HSS (0.48) are

reached at a threshold of 80% instead of 60%.
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Figure A1. POH hit rate (H, left panel) and False alarm ratio (FAR, right panel), Critical Success Index (CSI, bottom left) and Heidke Skill

Score (HSS, bottom right) for the Swiss100 region, using the B19 + HRC 8km/8min filter applied on the complete set of observations,

stratified by upscaling area (colored curves).
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Figure A2. POH hit rate (H, left panel) and False alarm ratio (FAR, right panel), Critical Success Index (CSI, bottom left) and Heidke Skill

Score (HSS, bottom right) for the Swiss100 region, using the complete set of observations and an upscaling area of 4 km ×4 km, stratified

by filtering methods (colored curves).
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Figure A3. MESHS hit rate (H, left panel) and False alarm ratio (FAR, right panel), Critical Success Index (CSI, bottom left) and Heidke Skill

Score (HSS, bottom right) for the Swiss100 region, using the B19 + HRC 8km/8min filter applied on the > 2 cm set of observations, stratified

by upscaling area (colored curves). Each MESHS size threshold is verified against size categories equal to or larger than the threshold.
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Figure A4. MESHS hit rate (H, left panel) and False alarm ratio (FAR, right panel), Critical Success Index (CSI, bottom left) and Heidke

Skill Score (HSS, bottom right) for the Swiss100 region, using the > 2 cm set observations and an upscaling area of 4 km ×4 km, stratified

by filtering methods (colored curves). Each MESHS size threshold is verified against size categories equal to or larger than the threshold.
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Appendix B: Fraction of matches of POH and MESHS575

This section presents the results of the fraction of matches as defined in section 2.6 for POH and MESHS thresholds over

both the ZRH and Swiss100 regions. We use the complete set of observations (all report sizes) for POH and the > 2 cm set of

observations for MESHS, keeping only the size categories equal to or larger than the verified MESHS threshold (as in section

3.2). Again, the results for the MESHS 6cm threshold should be taken with care. We assess the sensitivity of the results to the

matching distance and to the filtering method, briefly comment on how they differ from the results obtained with the maximum580

upscaling approach, and compare our results to those of Barras et al. (2019).

Figure B1 shows the results using the B19 + HRC 8km/8min filter for different matching distances, a matching distance

of 0 km (blue curve) corresponding to the original grid resolution (and therefore also to an upscaling area of 1 km × 1 km).

The fraction of matches improves with increasing matching distance. The largest improvement occurs when passing from the

same grid cell (0 km) to 1 km. This is most likely due to some hail observations being close to the border with a neighboring585

grid cell. The fraction of matches increases only slightly beyond a 2 km buffer and is almost equal to 1 for the lowest POH

threshold (1%) on the Swiss100 region. This means that almost all hail observations are within a neighborhood of 2 km of a

POH signal. There is a strong decrease in the fraction of matches for POH thresholds of 90% and 100% as with the upscaling

approach. For MESHS, the fraction of matches decreases with increasing MESHS thresholds as with the upscaling approach

and the decrease for MESHS 6 cm is particularly large.590

The fraction of matches of POH and MESHS are lower for the ZRH region (Fig. B1, lower panel) than for the Swiss100

region (Fig. B1, upper panel). This can be explained by the fact that the ZRH region is more densely populated than the

Swiss100 region. Some areas of the Swiss100 region might be less populated or even without population, due to the dilation

operation on the original cell selection based on a density of 100 people per km2. It is more likely to have wrong reports with a

higher population density, and more likely for those reports to be clustered together or with correct ones, thereby lowering the595

percentage of matches.

As in Barras et al. (2019), we chose a matching distance of 2 km to account for the wind drift of hail and to further compare

the results of the different filtering methods on Fig. B2. The results are consistent with those obtained with the upscaling

approach (Fig. 9). The largest percentage of matches is reached by the B19 + HRC 8km/8min filter (pink curve), while the

smallest percentage of matches is obtained by the B19 filter alone (blue curve). Barras et al. (2019) found a percentage of600

matches of 54% for the B19 filter and a POH threshold of 1%, using crowdsourced reports over an area that is well covered by

the Swiss radar network (between 45.5°N, 5.6°E and 47.9°N, 10.7°E). We find a significantly larger value of 85% for the same

POH threshold and filter over the Swiss100 region (Fig. B2 top left panel, blue curve), and even larger values for HRC filters.

We think that this large difference is due to two elements. First, we restricted our analysis to the summer months, while Barras

et al. (2019) used reports from all seasons, including winter and spring, where we found that users reported graupel, sleet605

and small hail for which the radar reflectivity is most likely below 45 dBZ. Second, Barras et al. (2019) also used a temporal

neighborhood of 5 minutes before and after the reporting time to match with POH, whereas we consider daily maximum values

of POH (i.e. a temporal neighborhood of 1 day).
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For MESHS, Barras et al. (2019) found a percentage of matches of 41% using the B19 filter and for a 2 cm MESHS threshold,

but considering only the One Swiss franc size category for the verification. Similarly to POH, we find a significantly larger610

value of 66% for the same MESHS threshold and filter over the Swiss100 region (Fig. 9 top right panel, blue curve), and again

larger values for HRC filters. The reasons for this difference are the same as for the POH case (different seasons and temporal

neighborhoods).

Figure B1. Fraction of matches for POH (left column) and MESHS (right column), and for the Swiss100 (top) and ZRH (bottom) regions,

using the HRC 8km/8min filter and stratified by matching distance (colored curves). Each MESHS size threshold is verified against size

categories equal to or larger than the threshold.

40



Figure B2. Fraction of matches for POH (left column) and MESHS (right column), and for the Swiss100 (top) and ZRH (bottom) regions,

using a matching distance of 2 km and stratified by filtering methods (colored curves). Each MESHS size threshold is verified against size

categories equal to or larger than the threshold.
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