Tropospheric Ozone Precursors: Global and Regional Distributions, Trends, and Variability

Yasin Elshorbany1, Jerald R. Ziemke2, Sarah Strode1-3, Hervé Petetin4, Kazuyuki Miyazaki5, Isabelle De Smedt6, Kenneth Pickering7, Rodrigo J. Seguel8, Helen Worden9, Tamara Emmerichs10, Domenico Taraborrelli10, Maria Cazorla11, Suvarna Fadnavis12, Rebecca R. Buchholz9, Benjamin Gaubert9, Néstor Y. Rojas13, Thiago Nogueira14, Thérèse Salameh15, Min Huang16

*Correspondence to: elshorbany@usf.edu

1 School of Geosciences, College of Arts and Sciences, University of South Florida, St. Petersburg, FL, USA
2 NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
3 Goddard Earth Sciences Technology and Research (GESTAR II), Maryland, USA
4 Earth Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
5 Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA
6 BIRA-IASB, Ringlaan 3 Av. Circulaire, 1180 Brussels, Belgium
7 Dept. of Atmospheric and Oceanic Science, University of Maryland, College Park, MD USA
8 Center for Climate and Resilience Research, Department of Geophysics, Faculty of Physical and Mathematical Sciences University of Chile, Chile.
9 Atmospheric Chemistry Observations and Modeling (ACOM), National Center for Atmospheric Research (NCAR), Boulder CO, USA.
10 Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich, Germany.
11 Universidad San Francisco de Quito USFQ, Instituto de Investigaciones Atmosféricas, Diego de Robles y Av Interoceánica, Quito, Ecuador.
12 Center for Climate Change Research, Indian Institute of Tropical Meteorology, MoES, Pune, India.
13 Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, Bogota, Colombia
14 University of São Paulo, São Paulo, Brazil
15 IMT Lille Douai, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, F-59000 Lille, France.
16 University of Maryland, College Park, MD, USA
Abstract

Ozone formation is nonlinear, and results from the photochemical oxidation of methane and non-methane hydrocarbons (NMHCs) in the presence of nitrogen oxide (NO\textsubscript{x}=NO+NO\textsubscript{2}). Previous studies showed that O\textsubscript{3} short- and long-term trends are nonlinearly controlled by near-surface anthropogenic emissions of carbon monoxide (CO), volatile organic compounds (VOCs), and nitrogen oxides. In this article, we investigate tropospheric ozone spatial variability and trends from 2005 to 2019 and relate those to ozone precursors on global and regional scales. We also investigate the spatiotemporal characteristics of the ozone formation regime in relation to ozone chemical sources and sinks. Our analysis is based on remote sensing products of the Tropospheric Column of Ozone (TrC-O\textsubscript{3}) and its precursors, nitrogen dioxide (TrC-NO\textsubscript{2}), formaldehyde (TrC-HCHO), and total column of CO (TC-CO) as well as ozonesonde data and model simulations. Our results indicate a complex relationship between tropospheric ozone column levels, surface ozone levels, and ozone precursors. While the increasing trends of near-surface ozone concentrations can largely be explained by variations in VOC and NO\textsubscript{x} concentration under different regimes, TrC-O\textsubscript{3} may also be affected by other variables such as tropopause height. Decreasing trends in TrC-NO\textsubscript{2} have varying effects on the TrC-O\textsubscript{3}, which is related to the different local chemistry in each region. The concomitant increase or decrease in TrC-O\textsubscript{3} and TrC-NO\textsubscript{2} over the eastern US, and central Europe is due to dominant NO-sensitive conditions resulting from the strict measures to control NO\textsubscript{x} emissions over the last two decades. The decreasing trends of TrC-NO\textsubscript{2} but increasing trends of TrC-O\textsubscript{3} in some regions in the central US and parts of eastern Asia are due to high NO\textsubscript{x} conditions leading to VOC sensitivity in these regions. We also shed light on the contribution of NO\textsubscript{x} lightning and soil NO and nitrous acid (HONO) emissions to trends of tropospheric ozone on regional and global scales.
1. Introduction

Tropospheric ozone (O_3) is an important air pollutant due to its diverse effects on air quality, ecosystem (Mills et al., 2018), health (Lefohn et al., 2018; Fleming et al., 2018), and climate (Boucher et al., 2013; Myhre et al., 2013; Zanis et al., 2022). O_3 is a photochemical product that results from the oxidation of methane (CH_4) and non-methane hydrocarbons (NMHCs) in the presence of nitrogen oxides (NOx). O_3 is considered a short-lived climate forcer (SLCF) and is the third-most important greenhouse with a global average radiative forcing of $(0.34^{+0.09}_{-0.06})$ W m$^{-2}$; IPCC, 2023. Recent studies showed increasing trends of tropospheric O_3, especially in the temperate and polar regions of the Northern Hemisphere, while the evidence in the Southern Hemisphere is unclear (Tarasick et al., 2019; Archibald et al., 2020). Tropospheric O_3 short- and long-term trends are nonlinearly controlled by anthropogenic emissions of carbon monoxide (CO), volatile organic compounds (VOCs), and nitrogen oxides (NOx=NO+NO2). Coupled Model Intercomparison Project Phase 6 (CMIP6) overestimates observed surface O_3 concentrations in most regions, with larger variability over Northern Hemisphere (NH) continental regions (e.g., Tarasick et al., 2019; Turnock et al., 2020). The higher variability in the northern continental regions is due to the variable emissions of ozone precursors (i.e., CO, VOCs, and NOx). CMIP6 models simulate large increasing trends of O_3 and PM$_{2.5}$ with an annual mean increase of up to 40 ppb and 12 μg m$^{-3}$, respectively, over the historical periods (1850-2014). However, these studies found also that CMIP6 models consistently underestimate PM$_{2.5}$ concentrations in the NH, especially during the winter months, and with larger variability near natural source regions, indicating missing sources (e.g., HONO) of O_3 (e.g., Elshorbany et al., 2014). Future scenarios show that emission control measures can influence future changes to air pollutants. Although the global increases in CH_4 abundance may offset benefits to surface O_3 from local emission reductions (Fiore et al., 2002; Shindell et al., 2012; Wild et al., 2012), recent reports (e.g., Zanis et al., 2022), showed the dominant role of precursor emission changes in projecting surface ozone concentrations under future climate change scenarios. In this study, we investigate the relation between ozone trends and the trends of its precursors.

Satellite observations have the advantage of large spatial and consistent temporal coverage. Tropospheric columns of ozone (TrC-O_3), in Dobson unit (1 DU=2.69×1020 molecules m$^{-2}$), are usually used to represent tropospheric ozone levels. The tropospheric column of a species is the species’ concentration integrated from the surface to the top of the troposphere, the tropopause. The tropopause height is dynamically changing, and it varies over time, increasing or decreasing as a function of several factors, including tropospheric and stratospheric temperature (warming or cooling). Steinbrecht et al (1998) found that observed tropospheric warming of 0.7±0.3 K per decade leads to an increase in the tropopause high and a decrease (at a rate of 16 DU/decade) in the observed column ozone levels. Similarly, after removing the variations related to major natural forcings, including volcanic eruptions, ENSO (El Niño–Southern Oscillation), and QBO (Quasi–Biennial Oscillation), Meng et al. (2021) concluded that a continuous rise of the tropopause in the Northern Hemisphere (NH) from 1980 to 2020 is evident, which they related mainly to tropospheric warming caused by anthropogenic emissions. Both Steinbrecht et al (1998) and Meng et al. (2021) calculate the same rate of tropopause increase for the periods 1980-2000 and 1980-2020, respectively. These results could affect calculated tropospheric ozone trends by changing the volume of the troposphere. We investigate the trends in TrC-O_3 and ozone precursors at different column depth and determine their causal relationships.
Global models play a vital role in interpreting the observed trends in ozone precursors, verifying the consistency of emission inventories with observed precursor concentrations, and relating trends in ozone precursor emissions to ozone trends. Because satellite measurements are often sensitive to species concentrations above the surface, models provide additional information on the vertical distribution of ozone precursors needed to relate emissions or surface trends to a column or free tropospheric observations. For example, chemical transport models are used to relate Ozone Monitoring Instrument (OMI) NO$_2$ columns to surface NO$_2$ concentrations and their trends over the United States (e.g. Lamsal et al 2008, 2015; Kharol et al, 2015) since they provide vertical information on the NO$_2$ distribution. Models are also used to infer NO$_x$ emission trends from observations (e.g. Richter et al., 2005; Stavrokou et al., 2008; Miyazaki et al, 2016) or to examine whether simulations driven by state-of-the-art emissions inventories can reproduce observed changes in NO$_x$ (Itahashi et al., 2014; Godowitch et al, 2010). Models also provide insight into the role of background NO$_2$ versus local sources in relating satellite-observed NO$_2$ columns to NO$_x$ emissions changes (Silvern et al, 2019). Similarly, global models are vital for understanding trends in CO, since the lifetime of CO allows both local emissions and long-range transport and the global background to influence regional trends of CO and O$_3$. Duncan and Logan (2008) attributed the decreasing CO in the NH from 1998-1997 to decreasing European emissions and highlighted the role of Indonesian fires in driving interannual variability. Numerical models can also be used to assimilate satellite CO observations to invert for CO emission fluxes, often highlighting differences between bottom-up and top-down inventories (e.g., Kopacz et al., 2010; Fortems-Chiney et al., 2011; Elguindi et al., 2020; Gaubert et al., 2020). For instance, several modeling studies found that the increasing emissions from China in recent years in some emission inventories were inconsistent with the negative trends observed by MOPITT (Yin et al, 2015; Strode et al., 2016; Zheng et al, 2019), while the decreases over the United States and Europe are supported by the observed decrease in CO. Jiang et al (2017) and Zheng et al (2019) also found that a decrease in biomass burning contributes to the negative CO trend in the NH. Mean calculated O$_3$ burden using CMIP6 simulation (Griffiths et al, 2021) revealed an increase of 44% from 1850 to the mean of the period of 2005-2014 and by another 17% until 2100 using the SSP370 experiments. Other sources of NO$_x$ such as lightning and soil emissions play an important role in controlling the O$_3$ budget, especially in low-NO$_x$ regions. We investigate these sources and the role they play in determining O$_3$ trends and variability on regional and global scales, as well as their determining factors.

Previous literature demonstrates the importance of controlling the emissions of ozone precursors to effectively reduce surface O$_3$ levels. Therefore, a thorough and rigorous understanding of the trends and variability for O$_3$ precursors is of paramount importance for a global abatement strategy of O$_3$ levels. In this study, we use ozonesonde, remote sensing, and global models to evaluate tropospheric O$_3$ and O$_3$ precursor trends of CO, HCHO, and NO$_2$, on regional and global scales.

2. Methodology
2.1. Trend Analysis

We analyze the historical trends of tropospheric ozone and its precursors CO, NO$_2$, and HCHO, from 2005 to 2019. For trend analysis, we use two methods, the Quantile regression (QR) method (Chang et al., 2023), and the Weighted Least Squares (WLS). For NO$_2$ and HCHO, and CO trends are calculated based on the QR method (Chang et al., 2023), as follows: (1) we first compute the deseasonalized monthly time series of NO$_2$ and HCHO tropospheric columns...
(hereafter referred to as TrC-NO2, TrC-HCHO), and CO atmospheric column (TC_CO), (2) we use the quantile regression method for computing the trend, focusing here on the median, and (3) uncertainties at a 95% confidence level are estimated using the block bootstrapping approach, through 1000 iterations with blocks size of N^{0.25} with N the number of monthly values. They are calculated over a 1°x1° grid and only in cells where at least 75% of the monthly values are available. TC_CO column (see sec. 2.2.1) time series trends are also calculated as Weighted Least Squares (WLS) of the monthly anomaly, weighted by the monthly regional standard deviation (for comparison with the QR method). For the CO trend map, we use a 12-month running average before computing the linear trend (Buchholz et al., 2021). The tropospheric ozone column (TrC-O3), trends are calculated based on the WLS method. Tropospheric columns of satellite observations are calculated based on the WMO thermal definition of the tropopause. To account for varying tropospheric column definitions used in previous literature, we also evaluate the trends at different column depths.

2.2. Data resources

In this section, we present the different data repositories and their characteristics.

2.2.1. Satellite data

A list of the applied satellite data products and their resolution is shown in Table 1. For Tropospheric ozone data, we use the Ozone Monitoring Instrument/Microwave Limb Sounder (OMI/MLS) product (Ziemke et al., 2006). The OMI/MLS product is the residual of the OMI total ozone column and the MLS stratospheric ozone column, available as gridded monthly means. The tropospheric NO2 column retrievals used were the QA4ECV project (http://www.qa4ecv.eu/ecvs) version 1.1 level 2 (L2) product for OMI (Boersma et al., 2017a), GOME-2 (Boersma et al., 2017b), and SCIAMACHY (Boersma et al., 2017c). The ground pixel sizes of the OMI, GOME-2, and SCIAMACHY retrievals are 13 km x 24 km, 80 km x 40 km, and 60 km x 30 km, with local Equator overpass times of 13:45, 09:30, and 10:00 LT, respectively. We also use HCHO tropospheric columns retrieved from OMI (De Smedt et al. 2018) from the QA4ECV project. Atmospheric total column CO daytime observations were obtained from the MOPITT instrument aboard the Terra Satellite (Barret et al., 2003; Buchholz et al., 2017). Monthly daytime L3 data were obtained at 1° gridded horizontal resolution from the NASA Langley Research Center Atmospheric Science Data Center (ASDC), using version 9 (V9) retrievals, and the joint near-infrared/thermal-infrared product (Deeter et al., 2022).

Table 1. Satellite data products and their reference periods.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Resolution (Satellite pixel size)</th>
<th>Instrument/Platform</th>
<th>Reference Period</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO2</td>
<td>1°x1° (13 km x 24 km)</td>
<td>OMI/Aura</td>
<td>2005–2020</td>
<td>Boersma et al., 2017a</td>
</tr>
<tr>
<td>NO2</td>
<td>1°x1° (40 km x 80 km)</td>
<td>GOME-2/METOP-A</td>
<td>2007–2018</td>
<td>Boersma et al., 2017b</td>
</tr>
</tbody>
</table>
2.2.2. Ozonesonde Data

Direct sampling of ozone throughout the atmospheric column by ozonesondes on board of high-altitude balloons is a primary source of information of the ozone abundance and changes in the free troposphere. Ozonesonde data have been used extensively for satellite ozone product validations, trend analyses, and as a priori climatology profiles for satellite retrieval algorithms (McPeters and Labow, 2012; Labow et al., 2015; Hubert et al., 2021; Christiansen et al., 2022; Newton et al., 2016). Ozonesonede networks around the globe have been providing the ozone community with accurate in situ measurements of high vertical resolution (100-m) for the last 5 decades in the Northern Hemisphere (Krizan and Lastovicka, 2005), nearing 3 decades at stations in the tropics (Thompson et al., 2017), and in the last decade, new efforts are contributing with data from undersampled regions such as the tropical Andes (Cazorla and Herrera, 2022). Other important contributions include dedicated campaigns for regional studies (i.e., Newton et al., 2016; Fadnavis et al., 2023). Figure 1 shows a map with ozonesonde stations around the globe whose data are publicly available from data providers (station names, coordinates, and links for data access in the Supplementary Material, Table S1).
Figure 1: Ozone-sounding stations around the globe (red squares) whose data are publicly available (Table S1). Stations that meet the criteria to calculate trends (Wang et al., 2022) are circled in red.

2.2.3. Model simulations of ozone precursors and their vertical distribution

Model simulations provide information on the vertical distribution of trace gases that can help interpret the observed columns. Here, we use the Goddard Earth Observing System (GEOS) Earth System Model (Molod et al, 2015) running with the GMI chemistry mechanism (Duncan et al, 2007; Strahan et al, 2007; Nielsen et al, 2017) to simulate the contributions of the lower, middle, and upper troposphere to the tropospheric columns of ozone and its precursors. The MERRA-2 reanalysis (Gelaro et al., 2017) constrains the GEOS-GMI meteorology. The GEOS-GMI meteorology is replayed to the MERRA-2 meteorology as described in Orbe et al (2017).

Liu et al (2022) evaluated another GEOS simulation with GMI chemistry with satellite observations of TrC-\(\text{O}_3\), TrC-\(\text{NO}_2\), TrC-HCHO and TC-CO.

3. Data Analysis and Discussion

3.1. TrC-\(\text{O}_3\) Sensitivity to Tropopause

Calculated TrC-\(\text{O}_3\) depends on several factors such as tropospheric ozone levels, atmospheric warming (e.g., due to GHG emissions) or cooling (stratospheric or tropospheric (e.g., after major volcanic eruptions), and tropopause height (TH). Atmospheric warming or cooling can lead to a decrease or an increase, respectively, of TrC-\(\text{O}_3\) due to the respective change in the TH. Several methods are used to determine the TH. The WMO thermal definition (WMO) for the first TH, the lowest altitude level at which the lapse rate decreases to 2° K km\(^{-1}\) or less, provided that the average lapse rate between this level and all higher levels within 2 km does not exceed 2° K km\(^{-1}\)\(^1\). A second tropopause may be also found if the lapse rate above the first tropopause exceeds 3° K km\(^{-1}\) (WMO, 1992; Hoffmann and Spang (2022). Other studies define the TH based on fixed pressure levels (from ground to 150, 200, 300, and 400 hPa). Mean OMI/MLS TrC-\(\text{O}_3\) values in July (2005-2019) calculated based on the WMO thermal definition, are shown in Figure 2. TrC-\(\text{O}_3\) values are comparable to previously reported CMIP6 and satellite measurements (Griffiths et al., 2021). Partial ozone columns (OC) calculated from the ground to
different pressure levels, 150, 200, and 300 hPa show increasing OC values with increasing column depth, with calculated OC at 150 and 200 hPa being the closest to the TrC-O_3 WMO values, still overestimating OC in the northern hemisphere (50-90° N), especially for the 150 hPa OC, see Figure 2.

Figure 2: Global Mean Column Ozone based on the WMO definition as well as to different pressure levels.

Steinbrecht et al (1998) found that observed tropospheric warming of 0.7± 0.3 K per decade leads to an increase in the TH and a decrease in total ozone. They also calculated a decrease of 16 DU/km increase in TH. These results indicate the importance of TH on calculated long-term ozone trends. This could also affect comparisons between trends calculated based on different TrC-O_3 definitions and near-surface ozone levels. The time series of deseasonalized TH from 2004 to 2021 are shown in Figure 3 together with their zonal mean trends. Trends in TH are positive reaching 60 meters/decade except in a narrow band in the tropics from 10°S to 20°N and at 30°S, where TH decreases at a rate up to 30 meters/decade. TH in the tropical regions is also characterized by high variability (see Figure 3). These results are also consistent with recent reports showing a positive trend of TH from 20-80°N at a rate of 50-60 m/decade (Meng et al., 2021). They related this increase primarily to tropospheric warming. The decrease of the TH in the tropics may contribute by some extent to the increasing TrC-O_3 trend in this region (see sec. 3.4). These results show also that using a fixed pressure level for the tropopause may not be accurate given the change in TH over time. In the following sections, tropospheric columns will be calculated based on the WMO tropopause definition.
3.2. Spatial Distribution of O₃ and its Precursors

Tropospheric O₃ is a photochemical product that results from the photolysis of NO₂. Therefore, the sources and fate of NO₂ in the atmosphere determine O₃ burden and distribution. NO₂ is formed from the reaction of hydrogen proxy (HO₂) and alkyl proxy (RO₂) radicals with NO (R 3.2-1). While photolysis of NO₂ is the main source of ozone, high NO₂ levels can suppress O₃ levels as NO₂ reacts with OH radical forming HNO₃ (R 3.2-2 to R 3.2-4), thus reducing the oxidation rate of hydrocarbons and respectively HO₂ and RO₂ levels, leading to a net loss of O₃ (e.g., Elshorbany et al., 2010). Ozone production efficiency is calculated as the ratio of the number of NO₂ molecules photolyzed to form O₃ to that lost due to the reaction with OH forming HNO₃. Under NO-sensitive conditions, the decrease in NO₃ leads to a reduction in OH, HCHO, and O₃. However, under high NO conditions, a reduction in NO₃ could lead to an increase in photochemical products, OH, HCHO, and O₃ because a reduction in NO₂ leads to a decrease in OH loss rate, thus higher HO₂ and RO₂ production (Elshorbany et al., 2009; 2010; 2012).

R 3.2-1

\[\text{HO}_2/\text{RO}_2 + \text{NO} \rightarrow \text{NO}_2 \]

R 3.2-2

\[\text{NO}_2 + h\nu (h\nu < 424 \text{ nm}) \rightarrow \text{O}^{(3}\text{P}) + \text{NO} \]

R 3.2-3

\[\text{O}^{(3}\text{P}) + \text{O}_2 + \text{M} \rightarrow \text{O}_3 + \text{M} \]

R 3.2-4

\[\text{OH} + \text{NO}_2 (\text{M}) \rightarrow \text{HNO}_3 (\text{M}) \]
The observed mean tropospheric columns of O$_3$, NO$_2$, and HCHO and atmospheric column of CO from 2005 to 2019 are shown in Figure 4. NO$_2$ concentration has been decreasing since 2005 in North America, Europe, and Australia, mainly due to the applied strict measures to reduce air pollution. Since O$_3$ is a photochemical product that is formed based on non-linear chemistry, a reduction in NO$_2$ may lead to an increase or decrease in tropospheric O$_3$ levels based on the dominant photochemical regime in the respective region. The highest values of the NO$_2$ tropospheric column are in the northern hemisphere between 10°N and 50°N, especially over the eastern US, northern Europe, and east and south Asia, with elevated levels between 10 and 30°S, especially in sub-Saharan Africa, and Brazil. TrC-O$_3$ is also highest over the band of 20-50°N, especially over the eastern coast of the US, southern Europe, and east Asia. Some differences exist between O$_3$ and NO$_2$ spatial patterns which is due to the different photochemical sensitivity (see sec. 3.4). On average, the northern hemisphere has higher CO than the southern hemisphere due to a larger number of sources. Additionally, high amounts of CO are found in regions with large anthropogenic sources (e.g., eastern China) or regions with large and regular fire seasons (e.g., central Africa). HCHO and CO show a similar spatial pattern over western Africa due to emissions from biomass burning. In the following sections, global and regional trends of TrC-O$_3$ are investigated along with tropospheric ozone precursors.
Figure 4: Mean (2005-2019) of TrC-O₃, TrC-NO₂, TrC-HCHO, and TC-CO.

3.3. Simulated O₃ Precursors

Ozone and its precursors differ in their vertical distribution through the troposphere. In this section, we use the GEOS GMI simulations to show how the lower, middle, and upper troposphere contribute to the simulated columns of O₃ and its precursors to complement the column information from satellites. Figure 5 shows the simulated mean (2005-2019) contributions to tropospheric columns of O₃, NO₂, formaldehyde, and CO, partitioned into the lower (up to 700hPa), middle (700-400hPa), and upper (400hPa to tropopause) portions of the
tropopause for the tropical band (30°S:30°N) and the global mean. The middle and upper troposphere make large contributions to the simulated TrC-O\textsubscript{3} and its variability (Figure 5), while the lower troposphere makes the largest contribution to the HCHO column since it is mainly a photochemical product (e.g., Elshorbany et al., 2009), and all three levels make substantial contributions to the CO column. Globally, the lower troposphere makes the largest contribution to the simulated tropospheric NO\textsubscript{2} column due to the larger NO\textsubscript{x} emissions in the northern hemisphere.

![Global Tropospheric Column Contributions](https://example.com/global-column-contributions.png)

![30S-30N Tropospheric Column Contributions](https://example.com/30s-30n-column-contributions.png)

Figure 5: Simulated average (2005-2019) contributions to the tropospheric columns of O\textsubscript{3}, NO\textsubscript{2}, formaldehyde, and CO from the lower (surface-700hPa), middle (700-400hPa), and upper troposphere (400hPa-tropopause) using NASA GEOS5 GMI. The top row is for the global mean, while the bottom row is averaged from 30°S-30°N.

3.4. Tropospheric Trends

3.4.1. Global Tropospheric Ozone

Global TrC-O\textsubscript{3} trends calculated for different column depths are shown in Figure 6. Compared to TrC-O\textsubscript{3}, OC trends up to 150 hPa seem to be the closest despite OC values being much higher than that of the TrC-O\textsubscript{3} (Figure 2). All significant trends are positive indicating increasing trends of ozone columns, regardless of the tropopause height. Insignificant (at 2 σ levels) decreasing TrC-O\textsubscript{3} trends were also found in some locations, e.g., South Australia, South Africa, and the...
eastern coast of the US. As mentioned in sec. 3.1, TrC-O₃ trends in the northern tropics may be slightly enhanced by the decreasing TH trends in that region (Steinbrecht et al., 1998). In contrast, increasing TrC-O₃ trends in other regions may be slightly offset by the increasing TH trends (see Figure 3).

Figure 6: Trends in tropospheric column ozone, based on the WMO thermal definition, and the trends on ozone columns (from ground to 150, 200, and 300 hPa). Trends are calculated based on deseasonalized monthly data from 2004 to 2021. Asterisks denote significant trends (different from zero at 2σ level).

The time series of OMI/MLS TrC-O₃ averaged over several latitudinal bands as well as at different column depths are shown in Figure 7. Zonal mean TrC-O₃ compares well with partial ozone columns in the tropics (from 30°S to 30°N) with the OC of up to 300 hPa differing by about 10 DU from the TrC-O₃ (Figure 7). The lowest TrC-O₃ trends are located in the northern hemisphere (30°N – 60°N) at 0.78±1.16 DU/decade, followed by the southern hemisphere (30°S - 60°S (0.95±0.75 DU/decade) and the tropical band (30°S -30°N (1.06±0.40 DU/decade). In addition, the continental trends over Australia, South Africa, and South America in the 30-60°S band are essentially negative and the positive trends in this band are driven mainly by oceanic emissions (Figure 6). The positive trends in the 30-60°N band are slightly offset by the negative trends over Eastern US and Europe (see Figure 6).
Observed trends for the time period before COVID-19 (2005-2019) show that OC trends were highest in the northern latitudes (0-30° N) reaching about 1.5 DU/decade, followed by the northern midlatitudes 30-60°N (Figure 8). The high trends in the 30-60°N band are dominated by transpacific impacts as well as some impacts from East Asia. The positive trends in the southern hemisphere (0-30° S) are mainly over Amazonia and Southeast Asia, being offset by small negative trends over Western Australia and South Africa. The trends during the time period (2005-2021) show a significant decline in O3 column trends in the northern hemisphere but a slightly increasing trend in the southern hemisphere. The decreasing trends in the northern hemisphere during the COVID-19 is consistent with previous literature showing a significant decrease in several pollutants including NO2 and O3 due to the extended lockdown periods imposed during the pandemic (e.g., Bauwens et al., 2020; Elshorbany et al., 2021). The decrease of NO2 under the dominant NO-sensitive conditions in Europe and the USA led to a decrease in tropospheric O3. The increase in the southern hemisphere is due to a variety of reasons including the lesser impact of the pandemic (Oleribe et al., 2021), and persistent pollution issues, even during the pandemic (Matandirotya et al., 2023). In addition, most regions in the southern hemisphere are VOC-sensitive regions, conditions under which the reduction in NO2 would lead to an increase in tropospheric O3 (see sec. 3.4).

Zonal mean trends (Figure 8) show that OC up to 150 hPa is almost identical to that of TrC-O3 except for the high latitudes 45°-60° S and 45°-60° N. The decreasing trends above 30°N and 30°S are due to the offsetting impact of negative trends over Eastern US and Europe in the north, and Australia and South Africa in the south, respectively. This impact is less apparent in the 150 hPa due to the lower positive trends in that band compared to TrC-O3. The 200 hPa OC comes next with a very good agreement from 60° S to 10° N, followed by the 100 hPa which is only in good agreement from 30° S to 30°N, while the 300 hPa OC was the farthest from the TrC-O3. The decreasing trends of O3 over Eastern US and Europe are consistent with the decreasing trend of NO2 (see below), which is due to the successful measures applied since 2004 to mitigate air pollution in these regions. The decrease of O3 is a result of decreasing NO2 trends demonstrating the NO-sensitive conditions dominating these regions.
3.4.2. Free tropospheric trends

Trends of ozone in the free troposphere presented here are based on ozonesonde data from the literature. Despite the high stability of ozonesonde measurements across the global networks over several decades (Stauffer et al., 2022), the spatial sparsity of sounding stations and non-uniform sampling frequency among sites is a limitation in using these data to produce trends. These shortcomings have constrained the ability to include data from many stations in previously published analyses. Recently, it was proven that minimum temporal requirements to calculate trends from ozonesondes demand sampling to be executed at least three times per month (Wang et al., 2022; Christiansen et al., 2022) with at least eight months of sampling in a year, and at least 15 annual means for an analysis of about two decades (Wang et al., 2022). With these criteria, recent ozonesonde trend analyses indicate that ozone concentration increased globally by 1.8±1.3 ppbv/decade in the free troposphere within 800 to 400 hPa (Christiansen et al., 2022). However, there is significant regional variability, as illustrated in Figure 9 where ozone trends published by Wang et al. (2022) (1995-2017 data between 950-250 hPa) are organized by regions and stations. For example, ozone in East Asia (Japan) has been increasing at a rate of 3.5 to 5 ppbv/decade, particularly since 2010 (Christiansen et al., 2022). Over the Southwestern Indian Ocean (La Réunion), trends are of similar magnitude (>4.5 ppbv/decade). In tropical South America, over the Atlantic basin region (Paramaribo and Natal), sounding measurements also show ozone increases by almost 3 ppbv/decade (Natal), but other regions in South America continue to lack sufficient measurements to produce trends. At tropical stations in Africa (Nairobi) and the Pacific Ocean (Hilo and American Samoa) trends are also positive, although of lower magnitudes (0.83-1.7 ppbv/decade). In contrast, polar stations both at the Arctic and Antarctica as well as the Southern Ocean show overall decreasing ozone concentrations to non-significant trends. Exceptions are the Eureka station in Canada and Lauder station in New Zealand, which both show slight ozone increases (less than 0.5 ppbv/decade). The direction of regional trends by Wang et al. (2022) is consistent with regional trends presented in similar independent research (Christiansen et al., 2022). As atmospheric composition continues to become modified under the current regime of climate change, building consistent and longer
time series of ozonesonde measurements at other regions will continue to be an important source of firsthand information to assess tropospheric ozone changes and trends.

Figure 9: Ozone trends in the free troposphere from ozonesonde measurements calculated by Wang et al. (2022) and organized by region and station. Data covers the 1995-2017 period within 950 to 250 hPa. Error bars show 1-σ uncertainty.

3.4.3. Regional Ozone Trends

As shown in Figure 10, the highest OMI/MLS regional trend is observed over East Asia (2.16±1.27 DU/decade) while the lowest trend is calculated over Eastern USA (0.63±1.72) followed by Western Europe (0.89±1.60) and Australia (1.05±1.44) DU/decade. We next calculate the monthly trends from the GEOS-GMI simulation to investigate how the simulated trends vary by altitude.
Figure 10: OMI/MLS observed regional mean trends of T_rC-O_3. The simulated trends in partial columns of O_3, NO_2, formaldehyde, and CO from 2005 to 2019 for different pressure levels as well as the tropospheric columns are shown in Figure 11. The simulated tropospheric columns of O_3 and HCHO show a positive trend in most regions (Figure 11), consistent with the results of Liu et al (2022) using a different GEOSCCM simulation. Liu et al (2022) highlighted the importance of formaldehyde trends for analyzing the simulated trends in tropospheric ozone. Considering different latitude bands, the highest trends are simulated between 30° S and 60° N, consistent with calculated trends based on satellite observations (see sec. 3.4). In contrast, the simulated NO_2 and CO trends are mostly negative, although positive trends are simulated over East Asia. The largest NO_2 negative trends are in the northern hemisphere between 30°N and 60°N. The decreasing NO_2 trends but increasing O_3 and HCHO trends in the northern hemisphere are due to the NO-sensitive conditions prevailing over Europe and the USA.
Figure 11: Global and regional trends in O$_3$, NO$_2$, CO, and HCHO calculated from the GEOS GMI simulation for the tropospheric column (black), lower troposphere (purple), middle troposphere (blue), and upper troposphere (green) from 2005 to 2019. The lower, middle, and upper troposphere are defined as in Figure 5.

The simulation provides an estimate of the relative contribution from different portions of the tropospheric column to the column trends and shows that this contribution varies by region and constituent. The middle and upper troposphere make the largest contributions to the simulated TrC-O_3 trend globally, with large contributions from the upper troposphere driving the simulated TrC-O_3 trend at 30°S-30°N and counteracting the negative TrC-O_3 trend in the southern midlatitudes (Figure 11). However, the middle and lower troposphere make larger contributions to the positive TrC-O_3 trends in the northern middle and high latitudes. The middle and upper troposphere contribute most of the simulated positive TrC-O_3 trend over the eastern USA, while the lower and middle troposphere are more important over western Europe, and all three levels...
contribute over East Asia. The upper troposphere makes the primary contribution to the simulated trend over Australia. Simulated TrC-O_3 trends are also quite comparable to those observed by OMI/MLS within the measurement model uncertainty (see Figure 10 and Figure 7). Over Australia, the OMI/MLS trend of 1.05 DU/decade is higher than the model trend of about 0.2 DU/decade (see Figure 11). However, since OMI/MLS trend has a calculated uncertainty (2σ) of 1.44 DU/decade, both the model and OMI/MLS for Australia are not statistically different.

While the upper troposphere is a major driver of the simulated TrC-O_3 trends, the lower troposphere is the largest contributor to the simulated trends in the tropospheric NO_2, CO, and HCHO trends globally and over many regions (Figure 11). Exceptions include the simulated HCHO column over the Eastern USA, which is driven by the middle and upper troposphere; an important role for upper tropospheric CO over East Asia; and the CO trend over Australia driven by the middle tropospheric contribution. Figure 11 also shows that in some regions, such as the eastern USA for all 3 precursors, the upper and lower tropospheric trends counteract each other, reducing the magnitude of the column trend. In the following sections, we investigate trends and variability in O_3 precursors, NO_2, CO, and HCHO.

3.4.4. NO_2 Trends

The TrC-NO_2 trends over 2005-2019 are shown in Figure 12 with a regional summary in Figure 13. On a global scale, there is a strong spatial variability of the TrC-NO_2 trends. About a third of the oceans show significantly increasing TrC-NO_2 (at 95% confidence level), especially at mid-latitude, with trends up to +0.01 Pmolec/cm^2/yr, while only a few cells in the equatorial Pacific show a significant decrease.

![Figure 12: Global trends of OMI NO_2 tropospheric column (TrC-NO_2) over 2005-2019](https://doi.org/10.5194/egusphere-2024-720)}

Regional trends are shown in Figure 13. For significant trends in a given region, the numbers correspond to the percentiles 5/50/95 of trends among the different cells of the region where trends are significant. Each region is tagged with a circle whose size is proportional to the p50 of the significant trends (red for positive and green for negative), which allows us to quickly
see regions where the trend is strong. For instance, for Eastern Asia (this region includes 1442
°x1° grid cells) about 15% of the grid cells (about 216 grid cells) in this region show a
significant decrease in TrC-NO2. Over these specific 216 cells with a significant decrease of
TrC-NO2, the 5th and 95th percentile of the trend is -0.34 and -0.01, respectively, Pmolec/cm²/yr
About 28% of the grid cells in this region show a significant increase of TrC-NO2 (which means
about 403 grid cells). Over these specific 403 cells with a significant increase of TrC-NO2, the
5th (resp 95th) percentile of the trend is +0.01 (resp 0.05) Pmolec/cm²/yr. Therefore, the Eastern
Asia region shows sub-regions with significantly decreasing TrC-NO2, others with significantly
increasing TrC-NO2, and the rest with non-significant (positive and negative) trends. This figure
allows us to quickly understand the distribution of the trends within this given region while the
overall regional trend is given by the 50th percentile and the circles tagging each region. It's a
regional summary of what is shown in the trend global map. In Eastern Asia, the area where
trends are significantly positive is more extended than for the significant decrease (28% versus
15%), but the trend values tend to be smaller (at least when comparing the 50th percentiles, -0.05
versus +0.01 Pmolec/cm²/yr). The map of regions is included in the supplement. Canada is
included in northern America but as shown in the trend map, most of Canada does not have OMI
data

Over continental areas, significant positive and negative trends are found in about 15-
20% of the grid cells each (Figure 12). Regions with predominantly decreasing TrC-NO2 include
western and southern Europe (where about 50-60% of cells with a significant decrease), northern
America (40% of cells with a significant decrease, mostly located in the eastern United States),
Japan, and Indonesia. In absolute terms, these negative trends reach values of about -0.03
Pmolec/cm²/yr. Specific eastern regions of China also show similar significant TrC-NO2
decreases but overall, a larger part of the country faces increasing trends up to +0.03
Pmolec/cm²/yr. Positive trends of similar magnitude are observed over most of India, as well as
in specific parts of south-eastern Asia (mainly Vietnam) and the Middle East (mainly Iran and
Iraq). Conversely, TrC-NO2 trends in Africa and South America remain mainly insignificant,
except in a few specific regions with significant increases (e.g. South Africa, Chile, Morocco,
and parts of Brazil).

The trends in NO2 have varying effects on the tropospheric ozone column, which is related
to the different local chemistry in each region. The concomitant increase or decrease in TrC-O3
and TrC-NO2 trends over the eastern US, and central Europe is due to the dominant NO-sensitive
condition due to the strict NOx control measures that were applied over the last two decades. The
decreasing trend of TrC-NO2 but increasing trend of TrC-O3 in some regions in the central US,
e.g., over Chicago is due to the high NOx conditions in these regions (e.g., Elshorbany et al., 2021
and references therein). The increasing TrC-O3 trends as TrC-NO2 decreases over China and parts
of eastern Asia can also be explained by the high NOx levels dominated in these regions.
Figure 13: Summary of the statistically significant and insignificant regional trends of OMI NO$_2$ tropospheric column (TrC-NO$_2$) trends over 2005-2019, at a 95% confidence level (see text for details on the calculation of the trends). For each region, the trend on the bars is in the format: $p50$ [$p5$; $p95$], which represents the 50th, 5th, and 95th percentiles of the trends.

Figure 14 shows the time series of regional mean tropospheric NO$_2$ concentrations from three satellite instruments, OMI for 2005-2020, GOME-2 for 2007-2018, and SCIAMACHY for 2005-2012. All the instruments exhibit common large seasonal and year-to-year variations over both industrial regions and biomass-burning areas. Slight systematic differences among the instruments can mainly be attributed to the different overpass times. The satellite observations show positive trends over China by 2010, followed by a continued decrease. Over the USA and Europe, all the retrievals show a downward trend over the analysis period. Over the US, the observed TrC-NO$_2$
decreased rapidly during 2005–2009 and subsequently show weaker reductions, as discussed by Jiang et al. (2018). A similar slowdown trend is found in Europe. Over India, the OMI observations show positive trends over the 14 years (+1.6 % yr\(^{-1}\)). The seasonal and year-to-year variations over Southeast Asia and northern and central Africa are associated with changes in biomass-burning activity.

Figure 14: Time series of regional monthly mean tropospheric NO\(_2\) columns (in 10\(^{15}\) molecules \(\text{cm}^{-2}\)) averaged over China (110–123° E, 30–40° N), Europe (10° W–30° E, 35–60° N), the US (70–125° W, 28–50° N), India (68–89° E, 8–33° N), South America (50–70° W, 20° S–Equator),...
southern Africa (25–34° E, 22–31° S), southeastern Asia (96–105° E, 10–20° N), and Australia
(113–155° E, 11–44° S) obtained from OMI (black), GOME-2 (blue), and SCIAMACHY (red).

3.4.5. Carbon Monoxide

CO trends are calculated based on MOPITT v9 products (adapted from Buchholz et al. (2021),
see sec. 2.2.1). Observed CO trends below show a slowing in the trend compared to the previous
analysis (Buchholz et al. (2021). In the northern hemisphere, CO trends are largely negative over
the US and Europe, which is consistent with the implemented policies to reduce air pollution
since 2005. Except for small sporadic positive trends, no significant trends can be calculated over
Central Asia (India and China), while there is a strong negative trend in East China due to recent
strong focus on air quality improvement, and no significant trend in the SH (relative to slope
error).

Figure 15: Trends in TC CO from MOPITT V9T data, 2005-2019. Trends are computed from
deseasonalized monthly anomalies.

Calculated global CO trends are driven mainly by the decreasing trends in the NH. Shown below
are the trends in the MOPITT column average volume mixing ratio (VMR) anomalies from 2005
to 2019 (Figure 16) using QR as well as Weighted least squares (WLS) by Buchholz et al.
(2021). The region boundaries are the same as used in Fig. 10 and 11. Results show a significant
decreasing trend in the NH (-0.35 ±0.1% annually), a smaller decreasing trend in the Mid-
latitudes (-0.26 ±0.1% annually) and no significant trend in the SH (-0.14 ±0.1% annually). The
three anthropogenic regions investigated in the NH all show strong decreases in CO. The larger
negative trend over Australia (-0.2 ±0.1% annually) than the average SH, suggests sources from
the other two land regions (Southern Africa and South America) may be counteracting negative
trends in CO for the SH.

We also compare CO trends with Community Earth System Model (CESM) simulations
(Supplement Fig S1). While the magnitude of modeled CO tends to be underestimated relative to
observations, the anomalies between model and measurements are comparable, indicating the
model reproduces interannual variability well. The negative trends in the NH are also reproduced
by CESM, although to a smaller degree than observations, suggesting that the trends in sources
or loss processes (such as OH oxidation) are underestimated in the model. These processes will
impact the feedback into modeled ozone and the resulting interpretation of driving factors for
ozone abundance and variability. Interestingly, CESM correctly represents a negative trend in
CO for the NH and East Asia while GEOS GMI has a positive CO trend in those regions (Fig. 588), likely due to the well-known misrepresentation of East Asia air quality improvements in models (Yin et al., 2015; Strode et al., 2016; Zheng et al., 2019). In the SH, CESM does not predict significant trends.
Figure 16: MOPITT monthly average CO anomalies in column average volume mixing ratio (VMR, ppb), 2005-2021 (black). Updated dataset based on Buchholz et al. (2021). Data is Level 3, monthly average daytime observations, using version 9 joint NIR/TIR retrievals (V9J). Regions are defined in Figure 10 and Figure 11. Trends are calculated on anomalies 2005-2019. The weighted Least Squares trend (red) is weighted by the monthly regional standard deviation. The quantile regression trend is also shown (pink). Grey dashed lines indicate a zero trend.

3.4.6. HCHO Trends

HCHO, mainly a photochemical product results from hydrocarbon oxidation. HCHO is itself a source of OH and ozone through its photolysis producing HO₂, which can be recycled back to OH if sufficient NO levels are present.

\[
\text{R 3.4-1: } \text{HCHO} + \text{hv} (\lambda < 325 \text{ nm}) \rightarrow \text{H} + \text{HCO}
\]

\[
\text{R 3.4-2: } \text{H} + \text{O}_2 + \text{M} \rightarrow \text{HO}_2 + \text{M}
\]
Unlike higher aldehydes, the OH reaction with HCHO leads also to the formation of a formyl radical (HCO), which ultimately forms HO$_2$ (R 3.4-3).

Due to its solubility, the variability of HCHO also depends on the presence of clouds, and wet deposition ultimately represents another important sink for HCHO (Lelieveld and Crutzen, 1991).

Overall, HCHO plays a key role in the O$_3$ budget, both in polluted and remote regions.

Trends of the OMI HCHO tropospheric columns (hereafter referred to as TrC-HCHO) are computed as described for OMI TrC-NO$_2$. TrC-HCHO trends over 2005-2019 are shown in Figure 17 with a regional summary in Figure 18. The first global feature to highlight on the global trends map is the presence of stripes along the OMI orbits. The number of rows affected by the OMI row anomaly has increased over the years (Boersma et al., 2018). The affected rows are filtered out in the HCHO data, but the change in the sampling and the related increase in the noise impact the trend analysis. Along orbit stripes in the trend analysis should be ignored but zonal trends are still valid (Figure 17).

Figure 17: Global trends of OMI HCHO tropospheric column (TrC-HCHO) over 2005-2019 (see text for details on the calculation of the trends). Grey areas correspond to areas without enough data, white areas correspond to regions where the trends remain statistically insignificant at a 95% confidence level.

Despite the fact that TrC-HCHO trends remain insignificant over a large part of the globe, specific regions do highlight clear trends. The region with clearest changes is unambiguously southern Asia where about 65% of the cells show increasing trends with a median of +0.09 Pmolec/cm2/yr. The other regions with a large portion (25-30% of the cells) of increasing trends include the rest of Asia and Middle Africa, with median TrC-HCHO trends ranging between +0.05 and +0.08 Pmolec/cm2/yr, as well as some parts of central Brazil (Amazonians).

Conversely, some significant decreases of TrC-HCHO are observed in the south-eastern US, the southern half of Southern America, North and western Africa, and southern Australia, although part of them overlap with the aforementioned stripes and might thus not be real.
Figure 18: Summary of the statistically significant and insignificant regional trends of OMI HCHO tropospheric column (TrC-HCHO) trends over 2005-2019, at a 95% confidence level (see text for details on the calculation of the trends). For each region, the trends reported on the left (resp. right) represent the 5th, 50th and 95th percentiles of the trends calculated over the different grid cells showing a significant TrC-HCHO increase or decrease.

HCHO trends are consistent with that of O$_3$ (sec. 3.4.1). O$_3$ and HCHO trends are consistent with NO$_2$ over Eastern US and Europe. However, NO$_2$ trends are decreasing over the northern coast of Australia while that of O$_3$ and HCHO are increasing. Similarly, while NO$_2$ trends are slightly increasing over southern Australia, trends of O$_3$ and HCHO were decreasing. The decreasing trends of HCHO and O$_3$ as NO$_2$ increases is evidence of the VOC-limited conditions in these regions. Under these conditions, increased NO$_2$ levels lead to a reduction of OH via OH+NO$_2$=HNO$_3$, which decreases the oxidation capacity and thus lowers the photochemical formation of HCHO and O$_3$.
3.4.7. HCHO/NO₂

Since the pioneer study of Martin et al. (2004), the ratio of TrC-HCHO/NO₂ observed from space has been used in a number of studies to give insights on the O₃ chemical regime, higher (resp. lower) TrC-HCHO/NO₂ ratios coming with more NOx-limited (resp. ROₓ-limited) regimes. Although imperfect (e.g. Souri et al., 2023), this indicator yet provides some qualitative information on the evolution of the O₃ regime over the last years. The mean TrC-HCHO/NO₂ over 2005-2019 are shown in Figure 19, and the trend results in Figure 20 with a regional summary in Figure 21. The highest ratios are observed in the tropical regions due to strong TrC-HCHO due to high biogenic and fire NMVOC emissions in tropical South America and Africa combined with relatively low TrC-NO₂. Conversely, lower TrC-HCHO/NO₂ ratios are observed across western Europe and north-eastern Asia, and to a lesser extent north-eastern US.

At a global scale, the significant changes in TrC-HCHO/TrC-NO₂ ratios mostly go in the direction of a reduction, with about 25% of the grid cells showing a median trend of -0.52 yr⁻¹. (while only 5% of the cells show a significant increase of +0.03 yr⁻¹). This suggests that these areas are evolving toward more NOx-sensitive conditions (which does not necessarily imply that they are already in this regime). This situation is observed over a large part of Oceania (especially Polynesia) and specific parts of Africa, Asia, and America. The opposite significant trends, toward more ROₓ-sensitive conditions, are mainly observed over Europe and northern America, as well as south-eastern Asia.
Figure 20: Global trends of OMI HCHO/NO\textsubscript{2} tropospheric column ratio over 2005-2019 (see text for details on the calculation of the trends). Grey areas correspond to areas without enough data, white areas correspond to regions where the trends remain statistically insignificant at a 95\% confidence level.

These trends on the TrC-HCHO/TrC-NO\textsubscript{2} ratio can be mainly driven by specific trends on TrC-HCHO and/or TrC-NO\textsubscript{2}, depending on the region. The increase in southern and western Europe and southeast Asia appears primarily due to decreasing TrC-NO\textsubscript{2}, since TrC-HCHO does not change significantly. Over North America, observed TrC-HCHO values do decrease but the less than TrC-NO\textsubscript{2}, which thus drives the ratio toward an increase. Conversely, the increase of TrC-HCHO/TrC-NO\textsubscript{2} in equatorial Africa and Amazonians appears mainly driven to increasing TrC-HCHO. Note that over the US, Jin et al. (2020) demonstrated the reasonable ability of the OMI-based TrC-HCHO/TrC-NO\textsubscript{2} trends to capture the transition from RO\textsubscript{X}-limited to NO\textsubscript{X}-limited regimes over main US cities and found a relatively good consistency between observed changes of the surface O\textsubscript{3} and space-based HCHO/NO\textsubscript{2} increasing trends. The regions where TrC-HCHO/TrC-NO\textsubscript{2} is significantly decreasing include southwestern America and Australia, due to both decreasing TrC-HCHO and increasing TrC-NO\textsubscript{2} (Figure 21).
Figure 21: Summary of the statistically significant and insignificant regional trends of OMI TrC-HCHO/TrC-NO$_2$ tropospheric column ratio trends over 2005-2019, at a 95% confidence level (see text for details on the calculation of the trends). For each region, the trends reported on the left (resp. right) represent the 5th, 50th and 95th percentiles of the trends calculated over the different grid cells showing a significant TrC-HCHO/TrC-NO$_2$ increase or decrease.
Nitric oxide (NO) is produced in lightning flash channels and quickly comes into equilibrium with NO2. Cloud-scale simulations of thunderstorms indicate that 55-75% of lightning NOx (LNOx) is detrained above 8 km (Pickering et al., 1998) where it enhances upper tropospheric NOx, OH, and O3 (Labrador et al., 2005; Allen et al., 2010; Liaskos et al., 2015) and contributes to positive radiative forcing by O3 (Lacis et al., 1990; Finney et al., 2018) and negative radiative forcing by CH4 (Fiore et al., 2006; Finney et al., 2018). The lifetime of NOx in the upper troposphere is controlled by the chemical cycling of NOx with reservoir species and is 10-20 days away from deep convection (Prather and Jacob, 1997) but only 2-12 hours in the vicinity of convection (Nault et al., 2016, 2017). This chemical recycling provides a source of NOx, which causes the ozone production efficiency of emitted NOx to be 4-20 times higher in the upper troposphere than at the surface. Thus, LNOx has a disproportionate impact on the tropospheric O3 budget (Pickering et al., 1990; Grewe et al., 2001; Sauvage et al., 2007).

The distribution of lightning is fairly well known over much of the Earth due to remote sensing observations and an increase in the number and capability of ground-based lightning networks. However, the LNOx production efficiency (PE, mol fl−1) is a continued source of uncertainty. Schumann and Huntrieser (2007) reviewed the literature on LNOx production, finding a best estimate of 250 moles per flash, with uncertainty factors ranging from 0.13 to 2.7. The PE can be estimated from theoretical and laboratory considerations (Price et al., 1997; Koshak et al., 2014), using thunderstorm anvil observations by aircraft (Ridley et al., 2004; Huntrieser et al., 2008, 2011; Pollack et al., 2016; Nault et al., 2017; Allen et al., 2021a), based on satellite data (Buysela et al., 2010; Beirle et al., 2010; Pickering et al., 2016; Buysela et al., 2019; Lapierre et al., 2020; Zhang et al., 2020; Allen et al., 2019, 2021b), or using cloud-resolved (e.g., DeCaria et al., 2000; 2005; Fehr et al., 2004; Ott et al., 2007, 2010; Cummings et al., 2013; Pickering et al., 2023) or global model simulations with chemistry (e.g. Martin, et al., 2007; Murray et al., 2012; Miyazaki et al., 2014; Marais et al., 2018). Miyazaki et al. (2014) assimilated OMI NO2, MLS and TES O3, and MOPITT CO into a chemical transport model to provide comprehensive constraints on the global LNOx source, resulting in an estimate of mean PE of 310 moles per flash. Marais et al. (2018) used cloud-sliced upper tropospheric NO2 from OMI together with the GEOS-Chem model to estimate a mean LNOx PE of 280 moles per flash.

LNOx impacts air quality and deposition (Kaynak et al., 2008; Allen et al., 2012). On average LNOx adds 1-2 ppbv to surface O3 (Kang et al., 2019b), although contributions as large as 18 ppbv have been seen for individual events (Murray et al., 2016). Allen et al. found that the addition of LNOx to the Community Multiscale Air Quality (CMAQ) model increased wet deposition of oxidized nitrogen at National Atmospheric Deposition Program (NADP) sites by 43%, reducing low biases from 33% to near-zero. Kang et al. (2019b) found similar improvements for wet deposition and also found that including LNOx resulted in smaller biases with respect to ozonesondes and aircraft profiles taken during the NASA DISCOVER-AQ field campaign (Flynn et al., 2016). Thus, to accurately assess its impacts on air quality, it is critical that LNOx-producing deep convection is accurately simulated.

Lightning is the dominant source of NOx in the tropical upper troposphere year-round and in the northern mid-latitudes in summer. Lightning is responsible for 10-15% of NOx emissions globally. This is 2–8 Tg N a−1 (Schumann and Huntrieser, 2007; Verma et al., 2021) or 100 to 400 mol per flash. Much of the uncertainty stems from limited knowledge of lightning NOx PE per flash or per unit flash length. Most LNOx is injected into the mid- and upper-troposphere where
(away from deep convection) its lifetime is longer relative to lower troposphere NOx. LNOx plays an important role in determining mid- and upper-tropospheric concentrations of the hydroxyl radical (OH), the atmosphere’s cleanser; CH₄, an especially potent greenhouse gas; and O₃, a greenhouse gas and pollutant.

Only in recent years with the advent of satellite observations of lightning flashes and improved coverage by ground-based lightning networks has there been sufficient data to make estimates of trends in the occurrence of lightning. However, it is unknown whether trends in LNOx production are similar to those of lightning itself. Lightning characteristics such as the ratio of intracloud (IC) flashes to cloud-to-ground (CG) flashes, the multiplicity (i.e., the number of strokes per flash), and the peak current or energy associated with flashes may vary over time. All of these lightning characteristics may have effects on the magnitude of LNOx production. We have insufficient data to take into account these possible effects on LNOx production over large spatial domains or over sufficiently long periods of time.

3.5.1. Global Historical trends of LNOx

The first attempts at an examination of trends in thunderstorm activity were conducted in terms of thunder-days (in Japan by Kitagawa et al., 1989; in Brazil by Pinto et al., 2013). A more recent global analysis was conducted by Lavigne et al. (2019), who analyzed trends in thunder-days (number of days with audible thunder at weather observation stations) over 43 years and in flashes recorded by the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) for 16 years. Thunder-days increased since the 1970s in the Amazon Basin, the Maritime Continent, India, Congo, Central America, and Argentina. Decreases in thunder-days were found in China, Australia, and the Sahel region of Africa. How well do thunder-days represent lightning flash rate? Lavigne et al. found a positive correlation between thunder-days and LIS flash rates in China, the Maritime Continent, South Africa and Argentina, but disagreement on the trend in India and West Africa.

Large-scale (+38° latitude) trends in lightning flashes have been examined in the data collected by the LIS on the TRMM satellite (January 1998 – December 2014) and on the International Space Station (February 2017 – December 2021). Füllekrug et al. (2022; see Figure SB2.1b) demonstrate that the annual mean deviations from the 1998 – 2021 mean are no more than ~5% except for ~10% in 2020 and ~8% in 2021. The possibility that these larger negative deviations in 2020 and 2021 are due to Covid-19 lockdowns and general declines in economic activity has been speculated. The link may be provided by changes in Aerosol Optical Depth (AOD) as suggested by Liu et al. (2021) who demonstrated 10-20% flash reductions in March – May 2020 relative to the 2018 – 2021 mean for those months from the GLD360 and WWLLN ground-based lightning networks. Regional lightning reductions were consistent with AOD reductions noted by Sanap (2021). Larger reductions in lightning were noted over Africa/Europe and Asia/Maritime Continent and lesser reductions over the Americas.

3.5.2. Regional Historical Trends of LNOx

Widely varying trends in lightning over China have been reported in the literature. To some extent, whether the trend in lightning is upward or downward depends on the particular region studied and on the period of time considered. Yang and Li (2014) were the first to report on lightning trends in China. They used lightning data from the TRMM/LIS sensor and human-observed thunderstorm day occurrence over the period 1990 to 2012 in southeastern China. Thunderstorms and lightning occurrence increased over the period as well as LIS precipitation radar echo tops heights. These increases were accompanied by decreases in visibility, indicating increases in pollution aerosol.
Detailed work on lightning trends in China has been performed in relation to aerosols. Shi et al. (2020) correlated flashes from the TRMM/LIS Low-Resolution Monthly Time Series (2.5 deg. resolution) with AOD from MODIS-Terra V6.1 Level 3 over the period 2001 to 2014. For AOD < 1.0, r = 0.64, indicating a likely microphysical effect on lightning flash rate. For AOD > 1.0, r = -0.06, which could indicate that with higher aerosol concentration there is a radiation effect stabilizing the atmosphere and/or a decrease in the number of graupel particles in the mixed-phase region of the storms that is important for charging. Flashes were also correlated with surface relative humidity and Convective Available Potential Energy (CAPE). As AOD generally increased over much of the early portion of this time period and then decreased, lightning flash rates followed similar trends. Wang et al. (2021) examined a 9-year record (2010-2018) of CG lightning from the China Lightning Detection Network in three polluted urban areas of China (Chengdu, Wuhan, and Jinan). They found decreasing trends (see Wang et al., 2021) in CG lightning and total AOD (from the MERRA-2 reanalysis). Annual mean lightning density in these three regions decreased by 50 – 75% as annual mean AOD fell from 0.70 – 0.75 to 0.53 to 0.62.

Qie et al. (2022) analyzed the OTD/LIS record from 1996 through 2013, and found that lightning increased over the eastern Tibetan Plateau by 0.072 ± 0.069 fl km⁻² yr⁻¹. Over the 18 years, this increase amounted to a total of 1.3 fl km⁻² yr⁻¹, compared with a climatological value of 7.7 fl km⁻² yr⁻¹, thereby indicating a significant increase. The ground-based World Wide Lightning Location Network (WWLLN) also showed an increase in strokes in this region. The increase in lightning frequency in this region was found to be due to an increase in thunderstorm frequency, and not due to increased storm intensity. Xue et al. (2021) found a highly significant downward trend of thunder and lightning days observed at surface weather stations in China between 1961 and 2013, particularly in the warm season. The decrease amounted to 6.5 days per decade, averaged over mainland China. Factors thought to be contributing to this decrease include a decrease in the north-south geopotential height gradient, weakening of the westerly jet stream, decreased relative humidity in the lower troposphere and a decrease in the vertical wind shear between the surface and 6 km altitude.

Koshak et al. (2015) analyzed National Lightning Detection Network (NLDN) CG flashes over the contiguous United States (CONUS) from 2003 to 2012. The five-year mean flashes over 2008 to 2012 decreased by 12.8% from the five-year mean for 2003 to 2007 (Table 1). The CONUS average wet bulb temperature also trended downward during this period, which may have led to lesser or weaker storms. However, US Environmental Protection Agency air quality trends show an 18% decrease in PM2.5 concentrations over CONUS between the two subperiods, which also could have had an influence on the flash rates. The decrease in CG flashes was slightly larger (14.8%) over the region of CONUS south of 38 deg. N latitude. However, the TRMM/LIS instrument, which detects both CG and IC flashes, showed little change in flashes over the period of interest south of 38 degrees, suggesting that perhaps the number of IC flashes increased in this region. A recent effort to update the Koshak et al. (2015) analysis is underway. NLDN flashes have been reprocessed (Kenneth Cummins, personal communication) from 2015 through 2021 to ensure that the classification of IC and CG flashes is done consistently with data prior to 2015. Trend analysis of NLDN CG flashes from 2003 (a major upgrade of the NLDN network hardware) through 2022 (William Koshak, personal communication) shows a significant reduction in CG flashes over CONUS, comparing the mean CG flashes over 2003-2004 with the mean over 2021-2022. Within this period a major decrease (~25%) in CONUS CG flashes occurred from 2011 to 2012. Flashes in 2013 remained low, but recovered by 2014-2015. A major decrease (~27%) occurred from 2019 to 2020, with a small increase in 2021. These results have been obtained from ongoing efforts by Dr. William Koshak of the NASA Marshall Space Flight Center, and are...
A possible contributing factor to the CONUS decline in CG flashes over 2003 to 2021 is the substantial decrease in aerosol. Surface annual average PM2.5 concentrations averaged over CONUS decreased by 37% from 2000 to 2021 according to the EPA National Air Quality Trends Report (https://www.epa.gov/air-trends/air-quality-national-summary). However, no decrease in CONUS annual average PM2.5 was seen from 2019 to 2020. As mentioned previously, AOD may be a better indicator of the aerosol amount that may become incorporated into thunderstorm clouds. Sanap (2021) showed negative anomalies of AOD of ~0.1 in portions of CONUS in March and April 2020 and 0.1 to 0.2 in May 2020. The major decrease in CONUS CG flashes from 2011 to 2012 has been related to drought conditions during Summer 2012 over the South Central and Southeastern US (Koshak et al., 2015). The reason for the number of CONUS flashes remaining lower in 2013 is uncertain. Koehler (2020) analyzed 26 years (1993 – 2018) of NLDN CG lightning data to construct a thunder-day climatology for CONUS. Positive anomalies from the 26-year mean were found from Texas to Colorado during 2003 to 2007, and negative anomalies in this region during 2008 to 2012. These anomalies were consistent with precipitation anomalies associated with ENSO.

Table 1. The 5-year flash counts and associated percent changes over CONUS. From Koshak et al. (2015).

<table>
<thead>
<tr>
<th>Period</th>
<th>NLDN</th>
<th>NLDN (up to 38°N)</th>
<th>LIS (raw)</th>
<th>LIS (corrected*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003-2007</td>
<td>25,204,345.8</td>
<td>15,931,940.6</td>
<td>92,655.0</td>
<td>46,997,805.4</td>
</tr>
<tr>
<td>2008-2012</td>
<td>21,986,578.8</td>
<td>13,574,876.0</td>
<td>92,659.4</td>
<td>47,175,192.4</td>
</tr>
<tr>
<td>Change (%)</td>
<td>-12.77</td>
<td>-14.79</td>
<td>0.05</td>
<td>0.38</td>
</tr>
</tbody>
</table>

*Corrected for detection efficiency and view time

Holzworth et al. (2021) analyzed primarily CG lightning data from WWLLN for June, July, and August for the years 2010 through 2020. The ratio of lightning strokes north of 65° N latitude to the total global strokes increased by a factor of three over this period. This increase occurred as the surface temperature anomaly in this region increased by 0.3°C (see Holzworth et al., 2021). These results suggest a substantial increase in upper tropospheric NOx and subsequent ozone production at high northern latitudes.

3.5.3. Future LNOx trends

Price (2013) discusses an apparent paradox concerning lightning in future climate. On one hand increased tropical convection will transport more water vapor to the upper troposphere where it is a strong greenhouse gas, causing further warming of the upper troposphere and stabilization of the tropical atmosphere, leading to less lightning. On the other hand, in the current climate as CAPE increases, lightning increases. However, higher latitudes are warming more rapidly, decreasing the north-south temperature gradient, acting to suppress mid-latitude storms. Hence, there is large uncertainty concerning future lightning trends.

Parameterizations in global chemistry and climate models have been developed for lightning flash rate. These schemes typically use kinematic, thermodynamic or microphysical variables from the model as predictors. In some studies such predictors have simply been applied
to output from multiple climate models. This is the case with the Romps et al. (2014) work, which
showed that when a lightning parameterization scheme using CAPE x Precipitation Rate is applied
to 11 climate models an increase in CG lightning by 12 +/- 5% per degree Celsius of climate
warming was computed. This work simply used the 12-hour resolution time series of spatial means
of these variables over CONUS as input. Changes in IC lightning flashes were not considered. IC
flashes typically outnumber CG flashes by a factor of 3 averaged over CONUS. Therefore, the
result of this work is unknown with respect to the amount of change in LNOx emission. Romps et
al. (2018) updated their analysis using CAPE from 3-hourly North American Regional Reanalysis
(NARR) data and hourly precipitation from NOAA River Forecast Centers, finding that CAPE x
Precipitation Rate captures the spatial, seasonal, and diurnal variations of NLDN CG flash rate
over land, but does not predict the pronounced land-ocean contrast in flash rates. Therefore, these
analyses are of limited value in estimating trends of LNOx over broader-scale regions. Romps et
al (2019) tested four lightning proxies in a cloud-resolved 4-km resolution simulation over
CONUS with the Weather Research and Forecasting (WRF) model, and over the tropical oceans
with a Radiative Convective Equilibrium model. The proxies were CAPE x Precipitation Rate,
precipitation with vertical velocity > 10 m/s, vertical ice flux at the 260K isotherm, and vertical
integral of cloud ice and graupel product. The fractional change in proxy values per 1 degree
Celsius of warming over CONUS was +8 to +16%. Over the tropical oceans the changes in proxy
values per degree ranged from +12% for CAPE x Precipitation Rate to -1% for ice flux and -3%
for the cloud ice and graupel product. Therefore, over broad regions of the Earth, there is great
uncertainty on future trends in lightning.

Finney et al. (2016; 2018) compared lightning projections for 2100 using vertical ice flux
(Finney et al., 2014) and cloud-top height parameterizations for flash rate in the UK Chemistry
and Aerosols Model. They obtained -15% global change in total flash rate with ice flux under a
strong global warming scenario (see Finney et al., 2018), which was composed of a greater
decline in the tropics and small increases in mid-latitudes. In terms of LNOx emissions this work
using the ice flux scheme produced -0.15 TgN K^{-1} change over the years from 2000 to 2100,
implying less O3 production. With the cloud-top height scheme they obtained +0.44 TgN K^{-1} LNOx
change, implying increased O3 production. However, the ice flux scheme provided a more realistic
representation of global lightning for present day. Therefore, the negative LNOx emissions change
from this scheme may be more realistic. If indeed the ice flux scheme better represents the current
distribution of lightning, both the Romps and Finney results suggest no significant increase in
LNOx emission in future climate, and possibly a small global decrease. Murray (2018) points out
that the ice flux scheme is a closer representation of the underlying charging mechanism, but this
scheme needs to be tested in multiple global chemistry and climate models.

3.5.4. Recent findings concerning LNOx PE

Recent satellite-based estimates of LNOx production (Figure 22) have suggested a possible flash
rate dependence of LNOx production per flash (Bucsela et al., 2019; Allen et al., 2019; 2021).
Smaller values of LNOx PE in these studies were found to be associated with high flash rates,
likely due to smaller flashes in these conditions (Bruning and Thomas, 2015). Allen et al. (2021a)
noted positive correlations (Figure 22) of LNOx PE with flash energy and with flash multiplicity
(number of strokes per flash). Laboratory studies by Wang et al. (1998) found a positive correlation
between peak current and LNOx production. Koshak et al. (2015) found an 8% increase in peak
current from the 2003-2007 period to the 2008-2012 period that accompanied the 12.8% decrease
in CG flashes. These findings make it difficult to project future LNO\textsubscript{x} production given only a prediction of future lightning flashes.

Figure 22. Scatterplots showing the GLMa-derived relationship between (a) LNO\textsubscript{x} PE (mol per flash) and flash density (flashes km-2), (b) LNO\textsubscript{x} PE and flash energy (fJ), (c) flash energy and flash multiplicity, and (d) LNO\textsubscript{x} PE and flash multiplicity. Colors are used to separate flight days while symbols are used to separate system within each flight day. Correlations are shown in the upper right. LNO\textsubscript{x} PE derived from airborne remote sensor, the Geo-CAPE Airborne Simulator (GCAS) during the GOES-R Post-launch Test field campaign. GLMa indicates Geostationary Lightning Mapper data adjusted for missing data. From Allen et al. (2021a).

3.5.5. Impacts of LNO\textsubscript{x} on upper tropospheric O\textsubscript{3}

The literature concerning the effects of lightning NO\textsubscript{x} production on upper tropospheric ozone focuses on photochemical ozone production in storm outflow. The STERAO-A storm simulation by DeCaria et al. (2005) indicated that additional ozone production attributable to lightning NO\textsubscript{x} within the storm cloud during the lifetime of the storm was very small (~2 ppbv). However, simulation of the photochemistry over the 24 hours following the storm showed that an additional 10 ppbv of ozone production in the upper troposphere can be attributed to lightning NO\textsubscript{x} production. Convective transport of HO\textsubscript{x} precursors led to the generation of a HO\textsubscript{x} plume, which substantially aided the downstream ozone production. Ott et al. (2007) simulated the July 21, 1998 EULINOX thunderstorm. During the storm, the inclusion of lightning NO\textsubscript{x} in the model combined with...
convectively-transported boundary layer NO\textsubscript{x} from the Munich, Germany region resulted in sufficiently large NO\textsubscript{x} mixing ratios to cause a small titration loss of ozone (on average less than 4 ppbv) at all model levels. Simulations of the chemical environment in the 24 hours following the storm show on average a small increase in the net production of ozone at most levels resulting from lightning NO\textsubscript{x}, maximizing at approximately 5 ppbv per day at 5.5 km. Between 8 and 10.5 km, lightning NO\textsubscript{x} caused decreased net ozone production. Ren et al. (2008) found that net tropospheric ozone production proceeded at a median rate of \textasciitilde 11 ppbv per day above 9 km in the Intercontinental Transport Experiment (INTEX-A) in which the effects of frequent deep convection over the United States dominated the upper troposphere. Apel et al. (2012) noted that a box model calculation indicated a net ozone increase of \textasciitilde 10 ppbv over a few hours following observed convection with lightning over Canada in the Arctic Research of the Composition of the Troposphere from Aircraft and Satellite (ARCTAS) experiment. Apel et al. (2015) performed box modeling of the chemistry downwind of two DC3 storms in northeast Colorado on June 22, 2012. The northern storm ingested fresh biomass burning smoke, and the southern storm was affected by more aged biomass burning emissions. The model predicted substantial downwind ozone production in the UT for both storms. The southern storm was predicted to produce more ozone over 2 days (14 ppbv) than the northern storm (11 ppbv) despite having lower VOC OH reactivity. Sensitivity tests showed that this was principally due to more NO\textsubscript{x} being present in the southern storm outflow because of LNO\textsubscript{x}. Brune et al. (2018) found general agreement between observed and modeled OH and HO\textsubscript{2} in the outflow of the June 21, 2012 DC3 mesoscale convective system. In this study the DC-8 made multiple passes through the outflow as it moved downwind. Box model calculations yielded a 13 ppbv increase in ozone over 5 hours, similar to the observed 14 ppbv increase (see Brune et al, 2018). This rate of increase is larger than others in the literature, perhaps because for a portion of the 5 hours the outflow was in cirrus cloud, in which photolysis rates may have been larger than clear-sky values due to multiple scattering. Using a regional chemistry model, Pickering et al. (2023) estimated that net ozone production in the upper tropospheric outflow of a severe high flash rate storm observed over Oklahoma proceeded at a rate of 10-11 ppbv day-1 during the first 24 hours of downwind transport. Downwind photochemical production of ozone due to LNO\textsubscript{x} accounted for much of the recovery of upper tropospheric ozone following large reductions due to convective transport of lower ozone boundary layer air.

3.5.6 Summary of LNO\textsubscript{x}

LNO\textsubscript{x} is responsible for the largest fraction of upper tropospheric ozone in the tropics year-round and in the mid-latitudes in summer. Radiative forcing due to ozone is most sensitive due to the ozone near the tropopause. Therefore, it is of great importance to have knowledge of the trends in ozone in this region that are due to changes in frequency and characteristics of lightning flashes. While uncertainty remains concerning trends in global flash rates, regionally important trends have been noted in CONUS and in China, which tend to be correlated to the decreasing atmospheric aerosol content. An increasing trend at Arctic latitudes has been noted, as that region rapidly warms. Future trends in flash rate also are uncertain, with conflicting predictions coming from models with differing flash rate parameterizations. Flash characteristics (e.g., flash extent, flash energy or peak current, intracloud fraction) have been found to have important implications for LNO\textsubscript{x} production per flash. Insufficient knowledge of these characteristics makes it highly uncertain to estimate changes in LNO\textsubscript{x} production, even with knowledge of flash rate trends.
3.6. Soil NO and HONO emissions and their impacts on O$_3$

Nitrous acid (HONO) is produced from microbial activity in soils with a similar mechanism and strength as NO (Oswald et al., 2013). This emission source may partially account for the current mismatch between observed and simulated HONO levels in the lower troposphere (Su et al., 2011; Yang et al., 2020). Zhang et al. (2016) estimate a 29 % contribution of soil-HONO to the HONO sources in China. This may also contribute significantly to OH production with important implications for the HO$_x$ and O$_3$ budget. To account for this emission source and assess the global potential for atmospheric pollution soil-HONO emissions have been parameterized based on the HONO/NO emission ratio measured at multiple field samples (taken from different regions of the world) and up-scale it to the 4 major land cover types applied to the whole globe.

The study estimates a global emission source of 7 TgN/yr from soil-HONO in 2009 (Emmerichs et al., 2023). This is at the lower end of the estimated range of 7.4-12 TgN/yr presented by Wu et al. (2022) for 2017 who employ an empirical and statistical model in combination with observations. Due to the importance of NO and HONO soil emissions for the O$_3$ budget their variability and historical and future trends are described here and linked to O$_3$. Additionally, we discuss a modification of the soil NO emission scheme.

3.6.1. Global modeling of reactive nitrogen emissions from soil

In this section, we present a short overview of the soil-NO emission algorithms and estimates for regional and global emissions. The emission of nitrogen oxides (NO) from the soil is the major source of NO$_x$ in unpolluted regions accounting for 15-25 % of global emissions (Weng et al., 2019, Vinken et al., 2014). Thereby, NO is produced from the nitrification in soil (microbial activity) and depends non-linearly on soil properties like pH, carbon and nutrient content, temperature, and soil moisture (Gödde and Conrad 2000, Oswald et al. 2013). Model algorithms estimate soil-NO emissions with a function dependent on biological and meteorological drivers.

The common empirical approach by Yienger and Levy (1995), which is used in the current CMIP6 simulations (Szopa et al. 2022), is based on a biome-specific emission factor, soil temperature, precipitation, and the canopy uptake reduction factor. The resulting global estimate is in the range of 3.3-7.7 TgN/yr which is, however, only at the lower end of the more recent model and observation-based estimates. The Yienge and Levy (1995) approach generally underestimates soil NO for all landcover types except in the tundra and rainforest due to the pulsing parameterization, which describes a large NOx release at the wetting of very dry soil and the subsequent rapid decay (Steinkamp et al., 2009). This is accounted for in the more mechanistic approach by Hudman et al. (2012) representing pulsing of the emissions following dry spells and N-inputs from chemical fertilizer and atmospheric N-deposition. This approach calculates spatial and temporal patterns of soil moisture, temperature, pulsing, fertilizer, manure and atmospheric N deposition and biome overall replacing the emission factors by Yienger and Levy (1995) which yields in comparison 34 % more annual global soil emissions of nitrogen oxide (10.7 TgN/yr). Satellite top-down estimates range from 7.9 TgN/yr (Miyazaki et al., 2017: 2005-2014, assimilation of satellite data sets) to 16.7 TgN/yr (Vinken et al., 2014; GEOS-Chem and OMI). The emission of soil-NO varies regionally with small sources in Australia (~0.5 TgN/yr), Europe, Russia and Southern Hemisphere (SH) Africa (0.7 TgN/yr, 0.8 TgN/yr), America (0.9-1 TgN/yr) and high values in S.E. Asia and Northern Hemisphere (NH) Africa (2-2.1 TgN/yr). The emission estimates (here for 0.25° lat. × 0.3125° lon.) increase with resolution in some regions like Europe by 38 % (Weng et al., 2020).

Nitrous acid (HONO), a major OH source, is also produced from microbial activity in soils with a similar mechanism and strength as NO (Oswald et al., 2013). This additional emission source
may account for the current mismatch between models and measurements representing HONO
daytime-HONO concentrations in rural areas (in the lowest layers) traffic emissions and NO\textsubscript{2} heterogeneous reactions occur less than in urban areas (Wu et al.
HONO photolysis is a main OH source and impacts the oxidation capacity of the
atmosphere (Zhang 2016, 2019). Therefore, this may also contribute significantly to OH
production with important implications for the HO\textsubscript{x} and O\textsubscript{3} budget.

3.6.2. Variability and trends of soil emissions of NO and HONO in the last 15 years

The magnitude of soil emissions varies strongly with season where the emissions rise from
January and July by a factor of 2.5 (Weng et al., 2020). This follows the meteorological
variability as for instance, heavy rainfall over dry grasslands/forests causes a pulse of soil NO
emissions coupled with the usage of fertilizer (Hudman et al., 2012). According to the CCMI
simulations by Jöckel et al. (2016) (following the future (‘medium high’) climate scenario
RCP6.0 the soil NO emissions show a positive trend since pre-industrial times with a steeper
increase of up to 0.3 TgN/decade from the year 2000. As soil emissions of HONO rely on the
same biogeochemical process with similar dependencies on temperature and water content as NO
also increased from 2000 to 2019.

For soil-HONO, however, the trend over 2005-2019 is much smaller, most pronounced in
Central Africa (Figure 24). Thereby, the highest positive monthly anomalies occur mainly in the
5 most recent years which is likely due to the more frequent heat wave occurrence, e.g. in Europe
and North America. Overall, Africa relates the most (~30%) to the global anomaly (Figure 23 -
Figure 24).

![Image of Figure 23](https://doi.org/10.5194/egusphere-2024-720)

Figure 23: Time series of soil-HONO and soil-NO emissions and their trends (left) and the mean
global distribution of the soil-HONO emission trend for 2005-2019 based on monthly anomalies
(right).

Since soil-HONO emissions contribute 10-20 % to surface O\textsubscript{3}, most significantly in the Southern
Hemisphere (Wu et al., 2022), its positive emission trends may have contributed to the decrease
in O\textsubscript{3} over the last 15 years (see other sections).
3.6.3. Canopy Reduction Factor

Most NO soil emission models (Yienger and Levy, 1995; Hudman et al., 2012) rely on an empirical canopy reduction scheme which represents loss processes in plants as the diffusion of NO2 through the stomata and direct deposition to the cuticle. In particular, a large fraction of NOx (and peroxyacyl nitrate) loss during night may be only explainable by non-stomatal processes (Delaria et al., 2020b). Mechanistically, the canopy reduction can be described by an efficient NOx deposition to plants. Thus, Delaria et al. (2020a) points out that models already represent the uptake by vegetation and do not need to use a canopy reduction scheme. The potential change of NO soil emissions is shown by employing the global model ECHAM/MESSy (1°x1°) with an explicit trace gas uptake at stomata and cuticle (Emmerichs et al., 2021) for two different seasons in 2005 and 2006. Removing the canopy reduction factor in the model leads to a significant increase of soil NO emissions highest over tropical forests (Figure 25). The temporal variation follows the vegetational growth as in the Northern Hemisphere summer 50% higher emissions occur. These findings are reasonable as Hudman et al. (2012) estimated that the canopy reduction scheme overall lowers the NO emissions by 10-15% at grasslands and up to 85% over forests (GEOS-Chem at 2°×2.5° in 2006). Consequently, improper accounting for the canopy reduction factor may imply a strong underestimation of the soil-N in densely forested regions and globally by about 31% (2005-2006).
3.6.4. Projections of soil NO and variability in different climates

The future land use is predicted to change as a consequence of the growing demand for nutrition and biofuels which implies an increasing use of fertilizer. Consequently, NO soil emissions are estimated to rise by ~28% during the century to 11.5 TgN/yr at the end of 2100 (Fowler et al., 2015). Similarly, Liu et al. (2021) estimate an increasing soil NO emission of 8.9 TgN/yr by the year 2050 due to intensive nitrification processes. An increase of LAI by 10%, in contrast, would lead to 1% lower emissions. In addition, several responses are expected from the changing climate. In fact, the 1°C higher temperature would cause ~5% increase of emissions (Weng et al., 2020). Following the future (‘medium high’) climate scenario RCP6.0 (Representative Concentration Pathway, 6 W/m² radiative forcing until 2500, stabilization after 2150) used for the CMIP5 (Climate Model Intercomparison Project) simulations. Jöckel et al. (2016) suggest an increase of ~15% soil NO emissions due to increasing soil temperature (an increase of soil microbes) since present-day (2010) until 2100. However, the most significant implications for large-scale denitrification activity are changing rainfall and the regional hydrological cycles (Fowler et al., 2015). In general, soil NOx will play a more important role for the global budget in the troposphere due to the decreasing anthropogenic emissions in the future. Therefore, increasing NOx-soil emissions may slow down the decrease of O3 in response to declining anthropogenic emissions (Wu et al. 2022).

3.6.5. Next steps with biogeochemical models implemented in ESMs

Uncertainties of modeling soil nitrogen emissions are associated with the model input and parameters (Wang and Chen 2012). Process-based biogeochemical models which also consider the complexity of soil emission processes as DNDC (Denitrification–Decomposition) are needed (Li et al., 2011). The capability to represent interactive biogeochemical cycles allows for instance for the online calculation of crop nutrition from soil. Also, a model like CLM5 distinguishes between natural and agricultural soils which more accurately predicts the fertilizer.
4. Conclusion

In this article, we investigate temporal and spatial trends and variability of tropospheric ozone in relation to its precursors using satellite products, ozonesonde measurements, and model simulations. Our results show that ozone has positive trends at all latitudes and column depths regardless of the tropopause height within ±100 hPa. The positive trends in the 30-60ºN band are due to increasing trends over Canada and Alaska and are slightly offset by the small negative trends over the Eastern US and Europe. The decreasing trends above 30ºN and 30ºS are due to the offsetting impact of negative trends over Eastern US and Europe in the north, and Australia and South Africa in the south, respectively. The decreasing trends of TrC-O3 over Eastern US and Europe are consistent with the decreasing trend of TrC-NO2, which is due to the effective measures applied over the last two decades to mitigate air pollution in these regions. The decrease of TrC-O3 as a result of decreasing TrC-NO2 trends is due to the NO-sensitive conditions dominating most of these regions. The increasing trends of TrC-O3 in the other regions of the world where TrC-NO2 is decreasing as a result of VOC-sensitive conditions, especially over East Asia. TrC-HCHO trends are decreasing in the Eastern US, some parts of northern and western Africa, and western and northern Europe increasing in South Asia, central Africa, northern Australia, and Brazil. TrC-HCHO trends are consistent with that of TrC-O3 over Eastern US and Europe. The decreasing trends of HCHO and O3 as NO2 increases is evidence of the VOC-limited conditions in these regions. Under these conditions, increased NO2 levels lead to a reduction of OH, which decreases the oxidation capacity and thus lowers the photochemical formation of HCHO and O3. We have also shed light on NOx lightning and its relation to ozone trends. LNOx is responsible for the largest fraction of upper tropospheric ozone in the tropics year-round and in the mid-latitudes in summer. Ozone Radiative forcing is due to the ozone near the tropopause. An increasing trend of LNOx at Arctic latitudes has been noted, as that region rapidly warms. However, future trends in flash rate are uncertain, with conflicting predictions coming from models with differing flash rate parameterizations. Soil HONO emissions had their highest positive monthly anomalies mainly in the 5 most recent years which is likely due to the more frequent heat wave occurrence, e.g. in Europe and North America. Soil HONO trends are highest in Africa accounting for ~30% of the global anomaly. Soil NOx emissions could play an important role in the tropospheric NOx global budget due to the decreasing anthropogenic emissions in the future. Therefore, the expected increase in NOx-soil emissions may slow down the decrease of O3 in response to declining anthropogenic emissions. Overall, this study presented a comprehensive overview of tropospheric ozone trends in relation to its precursors in different spatial and temporal scales.

Acknowledgment

This study was partially funded by the NSF AGS, grant number 1900795, USF Creative Scholarship Grant 2022. A part of the research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. HP has received funding from usage (Fung et al., 2022). Resolving the soil and litter biogeochemical dynamics vertically, in addition, lead to a more efficient retention and recycling of N by the ecosystem (Koven et al., 2013). However, these models should be calibrated to multiple sites (Wang et al., 2019) which is limited by the availability of measurement data, especially when it comes to global modeling.
the Ministerio de Ciencia e Innovación through the MITIGATE project (grant no. PID2020-113840RA-100 funded by MCIN/AEI/10.13039/501100011033) and the Ramon y Cajal grant (RYC2021-034511-I; MCIN / AEI / 10.13039/501100011033 and European Union NextGenerationEU/PRTR). The GEOS-GMI simulation was supported by the NASA’s Making Earth System Data Records for Use in Research Environments (MEaSUREs) program and the high-performance computing resources for GEOS-GMI were provided by the NASA Center for Climate Simulation (NCCS).

5. References

doi:10.5194/acp-14-12665-2014.

Gödde and Conrad: https://doi.org/10.1007/s003740000247

Hudman et al., (2012) www.atmos-chem-phys.net/12/7779/2012/

Li et al. (2011) https://doi.org/10.1016/j.chnaes.2010.11.006

Prodromos Zanis, Dimitris Akritidis, Steven Turnock, Vaishali Naik, Sophie Szopa, Aristeidis K Georgoulas, Susanne E Bauer, Makoto Deushi, Larry W Horowitz, James Keeble, Climate change penalty and benefit on surface ozone: a global perspective based on CMIP6 earth system models, Environmental Research Letters, Volume 17, Number 2, DOI: https://doi.org/10.1088/1748-9326/ac4a34

Prather, M. J. and D. J. Jacob (1997) A persistent imbalance in HO
x and NOx photochemistry of the upper troposphere driven by deep tropical convection, Geophys. Res. Lett., 24, 3189 – 3192.

Sue et al. 2011: https://doi.org/10.1126/science.1208839

Zhang et al., 2020: https://doi.org/10.1016/j.atmosenv.2020.117596