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Response to Anonymous Referee #2: 

We sincerely appreciate the time and effort invested by both the reviewer and the editor in evaluating 

our paper titled "Evaluation of CMIP6 Models Performance in Simulating Historical 

Biogeochemistry across Southern South China Sea" submitted for publication in Biogeosciences. We 

are grateful for the positive feedback and the insightful comments provided, which is detailed in this 

report and also in the upcoming revised manuscript. The majority of the suggestions put forth by the 

reviewers have been incorporated, and in the limited cases where we have not, we have provided a 

detailed description of the justification for each decision. For ease of reference, we have provided a 

detailed point-by-point response to the reviewer’s comments, with line numbers in each response refers 

to the revised manuscript. Additionally, we have included the recently added discussions, revised figures 

and newly added references in this “response to the review” report for the convenience of the 

reviewer/editor to refer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



REVIEWER-2 GENERAL COMMENTS 

Comment 1A: 

The aim of the paper is to rank 13 CMIP6 ESM simulations based on their ability to reproduce selected observed 

biogeochemical variables. However, the dataset that the author chose is not strictly observations. Based on the 

link they provided in line 123, the CMEMS ocean biogeochemistry product is based on the PISCES model output 

(although it is forced with reanalysis product). I also noticed that among the 13 CMIP6 ESMs, the authors have 

not chosen IPSL-CM6A ESM, which includes PISCES as its ocean biogeochemical model. I understand that in-

situ observations may be rare in this region, but to truly assess the CMIP6 ensemble and individual models, I 

suggest the authors could compare the CMIP6 models with satellite-derived chlorophyll-a and primary 

production, as well as the World Ocean Atlas product for nitrate and oxygen.  

Response: 

• We sincerely appreciate your attention to the matter regarding the usage of reference data (CMEMS) in our 

study. We understand the importance of ensuring the robustness and reliability of the data utilized in our 

research, but CMEMS is the only available timeseries hindcast data for the biogeochemistry in southern 

South China Sea region. We have acknowledged this in our manuscript (L136) and emphasized that the 

quality of CMEMS biogeochemistry product has been validated by Mercator-Ocean. Their validation 

process, outlined in the Quality Information Document (QuID; Perruche et al., 2019), includes comparisons 

with recognized datasets such as Ocean Color, World Ocean Atlas, and Globcolour products, ensuring the 

credibility of the data. 

• Furthermore, to boost confidence in this dataset within the southern South China Sea region, we have 

discussed some literatures in our revised manuscript (L141 – L150), in which, authors have validated this 

data product with the in-situ measurement in this study region, i.e., Wahyudi et al, (2023) validated the POC, 

Chlorophyll, Dissolved Oxygen, Nitrate, Phosphate and Silicate obtained from CMEMS biogeochemistry 

product by comparing it with in-situ data collected during the Widya Nusantara Expedition 2015 (Triana et 

al., 2021) in the upwelling area of southwestern Sumatra waters. They found that the mean absolute 

percentage error values were lower than 15%, indicating the reliability of the CMEMS biogeochemistry 

model data in our study area. Additionally, Chen et al, (2023) also used the daily chlorophyll concentration 

data from the same CMEMS biogeochemical product in south china sea region. By utilizing this CMEMS 

biogeochemistry model dataset, Wahyudi et al. (2023) and Chen et al. (2023) highlights the proficiency of 

the CMEMS biogeochemistry model data in reproducing both the climatic patterns and fluctuations observed 

within its biogeochemical variables in southern South China Sea. This gave us confidence in utilizing the 

CMEMS biogeochemical dataset as the reference model to assess other models in this region (southern South 

China Sea). 

• While we appreciate your suggestion of alternative datasets, our decision to utilize CMEMS as the sole 

reference dataset was made to maintain consistency in the evaluation process. By adhering to a homogeneous 

dataset, we aim to ensure the integrity and reliability of our evaluation results, thereby instilling greater 

confidence in our findings. 

• Additionally, IPSL-based models showed a standard deviation >50 mg/m3 for the chlorophyll variable 

compared to reference data, resulting in their exclusion from the analysis. 

 

Comment 1B: 

Since the paper also looks at the seasonal trend of biogeochemical properties, it could benefit from exploring 

whether different CMIP6 models can capture phytoplankton phenology (e.g., Racault et al., 2015; Gittings et al., 

2018), which is an important indicator. 

Response: 



We appreciate your insightful comment and apologize for any confusion regarding our approach. Our 

examination primarily focused on the seasonal spatial climatology (now presented as seasonal spatial bias in Figs. 

2-25), not the seasonal trend map.  

While we acknowledge the significance of exploring phytoplankton phenology in CMIP6 models, as suggested by 

the references you provided, conducting such studies requires extensive time and resources and also, we afraid 

that incorporating phenology in this study could potentially diverge the main scope of our current investigation. 

However, we recognize the importance of this aspect and have duly noted it as a potential avenue for future 

research in our study (L454 – L458). Thank you for bringing this to our attention. 

************************************ 

Comment 2: 

Indeed, most of the biological activity occurs near the surface layers of the ocean, but it's important to consider 

the biogeochemical dynamics near the seabed, particularly in shelf seas, as they can have complex structures 

through interactions of ocean physics with biological processes, such as export and remineralization. I would 

appreciate the inclusion of depth profiles and benthic concentrations of oxygen and nitrate – this would provide a 

more thorough assessment of the biogeochemical properties. Furthermore, most of the biogeochemical models 

used in CMIP6 are not specifically built for shelf seas. It would be interesting to see whether these models can 

represent nutrient and oxygen distribution at shallower depths. 

Response: 

• Thank you for bringing up the importance of analysing the bias at depth to understand the oxycline and 

nutricline dynamics of the models. In response, considering the complex bathymetry of southern SCS region, 

we have addressed this concern by presenting the spatial distribution of seasonal variations in nitrate and 

oxygen at two distinct depths (70m and 1000m) for each model, rather than providing profiles (L270 – 

L320). The depth of 70 meters has been selected to depict the dynamics of the nutricline/oxycline in the shelf 

break region of Sunda Shelf region, while a depth of 1000 meters has been chosen to represent the deep 

layer. Accordingly, we have discussed the biases 

• For nitrate (L278 – L291) as follows: 

“Furthermore, delving into model biases at deeper levels, especially concerning nutrient dynamics, will 

provide more insights into the model's accuracy in simulating the nutricline. Consequently, we analysed 

the nitrate concentrations at depths of 70m (Figs. 11 – 13) and 1000m (Figs. 14 - 16). In contrast to 

surface nitrate, most models exhibited a negative bias at deeper layers (70m and 1000m), with an 

average range of -2 to -8 mmol/m3 across the study area. Among these models, MPI-based models 

showed the least negative bias at 70m depth; however, as depth increased to 1000m, their bias shifted 

towards the positive (Fig. 13 and 16, respectively). MIROC-based and MPI-based models exhibited the 

least bias in nitrate concentrations at both surface and deep layers compared to reference data. This may 

be attributed to the near balance achieved between nitrogen cycle sources (such as nitrogen fixation, 

atmospheric nitrogen deposition, and riverine nitrogen input) and sinks (including denitrification, nitrous 

oxide emission, and sedimentary loss) over the long spin-up period (Mauritsen et al., 2019; Hajima et al., 

2020). In contrast, CanESM5-based models demonstrated minimal nitrate bias at the surface but showed 

varying positive and negative biases in deep layers. These discrepancies arise from the simplified 

parameterization of denitrification in their BGC models. In these models, denitrification in the deep 

layers is set to balance the rate of nitrogen fixation and is vertically distributed in proportion to the 

detrital remineralization rate. However, in reality, nitrogen fixation and denitrification are not 

constrained to balance within the water column at any single location; rather, denitrification primarily 

occurs in anoxic areas (Swart et al., 2019). Notably, no seasonal bias in all selected models were 

observed at the deep layer (1000m; Fig. 16).” 

• For oxygen (L293 – L313) as follows: 

“During the observation of oxycline dynamics in the selected models, it was noted that the oxygen 

exhibited a positive bias at a depth of 70m, transitioning to a negative bias with increasing depth (1000m) 



(Fig. 20 and 25). Moreover, UKESM1-0-LL consistently exhibited a substantial positive bias from the 

surface to the depth of 70m (~50 mmol/m³) and shifts to negative bias of -40 mmol/m³ at 1000m relative 

to its surface bias. Similarly, CanESM5 and MIROC-based models displayed markedly high negative 

biases at a depth of 1000m, but with comparatively lesser negative biases at 70m. Multiple factors could 

contribute to biases in the simulation of nutricline/oxycline dynamics by models. Inaccuracies in 

simulating nutricline dynamics may arise from errors in parameterizing physical, chemical and 

biological processes relevant to these dynamics. In winter, most models overestimate oxygen levels at the 

surface and at a depth of 70 meters. This positive bias in oxygen concentration may result from 

excessively intense winter mixing of cold, oxygen-rich waters from the northern boundary of the southern 

SCS into the Sunda Shelf region (Thompson et al., 2016), which transports an excessive amount of 

surface oxygen to deeper layers. Additionally, nutrient trapping issues may also contribute to the 

remaining model bias (Six & Maier-Reimer, 1996). Moreover, the exclusion of relevant processes or 

feedback mechanisms influencing nutricline dynamics within the model, such as nutrient upwelling, 

microbial remineralization and ocean stratification, may lead to biased simulation outcomes. 

Additionally, structural uncertainties embedded in the model formulation, including simplifications or 

assumptions regarding complex processes, may also play a role in generating biases in simulation results. 

For example, advancements in model parameterization and representation of biogeochemical fluxes have 

led to consistent improvements in the mean states of nutrient dynamics in CMIP6 models, such as GFDL-

ESM4, MIROC-based, MPI-ESM1-based, and NorESM2-based models. Specifically, improvements in 

GFDL-ESM4 performance are attributed to a series of updates and changes in model physics (such as 

mixing and climate dynamics) and biogeochemical parameterizations such as the implementation of a 

revised remineralization scheme for organic matter that depends on oxygen and temperature (Laufkötter 

et al., 2017).” 

************************************ 

Comment 3: 

Although the authors put a great effort in evaluating CMIP6 model outputs, the model structures could also be 

evaluated; how biogeochemical tracers are represented, and whether these representations affect the performance 

of the model in the southern SCS. Perhaps the authors can add another table which biogeochemical tracers these 

models represent (e.g., in MEDUSA-2 (UKESM), it does not represent diazotrophic phytoplankton, explicitly 

calculates phytoplankton chlorophyll, and uses N as model currency, while in OECO-2 (MIROC), it has 

diazotrophic phytoplankton with C as model currency and includes Phosphate as nutrients), and perhaps also how 

they are formulated, especially when it involves trophic transfer (e.g. nutrient uptake, zooplankton grazing, and 

phytoplankton growth, and plankton mortality). These additions can add some discussion on how model 

representation (and structure) may affect model performance in the shelf seas, instead of repeatedly saying that 

underestimation/overestimation is due to zooplankton grazing/phytoplankton productivity/nutrient uptake. 

Response:  

We sincerely appreciate your insightful comments regarding the model structures. Following your suggestion, we 

have incorporated an overview of how tracers and model structure affect performance into our discussion, 

specifically when examining inter-parameter relationships such as chlorophyll-biomass and biomass-nitrate in in 

L432 – L454 as follows: 

“This slight negative correlation could stem from various factors that it may reflect discrepancies in those model 

dynamics, such as the representation of nutrient uptake or phytoplankton growth rates. Biological processes 

within the models might not accurately capture the complexities of phytoplankton-nutrient interactions. For 

example, variations in biogeochemical tracers within model frameworks could influence model efficacy. 

Specifically, except UKESM1-0-LL and MIROC-based models, all other selected models utilize carbon as their 

primary model currency for representing phytoplankton biomass, incorporating explicit calculations for 

phytoplankton biomass and they also utilize nitrate and phosphate to constrain bulk phytoplankton growth rates 

alongside temperature and light. Consequently, their representation of phytoplankton biomass exhibited a weaker 

correlation with nitrate. Despite the use of carbon tracer, MPI-ESM1-2-LR incorporates a newly resolved 

nitrogen-fixing formulation within its biogeochemistry model. This updated formulation introduces an additional 



prognostic phytoplankton class, replacing the diagnostic formulation of nitrogen-fixation utilized in MPI-ESM-LR 

(Paulsen et al., 2017; Mauritsen et al., 2019). As a result, this adjustment enables the model to capture the 

nitrogen response to phytoplankton biomass positively. UKESM1-0-LL employed nitrogen as its primary currency, 

resulting in a more pronounced quantitative representation of phytoplankton biomass in response to increased 

nitrate levels compared to the other models (Fig. 27). While MIROC-ES2L primarily utilizes nitrogen as its 

tracer, it also integrates the phosphorus cycle within the model framework to accurately depict the strong 

phosphorus limitation on the growth of diazotrophic phytoplankton (Hajima et al., 2020). Consequently, this 

incorporation of the phosphorus cycle may account for phosphorus limitation, resulting in the observed negative 

correlation between nitrate and phytoplankton biomass within our study area. In the case of GFDL-ESM4, the 

negative correlation between nitrate and phytoplankton could potentially originate from their model 

parametrization. In their framework, phytoplankton were categorized based on size and functional type, with 

small phytoplankton being nitrogen-rich and large phytoplankton phosphate-rich, thereby attributing 

characteristic N:P ratios (Stock et al., 2020). Thus, differences in parameterizations, data initialization and 

model resolution could contribute to divergent simulated responses (Séférian et al., 2020).” 

************************************ 

Comment 4: 

The presentation of the results can also be improved. I think it will be easier to follow the results if the authors 

describe the observed distribution of nitrate, chlorophyll, phytoplankton biomass, and oxygen, then compare them 

with the model. For the figures, it would be more interesting to see the difference between the CMEMS data and 

CMIP6 outputs with better figure resolution (especially figure 6). Additional discussion on regions where bias 

usually occurs in different models will also be interesting (e.g., the shelf seas between Sumatra, the Malaysian 

peninsula, and Borneo are always high in phytoplankton biomass for UKESM, CanESM5, ACCESS, MPI-ESM1-

2, NorESM2). 

Response:  

• We sincerely appreciate your insightful feedback and acknowledge your concern regarding the clarity of the 

results. Following your suggestion, we have modified the seasonal climatology figure in our revised 

manuscript to better illustrate the seasonal bias against the reference data (Figs. 2 – 25: can be found in this 

report below). 

• Additionally, we have incorporated your recommendation to discuss the spatial diversity in model bias. Our 

revised manuscript now elaborates this in L235 – L250 as follows: 

“Most models showed spatial uniformity in their underestimation or overestimation of chlorophyll and 

phytoplankton, with a few models exhibiting spatial diversities in their estimates. For example, the CanESM-

CanOE model consistently overestimates chlorophyll concentration and phytoplankton biomass in both 

seasons, with mean biases of ~0.49 mg/m³ in DJF and ~0.31 mg/m³ in JJA for chlorophyll, and ~2.2 mmol/m³ 

in DJF and ~1.5 mmol/m³ in JJA for phytoplankton. This overestimation is particularly pronounced in the 

region between Sumatra, Peninsular Malaysia, and Borneo, where chlorophyll exceeds 1 mg/m³ and 

phytoplankton exceeds 5 mmol/m³. Similarly, the UKESM1-0-LL model overestimates chlorophyll and 

phytoplankton in both seasons, especially in the Gulf of Thailand. These models may have insufficient spatial 

resolution to capture the fine-scale physical and biological processes in these regions. Important features 

like small-scale currents, eddies and upwelling events, which significantly affect chlorophyll and 

phytoplankton distributions, may not be adequately resolved, leading to spatial bias. Generally, ESMs in 

CMIP6 are developed for open ocean conditions rather than shelf seas. Most CMIP6 ESMs have a coarse 

resolution (≥ 100 km horizontal) for the ocean component, although some have resolutions of ≤ 25 km, which 

is considered eddy-permitting. This suggests these ESMs can represent barotropic processes at smaller 

scales but not baroclinic ones (Chelton et al., 1998). The ability of coarse-resolution CMIP6 ESMs to 

represent shallow continental shelf waters dynamics with high skill, such as the southern SCS’ Sunda shelf 

region, is limited. Variability in this region is influenced by inflows like the Indonesian Throughflow and SCS 

Throughflow, which are not resolved by coarse-resolution models (Wang et al., 2024).” 

************************************ 



REVIEWER-2 SPECIFIC COMMENTS 

Comment 1: 

L12 – perhaps the authors can add a % or number on the degrees of overestimation and underestimation. 

Response:  

Thank you for highlighting this important point. We apologize for the oversight and any confusion it may have 

caused. The overestimations or underestimations pertain to quantitative measures that vary depending on the 

analysed variables and seasons. We have included this clarification in the revised manuscript, following your 

recommendation (L13). 

************************************ 

Comment 2: 

L22-23 - Based on CMIP6 models, NPP trend is uncertain, apart maybe at the Southern Ocean (Tagliabue et al., 

2021) 

Response:  

Thank you for your valuable feedback. We acknowledge the inaccuracy in our original statement regarding 

marine NPP uncertainty in 2100. Accordingly, the corrections have been made in revised manuscript (L23 – L29) 

as follows:  

“For example, Kwiatkowski et al. (2020) discovered that the multi-model global mean projections from the 

Coupled Model Intercomparison Project Phase 6 (CMIP6), under high-emission to low-emission scenarios, 

indicate a consistent decrease in net primary production. Notably, there is a significant increase in inter-model 

uncertainty compared to CMIP5. This increased uncertainty is linked to changes in the temporal patterns of 

phytoplankton resource availability and grazing pressure within CMIP6 (Kwiatkowski et al., 2020). This carries 

significant implications for evaluating ecosystem impacts on a regional scale. (Tagliabue et al., 2021).” 

************************************ 

Comment 3: 

L33-34 - This is not always the case - OBGC models can give the seemingly good representation of historical 

climate pattern but for the wrong reason. Furthermore, OBGC model results is dependent on its physical forcings 

(see Sinha et al., 2010) 

Response:  

Thank you for bringing this matter to our attention. In response to your suggestion, we have gone through some 

literatures and made changes accordingly in L35 – L42 stating that “While a model's successful reproduction of 

historical climate patterns suggests it has captured relevant physical processes and interactions within the Earth's 

system but this is not always the case. Ocean BGC models can sometimes appear to accurately represent 

historical climate patterns for incorrect reasons, as their results are highly dependent on the physical forcing 

applied (Friedrichs et al., 2006; Sinha et al., 2010). For example, minor changes in ocean model circulation can 

lead to significant variations in biogeochemical conditions. Similarly, Glessmer et al. (2008) discovered that even 

slight alterations in mixing greatly affects the simulation of primary production and export in the global general 

circulation models. Therefore, caution is needed when using these models for future climate projections.” 

************************************ 

Comment 4: 

L60 – typo: Tjiputra et al, (2020) 

Response:  

Thank you for pointing out this oversight. We have corrected accordingly in L68 

************************************ 



Comment 5: 

L61-72 – I’m not so sure if these are appropriate examples. Maybe add studies like Kwiatkowski et al., 2020, 

Hinrichs et al., 2023 

Response:  

Thank you for your valuable suggestion and for providing literature on this topic. We have thoroughly reviewed 

the references you recommended, and we have incorporated relevant findings from Kwiatkowski et al., 2020 into 

our manuscript L88.   

************************************ 

Comment 6: 

L83-L85 – Why only phytoplankton, chlorophyll, nitrogen, and oxygen? Why not net primary production and or 

carbon? 

Response:  

Thank you for your concern about the selected variables. We chose to focus on phytoplankton, chlorophyll, 

nitrogen, and oxygen for following reasons: 

1. These variables are fundamental tracers for biological and nutrient dynamics in ocean systems. 

2. Phytoplankton and chlorophyll variables serve as effective proxies for primary production, thus 

encompassing the essential aspect of net primary production. 

3. Given that the southern SCS region is recognized as a typical oligotrophic area where primary 

productivity is primarily constrained by nutrient availability, we specifically included nitrate and oxygen. 

4. We considered variables that were consistently available across all selected models' historical and 

projection scenarios to ensure comparability and consistency in our analysis. Even phosphate variable is 

unavailable in some of the selected model’s scenarios. Thus, phosphate is also excluded. 

************************************ 

Comment 7: 

L103-L105 - This sounds like phytoplankton is controlling the physical biogeochemical process? 

Response:  

We sincerely apologize for the confusion caused by our statement. Upon a careful review, we rephrased the 

statement as “Within the southern SCS, extensive observations have demonstrated that phytoplankton growth, 

serving as the primary source of organic matter, significantly influences oceanic carbon cycles. This growth is 

influenced by monsoon-driven physical and biogeochemical processes, with phytoplankton demonstrating a 

notable sensitivity to these environmental dynamics.” in L124 – L127. 

************************************ 

Comment 8: 

L122-123 – is this the hindcast global ocean biogeochemistry? Do you also use the GlobColour for chlorophyll? 

Please be more specific. 

Response:  

• We sincerely apologize for the confusion made. The CMEMS product used in this study is the hindcast 

global ocean biogeochemistry dataset, which can be found in CMEMS biogeochemistry hindcast dataset (ID: 

GLOBAL_MULTIYEAR_BGC_001_029) (L156). 

• We did not use GlobColour data in our study. Instead, Mercator Ocean used GlobColour data to validate the 

chlorophyll data within the CMEMS hindcast biogeochemistry dataset, as mentioned in L138 – L141. 

************************************ 



Comment 9: 

L125 – Perhaps, instead of having 2/3 ESMs with the same OBGC model, maybe choose one of them instead, so 

you can also look at other models such as PISCESv2 (Aumont et al., 2016), MARBL (Long et al., 2021), BFM5.2 

(Lovato et al., 2022)? 

Response:  

Thank you for suggesting a method to choose models. We will incorporate this method in our future studies. 

Additionally, as explained in L129 – L132 that our current model selection procedure was based on the 

availability of selected biogeochemical variables across historical or projected scenarios. Based on this, CESM2 

model utilizing the MARBL bgc model was excluded from our study due to the absence of the dissolved oxygen 

(o2) variable in its historical dataset. 

************************************ 

Comment 10: 

L132 – Do you mean visualised using taylor diagram? How do you calculate model/data comparison using a 

diagram? 

Response:  

We sincerely apologize for the confusion caused by our statement. Upon a careful review, we replaced the word 

“calculated” to “visualized” in L165. 

************************************ 

Comment 11: 

L164-165 Can you provide a reference on this statement? 

Response:  

Thank you for your concern regarding this matter. The statement is nuanced, reflecting both aspects. While some 

studies, such as those by Behrenfeld et al. (2006) and Kwiatkowski et al. (2017), indicate that seasonal cycles can 

help constrain projections, our intended message (L197 – L201) is that “although temporal cycles like the yearly 

seasons are important components of climate variability, they provide only a partial perspective on long-term 

climate change. Long-term changes involve shifts in average temperatures, changes in precipitation patterns, 

variations in the frequency and intensity of extreme weather events, and other systemic transformations that go 

beyond the periodic nature of seasonal cycles.” Thus, our revised statement (L197 – L201) aims to convey that 

"the yearly cycle of seasons partially captures the long-term changes associated with climate change". 

************************************ 

Comment 12: 

L172 – but CMEMS data is not really observation, isn’t it? 

Response:  

We sincerely apologize for the confusion caused by our statement. CMEMS is not observation data. We replaced 

the word “observed” to “reference” in L208.  

************************************ 

Comment 13: 

L177-L179 - perhaps spell out how these models represent their phytoplankton growth and chlorophyll 

concentration? And compare it to models that have better RMSD? 

Response:  

Thank you for highlighting this concern. The model’s representation of biological tracers was discussed in Inter-

variable relations section in L395 as detailed in Reviewer-1 major comment 1.  

************************************ 



Comment 14: 

L184, 219 – what is acceptable range? 

Response:  

Thank you for highlighting this concern. We have addressed it by representing the acceptable bias range based on 

models with small mean bias. Accordingly, in the revised manuscript, we have specified the acceptable range as ≤ 

±0.3 mg/m³ for chlorophyll in L220 and ≤ ±1 mmol/m³ for phytoplankton in L234. 

************************************ 

Comment 15: 

L186 - why is UKESM not overestimating chlorophyll, but overestimates phytoplankton carbon?  

Response:  

Thank you for your concern regarding this matter. In L225 – L229 we explained that “UKESM1-0-LL model 

explicitly simulates chlorophyll concentrations, allowing for a more accurate representation of chlorophyll levels 

(Sellar et al., 2019). However, UKESM1-0-LL uses nitrogen as its primary model currency, which results in a 

more pronounced quantitative representation of nutrient levels. This might lead to enhanced nutrient uptake by 

phytoplankton due to differences in model parameterizations and consequently result in the overestimation of 

phytoplankton biomass.” This could explain why the model does not overestimate chlorophyll but does 

overestimate phytoplankton. 

************************************ 

Comment 16: 

L232-L242 – maybe move this to the study domain part instead of on the results section? 

Response:  

Thank you for your suggestion. Accordingly, we shifted this part to study domain section in L109 – L119. 

************************************ 

Comment 17: 

L251 – Can you give example of the important processes? 

Response:  

Thank you for your insightful comment. The important processes that may be overlooked by some ESMs include 

nutrient cycling, light availability, temperature variations, and phytoplankton phenology. These processes play 

important roles in shaping the seasonal patterns of biogeochemistry in marine ecosystems. We have clarified this 

point in the revised manuscript in L390. 

************************************ 

Comment 18: 

L286 - Why do you think this is? could it be that the ESMs in CMIP6 is developed based on the condition of the 

open ocean, but not the shelf seas? Or is it because the resolution is too coarse for shelf seas? 

Response:  

Thank you for your insightful question. Indeed, both factors you mentioned could contribute to the observed 

performance of the ESMs in simulating biogeochemical variables. The ESMs in CMIP6 are primarily developed 

based on the conditions of the open ocean, which may not fully capture the complexities of shelf seas. 

Additionally, the coarse resolution of these models may not adequately resolve the fine-scale processes occurring 

in shelf sea environments. Together, these factors likely contribute to the moderate to poor performance of the 

ESMs in simulating biogeochemical variables, as mentioned in L502 – L506. 

************************************ 



Comment 19: 

Figure 6 could do with higher resolution. 

Response:  

Thank you for your suggestion regarding Figure 6. Accordingly, we have resolved the clarity of the Figure, which 

is now Fig. 12 (can be found in this report below). 

************************************ 

 

 

 

 

Revised Figures: 

 

 

Figure 1. DJF spatial biases of surface chlorophyll for 13 individual models and model ensemble relative to reference.  

 



 

Figure 2. Same as Fig.2 but for JJA. 

 

 

Figure 3. The mean bias of surface chlorophyll for both seasons (DJF, JJA) and annual. 

 

 

 



 

Figure 4. DJF spatial biases of surface phytoplankton for 13 individual models and model ensemble relative to reference. 

 

 

Figure 5. Same as Fig. 5 but for JJA. 

 



 

Figure 6. The mean bias of surface phytoplankton for both seasons (DJF, JJA) and annual. 

 

 

 

Figure 7. DJF spatial biases of surface nitrate for 13 individual models and model ensemble relative to reference. 

 



 

Figure 8. Same as Fig. 8 but for JJA. 

 

 

Figure 9. The mean bias of surface nitrate for both seasons (DJF, JJA) and annual. 

 



 

Figure 10. DJF spatial biases of nitrate at 70-meter depth for 13 individual models and model ensemble relative to reference. 

 

 

Figure 11. Same as Fig. 11 but for JJA. 

 



 

Figure 12. The mean bias of nitrate at 70-meter depth for both seasons (DJF, JJA) and annual. 

 

 

Figure 13. DJF spatial biases of nitrate at 1000-meter depth for 13 individual models and model ensemble relative to 

reference. 

 



 

Figure 14. Same as Fig. 14 but for JJA. 

 

 

Figure 15. The mean bias of nitrate at 1000-meter depth for both seasons (DJF, JJA) and annual. 

 



 

Figure 16. DJF spatial biases of surface oxygen for 13 individual models and model ensemble relative to reference. 

 

 

Figure 17. Same as Fig. 17 but for JJA. 

 



 

Figure 18. The mean bias of surface oxygen for both seasons (DJF, JJA) and annual. 

 

 

Figure 19. DJF spatial biases of oxygen at 70-meter depth for 13 individual models and model ensemble relative to 

reference. 

 



 

Figure 20. Same as Fig. 20 but for JJA. 

 

 

Figure 21. The mean bias of oxygen at 70-meter depth for both seasons (DJF, JJA) and annual. 

 



 

Figure 22. DJF spatial biases of oxygen at 1000-meter depth for 13 individual models and model ensemble relative to 

reference. 

 

 

Figure 23. Same as Fig. 23 but for JJA. 

 



 

Figure 24. The mean bias of oxygen at 1000-meter depth for both seasons (DJF, JJA) and annual. 

 



 

Figure 25. Relationships between chlorophyll and phytoplankton for model ensemble and 13 individual models in southern 

South China Sea during the study period (1993 – 2014). Dashed red lines represent 95% confidence interval with 0.05 as the 

level of significance (α). 

 



 

Figure 26. Relationships between nitrate and phytoplankton for model ensemble and 13 individual models in southern South 

China Sea during the study period (1993 – 2014). Dashed red lines represent 95% confidence interval with 0.05 as the level 

of significance (α). 



 

Figure 27. Annual Taylor Diagram for (a) chlorophyll, (b) phytoplankton, (c) nitrate and (d) oxygen. 
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