## Supplementary Material: fair-calibrate v1.4.1: calibration, constraining and validation of the FaIR simple climate model for reliable future climate projections

Chris Smith<sup>1,2</sup>, Donald P. Cummins<sup>1</sup>, Hege-Beate Fredriksen<sup>3</sup>, Zebedee Nicholls<sup>2,4,5</sup>, Malte Meinshausen<sup>4,5</sup>, Myles Allen<sup>6</sup>, Stuart Jenkins<sup>6</sup>, Nicholas Leach<sup>6</sup>, Camilla Mathison<sup>1,7</sup>, and Antti-Ilari Partanen<sup>8</sup>

<sup>1</sup>School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom

<sup>2</sup>Energy, Climate and Environment Program, International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria

<sup>3</sup>UiT the Arctic University of Norway, Tromsø, Norway

<sup>4</sup>School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, Australia
<sup>5</sup>Climate Resource, Melbourne, Victoria, Australia

<sup>6</sup>Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford OX1 3PU, United Kingdom

<sup>7</sup>Met Office Hadley Centre, Exeter EX1 3PB, United Kingdom

<sup>8</sup>Climate System Research, Finnish Meteorological Institute, Helsinki, Finland

Correspondence: Chris Smith (c.j.smith1@leeds.ac.uk)

| Model           | $\kappa_1$ | $\kappa_2$ | $\kappa_3$ | $C_1$ | $C_2$ | $C_3$ | $\epsilon$ | $\gamma$ | $\sigma_{\xi}$ | $\sigma_{\eta}$ | $F_{4 \times CO_2}$ | ECS  | TCR  |
|-----------------|------------|------------|------------|-------|-------|-------|------------|----------|----------------|-----------------|---------------------|------|------|
| ACCESS-CM2      | 0.67       | 2.81       | 0.68       | 3.73  | 11.6  | 86    | 1.35       | 1.62     | 0.53           | 0.45            | 7.19                | 5.36 | 2.48 |
| ACCESS-ESM1-5   | 0.70       | 3.58       | 0.84       | 3.77  | 8.9   | 87    | 1.56       | 2.74     | 0.60           | 0.64            | 6.56                | 4.69 | 2.00 |
| AWI-CM-1-1-MR   | 1.22       | 1.79       | 0.66       | 4.14  | 11.0  | 47    | 1.32       | 3.97     | 0.65           | 0.94            | 8.02                | 3.28 | 2.17 |
| BCC-CSM2-MR     | 1.06       | 2.13       | 0.85       | 4.16  | 11.8  | 63    | 1.25       | 2.30     | 0.34           | 0.54            | 6.71                | 3.15 | 1.87 |
| BCC-ESM1        | 0.88       | 1.48       | 0.91       | 5.35  | 15.8  | 77    | 1.29       | 1.88     | 0.31           | 0.39            | 6.25                | 3.53 | 1.91 |
| CAMS-CSM1-0     | 1.88       | 5.32       | 0.65       | 2.61  | 9.1   | 52    | 1.25       | 27.69    | 0.45           | 2.66            | 8.86                | 2.35 | 1.73 |
| CAS-ESM2-0      | 0.93       | 2.50       | 0.67       | 3.56  | 8.6   | 55    | 1.33       | 1.89     | 0.41           | 0.52            | 6.97                | 3.74 | 2.18 |
| CESM2           | 0.65       | 3.88       | 0.90       | 4.83  | 6.4   | 71    | 1.68       | 2.80     | 0.49           | 0.71            | 8.18                | 6.29 | 2.49 |
| CESM2-FV2       | 0.54       | 4.01       | 1.01       | 3.86  | 7.0   | 86    | 1.75       | 2.71     | 0.61           | 0.88            | 7.36                | 6.84 | 2.24 |
| CESM2-WACCM     | 0.72       | 7.33       | 0.84       | 3.82  | 6.2   | 85    | 1.59       | 2.98     | 0.51           | 0.70            | 8.07                | 5.60 | 2.31 |
| CESM2-WACCM-FV2 | 0.56       | 3.52       | 0.94       | 3.39  | 9.5   | 107   | 1.50       | 2.89     | 0.53           | 0.94            | 6.73                | 5.98 | 2.16 |
| CIESM           | 0.68       | 2.65       | 1.00       | 5.28  | 11.6  | 69    | 1.35       | 0.81     | 0.55           | 0.36            | 8.48                | 6.26 | 2.69 |
| CMCC-CM2-SR5    | 1.08       | 2.15       | 0.72       | 3.48  | 11.5  | 53    | 1.29       | 25.58    | 0.80           | 2.69            | 8.08                | 3.74 | 2.30 |
| CNRM-CM6-1      | 0.78       | 1.56       | 0.67       | 3.22  | 16.1  | 116   | 0.91       | 24.01    | 0.47           | 1.67            | 7.32                | 4.70 | 2.66 |
| CNRM-CM6-1-HR   | 0.94       | 1.99       | 0.65       | 4.16  | 11.8  | 90    | 0.80       | 7.10     | 0.48           | 0.69            | 7.70                | 4.10 | 2.57 |
| CNRM-ESM2-1     | 0.68       | 2.62       | 0.69       | 3.53  | 7.6   | 104   | 0.83       | 4.67     | 0.50           | 0.89            | 5.90                | 4.35 | 2.39 |

| CanESM5         | 0.62 | 2.48 | 0.61 | 3.63 | 10.6  | 73  | 1.12 | 2.62  | 0.48 | 0.42 | 7.33 | 5.93 | 2.92 |
|-----------------|------|------|------|------|-------|-----|------|-------|------|------|------|------|------|
| E3SM-1-0        | 0.58 | 2.37 | 0.37 | 3.65 | 9.6   | 42  | 1.49 | 3.07  | 0.60 | 0.91 | 7.05 | 6.03 | 3.10 |
| EC-Earth3       | 0.82 | 2.65 | 0.56 | 3.24 | 10.5  | 34  | 1.25 | 25.38 | 0.74 | 2.26 | 7.12 | 4.33 | 2.53 |
| EC-Earth3-Veg   | 0.84 | 2.32 | 0.60 | 3.24 | 10.3  | 31  | 1.26 | 25.91 | 0.69 | 2.68 | 7.48 | 4.46 | 2.65 |
| FGOALS-f3-L     | 1.44 | 5.65 | 0.71 | 1.97 | 10.4  | 71  | 1.52 | 29.14 | 0.63 | 2.75 | 9.33 | 3.25 | 2.02 |
| FGOALS-g3       | 1.26 | 2.84 | 0.91 | 4.07 | 7.8   | 91  | 1.26 | 1.20  | 0.44 | 0.24 | 7.65 | 3.04 | 1.86 |
| FIO-ESM-2-0     | 0.87 | 4.67 | 0.87 | 3.02 | 8.4   | 91  | 1.32 | 25.96 | 0.60 | 1.62 | 8.13 | 4.67 | 2.31 |
| GFDL-CM4        | 1.00 | 2.79 | 1.25 | 5.31 | 0.2   | 81  | 1.81 | 2.72  | 0.71 | 0.95 | 9.02 | 4.50 | 2.19 |
| GFDL-ESM4       | 1.38 | 1.92 | 0.84 | 4.32 | 10.6  | 124 | 1.02 | 4.32  | 0.49 | 1.07 | 7.36 | 2.66 | 1.79 |
| GISS-E2-1-G     | 1.44 | 2.09 | 1.20 | 3.59 | 10.6  | 163 | 1.09 | 2.89  | 0.66 | 0.53 | 8.02 | 2.78 | 1.76 |
| GISS-E2-1-H     | 1.11 | 4.31 | 0.78 | 2.24 | 9.7   | 78  | 1.19 | 3.62  | 0.59 | 0.55 | 7.20 | 3.25 | 1.93 |
| GISS-E2-2-G     | 1.97 | 1.92 | 0.63 | 3.60 | 11.3  | 314 | 0.44 | 2.39  | 0.54 | 0.54 | 8.04 | 2.04 | 1.68 |
| HadGEM3-GC31-LL | 0.61 | 2.85 | 0.64 | 3.87 | 9.3   | 66  | 1.17 | 3.13  | 0.61 | 0.46 | 7.22 | 5.91 | 2.83 |
| HadGEM3-GC31-MM | 0.65 | 2.01 | 0.69 | 3.40 | 14.1  | 65  | 1.04 | 3.13  | 0.43 | 0.50 | 7.16 | 5.54 | 2.77 |
| IITM-ESM        | 1.99 | 2.80 | 1.00 | 3.76 | 12.0  | 150 | 1.06 | 2.95  | 0.54 | 1.15 | 9.43 | 2.37 | 1.67 |
| INM-CM4-8       | 1.58 | 1.90 | 0.55 | 4.35 | 9.8   | 22  | 1.45 | 2.51  | 0.26 | 0.44 | 5.94 | 1.88 | 1.41 |
| INM-CM5-0       | 1.54 | 1.90 | 0.58 | 4.58 | 11.4  | 49  | 1.45 | 1.92  | 0.32 | 0.44 | 6.23 | 2.02 | 1.42 |
| IPSL-CM6A-LR    | 0.72 | 1.76 | 0.48 | 3.40 | 13.2  | 62  | 1.28 | 3.22  | 0.49 | 0.90 | 7.05 | 4.90 | 2.70 |
| KACE-1-0-G      | 0.73 | 3.63 | 0.87 | 2.54 | 8.7   | 101 | 1.25 | 2.08  | 0.35 | 0.36 | 7.80 | 5.36 | 2.50 |
| KIOST-ESM       | 0.93 | 3.05 | 0.95 | 2.15 | 9.6   | 95  | 1.41 | 2.35  | 0.32 | 0.61 | 7.22 | 3.87 | 1.99 |
| MIROC-ES2L      | 1.95 | 1.71 | 0.70 | 4.56 | 16.6  | 204 | 0.45 | 1.95  | 0.95 | 0.71 | 8.81 | 2.25 | 1.78 |
| MIROC6          | 2.00 | 1.20 | 0.60 | 4.27 | 22.9  | 350 | 0.38 | 1.86  | 0.89 | 0.71 | 8.57 | 2.15 | 1.71 |
| MPI-ESM-1-2-HAM | 1.30 | 2.14 | 0.97 | 4.93 | 14.6  | 105 | 1.38 | 2.54  | 0.49 | 0.55 | 8.48 | 3.27 | 1.94 |
| MPI-ESM1-2-HR   | 1.17 | 1.59 | 1.11 | 5.12 | 23.6  | 73  | 1.56 | 3.49  | 0.44 | 0.57 | 7.82 | 3.34 | 1.89 |
| MPI-ESM1-2-LR   | 1.40 | 1.95 | 1.07 | 5.15 | 10.7  | 95  | 1.26 | 2.40  | 0.71 | 0.47 | 8.93 | 3.19 | 2.01 |
| MRI-ESM2-0      | 1.11 | 2.85 | 1.25 | 4.24 | 10.5  | 94  | 1.33 | 2.99  | 0.52 | 0.98 | 7.56 | 3.41 | 1.80 |
| NESM3           | 0.96 | 1.05 | 0.48 | 2.49 | 19.2  | 126 | 0.72 | 2.80  | 0.27 | 0.55 | 8.15 | 4.23 | 2.85 |
| NorCPM1         | 1.03 | 2.07 | 1.33 | 5.72 | 17.6  | 92  | 1.51 | 1.81  | 0.50 | 0.49 | 7.26 | 3.52 | 1.75 |
| NorESM2-LM      | 1.70 | 1.56 | 7.21 | 4.56 | 0.4   | 120 | 1.61 | 1.68  | 0.74 | 1.30 | 9.40 | 2.76 | 1.64 |
| NorESM2-MM      | 1.96 | 0.79 | 7.23 | 4.12 | 121.5 | 0   | 1.20 | 1.49  | 0.66 | 1.31 | 9.10 | 2.32 | 1.71 |
| SAM0-UNICON     | 1.04 | 2.69 | 1.03 | 4.63 | 6.3   | 111 | 1.25 | 2.44  | 0.64 | 0.80 | 8.36 | 4.01 | 2.20 |
| TaiESM1         | 0.87 | 2.31 | 0.92 | 5.06 | 9.0   | 91  | 1.23 | 2.04  | 0.69 | 0.46 | 8.15 | 4.67 | 2.44 |
| UKESM1-0-LL     | 0.66 | 2.60 | 0.61 | 2.92 | 11.3  | 73  | 1.13 | 3.55  | 0.44 | 0.50 | 7.38 | 5.63 | 2.84 |

\_

| PRIMAP-Hist category | Gas                             | Lifetime (yr) (AR6) | GWP <sub>100</sub> (AR6) | Emissions scaling factor |
|----------------------|---------------------------------|---------------------|--------------------------|--------------------------|
| $N_2O$               | $N_2O$                          | 109                 | 273                      | 1.08                     |
| $NF_3$               | $NF_3$                          | 569                 | 17400                    | 7.45                     |
| $SF_6$               | $SF_6$                          | 3200                | 25200                    | 1.05                     |
| HFCs                 | HFC-23                          | 228                 | 14600                    | 1.14                     |
|                      | HFC-32                          | 5.4                 | 771                      | 1.90                     |
|                      | HFC-125                         | 30                  | 3740                     | 0.85                     |
|                      | HFC-134a                        | 14                  | 5810                     | 1.07                     |
|                      | HFC-143a                        | 51                  | 5810                     | 0.91                     |
|                      | HFC-152a                        | 1.6                 | 164                      | 1.10                     |
|                      | HFC-227ea                       | 36                  | 3600                     | 1.07                     |
|                      | HFC-236fa                       | 213                 | 8690                     | 1.09                     |
|                      | HFC-245fa                       | 7.9                 | 962                      | 0.97                     |
|                      | HFC-365mfc                      | 8.9                 | 914                      | 0.96                     |
|                      | HFC-4310mee                     | 17                  | 1600                     | 1.03                     |
| PFCs                 | $CF_4$                          | 50000               | 7380                     | 1.34                     |
|                      | $C_2F_6$                        | 10000               | 12400                    | 1.51                     |
|                      | $C_3F_8$                        | 2600                | 9290                     | 1.72                     |
|                      | c-C <sub>4</sub> F <sub>8</sub> | 3200                | 10200                    | 1.68                     |
|                      | $C_4F_{10}$                     | 2600                | 10000                    | 1.71                     |
|                      | $C_5F_{12}$                     | 4100                | 9220                     | 1.75                     |
|                      | $C_6F_{14}$                     | 3100                | 8620                     | 1.21                     |
|                      | $C_7F_{16}$                     | 3000                | 8410                     | 1.37                     |
|                      | $C_8F_{18}$                     | 3000                | 8260                     | 1.54                     |

Table S1: Parameters of the three-layer stochastic energy balance model for 49 CMIP6  $4 \times CO_2$  forcing experiments. The ECS and TCR are calculated from the eigenvalue decomposition (see Leach et al. (2021)).

**Table S2.** Data relating to the non-CO<sub>2</sub>, non-CH<sub>4</sub> greenhouse gas emissions scalings used in fair-calibrate v1.4.1. The GWP<sub>100</sub> values are used for the HFC and PFC disaggregations. Note this is not an exhaustive list of minor greenhouse gases in FaIR (refer to Leach et al. (2021) for the default species used in the model).

Parameter name Domain Description

| cc_co2_concentration_1750 | Carbon cycle      | $CO_2$ concentration in 1750                                    |
|---------------------------|-------------------|-----------------------------------------------------------------|
| cc_rA                     | Carbon cycle      | $r_A$ in eq. (7)                                                |
| cc_rU                     | Carbon cycle      | $r_A$ in eq. (7)                                                |
| cc_rT                     | Carbon cycle      | $r_T$ in eq. (7)                                                |
| cc_r0                     | Carbon cycle      | $r_0$ in eq. (7)                                                |
| ari_BC                    | Aerosol-radiation | ERFari contribution from black carbon emissions (section 3.2.3) |
| ari_OC                    | Aerosol-radiation | ERFari from organic carbon emissions (section 3.2.3)            |
| ari_Sulfur                | Aerosol-radiation | ERFari from $SO_2$ emissions (section 3.2.3)                    |
| ari_NH3                   | Aerosol-radiation | ERFari from $NH_3$ emissions (section 3.2.3)                    |
| ari_NOx                   | Aerosol-radiation | ERFari from NOx emissions (section 3.2.3)                       |
| ari_CH4                   | Aerosol-radiation | ERFari from $CH_4$ concentration (section 3.2.3)                |
| ari_N2O                   | Aerosol-radiation | ERFari from N <sub>2</sub> O concentration (section 3.2.3)      |
| ari_VOC                   | Aerosol-radiation | ERFari from VOC emissions (section 3.2.3)                       |
| ari_EESC                  | Aerosol-radiation | ERFari from EESC (section 3.2.3)                                |
| aci_shape_so2             | Aerosol-cloud     | $s_{\rm SO2}$ in eq. (8)                                        |
| aci_shape_bc              | Aerosol-cloud     | $s_{\rm BC}$ in eq. (8)                                         |
| aci_shape_oc              | Aerosol-cloud     | $s_{\rm OC}$ in eq. (8)                                         |
| aci_beta                  | Aerosol-cloud     | $\beta$ in eq. (8)                                              |
| clim_F_4xCO2              | Climate response  | Effective radiative forcing for quadrupled CO <sub>2</sub>      |
| clim_c1                   | Climate response  | $C_1$ in eq. (1)                                                |
| clim_c2                   | Climate response  | $C_2$ in eq. (2)                                                |
| clim_c3                   | Climate response  | $C_3$ in eq. (3)                                                |
| clim_kappa1               | Climate response  | $\kappa_1$ in eq. (1)                                           |
| clim_kappa2               | Climate response  | $\kappa_2$ in eqs. (1) and (2)                                  |
| clim_kappa3               | Climate response  | $\kappa_2$ in eqs. (2) and (3)                                  |
| clim_epsilon              | Climate response  | $\varepsilon$ in eq. (3)                                        |
| clim_gamma                | Climate response  | $\gamma$ in eq. (4)                                             |
| clim_sigma_eta            | Climate response  | Standard deviation of $\xi$ in eq. (1)                          |
| clim_sigma_xi             | Climate response  | Standard deviation of $\eta$ in eq. (4)                         |
| o3_CH4                    | Ozone             | Contribution to ozone ERF from $CH_4$ (table 3)                 |
| o3_N2O                    | Ozone             | Contribution to ozone ERF from $N_2O$ concentation (table 3)    |
| o3_CH4                    | Ozone             | Contribution to ozone ERF from $CH_4$ concentration (table 3)   |
| o3_EESC                   | Ozone             | Contribution to ozone ERF from EESC concentration (table 3)     |
| o3_VOC                    | Ozone             | Contribution to ozone ERF from VOC emissions (table 3)          |

| o3_CH4                 | Ozone   | Contribution to ozone ERF from CO emissions (table 3)                                                               |
|------------------------|---------|---------------------------------------------------------------------------------------------------------------------|
| o3_CH4                 | Ozone   | Contribution to ozone ERF from NOx emissions (table 3)                                                              |
| fscale_CO2             | Forcing | Scale factor for $CO_2$ forcing (table 4)                                                                           |
| fscale_CH4             | Forcing | Scale factor for $CH_4$ forcing (table 4)                                                                           |
| fscale_N2O             | Forcing | Scale factor for N <sub>2</sub> O forcing (table 4)                                                                 |
| fscale_minorGHG        | Forcing | Scale factor for other GHG forcing (table 4)                                                                        |
| fscale_stratH2O        | Forcing | Scale factor for stratospheric water vapour from methane forcing (table 4) $% \left( {{{\rm{T}}_{\rm{s}}}} \right)$ |
| fscale_LAPSI           | Forcing | Scale factor for BC on snow forcing (table 4)                                                                       |
| fscale_landuse         | Forcing | Scale factor for land use forcing (table 4)                                                                         |
| fscale_volcanic        | Forcing | Scale factor for volcanic forcing (table 4)                                                                         |
| fscale_solar_trend     | Forcing | linear trend in solar forcing (table 4)                                                                             |
| fscale_solar_amplitude | Forcing | Scale factor for amplitude of solar cycle (table 4)                                                                 |

Table S3: The 45 parameters or inputs to FaIR that are probabilistically sampled in fair-calibrate v1.4.1 and v1.4.0.



**Figure S1.** Comparisons of the theoretical (a) ECS and (b) TCR derived from the impulse-response formulation of the energy balance model (Leach et al., 2021) with the model-calculated values from  $abrupt-2 \times CO_2$  and  $1pctCO_2$  simulations in FaIR.



**Figure S2.** As for fig. 2, showing  $NF_3$  as an example where (a) a large scaling factor applied to the historical emissions better reproduces concentrations, and (b) when applied, future concentration projections are in line with the CMIP6 SSPs (Meinshausen et al., 2020).



Figure S3. As for fig. 3, for fair-calibrate v1.4.0. Subplot (b) shows projected concentrations under SSP3-7.0 with each AerChemMIP model's estimates lifetimes from (a).



Figure S4. Comparison of (a) CO<sub>2</sub> emissions and (b) CH<sub>4</sub> emissions used in fair-calibrate v1.4.0 (black) and v1.4.1 (red).



Distributions and correlations of CMIP6 calibrations

**Figure S5.** Matrix plot showing the calibrated parameters from the three-layer energy balance model, their distributions (on the diagonal) and correlations between parameters (off diagonal). These model-fitted parameters are used to draw an 11-dimensional kernel density estimate that is sampled from to inform the climate response.

|                                                      | Target |         |       | Reweighted posterior |         |       | Relative difference |         |       |      |
|------------------------------------------------------|--------|---------|-------|----------------------|---------|-------|---------------------|---------|-------|------|
| Metric                                               | lower  | central | upper | lower                | central | upper | lower               | central | upper | Fit? |
| ECS (K)                                              | 2.00   | 3.00    | 5.00  | 2.01                 | 2.99    | 4.94  | 0%                  | 0%      | -1%   | Yes  |
| TCR (K)                                              | 1.20   | 1.80    | 2.40  | 1.30                 | 1.81    | 2.38  | +9%                 | 0%      | -1%   | Yes  |
| GMST 2003–2022 rel. 1850–1900 (K)                    | 0.87   | 1.03    | 1.13  | 0.88                 | 1.03    | 1.14  | +1%                 | 0%      | +1%   | Yes  |
| EEU 2020 rel. 1971 (ZJ)                              | 356.8  | 465.3   | 573.8 | 350.5                | 467.9   | 569.4 | -2%                 | +1%     | -1%   | Yes  |
| Aerosol ERF 2005–2014 rel. 1750 (W m <sup>-2</sup> ) | -2.0   | -1.3    | -0.6  | -1.98                | -1.30   | -0.58 | -1%                 | 0%      | -4%   | Yes  |
| ERFari 2005–2014 rel. 1750 (W m <sup>-2</sup> )      | -0.6   | -0.3    | 0.0   | -0.58                | -0.29   | +0.01 | -4%                 | -4%     |       | Yes  |
| ERFaci 2005–2014 rel. 1750 (W m <sup>-2</sup> )      | -1.7   | -1.0    | -0.3  | -1.68                | -0.98   | -0.34 | -1%                 | -2%     | +12%  | Yes  |
| CO <sub>2</sub> concentration 2022 (ppm)             | 416.2  | 417.0   | 417.8 | 416.2                | 417.0   | 417.9 | 0%                  | 0%      | 0%    | Yes  |
| WMGHG ERF 2019 rel. 1750 (W $m^{-2}$ )               | 3.03   | 3.32    | 3.61  | 3.01                 | 3.28    | 3.57  | -1%                 | -1%     | -1%   |      |
| $CH_4 ERF 2019 rel. 1750 (W m^{-2})$                 | 0.43   | 0.54    | 0.65  | 0.44                 | 0.56    | 0.67  | +3%                 | +3%     | +2%   |      |
| Airborne fraction at $2 \times CO_2^*$               | 0.43   | 0.53    | 0.63  | 0.50                 | 0.51    | 0.52  | +16%                | -4%     | -18%  |      |
| Airborne fraction at $4 \times CO_2^*$               | 0.44   | 0.60    | 0.76  | 0.53                 | 0.58    | 0.62  | +21%                | -3%     | -19%  |      |
| $TCRE^* (K (1000 \text{ GtC})^{-1})$                 | 0.58   | 1.65    | 2.72  | 1.16                 | 1.57    | 2.07  | +99%                | -5%     | -24%  |      |
| SSP1-1.9 2021–2040 rel. 1995–2014 (K)                | 0.38   | 0.61    | 0.85  | 0.35                 | 0.59    | 0.91  | -9%                 | -4%     | +8%   |      |
| SSP1-1.9 2041–2060 rel. 1995–2014 (K)                | 0.40   | 0.71    | 1.07  | 0.33                 | 0.71    | 1.26  | -18%                | -1%     | +18%  |      |
| SSP1-1.9 2081–2100 rel. 1995–2014 (K)                | 0.24   | 0.56    | 0.96  | 0.14                 | 0.58    | 1.35  | -40%                | +4%     | +41%  |      |
| SSP1-2.6 2021–2040 rel. 1995–2014 (K)                | 0.41   | 0.63    | 0.89  | 0.37                 | 0.61    | 0.92  | -10%                | -4%     | +3%   |      |
| SSP1-2.6 2041–2060 rel. 1995–2014 (K)                | 0.54   | 0.88    | 1.32  | 0.48                 | 0.87    | 1.44  | -11%                | -2%     | +9%   |      |
| SSP1-2.6 2081–2100 rel. 1995–2014 (K)                | 0.51   | 0.90    | 1.48  | 0.39                 | 0.89    | 1.73  | -23%                | -1%     | +17%  |      |
| SSP2-4.5 2021–2040 rel. 1995–2014 (K)                | 0.44   | 0.66    | 0.90  | 0.40                 | 0.60    | 0.86  | -8%                 | -8%     | -4%   |      |
| SSP2-4.5 2041–2060 rel. 1995–2014 (K)                | 0.78   | 1.12    | 1.57  | 0.71                 | 1.06    | 1.54  | -9%                 | -6%     | -2%   |      |
| SSP2-4.5 2081–2100 rel. 1995–2014 (K)                | 1.24   | 1.81    | 2.59  | 1.06                 | 1.71    | 2.68  | -14%                | -6%     | +3%   |      |
| SSP3-7.0 2021–2040 rel. 1995–2014 (K)                | 0.45   | 0.67    | 0.92  | 0.41                 | 0.59    | 0.83  | -8%                 | -13%    | -9%   |      |
| SSP3-7.0 2041–2060 rel. 1995–2014 (K)                | 0.92   | 1.28    | 1.75  | 0.86                 | 1.15    | 1.56  | -7%                 | -10%    | -11%  |      |
| SSP3-7.0 2081–2100 rel. 1995–2014 (K)                | 2.00   | 2.76    | 3.75  | 1.85                 | 2.53    | 3.52  | -8%                 | -8%     | -6%   |      |
| SSP5-8.5 2021–2040 rel. 1995–2014 (K)                | 0.51   | 0.76    | 1.04  | 0.48                 | 0.69    | 1.02  | -7%                 | -9%     | -2%   |      |
| SSP5-8.5 2041–2060 rel. 1995–2014 (K)                | 1.08   | 1.54    | 2.08  | 1.01                 | 1.45    | 2.06  | -6%                 | -6%     | -1%   |      |
| SSP5-8.5 2081–2100 rel. 1995–2014 (K)                | 2.44   | 3.50    | 4.82  | 2.32                 | 3.35    | 4.78  | -5%                 | -4%     | -1%   |      |

Table S4. As for table 5 for fair-calibrate v1.4.0.

## References

Leach, N. J., Jenkins, S., Nicholls, Z., Smith, C. J., Lynch, J., Cain, M., Walsh, T., Wu, B., Tsutsui, J., and Allen, M. R.: FaIRv2.0.0: a generalized impulse response model for climate uncertainty and future scenario exploration, Geoscientific Model Development, 14, 3007–3036, https://doi.org/10.5194/gmd-14-3007-2021, 2021. 5 Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., Smith, S. J., van den Berg, M., Velders, G. J. M., Vollmer, M. K., and Wang, R. H. J.: The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500, Geoscientific Model Development, 13, 3571–3605, https://doi.org/10.5194/gmd-13-3571-2020, https://gmd.copernicus.org/articles/13/3571/2020/, 2020.