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Abstract 20 

Downhill thunderstorms frequently occur in Beijing during the rainy seasons, leading 21 

to substantial precipitation. The accurate intensity prediction of these events remains a 22 

challenge, partly attributed to insufficient observational studies that unveil the 23 

thermodynamic and dynamic structures along the vertical direction. This study provides 24 

a comprehensive methodology for identifying both enhanced and dissipated downhill 25 

thunderstorms. In addition, a radar wind profiler (RWP) mesonet has been built in 26 

Beijing to characterize the pre-storm environment downstream to the thunderstorms at 27 

the mountain foot. This involves deriving vertical distributions of high-resolution 28 

horizontal divergence and vertical motion from the horizontal wind profiles measured 29 

by the RWP mesonet. A case study of enhanced downhill thunderstorm on 28 30 

September 2018 is carried out for comparison with a dissipated downhill thunderstorm 31 

on 23 June 2018, supporting the notion that a deep convergence layer detected by the 32 

RWP mesonet, combined with the enhanced southerly flow, could favor the 33 

intensification of thunderstorms. Statistical analysis based on radar reflectivity from 34 

April to September 2018–2021 have shown that a total of 63 thunderstorm events tend 35 

to be enhanced when entering the plain, accounting for about 66% of the total number 36 

of downhill thunderstorm events. A critical region for intensified thunderstorms lies on 37 

the downslope side of the mountains west to Beijing. The evolution of the downhill 38 

storm is associated with the dynamic conditions over the plain compared to its initial 39 

morphology. The existence of strong westerly winds and divergence in the middle of 40 

troposphere exert a critical influence on the enhancement of convection, while low-41 

level divergence more leads to the dissipation. The findings underscore the significant 42 

role of RWP network in elucidating the evolution of downhill storm. 43 
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Short Summary 71 
 72 

The prediction of downhill thunderstorm (DS) remains elusive. Here we propose a 73 

objective method to identify the DS, based on which enhance and dissipated DS are 74 

discriminated. A radar wind profiler (RWP) mesonet is used to derive divergence and 75 

vertical velocity. The mid-troposphere divergence and prevailing westerlies enhance 76 

the intensity of DS, whereas the low-level divergence is observed when the DS 77 

dissipates. The findings highlight the key role that RWP mesonet plays in the evolution 78 

of DS. 79 

 80 
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1. Introduction 91 

The complex evolution of convective systems crossing mountainous terrain 92 

represents a substantial forecasting challenge. It has been previously reported that 93 

downhill thunderstorms with intensive reflectivity and good organization are more 94 

likely to successfully maintain or strengthen compared to isolated and small-scale 95 

thunderstorms (Castro et al., 1992). Various thermal factors that favor the development 96 

of downhill thunderstorm have been identified, including higher instability and lower 97 

convective inhibition (Letkewicz and Parker, 2010, 2011; Keighton et al., 2007), 98 

adequate water vapor accompanied by low-level jets (Tompkins, 2001; McCaul and 99 

Cohen, 2004; Weckwerth et al., 2014), and cool pool (Teng et al., 2000; Jeevanjee and 100 

Romps, 2015; Li et al., 2017; Xiao et al., 2017). Furthermore, a few studies in the 101 

literature have demonstrated the importance of the dynamic environment over the plain, 102 

such as surface and low-tropospheric convergence for convection initiation (Frame and 103 

Markowski, 2006; Miglietta and Rotunno, 2009; Wilson et al., 2010), and strong 104 

vertical wind shear (Parker et al., 2007; Reeves and Lin, 2007; Xiao et al., 2019).  105 

The topography in Beijing is intricate, given its location at the foot of the Taihang 106 

Mountains to the west and the Yan Mountains to the north, both of which have ridges 107 

with elevations exceeding 1200 meters (Figure 1a). Wilson et al. (2007) found that 108 

downhill thunderstorms, particularly those originating from the west, constituted 79% 109 

of all thunderstorms in Beijing between 2003 and 2005, as determined through a 110 

statistical analysis of thunderstorm datasets. The distinctive topography and the 111 

frequent occurrence of downhill thunderstorm in Beijing afford us an excellent 112 

opportunity to observe the inherent dynamic structures of downhill thunderstorms and 113 

their pre-storm environments. This, in turn, allows for a more in-depth investigation 114 

into the potential physical mechanisms underlying the formation of this severe weather 115 

event. However, most of the previous studies are limited to the analysis of a single 116 

downhill thunderstorm case (Chen et al., 2017; Sun and Cheng, 2017; Kang et al., 2019). 117 

Besides, the investigation of pre-storm environment and evolution process of 118 

thunderstorm are either based on the model simulation (Chen et al., 2005; Xiao et al., 119 
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2015; Li et al., 2017) or reanalysis data (Wang et al., 2019), largely owing to the dearth 120 

of high-density continuous vertical profiling measurements of wind, temperature, and 121 

humidity.  122 

Furthermore, there exist no objective method that can be used to identify and track 123 

the propagation of downhill thunderstorm in the literature Therefore, more urgent 124 

efforts are warranted to investigate the difficult-to-forecast storm type from a statistical 125 

perspective of ground-based atmospheric profiling mesonet observations.  A high-126 

density mesonet, consisting of six radar wind profilers (RWP) has been established in 127 

the Beijing since 2018 (Figure 1b) to continuously observe three-dimensional wind 128 

fields with high temporal and vertical resolution. This provides us with a valuable tool 129 

to explore the atmospheric dynamic structures, such as areal averaged vorticity, 130 

divergence, and vertical velocity, of the pre-storm environment for the downhill 131 

thunderstorms by using the parameters derived from the RWP mesonet. The primary 132 

goals of this study are twofold: (1) to develop an objective method to identify the event 133 

of downhill thunderstorm and its evolution, mainly based on composite radar 134 

reflectivity from weather radar; and (2) to explore the statistical patterns of downhill 135 

thunderstorms and reveal the dynamical structures in the development of downhill 136 

thunderstorms, aiming to attain a deeper understanding of the evolution processes of 137 

these thunderstorms.  138 

The next section describes the data and methodology, in which a novel objective 139 

method is proposed to characterize the evolution of downhill thunderstorm. Section 3 140 

presents a case study of an enhanced downhill thunderstorm. Statistical analyses of the 141 

relationship is conducted in section 4 between wind profile, convergence and the 142 

evolution of downhill thunderstorms. A summary and concluding remarks are given in 143 

section 5. 144 
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2. Methodology and data  145 

2.1. Identification of downhill thunderstorms  146 

To study the downhill thunderstorms in Beijing, areas in Figure 2a is selected as 147 

the region of interest (ROI). Then, ROI is divided into three subregions by terrain height:  148 

Area to the west and north of the ridge line is defined as the mountainous region (ROIm), 149 

marking as dark gray in Fig. 2a; and the area with surface elevation less than 100 m is 150 

defined as the plain region (ROIp), marked with white; the light-gray area between these 151 

two lines is defined as the downslope region (ROId).  152 

The flow chart for identifying downhill thunderstorms from composite radar 153 

reflectivity is illustrated in Figure 2b, which is mainly comprised of the following steps: 154 

Firstly, based on the well-established findings in literature from previous studies (e.g., 155 

Kingsmill, 1995; Weckwerth, 2000; Qin and Chen, 2017; Bai et al., 2019), echoes with 156 

radar reflectivity reaching over 35 dBZ triggered in ROIm are identify as potential 157 

downhill thunderstorms. To eliminate false signals, those echoes with area less than 50 158 

km2 are filtered out.  159 

Secondly, these potential clusters are tracked using the area overlapping method 160 

(Machado et al., 1998; Huang et al., 2018; Chen et al., 2019). Noted that during 161 

merging processes, only the largest cluster is tracked continuously, while others are 162 

subsequently terminated. Likewise, during the splitting processes, only the largest 163 

cluster is tracked continuously, while others are attributed to newly initiated storms. 164 

Suppose the ith (i = 1, 2, ...) thunderstorm (i.e., 𝑺𝒊) is observed in ROIm at time n (i.e., 165 

𝑇𝒏 ), the properties of 𝑆#$  including the centroid (𝐶#$ ), area (𝐴#$ ) and maximum 166 

reflectivity (𝑀𝑅#$) are obtained.  167 

Thirdly, the downhill thunderstorms are defined by whether the potential clusters 168 

move into ROId and ROIp. And if the centroid of 𝑆# crosses the ridge line and moves 169 

from ROIm to ROId at time j, 𝑇% is defined as the starting time when 𝑆# begins to go 170 

down the hills. Similarly, if the centroid of 𝑆# crossed the plain line and moves from 171 
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ROId to ROIp at time k, 𝑇& is defined as the arrival time when 𝑆# 	reaches the plain. Then, 172 

𝑇&-𝑇% is defined as the downhill duration of 𝑆#. An example of 𝑆# is depicted in Fig. 2a. 173 

Finally, the downhill thunderstorms are classified into two categories, the 174 

enhanced downhill storms (EDS) and dissipated downhill storms (DDS). These two 175 

subsets are classified by comparing the area and maximum reflectivity at the time 𝑇& 176 

to those at time 𝑇%. If at least one of the criterions 𝐴#&≧ 𝐴#
% and 𝑀𝑅#&≧ 𝑀𝑅#

% fulfils, 𝑆# 177 

is considered as an EDS, otherwise it is defined as a DDS. 178 

Most of previous research, either case studies or small sample statistics analysis, 179 

lack an objective criterion used to determine downhill thunderstorms. They typically 180 

focus on EDS in the presence of high-impact weather and less consider DDS. Compared 181 

to the existing approaches in the literature, our methodology can discriminate between 182 

these two types of downhill thunderstorms for its capability in defining the timing and 183 

location of storms and tracking their corresponding evolution. Therefore, this 184 

methodology can be readily applied to other regions with similar topography as long as 185 

weather radar measurements are available.  186 

2.2. Meteorological data  187 

As depicted in section 2.1, radar reflectivity derived from the Doppler radar 188 

network dataset with a grid resolution of 0.01° at 10-min intervals during the rainy 189 

seasons (i.e., April−September) in 2018-2022 is used to identify downhill 190 

thunderstorms over Beijing.  191 

Upper-air sounding balloons launched at the Zhangjiakou (ZJK) and Beijing 192 

Weather Observatory (BWO) (see their locations in Fig. 1b) are used to provide the 193 

vertical thermodynamic features during the downhill thunderstorms. Generally, the 194 

balloons launches twice a day at 0800, and 2000 Local Standard Time (LST), providing 195 

the vertical profiles of temperature, pressure, relative humidity, and horizontal winds 196 

with a vertical resolution of 5–8 m (Guo et al., 2020). For the sake of improving the 197 

prediction skill of summertime storm, an additional radiosonde launch is performed at 198 

1400 LST daily at the BWO for the period from June 1 to August 31. 199 
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Ground-based meteorological variables, including 2-m air temperature (T2m), dew 229 

point temperature, and pressure measured at 5-min intervals and precipitation measured 230 

at 1-min intervals from automated surface stations (AWSs) are also used in the analysis 231 

over the study area. 232 

Geopotential height at 500 hPa and horizontal wind at 850 hPa from the fifth 233 

generation ECMWF reanalysis (ERA5) datasets derived by European Centre for 234 

Medium-range Weather Forecasts (ECMWF) are used for analysing the large-scale 235 

conditions in a case study of a heavy precipitation event in Beijing. The dataset has 37 236 

pressure levels, which is made publicly accessible on a grid spacing of 0.25° at hourly 237 

intervals (Hoffmann et al., 2019). 238 

2.3. Radar wind profiler measurements  239 

The RWP mesonet in Beijing, as presented in Table 1 and Fig. 1b, consists of six 240 

RWPs positioned at Shangdianzi (SDZ), Huairou (HR), Yanqing (YQ), Haidian (HD), 241 

Pinggu (PG), and BWO. The RWPs used in this study are CFL-6 Tropospheric Wind 242 

Profilers, manufactured by the 23rd Institute of China Aerospace Science and Industry 243 

Corporation. These instruments provide sampling height, horizontal wind direction and 244 

speed, vertical wind speed, horizontal credibility, vertical credibility, and refractive 245 

index structure parameter. And the data are recorded at 6-min intervals at 34 levels with 246 

a vertical resolution of 120 m below 4 km above the ground level (AGL) in low-247 

operating mode, and at 25 levels with a vertical resolution of 240 m from 4 to 10 km 248 

AGL in high-operating mode (Liu et al., 2019). Considering that the six RWPs located 249 

at different terrain heights, the horizontal velocities measured by each RWP are 250 

interpolated to the same altitude, starting from 0.5 km above mean sea level (AMSL) 251 

with a vertical resolution of 120 m. 252 

Dynamic parameters, such as the horizontal divergence profiles can readily be 253 

calculated by vertical wind profile measurements derived from soundings or RWPs 254 

distributed along the perimeter of a circle or a triangle over an area (Bellamy, 1949; 255 

Carlson and Forbes, 1989; Lee et al., 1995; Bony et al., 2019). The reliability of the 256 

measurements and triangle method is demonstrated in the previous work (Guo et al., 257 
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2023). Thus, we also employes this methodology to calculate the regional mean 258 

divergence, vorticity and vertical velocity profiles within the triangular regions built by 259 

the RWPs mesonet. 260 

3. A case study of an EDS event 261 

EDSs present significant challenges for local weather forecasters in accurately 262 

predicting the intensity of precipitation during nowcasting. In this section, an 263 

observational case study of this type of downhill thunderstorm is selected to explore 264 

the role of thermodynamic and dynamic environment on the evolution of the downhill 265 

thunderstorms. 266 

This storm originated from the ROIm and began to go down the hill at 1200 LST of 267 

28 September 2018, then hit Beijing after approximately 2–3 hours. Several AWSs in 268 

the Yanqing District recorded lightning activity and hails accompanied with an hourly 269 

rainfall amount of over 30 mm from 1430 to 1530 LST. It is noteworthy that the 270 

intensity of downhill thunderstorm became weakened before 1400 LST but intensified 271 

as it approached the plain area of Beijing.  272 

3.1. Synoptic background 273 

Sounding taken at the ZJK (Figure 3a) at 0800 LST located in the westerly flow 274 

sector, showed a surface-based temperature inversion below 900 hPa and a deep dry 275 

layer aloft from 850 hPa up to about 400 hPa. At the same time, similar temperature 276 

and humidity stratification was seen at the BWO (Figure 3b) with little convective 277 

available potential energy (CAPE) of 170.8 J kg-1 and convective inhibition (CIN) of 278 

61 J kg-1. The veering of a northwesterly wind to a westerly wind from 850 hPa to above 279 

600 hPa indicated the presence of cold advection at 0800 LST. Unfortunately, no 280 

sounding was available to elucidate the temporal evolution of atmospheric 281 

thermodynamic and dynamic environments during the passage of EDS from 1200 LST 282 

to 1500 LST. We can only speculate that the thermal stratification seems insufficient to 283 

facilitate the initiation and subsequent organization of deep convection, even though 284 
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considering the possible enhancement of unstable layer as the mixed layer grew after 287 

0800 LST.  288 

Then, we resort to the synoptic pattern from ERA-5 reanalysis at hourly intervals. 289 

At 500 hPa (Figure 3c), the large-scale conditions at 1400 LST on 28 Sep 2018 was 290 

characterized with a deep cold vortex at the border of Mongolia and China, and Beijing 291 

was situated in the cold sector, with a cold center approximately 500 km to the south, 292 

and influenced by strong westerly flows. At 850 hPa (Figure 3d), a trough extended 293 

from northeast to southwest over ROId, resulting in significant southwesterly flow prior 294 

to the trough over Beijing. The veering of a southwesterly wind at 850 hPa to a westerly 295 

wind 500 hPa indicated the presence of warm advection. The changeover from cold 296 

advection at 0800 LST to warm advection at 1400 LST in the lower troposphere could 297 

account for the subsequent deepening organization of convection after the thunderstorm 298 

entered the plain.  299 

3.2. Radar reflectivity and surface observations 300 

Radar reflectivity at 1200 LST (Figure 4a) showed that a convective line with 301 

several convective cores was detected across the ridge line and moved gradually 302 

southeastward into ROId driven by the low-level northwesterly flows. Surface 303 

streamlines evidently showed dominant west-to-southwesterly surface winds in ROIm 304 

and south-to-southwesterly flows in ROIp (also see Figure 4a). In downslope regions, 305 

the local mountain-valley orientations appeared to account for up-valley flows in 306 

various directions. A surface analysis at 1200 LST, given in Figure 5a, shows a humid 307 

center in the northwest of the mountain region due to the previous precipitation, 308 

whereas the relative humidity of the downslope and plain was less than 60%. The 309 

thermal boundary near the ridge line which generated by the terrain could also be seen. 310 

T2m over the plain area was on average of greater than 20 °C, whereas the mean T2m 311 

over the mountainous region was less than 10°C. The large northwest-southeast-312 

oriented temperature gradient appeared to account for the intensification and better 313 

organization of the at 1230 LST (Figure 5b). Surface convergence emerged ahead of 314 
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the convective line, indicated by the streamlines in Figure 4b, which were associated 336 

with a pre-squall mesotrough/mesolow.  337 

At 1300 LST, convective line with reflectivity exceeding 35 dBZ had spitted into 338 

two segments (Figure 4c). The northern segment was completely separated from the 339 

main storm in the southwest and then expanded northeastward by the intersecting 340 

streamlines, with another convective cell initiated near the local converging center 341 

around 117°E, 41.5°N before 1330 LST (Figure 4d). The southern segment maintained 342 

with the total rainfall exceeding 10 mm from 1300 to 1400 LST. Meanwhile, the wet 343 

center gradually moved eastward to the northeast of the mountain region (Figure 5c-d).  344 

Until 1400 LST, the convective cells started to merge into a linear convective system, 345 

and the frontal edge of the convection line had arrived at triangle 1 with weaker 346 

intensity than before (Figure 4e).  347 

Further, we attempt to examine the roles of cold pool and low-level wind shear in 348 

maintaining the intense squall line in accordance with the theory of Rotunno et al. 349 

(1988). However, it’s difficult to perform a comprehensive and quantitative analysis 350 

due to the inhomogeneous environment and measurement. Here, we qualitatively use 351 

the horizontal winds over YQ (Figure 6a) to estimate vertical wind shear (VWS) om 352 

the downslope and T2m to identify a cold pool (Figure 5). At 1300 LST, the wind speed 353 

below 1.5 km AMSL was weaker than 5 m s-1 while was stronger than 15 m s-1 above 354 

2.5 km AMSL. The maximum value of VWS occurred at the altitude of 1.8 km AMSL 355 

with the value exceeding 20 m s-1 km-1. In less than 10 minutes, cold downdrafts 356 

produced a sharp drop in T2m by 6°C in the south of the convective cells (Figure 5c-d). 357 

The effects of the resulting low-level VWS might balance with those of the cool pool, 358 

which helped stimulate the development of more intense storms from 1300 to 1330 LST. 359 

Meanwhile, the accompanying evaporative cooling in the descending flows 360 

strengthened the cold pool. After 1330 LST, horizontal wind speeds in the lowest 2 km 361 

layer strengthened to shrink the low-level VWS to about 10 m s-1 km-1. The cold-pool-362 

induced horizontal vorticity could overpower that of the low-level wind shear, partly 363 

facilitating the dissipated radar echo before 1400 LST (Figure 5e). Moreover, this might 364 
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be related to the relatively strong cold pool located in the south, which potentially cut 386 

off the warm southerly inflow from the plains to the mountains. Then, cool pool 387 

weakened with convection and the overpowering effect diminished.  388 

As the storm approached ROIp from 1400 LST, composite radar reflectivity shows 389 

that it was significantly strengthened to an intense and well-organized squall line 390 

(Figure 4e-4g). AWSs within triangle 1 captured its associated rainfall. Abrupt increase 391 

in surface pressure by +3 hPa was seen across the gust front in the triangle 1 when the 392 

maximum rainfall rate exceeded 3mm (6min)-1 (not shown). Except for the above-393 

mentioned balanced state between cool pool and low-level vertical wind shear, this 394 

enhancement could potentially be associated with the dynamic lifting over plain area . 395 

Due to the disadvantage of surface observations in monitoring the vertical dynamic 396 

features, we have to resort to the examination of the evolution of high-resolution 397 

divergence and vertical velocity derived from the fine-scale RWP mesonet in the 398 

following subsection.  399 

3.3. Divergence and vertical velocity 400 

Before the convective system reached the plain area, sustained southwesterly wind 401 

above 2 km AMSL was observed after 1200 LST at YQ (Figure 6a), which was likely 402 

driven by the synoptic pattern, accompanied with upper-layer divergence and 403 

downdraft in triangle 1 (Figure 6b). The much weaker near-surface southerly wind and 404 

unnoticeable divergence could to a certain extent be influenced by the valley flows at 405 

the foot of the mountains. Meanwhile, a peak of positive vorticity exceeding 10−4 s−1 406 

and a deep layer of negative vorticity up to 5 km AMSL in triangle 1 were maintained 407 

during this time period (Figure 6c). Then, pronounced southerly wind occurred after 408 

1300 LST that corresponded to the rapidly intensification in convergence below 2 km, 409 

providing an uplifting background, albeit less than 0.1 m s-1. This updraft assisted the 410 

upward transport of moist air in the planetary boundary layer (PBL), which facilitated 411 

the subsequent formation of clouds and convective rainfall. Additionally, a vorticity 412 

maximum near 3×10−4 s−1 at 1348 LST in the PBL might also be favorable for 413 

organized convective development.  414 
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The low-level wind speeds over YQ started to increase to 10 m s-1 as a result of 443 

the downward momentum transport. The subsequent enhancement in convergence 444 

coincided well with the intensification of southwesterly winds (>10 m⋅s−1) up to 3 km 445 

ASML after 1418 LST. Such intensification in convergence and updraft were also well 446 

captured by triangles 2 (not shown), even with more than one hour in advance of the 447 

convective rainfall arrival. Upward motion in triangle 1 increased in amplitude and 448 

deepened rapidly in depth as the squall line propagated southeastward, and triggered 449 

rainfall over triangle 1. The most intense convergence occurred at 1430 LST and 450 

extended from 1 km to above 2.5 km AMSL afterwards as a result of latent heat release 451 

during cloud formation. The maximum vertical velocity reached 0.35 m s-1 around 3.5 452 

km AMSL, which were about 6 min prior to the peak area-averaged rainfall rate at 1448 453 

LST. The significant convergence diminished after 1454 LST, when deep convection 454 

moved out of triangle 1 (Figure 4h). Downdrafts are found with moderate upward and 455 

downward motions in the stratiform area.  456 

Interestingly, as the squall line propagated eastward and approached the urban 457 

center after 1500 LST, it rapidly dissipated as the area of convective echo was reduced 458 

by a scale fact of 4/5 until 1600 LST (not shown). This appeared to result from the 459 

blocking of water supply by the high risings over the Beijing’s built-up area, the so-460 

called “urban bifurcation” effects on moving thunderstorms (Changnon, 1981; Zhang, 461 

2020). In this case, deep convection in the urban center and northern suburban area 462 

were suppressed due to the urban blocking effects. It was consistent with the persistent 463 

low-level divergence over triangle 3 and 4 with the maximum value of 3×10−4 s−1 464 

occurring near surface (not shown). Clearly, this result can help understand the urban 465 

building-barrier induced divergence and the dissipation of thunderstorm.  466 

4. Comparison with a DDS event 467 

In the preceding section, low-level convergence is an effective signal for the 468 

maintenance of an EDS event. In this section, we present a DDS event that occurred on 469 

23 June 2018 in attempt to investigate the difference of pre-storm environment for two 470 

types of downhill thunderstorms. Similar to the trajectory of the EDS, the DDS began 471 

Moved up [2]: At 1412 LST, wind speed below 1.5 km 472 
AMSL is weaker than 5 m s-1 while is stronger than 15 m s-1 473 
above 2.5 km AMSL. The low-level wind speeds over YQ 474 
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to go downhill at 1600 LST (Figure 7a) and then propagated southeastward with the 495 

area larger than 1000 km2. It had dissipated rapidly upon reaching the plain of Beijing 496 

after 1900 LST and diminished until 2100 LST. 497 

Figure 8a shows the SkewT/Log P diagram derived from the sounding taken at the 498 

BWO at 1400 BJT, 23 June 2018. It can be seen that a dry troposphere was presented 499 

in the early afternoon. As the time lapsed, the humidity above 700 hPa increased at 500 

2000 BJT (Figure 8b), even though the surface was characterized by a dry layer near 501 

the surface. The surface relative humidity was less than 40% with T2m exceeding 30°C 502 

and the dew point temperature less than 20°C. The CIN slightly decreased from 280.2 503 

J kg-1 at 1400 LST to 264.0 J kg-1 at 2000 LST. By comparison, The CAPE increased 504 

from 35.5 J kg-1 at 1400 LST to 483.0 J kg-1 at 2000 BJT.  As shown in Figure 8c, the 505 

study area was situated to the west of the high-pressure ridge at 500 hPa and influenced 506 

by northerly flows in front of the ridge, whereas the lower levels were dominated by 507 

weak southwesterly winds below 850 hPa.  508 

In the next, we examine the dissipation stage of downhill storm when it reached 509 

triangle 1 with a focus on the evolution of atmospheric dynamic variables. A sustained 510 

near-surface southeasterly winds was found over YQ before 1900 LST from the surface 511 

streamlines and vertical wind profile that are shown in Figures 7b, c and 9a. The low-512 

level troposphere over triangle 1 was dominated by distinct deep divergence (Figure 9a) 513 

and positive vorticity (Figure 9b) below 2 km AMSL. The deep divergence of regional 514 

flows and larger CIN more tended to suppress the vertical motion breaking through the 515 

resistance of a stable atmosphere (Xiao et al., 2019). 516 

As the downhill thunderstorm reached YQ at 1900 LST (Figure 7d), the near-517 

surface wind turned into weak northwesterly winds accompanied by the rapid 518 

intensification of convergence over triangle 1 under the force of the convective system 519 

itself. The strongest convergence of this event with a value of −3.8 × 10−4 s−1 below 1 520 

km AMSL at 1906 LST. It is worth noting that the divergence layer above 1.5 km AMSL 521 

persisted during the occurrence of precipitation after 1924 LST. Even though there were 522 

the cyclone motion and weak updrafts with the maximum vertical velocity reaching 0.1 523 
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m s-1, it was not enough to penetrate the divergence layer and lift the vapor to the lifting 570 

condensation level (LCL) at around 800 hPa as shown in Figure 8b. The maximum 571 

composite radar reflectivity of the echo sharply decreased from 64.5 dBZ at 1900 LST 572 

to 53.5 dBZ at 2000 LST with the area shrinking by half (Figure 7e). The rainfall was 573 

terminated which was consistent with the dominated low-level divergence until 2100 574 

LST (Figure 7f). 575 

The above comparison indicates that a linear system was intensified in to the squall 576 

line with fast speed in front of a shortwave troughs in the EDS event. In the DDS event, 577 

some scattered convective cells were organized into clusters as they propagated to the 578 

plain under a weak ridge and then dissipated. For these two cases for EDS and DDS 579 

event, the thermal stratification indicated the presence of unfavorable pre-storm 580 

environmental settings with insufficient unstable energy and inadequate moisture. The 581 

dynamic condition played a pivotal role for convective development during the passage 582 

of the downhill thunderstorm. Compared with the DDS event, the enhanced southerly 583 

winds and corresponding convergence in the lower level were distinct features of the 584 

EDS. The above results indicate that the RWP mesonet could capture well the vertical 585 

profiles of horizontal divergence and vertical motion, favorably supporting the 586 

detection of convection.  587 

Notably, small-scale variations of airflow in the narrow valley at the intersection 588 

of Mt. Taihang and Mt. Yan undoubtedly impacts the dynamics of the EDS and DDS 589 

event (Xiao et al., 2017). In other words, the storms from northwest need to pass by the 590 

downslope, valley, and then upslope to reach the plain. The complex local terrain should 591 

be taken into account the factors for the evolution of thunderstorms during the 592 

southeastward propagation.  However, the current resolution of observations is not 593 

capable of resolving the dynamic processes associated with the convective development 594 

in that region. We hope further explore this factor with the help of the numerical 595 

simulation in the future. 596 
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5. Statistical results 597 

5.1. General features of downhill thunderstorm events 598 

To obtain a more robust understanding of the climatology for downhill 599 

thunderstorm evolution in Beijing, an in-depth statistical analysis is carried out in this 600 

study. According to the methodology mentioned in Section 2.1, we firstly identify a 601 

total number of 95 downhill thunderstorms triggered in ROIm and moved into ROId and 602 

ROIp in the study area (Figure 1b) based on the radar reflectivity datasets during the 603 

rainy seasons (i.e., April- September) in 2018-2022.We perform a statistical analysis of 604 

the occurrence number of radar reflectivity that is equal to or greater than 35 dBZ on a 605 

grid spacing of 0.01° at 10-min intervals during these downhill thunderstorm events.  606 

As shown in Figure 10a, downhill thunderstorms tend to initiate in ROId with 607 

strong steep slopes near the ridges of the Yan Mountains associated with solar heating 608 

in the afternoon. The highest-frequency center is found mainly over the western 609 

downhill area extending to the plain with the occurrence number exceeding 400, due 610 

possibly to the large amount of eastward propagation of thunderstorms driven by the 611 

westerly or southwesterly flows during the warm seasons in Beijing (Chen et al., 2012, 612 

2014). 613 

For all downhill thunderstorms, the relationship between the initial area and 614 

length-width ratio of thunderstorms at the beginning and the relative variation of area 615 

to the time it arrives at ROIp is analyzed. Here, we record the maximum (minimum) axis 616 

length of the radar echo with reflectivity ≥35 dBZ as the length (width) of the downhill 617 

thunderstorm, respectively. The area and length-width ratio tends to reflect the 618 

horizontal scale and organization of convective storms. Generally, linear convective 619 

storms show a length-width ratio greater than or equal to 3.0 (Chen and Chou, 1993; 620 

Meng et al., 2013; Yang et al., 2017). The results show that several mature 621 

thunderstorms with the area larger than 5000 km2 tend to dissipate during the downhill 622 

process with weaker intensity and area, which are likely due to the splitting processes 623 

(Figure 10b). Convective lines commonly intensify to the squall lines, but several 624 

isolated and loose thunderstorms expand rapidly during the downhill process with 625 
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increasing area when entering the plain, which may be associated with the favorable 633 

regional-scale lower tropospheric environment.  634 

It is found that 63 thunderstorms events tend to be enhanced after it moved into 635 

the downhill and urban areas, accounting for about 66 % of the total number of downhill 636 

thunderstorms events, whereas 32 thunderstorm events tend to be dissipated. Most of 637 

the DDSs arrive at the plain area in mornings and late afternoons (Figure 10c). 638 

Specifically, 11 and 18 DDSs arrive at the plain area during the period of 0600–1200 639 

and 1600–0000 LST which account for 34% and 56% of all DDSs, respectively. In 640 

contrast, the EDSs tend to occur in early mornings and afternoons. 18 and 43 EDSs 641 

arrive at the plain area before 0800 LST and after 1400 LST, respectively, 642 

corresponding to the percentage of 26% and 68%.  Meso-scale circulations driven by 643 

the urban heat island (UHI) effect and topography may contribute to the difference of 644 

downhill storms’ duration. As presented by Dou et al. (2015), the magnitude of UHI of 645 

Beijing at the nighttime are stronger than in daytime. In the early morning, low-level 646 

westerly and northwesterly winds converged into the Beijing’s plain area because of a 647 

combination of downslope mountain breezes and strong-UHI-induced convergence, 648 

which accelerate the speed of thunderstorms towards the plain. The weaker 649 

southeasterly upslope valley breezes in the late afternoon and evening make downhill 650 

storms slow down and contribute to the prolonged duration. One caveat is that the 651 

conclusions may vary by the number of available sample cases.  652 

5.2. Dynamic conditions 653 

        We present the trajectories and their moving directions of two types of downhill 654 

storms (Figure 11) to confirm that the western part of ROId is a key area for the 655 

development of downhill thunderstorms. To better understand the similarities and 656 

differences between EDS and DDS from the perspective of ambient atmospheric 657 

environment, three-dimensional dynamic structures derived from RWP mesonet are 658 

analyzed. Variables including wind speed, vertical wind shear, u-component and v-659 

component of wind, divergence and vorticity profiles are used to provide information 660 

of dynamic structures before the downhill thunderstorms arrive. Thus, we select 68 661 
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downhill thunderstorms, including 50 EDSs and 18 DDSs, which pass through triangle 684 

1 to the plain among all 95 samples and focus on these meso-scale parameters from YQ 685 

station and triangle 1 in the following discussions.  686 

        The mean vertical wind profiles two hours prior to the arrival of the thunderstorms 687 

are investigated. Horizontal wind speed, vertical wind shear, u-component and v-688 

component from the RWP in YQ, and divergence and vorticity over triangle 1 are 689 

calculated (Figure 12). Results indicate that wind speed preceding EDSs and DDSs is 690 

about 5 m s-1 below 1.5 km (Figure 12a). Much stronger horizontal winds with the 691 

maximum wind speed exceeding 15 m s-1 are observed in the 1.5-5 km layer in advance 692 

of the EDS events, The VWS below 5 km AMSL have no significant differences 693 

between EDSs and DDSs before their arrival (Figure 12b). But the VWS preceding 694 

EDS events is little bit stronger than that preceding DDS events, which could be likely 695 

associated the critical influence that high vertical wind shear exerts on convection. 696 

EDSs and DDSs mainly appears under the near-surface southeasterly and prevalent 697 

southwesterly low‐level flow near the foothills. The persistent supply of water vapor is 698 

key for the successful propagation to the plains of downhill storms but doesn’t 699 

determine the enhancement or dissipation of convection. Notably, the average v-700 

component of wind decreases to near-zero above 3 km AMSL. The existence of stronger 701 

westerly flow above 3 km AMSL is a favorable condition for the intensification of 702 

downhill storms (Figure 12c), which well corroborates the results from case study. 703 

        The mean vertical structure of divergence and vorticity are given in Figure 12e and 704 

f. Before the arrival of downhill storms, one can see the presence of weak divergence 705 

near the surface due to the weak wind. Compared with EDSs, the divergence around 706 

1.5-3 km AMSL is more evident near the arrival of DDSs with the maximum value of 707 

10−4 s−1. When thunderstorms pass by, the strong divergence in the low level is not 708 

conducive to the extension of upward movement within the boundary layer which 709 

attributes to the dissipation of storms, especially when instability and moisture supply 710 

are unfavorable. In contrast, the high-level divergence at around 4-5 km altitudes 711 

promotes the compensation of the moist air and the upward transport heat, which 712 
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ultimately reinforce the storm. The vorticity field in Figure 8f is characterized by 754 

cyclonic flows at lower-levels and anticyclonic flows at midlevel, which is possibly 755 

dependent on the synoptic forcing. The vorticity prior to EDSs seems to be stronger 756 

than that of DDSs, the cooperation between lower-level cyclones and less divergence 757 

of convective system tends to promote the maintenance of updrafts, leading to heavy 758 

rainfall.  759 

In the previous work, it has been confirmed that these dynamical variables derived 760 

from the RWP mesonet in Beijing provide strong supports for machine-learning-based 761 

prediction of severe convection (Wu et al., 2023). The results therein show that the 762 

usage of RWP observational data as the random forest model input tends to result in 763 

better performance in the rainfall/non-rainfall forecast 30 min in advance of rainfall 764 

onset than using the ERA5 reanalysis data as inputs. In the future, these dynamic 765 

observations and methodologies need to be further incorporated into machine learning 766 

model for improving the prediction skill of downhill thunderstorms.  767 

6. Summary and concluding remarks  768 

Given the large uncertainty in prediction and huge impact, here we revisit the 769 

evolution of downhill thunderstorms and concurrent ambient atmospheric dynamic 770 

structures as derived from a high-density radar wind profiler (RWP) mesonet in Beijing. 771 

This RWP mesonet in Beijing is shown to be capable of continuously observing the 772 

horizontal wind fields in the lower troposphere with ultra-high vertical and temporal 773 

resolutions. It follows that the profiles of vertical wind shear, divergence and vorticity 774 

are derived from the triangle algorithm, which are used to analyze the pre-storm 775 

dynamic environment for the downhill storms.  776 

         First of all, a novel objective methodology has been developed to identify and 777 

track the downhill thunderstorms. Combined with the changes in area or intensity of 778 

radar echoes, enhanced downhill thunderstorms (EDSs) and dissipated downhill 779 

thunderstorms (DDSs) are discriminated. A case study of an EDS during the period of 780 

1200-1500 LST of 28 September 2018 is performed. Of interest is that the intensity of 781 
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downhill thunderstorm became weaker before 1400 LST but intensified as it 808 

approached the plain area of Beijing. Meanwhile, we present a DDS event that occurred 809 

on 23 June 2018 in attempt to investigate the difference of pre-storm environment for 810 

two types of downhill thunderstorms. For these two cases of EDS and DDS, the thermal 811 

stratification indicated the presence of unfavorable pre-storm environmental settings 812 

with insufficient unstable energy and inadequate moisture. The dynamic condition 813 

played a pivotal role for convective development during the passage of the downhill 814 

thunderstorm. Compared with the DDS event, the enhanced southerly winds and the 815 

corresponding convergence in the lower level were distinct features of the EDS. The 816 

above results indicate that the RWP mesonet could capture well the vertical profiles of 817 

horizontal divergence and vertical motion, favorably supporting the detection of 818 

convection.  819 

        To obtain a robust result concerning the evolution characteristics of the downhill 820 

thunderstorms in Beijing, an in-depth statistical analysis is merited. The beginning and 821 

arrival time of a downhill thunderstorm event are defined as the moment when the 822 

centroid crosses the ridge line and plain, respectively. A total of 95 downhill 823 

thunderstorms events occurring in the study area are identified based on the datasets of 824 

radar reflectivity at 10-min intervals during the rainy season (i.e., April- September) of 825 

2018–2022. The high occurrence frequency center of convection is found mainly 826 

resides west to Beijing’ plain area. And the area variation of convection is not sensitive 827 

to the initial morphology itself. It is found that 63 thunderstorms tend to be enhanced 828 

with larger area or radar reflectivity after it moved into the downhill and urban areas, 829 

accounting for about 66 %. The statistical analysis indicates that most of the downhill 830 

thunderstorms affect the plains in the morning and late afternoon. Most downhill 831 

processes last about two hours while thunderstorms from the northwest and the north 832 

may take a longer time possibly due to the further distance.  833 

        Thus, we illustrate the statistical analysis of dynamic quantities, such as horizontal 834 

winds, vertical wind shears derived from the RWP at the mountain foot, and divergence 835 

and vorticity derived from the west-most triangular region in the RWP mesonet, in 836 
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relation to the enhanced and dissipated downhill storms. Results indicate that much 850 

stronger westerly winds are observed in 1.5-5 km layer in advance of the EDS events 851 

and exert a critical influence on the development of storms. Furthermore, divergence at 852 

around 4-5 km altitudes promotes the compensation of the moist air and the upward 853 

transport heat, which ultimately reinforce the storm. Weaker lower-level divergence and 854 

cyclonic flows over the plain contribute to the development of robust updrafts and 855 

closer coupling between boundary layer and clouds, which favor the intensification of 856 

downhill thunderstorms.  857 

Continuous measurements of the accurate dynamic quantities will make it 858 

possible to enable a more critical and quantitative evaluation for the development of 859 

downhill thunderstorms in the future. Nevertheless, the above-mentioned dynamic 860 

features, which are necessary to diagnose the evolution of thunderstorms, are not 861 

adequate to fully characterize the environment in which downhill storms are embedded. 862 

In particular, more explicit analysis of thermodynamic parameters, such as CAPE, K 863 

index, precipitable water, will be performed to characterize the pre-storm environments 864 

in detail.  865 
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Table 1. Summary of six radar wind profilers in Beijing. 1253 

Station Name Acronym Lat. (°N) Lon. (°E) Alt. (m, AMSL) 

Shangdianzi SDZ 40.66 117.11 286.5  

Huairou HR 40.36 116.63 75.6  

Yanqing YQ 40.45 115.97 489.4  

Haidian HD 39.98 116.28 46.9  

Pinggu PG 40.17 117.12 32.1 

Beijing Weather 

Observatory 
BWO 39.79 116.47 32.5  

 1254 

  1255 
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Figures 1256 

 1257 

Figure 1. (a) Spatial distribution of the topography over northern China with the blue 1258 

line denoting the Province boundaries. The locations of Taihang Mountains (Mt. 1259 

Taihang), Yan Mountains (Mt. Yan) and Bohai Sea are written in black text. (b) Map of 1260 

Beijing with six RWPs (red dots) deployed at Shangdianzi (SDZ), Huairou (HR), 1261 

Yanqing (YQ), Haidian (HD), Pinggu (PG), and the Beijing Weather Observatory 1262 

(BWO) and surrounding areas. The BWO and Zhangjiakou (ZJK) are deployed with an 1263 

L-band radiosonde (red pentagrams). The four red triangles denote the areas used to 1264 

calculate the horizontal divergence with the triangle method. The left black line mark 1265 

the ridge line, and the right black line mark the plain line that denotes the 200-m terrain 1266 

elevation. 1267 
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 1268 

 1269 

Figure 2. (a) Definition of the ROIs and the schematic diagram showing the track of a 1270 

downhill thunderstorm Si (red circle). The red arrow denotes the trajectory of Si. (b) 1271 

Flow chart showing the primary processes to identify downhill thunderstorms in this 1272 

study.   1273 
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 1274 

Figure 3. (a) SkewT/Log P diagram derived from the upper-air sounding at the ZJK at 1275 

0800 LST of 28 Sep 2018. (b) Same as (a) but for the upper-air sounding at the BWO. 1276 

(c) Horizontal distribution of geopotential height at 500 hPa (solid blue lines at 40 gpm 1277 

intervals) and temperature at 500 hPa (dashed red lines at intervals of 4 °C) at 1400 1278 

LST of 28 Sep 2018, both of which are obtained from the ERA5 hourly reanalysis data. 1279 

The purple rectangle indicates the location of the study area shown in Figure 1b. Letters 1280 

“L” and “C” denote the centers of a low-pressure system, and cold air, respectively. (d) 1281 

Same as (c), but for the fields of geopotential height at 850 hPa (solid blue lines at 40 1282 

gpm intervals) and horizontal wind at 850 hPa. Note the distribution of a trough along 1283 

the thick brown line.  1284 
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1294 
Figure 4. Evolution of the composite radar reflectivity (color-shaded, dBZ) and surface 1295 
streamlines derived from AWSs for the case of an EDS event occurring during the 1296 
period from (a) 1200 to (h) 1500 LST on 28 September 2018. The four red triangles 1297 
denote the regions used to calculate the horizontal divergence and vertical motion with 1298 
the triangle method. The two black lines mark the boundaries of the ROIm, ROId and 1299 
ROIp. 1300 
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 1302 

Figure 5. Evolution of the T2m (color-shaded, °C) and relative humidity (contour, %) 1303 

derived from AWSs from (a) 1200 to (h) 1500 LST 28 Sep 2018. The left black line is 1304 

the ridge line, the right black line is the plain line which denotes the 200-m terrain 1305 

elevation. The gray region denotes the position of echo with radar reflectivity exceeding 1306 

35 dBZ. 1307 
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 1308 

Figure 6. (a) Time series of horizontal wind vectors (m⋅s−1) with wind speeds shaded 1309 

in the 0.5–5-km AMSL layer during the period of 1200–1500 LST 28 Sep 2018 at YQ 1310 

station. Green-dotted lines represent the triangle-area-averaged rainfall amount (mm 1311 

6min-1) of triangle 1. (b) same as (a), but for the vertical profiles of the triangle-averaged 1312 

divergence (shaded, 10-5 s-1) and vertical velocity (contour, m s-1) for triangle 1. (c) 1313 

same as (b), but for the vertical profiles of the vorticity (shaded, 10-5 s-1) for triangle 1. 1314 
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 1316 

Figure 7. Same as Figure 4, but for the case of a DDS event occurring during the period 1317 

from (a) 1600 to (f) 2100 LST 23 June 2018.  1318 
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1328 

Figure 8. SkewT/Log P diagram derived from the upper-air sounding at the BWO at (a) 1329 
1400 LST and (b) 2000 LST of 23 June 2018. (c) Horizontal distribution of geopotential 1330 
height at 500 hPa (solid blue lines at 40 gpm intervals) and horizontal winds at 850 hPa 1331 
(wind barbs) at 2000 LST of 23 June 2018, which are both obtained from the ERA5 1332 
hourly reanalysis data. The purple rectangle indicates the location of the study area 1333 
shown in Figure 1b.  1334 
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 1339 

Figure 9. (a) Time series of horizontal wind vectors (m⋅s−1) with wind speeds shaded 1340 

in the 0.5–5-km AMSL layer during the period of 1800–2100 LST 23 June 2018 at YQ 1341 

station. Green-dotted lines represent the triangle-area-averaged rainfall amount (mm 1342 

6min-1) of triangle 1. (b) same as (a), but for the vertical profiles of the triangle-averaged 1343 

divergence (shaded, 10-5 s-1) and vertical velocity (contour, m s-1) for triangle 1. (c) 1344 

same as (b), but for the vertical profiles of the vorticity (shaded, 10-5 s-1) for triangle 1. 1345 
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 1348 

Figure 10. (a) The occurrence number (shaded) of reflectivity greater than 35 dBZ 1349 

during downhill thunderstorm events. (b) Scatterplots showing the distribution of the 1350 

initial length-width ratio and area of downhill thunderstorms, with the corresponding 1351 

relative variation of area (shaded, km2). (c) Boxplots showing the distribution of the 1352 

arrival time and downhill duration of EDSs (red) and DDSs (blue). The central box 1353 

represents the values from lower to upper quartile (25th–75th percentile), the vertical 1354 

line extends from the 10th to 90th percentile, the solid line denotes the median.  1355 
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 1363 

Figure 11. The trajectories (color shaded curves) of (a) 63 Enhanced Downhill Storms 1364 

(EDSs) and (b) 32 Dissipated Downhill Storms (DDSs). The bold black cure in the 1365 

middle marks the ridge line, and the bold black line in the lower right corner marks the 1366 

plain line that denotes the 200-m terrain elevation. 1367 
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 1384 

Figure 12. Vertical profiles of (a) wind speed, (b) vertical wind shear, (c) u-component 1385 

of wind, (d) v-component of wind over YQ station in two hours prior to the arrival of 1386 

EDSs (red) and DDSs (blue). (e) and (f) same as the above, except for the divergence 1387 

and vorticity over triangle 1 as shown in Figure 1b derived from the RWP mesonet, 1388 

respectively. 1389 

Deleted: 1390 

Deleted: 81391 



Page 14: [1] Deleted   xiaoran guo   09/05/2024 18:58:00 

 
 

Page 14: [2] Deleted   xiaoran guo   09/05/2024 18:58:00 

 
 

Page 14: [3] Deleted   xiaoran guo   08/05/2024 17:00:00 
 

Page 14: [4] Deleted   JG   08/05/2024 10:34:00 

 
 

Page 14: [5] Deleted   xiaoran guo   08/05/2024 17:41:00 

 

 

Page 14: [6] Formatted   xiaoran guo   06/05/2024 22:45:00 
Font: (Default) Times New Roman, (Asian) SimSun, 12 pt 
 

Page 18: [7] Deleted   xiaoran guo   08/05/2024 23:51:00 

 
 

Page 18: [8] Formatted   xiaoran guo   09/05/2024 17:23:00 
Font: (Asian) +Body Asian (DengXian), Snap to grid 
 

 

Formatted

... [15]
Formatted

... [16]

Formatted

... [17]
Formatted

... [18]

Formatted

... [19]

Formatted

... [20]
Formatted

... [21]

Formatted

... [22]
Formatted

... [23]
Formatted

... [24]

Formatted

... [25]
Formatted

... [26]
Formatted

... [27]
Formatted

... [28]


