
1 

 

Local and Regional Enhancements of CH4, CO, and CO2 Inferred 

from TCCON Column Measurements 
Kavitha Mottungan1,a, Vanessa Brocchi1,b, Chayan Roychoudhury1, Benjamin Gaubert3, Wenfu Tang3, 

Mohammad Amin Mirrezaei1, John McKinnon1, Yafang Guo1, Avelino F. Arellano1,2 

 5 
1 Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, 85721, USA 
2 Department of Chemical and Environmental Engineering, University of Arizona, Tucson, 85721, USA 
3 NSF National Center for Atmospheric Research, Boulder, CO, 80307, USA 

 
a now at: National Physical Laboratory (NPL), Teddington, UK 10 
b now at: Atmo Auvergne-Rhône-Alpes, association agréé de surveillance de la qualité de l’air, 69500 Bron, France 

Correspondence to: Avelino Arellano (afarellano@arizona.edu)  

 

Abstract. In this study, we demonstrate the utility of available correlative measurements of carbon species to identify regional 

and local airmass characteristics and their associated source types. In particular, we combine different regression techniques 15 

and enhancement ratio algorithms with CO, CO2, and CH4 data of total column abundance from 11 sites of the Total Carbon 

Column Observing Network (TCCON) to infer relative contributions of regional and local sources to each of these sites. The 

enhancement ratios provide a viable alternative to univariate measures of relationships between the trace gases that are 

insufficient in capturing source type and transport signatures. Regional enhancements are estimated from the difference 

between bivariate regressions across a specific time window of observed total abundance of these species (BEHr) and inferred 20 

anomalies (AERr) associated with a site-specific background. Since BEHr and AERr represent the bulk and local species 

enhancement ratio, respectively, its difference simply represents the site-specific regional component of these ratios. We can 

then compare these enhancements for CO2 and CH4 with CO to differentiate combustion versus non-combustion associated 

airmasses. Our results show that while the regional and local influences in enhancements vary across sites, dominant 

characteristics are found to be consistent with previous studies over these sites and with bottom-up anthropogenic and fire 25 

emission inventories. The site in Pasadena shows a dominant local influence (>60%) across all species enhancement ratios, 

which appear to come from a mixture of biospheric and combustion activities. In contrast, Anmyeondo shows more regionally 

influenced (>60%) air masses associated with high temperature and/or biofuel combustion activities. Ascension appears to 

only show a large regional influence (>80%) on CO/CO2 and CO/CH4 which is indicative of transported and combustion-

related CO from nearby African region, consistent with sharp rise in column CO (3.51±0.43 % ppb/year) in this site. These 30 

methods have important application to source analysis using space-borne column retrievals of these species. 

1 Introduction 

The rise in the abundance of greenhouse gases (e.g., CO2, CH4) in recent decades, because of anthropogenic activities and 

natural emissions associated with climate change, such as wetland, and biomass burning emissions associated with El-Niño 

(Zhang et al., 2018; Kumar et al., 2023; van Vuuren and Riahi, 2008; Arneth et al., 2017), has large implications to quantifying 35 

chemistry-climate relationships. This rising trend increases the complexity in understanding the feedback mechanism (CH4-

OH-CO), retrieval bias in less validated regions or unresolved uncertainty in tropical emissions (e.g., based on TROPOspheric 

Monitoring Instrument (TROPOMI) and Greenhouse Gases Observing Satellite (GOSAT)) (Lunt et al., 2019; Palmer et al., 

2019) and emission estimates from fossil-fuel use over growing megacities (Tang et al., 2020; Maasakkers et al., 2019). 

Understanding today’s regional CO2 and CH4 sources and sinks is a key area in carbon cycle and atmospheric composition 40 
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science given the necessity for reliable projections of future atmospheric CO2 and CH4 concentrations. This is especially 

problematic in megacities with the fastest pace of urbanization and where the anthropogenic activities are most intense, 

accompanied by immense energy consumption mainly in the form of fossil-fuel combustion (Kennedy et al., 2015; Grimm et 

al., 2008; Agudelo-Vera et al., 2012; Banerjee et al., 1999; Lamb et al., 2021). Emission estimates from fossil-fuels remain 

uncertain due to poor characterization of combustion activity, efficiency and fuel-use mixtures emerging from the lack of 45 

details on pollution control strategies, energy use and combustion practices (Zhu et al., 2012; Creutzig et al., 2015; Kennedy 

et al., 2009; Baiocchi et al. 2015; Weisz and Steinberger, 2010; Bettencourt et al., 2007; Dodman, 2009, Bai et al., 2018). The 

high-efficiency combustion of fossil-fuels leads to large CO2 emissions compared to CO, whereas low-efficiency combustion 

of residential combustion, biomass burning, among others produce more CO (Andreae and Merlet 2001; Silva and Arellano, 

2017; Halliday et al., 2019; Tang et al., 2019; Wei et al., 2012; Andreae, 2019; Park et al., 2021). This uncertainty is further 50 

complicated by limited observations at the spatiotemporal scales necessary to resolve variations in combustion and fuel-use 

patterns (Streets et al., 2013; Nassar et al., 2013; Hutyra et al., 2014, Gately and Hutyra 2017; Creutzig et al., 2019; Arioli et 

al., 2020). This leads to difficulties in teasing out small anthropogenic signatures from the large natural sources and sinks 

dominating the carbon cycle and the uncertainties in modelling atmospheric transport (Pacala et al., 2010; Peylin et al., 2013; 

Thompson et al., 2016; Erickson and Morgenstern, 2016; Oda et al., 2019; Duncan et al., 2019; Gaubert et al., 2019). This is 55 

especially true for flux estimations of CO2 and CH4 using top-down approaches, despite the increase in aircraft and satellite 

measurements of CO2 and CH4 abundance in recent years (Hutyra et al., 2014; Houweling et al., 2015; 2017, Chevallier, 2019; 

Crowell et al., 2019; Lu et al., 2021; Chandra et al., 2021). Studies have also highlighted the importance of fossil-fuel emission 

uncertainties on their estimates, suggesting the need for temporally defined emission inventories (Gurney et al., 2005; Peylin 

et al., 2011; Thompson et al., 2016, Saeki and Patra, 2017; Gurney et al., 2020). 60 

The abundance of a species at a particular location is mainly dependent on the variations of sources and sink. Furthermore, 

both regional and local transport (long-range, vertical transport and dilution in the boundary layer) influence the abundance of 

the species (especially in the column) and confound measurement interpretations. The major sources of CO2 include 

anthropogenic emissions especially fossil fuel combustion, cement production, and land-use change while sinks include 

uptakes by ocean and land from the atmosphere (Friedlingstein et al., 2022). While CO is primarily produced through 65 

incomplete combustion of carbon-containing fuels, oxidation of CH4 and other volatile organic compounds by OH contributes 

to the secondary production of CO (Bakwin et al., 1995; Gaubert et al., 2016, Hoesly et al., 2018).  The main chemical sink of 

CO in the atmosphere is OH followed by dry deposition through soil uptake (Levy 1971, Bartholomew 1981, Khalil 1990, 

Cordero et al 2019). This coupling of CH4-OH-CO has significant impact on the growth rate and source-sink characterization 

of CH4 (Gaubert et al., 2017; Zhao et al., 2019; 2020; Guthrie, 1989; Prather, 1994; Lelieveld et al., 2002). Anthropogenic 70 

sources of CH4 include agricultural activities (rice and livestock), solid waste, fossil fuels, and biomass burning in addition to 

natural sources like anaerobic ecosystems and geological activities (Saunois et al., 2020; Stavert et al., 2021). CH4 and CO are 

thus coupled with common sources (combustion process, vehicular emission, etc.) and sink (OH) and changes in one of these 
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species will have a significant impact on the other (Sze, 1977; Gaubert et al., 2017). This co-variation (co-emission) or the 

correlations of the species can be used to derive enhancement ratios/emission ratios which vary according to source regions 75 

and source type (Suntharalingam et al., 2004; Palmer et al., 2006; Wang et al. 2010; Tang et al., 2018). For example, a recent 

study by Lelandais et al. (2023) uses enhancement ratios and correlations to study variability of ICOS-France observed CO, 

CO2, and CH4 in a Mediterranean climate at different regional and time scales. Their results showed 84% of their data was 

representative of background concentrations that were dependent on both wind speed and direction, while 16% were enhanced 

by anthropogenic plumes, emissions in the boundary layer, or short-term pollution events. These derived 80 

emission/enhancement ratios from multiple species are widely used to characterize emission sources (Turnbull et al., 2011, 

2015; Silva et al., 2013; Anderson et al., 2014; Ammoura et al., 2014; Popa et al., 2014; Parker et al., 2016; Silva and Arellano, 

2017; Bukosa et al., 2019; Tang et al., 2019; Lee et al., 2020; Sim et al., 2022; Djuricin et al., 2010) and in the flux estimation 

for different parts of the world (Wunch et al., 2009; Miller et al., 2012; Wennberg et al., 2012; Bozhinova et al., 2014; Super 

et al., 2017; Hedelius et al., 2018, Plant et al., 2022; Bares et al., 2018). For example, a recent study by Plant et al. (2022) 85 

investigated the urban emissions of CH4 and CO using enhancement ratios derived from TROPOMI while Halliday et al. 

(2019) characterized air masses during KORUS-AQ into regions of high or low-efficiency combustion based on CO/CO2 

enhancement ratios derived from aircraft data. Bukosa et al. (2019) used shipborne measurements of CO, CO2, and CH4 to 

improve GHG flux estimates by comparing them with GEOS-Chem simulations to identify missing/underestimated sources in 

the model.  90 

The enhancement ratio between species 𝑋 and 𝑌 is calculated by mainly two methods: the first is by dividing the excess of 𝑋 

by the excess of 𝑌 and the second one is from a linearly regressed slope of 𝑋 and 𝑌 (Andreae et al., 1988; Yokelson et al., 

2013; Briggs, 2016). The first approach of enhancement ratio estimation requires a proper understanding of the background 

concentration to derive the excess abundance along with the instantaneous concentration of the species, which is not available 

in most cases. The ratio estimation from the regression approach has also a limitation when the emitted or locally produced 95 

species mixes with different air masses (e.g., advection from the nearby sources or mixed air masses) downwind of dominant 

source where measurements are made. This is especially the case for vertically integrated quantities like the column 

measurements (either ground-, aircraft- and satellite-based) (Cheng et al., 2017; Halliday et al., 2019; Tang et al., 2019) where 

vertical information of the species abundance is practically absent. If the emission or plume concentration is significantly 

larger than the background, the ratio from the regression slope approach does not change (Brigg et al., 2016). But, when 100 

emission of the species mixes with different ‘backgrounds’ than a relatively uniform field, the abundances of 𝑋 and 𝑌 change 

due to mixing and/or photochemical loss (Mauzerall et al., 1998; Yokelson et al., 2013; Guyon et al., 2005); thus, making it 

difficult to track the locally emitted contribution to the observed abundance. Vertical and horizontal transport also complicates 

the interpretation of abundance and assessment of local and regional source influences at a particular location (Chatfield et al., 

2020). Here, we utilize the column measurements of CO, CO2, and CH4 from the Total Carbon Column Observing Network 105 

(TCCON) (Wunch et al., 2011) to understand these variations in the column abundances. 
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The main objective of this study is to characterize the bulk characteristics of the column abundances of CO, CO2, and CH4 

from ground based TCCON measurements using a combination of enhancement ratio approaches. Specifically, we introduce 

a combination of established local and bulk regression algorithms in deriving enhancement ratios of the column abundances 

between these three species to understand their relationships because of emissions of these species being mixed, dispersed, 110 

transported, and transformed in the atmosphere. More importantly, we present the utility of combining these techniques in 

quantifying the contributions of the regional and local influences to observed columns and the corresponding enhancements 

observed in the respective species. We then examine the regional and seasonal variations of these influences and make use of 

the variability in the relationship of the multi-species enhancement ratios to infer the dominant source type leading to these 

variations. While previous studies have used enhancement ratios to examine the source attribution of CH4, CO, and CO2 at 115 

regional and/or local scale, we note that few have investigated bulk characteristics on a source type basis using all these 3 

species and using these combinations of regression algorithms for globally distributed column-integrated measurements. This 

proof-of-concept has an important application to on-going and planned satellite missions of these species given that TCCON 

measurements serve as basis for retrieval validation of these missions. 

2 Data and Methods 120 

2.1 Data and Location Features 

As mentioned, we make use of the column-averaged mixing ratios of CO, CO2, and CH4 from the ground-based network of 

TCCON during the period 2012 to 2019. TCCON retrieves the column abundance from the near-infrared solar absorption 

spectra using high-resolution Fourier Transform Spectrometers (FTS) (Wunch et al., 2011). This network provides the column-

averaged dry-air mole fractions by normalizing the column abundance of the species of interest to the retrieved oxygen column 125 

abundance. The precision of the column-averaged mole fraction of CO2 (XCO2) is <0.25 %, CH4 (XCH4) is <0.3% and CO 

(XCO) is <1% under clear or partly cloudy skies (Wunch et al., 2010). TCCON data sets are widely used in the global carbon 

cycle studies to improve the carbon budget (source and sinks information) and for validation of atmospheric trace gas estimates 

retrieved from the space-based instruments such as Orbiting Carbon Observatory (OCO-2), GOSAT, GOSAT-2, and 

TROPOMI, (Miller et al., 2007; Morino et al., 2011; Frankenberg et al., 2015; Wunch et al., 2017; Qu et al., 2021; Wang et 130 

al., 2022; Kulawik et al., 2016; Yoshida et al., 2013; Noël et al., 2022; Liang et al. 2017; Kong et al., 2019). A total of 11 

TCCON sites are selected for this analysis which includes six sites in the Northern Hemispheric (NH) regions and five in the 

Southern Hemispheric (SH) regions and the locations are marked in Figure 1. The average column abundance retrieved at each 

TCCON location is embedded in the monthly spatial map of column abundances of CO from the Measurements of Pollution 

In The Troposphere (MOPITT) aboard Terra, CO2 from OCO-2 and GOSAT retrieved CH4 during May 2018. The absence of 135 

data during May 2018 in TCCON column abundances at Darwin, Ascension, Manaus, Reunion, Hefei and Anmyeondo are 

shown as white circles in Figure 1. Qualitatively, MOPITT and GOSAT retrievals show reasonable agreement between the 

retrieval of CO, CO2, and CH4 column abundance relative to TCCON at these locations. 
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Figure 1: May 2018 month-average abundance of: (a) CO from MOPITT, (b) CO2 from OCO-2, and (c) CH4 from GOSAT. 140 

Locations of TCCON sites are superimposed as black circles. 

 

The site in Ascension is in a small island with virtually no influence from local sources, but it captures the long-range transport 

of emissions from Africa (Geibel et al., 2010; Feist et al., 2014, Swap et al., 1996). Among the selected sites of study, Ascension 

and Reunion are representative of remote island sites located in the South Atlantic and the Indian Ocean, respectively. The 145 

humidity in the eastern part of the Reunion Island is higher than its the western counterpart. There is also a regularly occurring 

outflow of biomass burning emission from South Africa, Madagascar, and South America to Reunion Island (Vigouroux et 

al., 2012; De Maziere et al., 2017; Zhou et al., 2018). The sites in Manaus, Darwin, Garmisch, and Sodankyla are reported to 
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be mostly influenced by sources related to local biogenic emissions and regional anthropogenic emissions. Manaus is in the 

center of the Amazon, the world’s largest rainforest, and is the seventh largest city in Brazil (Dubey et al., 2014). The 150 

measurement site in Garmisch is situated in the Alps Mountain range in Southern Germany (Sussmann and Rettinger, 2018) 

while the site in Sodankyla in Northern Finland, mainly surrounded by Scots pine forest within the Fennoscandia region. 

Wintertime measurements at this location is not possible due to the absence of sunlight (Kivi et al., 2022). Finally, Darwin is 

the largest city in the sparsely populated Northern Territory of Australia and is situated on the Timor Sea. The site is 9 km 

from the city of Darwin and adjacent to the airport (Griffith et al., 2014).  155 

It has been previously reported that local emissions and nearby sources are significant at measurement locations in Pasadena, 

Anmyeondo, and Wollongong (Griffith et al., 2014; Wennberg et al., 2015; Goo et al., 2014). The measurement site in 

Pasadena is situated at the northern limit of the South Coast air basin, which is bounded by mountains on three sides and the 

Pacific Ocean on the other side. The northern and eastern regions of the basin are sparsely populated deserts and receives 

polluted air under normal meteorological conditions and occasionally cleaner air (Wunch et al., 2009; Wennberg et al., 2016). 160 

In SH, the measurement site of Wollongong is representative of an urban location. The urban sources are local and is mainly 

from Sydney’s motorway flanks, coal mining, steelmaking facilities (Buccholz et al., 2016). Biogenic emission and bush fire 

also impact the air at this site along with agricultural activities in the southwest side of the urban extent (Griffith et al., 2014; 

Buchholz et al., 2016). Anmyeondo Island is located on the west coast of the Korean Peninsula, 180 km southeast of Seoul. 

Although surrounding area mainly consists of agricultural lands, vegetation in and around the sites consisting of pine trees, 165 

natural forest, and urban developments, this site is regularly influenced by Asian pollution outflows especially during Spring 

(Goo et al., 2014; Oh et al., 2018).  

The air in Burgos and Hefei sites are mainly dominated by regionally transported emissions (Morino et al., 2022; Liu et al., 

2022). Hefei is an inland city in the eastern part of China, and it is a rapidly developing city with a population of eight million. 

The site is adjacent to a lake in flat terrain and is in the north-western rural area of Hefei city. A large anthropogenic influence 170 

in Hefei comes mainly from heavily polluted areas in northern China and cities in the Yangtze River Delta, while natural 

emissions come from cultivated lands or wetlands surrounding the site (Tian et al., 2018; Wang et al., 2017). The site in Burgos 

is in a town in Ilocos Norte Province in the Philippines. This region is a coal-free province and encounters relatively clean 

marine air from the western Pacific but also polluted air from long-range transport during monsoon transitions (Velazco et al., 

2017). The data period and a summary of the characteristics of these selected TCCON sites are listed in Table 1. The sites at 175 

Pasadena, Garmisch, Reunion, Ascension, Sodankyla, Darwin, and Wollongong have longer records (> 7 years of data) as 

opposed to Anmyeondo, Hefei, Manaus, and Burgos (~2 years with more gaps in between). 
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Table 1: Relevant reference and acknowledgement on selected TCCON sites considered in this work. 180 

Location Data Period Reference 

Pasadena 09/2012-08/2019 Wunch et al., 2009; Wennberg et al., 2016; Wennberg et al., 2022 

Ascension 05/2012-10/2018 Geibel et al., 2010; Feist et al., 2014  

Manaus 10/2014-06/2015 Dubey et al., 2014; Dubey et al. 2022 

Garmisch 07/2007-08/2019 Sussmann and Rettinger, 2018; Sussmann and Rettinger, 2023 

Sodankyla 05/2009-06/2019 Kivi et al., 2014; Kivi et al. 2022 

Anmyeondo 02/2015-04/2018 Goo et al., 2014; Oh et al., 2018 

Burgos 03/2017-11/2018 Velazco et al., 2017; Morino et al., 2022 

Hefei 09/2015-12/2016 Wang et al., 2017; Tian et al., 2017; Liu et al., 2023 

Darwin 08/2005-09/2018 Deutscher et al., 2014; Griffith et al., 2014; Deutscher et al., 2023 

Wollongong 06/2008-11/2018 Buchholz et al., 2016; Deutscher et al., 2023 

Reunion 09/2011-02/2018 Vigouroux et al., 2012; De Maziere et al., 2017; 

Zhou et al., 2018; De Maziere et al., 2022 

2.2 Estimating regional and local enhancement ratios 

The observed column abundance (𝐶) of any species (𝑠𝑝𝑐) retrieved at any location of TCCON measurement site (𝑠) and at a 

particular time (𝑡) is generally represented as: 

𝐶𝑠𝑝𝑐 =  𝐶𝑡𝑟𝑢𝑒,𝑠𝑝𝑐 + 𝜖𝑚𝑒𝑎𝑠,𝑠𝑝𝑐          (1) 

where 𝐶𝑡𝑟𝑢𝑒  is the true species concentration being measured at (𝑠, 𝑡) and 𝜖𝑚𝑒𝑎𝑠 is the measurement error. Letting 𝐶𝑋 = 𝐶𝐶𝑂2
, 185 

𝐶𝑌 = 𝐶𝐶𝑂, and 𝐶𝑍 = 𝐶𝐶𝑂2
, the true concentration can be broken down into specific contributions following Levin (2003) and 

Turnbull (2009) as: 

𝐶𝑋 = ( X𝑏𝑔 +  X𝑓𝑓 +  X𝑏𝑏 +  X𝑐+ X𝑟 −  X𝑝) + 𝜖𝑋       (2) 

𝐶𝑌 = ( Y𝑏𝑔 +  Y𝑓𝑓 +  Y𝑏𝑏+ Y𝑜𝑥− Y𝑙 −  Y𝑠𝑢) + 𝜖𝑌       (3) 

𝐶𝑍 = ( Z𝑏𝑔 +  Z𝑓𝑓 +  Z𝑏𝑏 +  Z𝑤𝑒𝑡+ Z𝑙𝑖𝑣𝑒 +  Z𝑜𝑡ℎ −  Z𝑐𝑙 − Z𝑠𝑢) + 𝜖𝑍     (4) 190 

The subscripts in the above equations represent the associated sources and sinks: background (𝑏𝑔); anthropogenic processes 

such as fossil fuel (𝑓𝑓), biomass burning (𝑏𝑏), cement (𝑐), and livestock (𝑙𝑖𝑣𝑒); biospheric processes such as ecosystem 

respiration (𝑟) and photosynthesis uptake (𝑝); natural processes such as ocean (𝑜), soil uptake (𝑠𝑢), and wetland (𝑤𝑒𝑡); 

chemical processes such as oxidation from hydrocarbons (𝑜𝑥), chemical loss by OH (𝑙), chemical loss by OH and Cl (𝑐𝑙); and 

other sources (𝑜𝑡ℎ). The background component (𝑏𝑔) accounts for initial abundance, dilution, and transport processes. Direct 195 

biogenic CO emissions and oxidation of CH4 ( Z𝑐𝑙) as a source of CO are included in Y𝑜𝑥. We also consider the oxidation of 𝑌 

to 𝑋 as a source 𝑋 to be negligible in this analysis. 
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In this study, we adopt the following three main methods to derive enhancement ratios: 

Method (1): regression of the abundances (i.e., associated linear slope from the scatter plots between 𝐶𝑋 and 𝐶𝑌, 𝐶𝑋   and 𝐶𝑍, 

or 𝐶𝑌 and 𝐶𝑍). This method is denoted as Bulk Enhancement Regression Ratio (BERr) (Andreae et al., 1988; Lefer 200 

et al., 1994; Silva et al., 2013; Tang et al., 2019) - See Eq. 5 & 6 

Method (2): ratio of 𝐶𝑠𝑝𝑐 anomalies (Anomaly Enhancement Ratio or AERa) (Andreae and Merlet, 2001; Silva and Arellano, 

2017; Le Canut et al., 1996) – See Eq. 7 & 8 

Method (3): regression of 𝐶𝑠𝑝𝑐  anomalies (Anomaly Enhancement Regression Ratio or AERr)  (Mauzerall et al., 1998; 

Yokelson et al., 2013; Hobbs et al., 2003; Wunch et al., 2009; Hedelius et al., 2018; Sim et al., 2022) – See Eq. 9 205 

& 10 

The regressions and anomaly of abundances are calculated using daily average data points across a monthly time window. The 

number of daily column abundance data points available in each month at the selected TCCON location sites is provided in 

Figure S1. This information is used further in the analysis for selecting the data range for comparison purposes and interpreting 

the results.  210 

Method 1: The enhancement ratio based on the regression of the daily average abundances of the species is considered as the 

“bulk” or “global” enhancement ratio (BERr), which is interpreted to represent the sum of all the associated sources and sinks 

contributions. The BERr or regression slope of daily average abundances of species 𝑋 and  𝑌 for example is calculated simply 

as the ratio of the covariance of 𝐶𝑋 and 𝐶𝑌 to the variance of 𝐶𝑋  from a least-squares linear fit of the data. That is, 

 (
ΔC𝑌

ΔC𝑋
)

1
 =  

𝑐𝑜𝑣 (𝐶𝑌,𝐶𝑋)

𝑣𝑎𝑟(𝐶𝑋)
                        (5) 215 

= ∑
𝑐𝑜𝑣(𝑋𝑏𝑔,𝐶𝑌)

𝑣𝑎𝑟(𝐶𝑋)
+ ∑

𝑐𝑜𝑣(𝑋𝑠𝑜𝑢𝑟𝑐𝑒𝑠,𝐶𝑌)

𝑣𝑎𝑟(𝐶𝑋)
− ∑

𝑐𝑜𝑣(𝑋𝑠𝑖𝑛𝑘𝑠,𝐶𝑌)

𝑣𝑎𝑟(𝐶𝑋)
                 (6) 

where sources of 𝑋 = 𝑓𝑓, 𝑏𝑏, 𝑐, 𝑟 and sinks = 𝑝, 𝑜, 𝑠𝑡 while subscript 1 denotes Method 1. 

Note that for different linear regression approaches, there is a significant difference in the slope estimation when the 

representation of the error (𝜖𝑚𝑒𝑎𝑠,𝑠𝑝𝑐) associated with the data is included (Wu and Yu, 2018). To account for the differences 

in the estimates due to the choice of algorithm, we use three regression methods (Ordinary Least Square, Geometric Mean and 220 

York) (York et al., 2004) in calculating the enhancement ratios derived based on regression approaches in Methods (1) and 

(3). The enhancement ratios of BERr and AERr reported in the study are the mean of these estimates weighted by the associated 

error (Verhulst et al., 2017).  

Method 2. Local enhancement ratios are derived based on Methods (2) and (3), where the background influences/transport 

components are removed from the total abundances used in Method (1) using two ways to estimate anomalies (Eq 7). That is, 225 

1) we remove dilution/boundary layer influence from the total abundance (broadly denoted as 𝐶𝑏𝑔,𝑠𝑝𝑐) by taking the difference 

of average morning values from the average afternoon values; and 2) we remove the ‘background’ by calculating the difference 

between the background value 𝐶𝑏𝑔,𝑠𝑝𝑐 (assumed here as 5th percentile of the daily data) from the individual daily average 

values. The anomaly of 𝐶𝑠𝑝𝑐 after removing these influences from the total abundance is expressed as, 
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𝐶𝑠𝑝𝑐
′ = (𝐶𝑠𝑝𝑐 − 𝐶𝑏𝑔,𝑠𝑝𝑐) = ∑ 𝐶𝑠𝑜𝑢𝑟𝑐𝑒𝑠 + ∑ 𝐶𝑠𝑖𝑛𝑘𝑠                                                                   (7) 230 

with AERa between species 𝑋 and  𝑌 for Method (2) for example is given by: 

(
ΔC𝑌

ΔC𝑋
)

2
= (

𝐶𝑌
′

𝐶𝑋
′ ) =

∑ 𝑌𝑠𝑜𝑢𝑟𝑐𝑒𝑠+ ∑ 𝑌𝑠𝑖𝑛𝑘𝑠

∑ 𝑋𝑠𝑜𝑢𝑟𝑐𝑒𝑠+ ∑ 𝑋𝑠𝑖𝑛𝑘𝑠
         (8) 

Method 3. Accordingly, the regression slope (AERr) between species 𝑋 and 𝑌 for Method (3) for example can be calculated 

using the combination of Eqs. 5 and 7: 

(
ΔC𝑌

ΔC𝑋
)

3
 =  

𝑐𝑜𝑣 (𝐶𝑌
′ ,𝐶𝑋

′ )

𝑣𝑎𝑟(𝐶𝑋
′ )

                       (9) 235 

          = ∑
𝑐𝑜𝑣(𝑋′

𝑠𝑜𝑢𝑟𝑐𝑒𝑠, 𝐶𝑌
′ )

𝑣𝑎𝑟(𝐶𝑋
′ )

− ∑
𝑐𝑜𝑣(𝑋𝑠𝑖𝑛𝑘𝑠

′ ,𝐶𝑌
′ )

𝑣𝑎𝑟(𝐶𝑋
′ )

        (10) 

The regional enhancement ratio is calculated by subtracting the enhancement ratios derived based on the regression slope of 

total abundances in Method (1) (BERr) from that of the ratio derived from the anomalies in Method (3) (AERr) (Cheng et al., 

2017; Briggs et al., 2016; Le Canut et al., 1996).  

Similar expressions can be applied to BERr, AERa, and AERr for species 𝑋 and  𝑍, as well as for 𝑌 and  𝑍. 240 

3 Results and Discussion 

This section describes the spatial and temporal variation (and co-variation) of 𝐶𝑠𝑝𝑐 along with their corresponding local and 

regional enhancement ratios. We also present in this section several qualitative inferences on the dominant processes leading 

to these co-variations.   

3.1. Abundance, Trend, Seasonality, and Co-variation of CO, CO2, and CH4 245 

Firstly, it is informative to understand the spatial and temporal patterns of these species column abundance before investigating 

their corresponding enhancement ratios. We show in Figure 2 the monthly variation of CO, CO2, and CH4 over Garmisch, 

Darwin, Sodankyla, Wollongong, Pasadena, and Reunion during 2012-2019 period. TCCON sites with data gaps of shorter 

time periods (see Section 2.1) are not included. The figure shows a clear seasonal cycle in the abundance of CO over all the  

locations and the seasonal amplitude is higher over Hefei (38.3±0.0 ppb), Sodankyla (37.2±3.9 ppb) and Pasadena (36.0±4.5 250 

ppb) compared to other locations. The seasonality in time series can indicate the presence of a non-steady state source/sink at 

the location including potential regional transport into and out of the site. Furthermore, a large variability in CO is observed 

in the seasonal amplitude over Burgos (15.5 ppb), Darwin (10.2 ppb), Reunion (9.2 ppb) and Wollongong (8.5 ppb) during 

this period. The inter-annual variability can suggest changes in the emission sources or meteorology over time. As presented 

in Table 2, the seasonal cycle of CO2 and CH4 is evident for TCCON sites located in the NH and those relatively closer to 255 

emission sources such as Pasadena, Garmisch, and Sodankyla. For the other sites, the seasonal cycle appears to be low, which 
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can be mainly due to its remote location with relatively mixed air masses and smaller influences of local emissions (e.g., Ciais 

et al., 2019). The seasonal amplitude of CO2 ranges from 5.6±0.0 ppm (in Hefei) to 3.6±1.9/0 ppm (in Ascension/Anemyondo).  

The variability in seasonal amplitude of CO2 across the stations is the same (1.9 -1.2 ppm) during this period. The seasonal 

amplitude of CH4 varies from 0.03 to 0.01 ppm across the measurement sites and its variability (~0.01 ppm) is similar in most 260 

of the locations.  

The monthly mean variation of the column abundance of CO, CO2, and CH4 at the locations in the NH (Pasadena, Garmisch, 

Sodankyla, Anemyondo, Hefei, and Burgos) and SH (Darwin, Wollongong, Reunion, Ascension, and Manaus) are provided 

in Figure S2. The hemispheric differences of CO, CO2, and CH4 are evident among TCCON locations, like that is observed in 

Figure 1 from satellite retrievals. The corresponding mean magnitude and the corresponding variability of the abundance 265 

during 2012-2019 period is also provided in Table 2. The mean abundance of CO ranges from 118.3±13.5 ppb in Hefei to 

59.7±7.8 ppb in Wollongong. The observed abundance of CO is higher at measurement sites in the Southeast Asian regions 

(Hefei, Anmyeondo, and Burgos) in comparison to other selected sites. These values are consistent with literature that reported 

higher emissions over Southeast Asian regions (Tang et al., 2019; Zhang et al., 2020), especially from fossil fuel, coal, 

agriculture activities and wetlands (Tang et al., 2019).  270 

We also see a decreasing trend in CO in most of the selected TCCON sites (-0.20 to -0.98 % ppb/year), except at Ascension 

(3.51±0.43 % ppb/year), Pasadena (0.01±0.22 % ppb/year), and Wollongong (0.27±0.35 % ppb/year). This agrees with the 

long-term decline in the column abundances of global CO reports in the literature (Zhang et al., 2020; Buchholz et al., 2021). 

The mean abundance of column CO2 varies from 406.8±1.9 ppm in Burgos to 397.4±5.1 ppm in Wollongong. The mean 

column abundance of CH4 ranges from 1.88± 0.02 ppm in Hefei to 1.77±0.02 ppm in Wollongong. The trend calculated during 275 

the 2012-2019 period for the mean column abundance relative to 2012 is provided in Table 2. CO2 and CH4 are showing an 

increasing trend in all locations. The trend in CO2 is higher over Anmyeondo (0.81± 0.10 % ppm/year), and lower over 

Ascension, (0.60±0.01 % ppm/year). Similarly, Sodankyla (0.48±0.02 % ppm/year) shows a higher trend in CH4 and a lower 

trend in Anmyeondo (0.21± 0.15 % ppm/year). This is may due to differences in the distribution of sources and/or sinks across 

these sites as described in section 2.1. Retrievals from TROPOMI CO, for example, show a southward transport of enhanced 280 

CO concentrations over Atlantic Ocean originating from fires in North Africa (Borsdorff et al., 2018). The high CO polluted 

air (~116 ppb) captured over Ascension Island in TROPOMI agrees with TCCON site in Ascension (Feist et al., 2014 and 

Borsdorff et al., 2018). The higher trend in CO and a lower trend in CO2 over Ascension may be attributed to a decrease in 

sources (reduced respiration, increase in lower quality fossil-fuels) or an increase in sinks (enhanced photosynthesis) over the 

African region. For example, Hickman et al. (2021) reported an increasing trend in CO and reduction in NO2 burden over north 285 

equatorial Africa and attributed this to a decline in biomass burning due to emissions from a woodier biome. We note however 

that detailed source and sink analysis (including transport patterns over Ascension) is needed to better understand this high 

CO and low CO2 trends in this region.  
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Figure 2: Monthly variation of TCCON CO, CO2, and CH4 over Garmisch, Darwin, Sodankyla, Wollongong, Pasadena, and Reunion 

during 2012 to 2019. 295 

To elucidate the dependence of similar variations and/or similar sources of origin, we also show in Figure 3 the joint probability 

density distribution (pdf) between CO and CO2, CO and CH4, as well as CO2 and CH4. We also provide estimates of the 

associated dependencies (linear vs non-linear) among these species for the whole analysis period as presented in Table 2. The 

linear relationship is quantified using the Pearson’s correlation while the non-linear dependency is estimated using mutual 

information (Kraskov et al., 2004). Consistent correlations across all three species suggests a similar source of origin, seen in 300 

the strong linear correlation across the species in Ascension and strong non-linear correlation across the species in Anmyeondo 

and Hefei. Strong dependencies are observed among CO2 and CH4 in most locations, where the correlations are higher than 

the ones between CO and CO2 and CO and CH4. This is also seen in the joint distributions shown in Figure 3 where the 

relationship between CO2 and CH4 is more apparent compared to others and point towards a shared signature from 

biospheric/natural and anthropogenic activities leading to a strong relationship between CO2 and CH4. The differences 305 
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observed between the non-linear and linear dependencies highlight the complexity of the relationship between the species and 

can be associated with the presence of daily variation in the sources and sinks, seasonality, differences in the lifetime of the 

species, as well as changes in the background present in the entire analysis period. We further investigate the variations in 

corresponding enhancement ratios in the next section to understand these differences. 

 310 

Figure 3: Joint probability distributions between CO and CO2 (orange), CO2 and CH4 (green) and CH4 and CO (blue) using daily 

values across 11 TCCON sites chosen for this study. The sites are grouped according to the site type and source influence on the 

species in these regions. CO is shown in ppb, whereas CO2 and CH4 have units in ppm. The straight lines denote the best-fit line 

from linear regression.  

3.2. Enhancement ratio of CO, CO2, and CH4: Regional and local contributions and associated seasonality 315 

Enhancement Ratios. Figure 4 shows the mean variation of these enhancement ratios in CO/CO2, CH4/CO2 and CO/CH4. 

Note that these ratios are calculated monthly across the daily data based on the methods explained in Section 2.2.  The bulk 

enhancement ratio (BERr), which accounts for the total emission sources, sinks, and other contributions to observed 

abundances, is higher for all species in all measurement sites in comparison to the local enhancement ratios (AERa and AERr). 

Regionally, BERr in CH4/CO2 is maximum over the Southeast Asian region (Anmyeondo, Burgos and Hefei) followed by the 320 

sites in SH locations (Darwin, Wollongong, Reunion, Ascension) when compared to other NH sites. This higher value of BERr 

in Southeast Asian region follows the regional maximum of CO and CO2 mixing ratios described in section 3.1 and shown in 

Figure S2. Similar is the case for the regional site variation of BERr in CO/CH4. The value of CH4/CO2 from BERr is highest 

over Burgos and Wollongong followed by Garmisch, Sodankyla, Anmyeondo, and Pasadena. Relative differences can be 

observed between the correlations across the species and BERr suggesting more complex mixtures of the sources and sinks of 325 

these species at these sites. 

Remote

Regional

Local and Regional
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Figure 4: Mean variation of enhancement ratios calculated as Bulk Enhancement Ratio (BERr), Anomaly Enhancement Ratio 

(AERa), and Anomaly Enhancement Regression Ratio (AERr) of CO/CO2, CH4/CO2 and CO/CH4 during 2012-2019 over Pasadena, 

Ascension, Manaus, Garmisch, Sodankyla, Anmyeondo, Burgos, Hefei, Darwin, Wollongong, and Reunion. 330 
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We note that the enhancement ratios derived in this work is within the range of ratio estimates reported in literature (Wunch 

et al., 2009; Wennberg et al., 2012; Silva et al., 2013; Buchholz et al., 2016; Hedelius et al., 2018; Bukosa et al., 2019). In 

Pasadena, Silva et al. (2013) reported an enhancement ratio in CO/CO2 of about 9.3 -13.5 ppb/ppm based on MOPITTv5 and 

ACOS2.9/GOSAT CO2 data, while Wunch et al. (2009) and Wennberg et al. (2012) reported 11 ppb/ppm and 8.4 ppb/ppm, 

respectively, along with the more recent study by Hedelius et al. (2018) which reported 7.1 to 7.5 ppb/ppm. Buchholz et al. 335 

(2016) and Bukosa et al. (2019) reported a range of ratios of about 1.3-37.4 ppb/ppm in CO/CO2, 9.8-61 ppb/ppm in CH4/CO2 

and 0.3-13 ppb/ppb in CH4/CO over Australia. While generally consistent, our estimates also show that the range of ratios 

reported in these studies can vary (as can be expected) depending on the dominant processes (natural and/or anthropogenic) 

driving species abundance. 

Regional and Local Contributions. Additionally, the differences in the enhancement ratio from BERr, AERa, and AERr in 340 

Figure 4 can be indicative of different regional and local influences. As described in Section 2.2, the enhancement ratio 

calculated from the regression slope of the anomalies (AERr) represents a local enhancement ratio, where the associated 

regional enhancement ratio can then be derived by subtracting AERr from BERr (i.e., regional=bulk – local). Figure 5 shows 

the average seasonal variation of the regional (BERr - AERr) and local enhancement ratios (AERr) for each species. This 

reveals how the contribution and influence of regional and local enhancement ratios in the bulk ratio vary seasonally. The 345 

seasonal variations calculated for DJF should read as Winter in NH and Summer in SH, MAM months as Spring in NH and 

Fall in SH, JJA months as Summer in NH and Winter in SH and SON months as Fall in NH and Spring in SH. The 

corresponding number of months available to generate the average seasonal variation of regional and local enhancement ratio 

is provided in supplementary material (Table S1 and S2). Note that for sites like Sodankyla, there are only 4 data points for 

seasonal averaging during winter months due to limited measurements in this period.  350 

We see in Figure 5 that the seasonal variation of regional and local enhancement ratios at different measurement sites reveals 

the presence of seasonally varying driving factors in the bulk enhancement ratios. The local enhancement ratio appears to 

dominate over the regional ratios for Pasadena in all seasons and relative to the regional ratio, the magnitude of local 

enhancement ratios in CO/CO2 and CO/CH4 are more significant during Fall. The lower regional enhancement ratio during 

Fall may be due to the poor dependency between transported CH4 or CO2 coming from biospheric sources or any non-355 

combustion sources of CO. This is evident in Figure S2 which shows a significant peak in the abundance of CO2 during Fall 

months over Pasadena, but not in CO. Furthermore, the low value of regional enhancement ratio in CH4/CO2 during Summer 

over Pasadena may be associated with the poor correlation from independent sources or from biospheric sinks of CO2 (see 

Tables S1 and S2). Similar seasonal variation is observed at Wollongong where it shows a dominant influence of local 

enhancements of species ratios for most of the seasons. Relative to the regional ratio, the magnitude of local enhancement ratio 360 

in CH4/CO2 is more significant during the months of DJF, which is the summer season in SH. The seasonal variation of CO/CH4 

follows a different pattern in Wollongong with the regional influence dominating for all seasons except JJA (winter in SH). 
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The seasonal variation of species enhancement ratio in CH4/CO2 and CO/CH4 at Darwin follows similar variations as that in 

Wollongong although there are differences in absolute magnitude. The regional enhancement ratio in CO/CO2 dominates 

during DJF (summer) and SON (spring) months at Darwin whereas the local enhancement ratio dominates in other seasons. A 365 

large difference of about 10 ppb/ppm is also observed between local and regional enhancement ratio in CO/CO2 during JJA 

(winter) months. 

 

Figure 5: Average seasonal variation of regional and local enhancement ratio in CO/CO2, CH4/CO2 and CO/CH4 during 2012-2019 

over Pasadena, Garmisch, Wollongong, Ascension, Darwin, and Hefei. 370 

Furthermore, in Ascension, the influence of regional enhancement ratios in CO/CO2 and CO/CH4 is high during all seasons 

whereas the seasonal variation in CH4/CO2 shows a different pattern. Except in Spring (SON) and Fall (MAM), the seasonal 

influence of the regional and local enhancement ratio in CH4/CO2 is comparable. The low values of regional enhancement in 

CH4/CO2 during Spring and Fall may be associated with the poor correlation from independent sources or from biospheric 

sources of CO2. The seasonal variation of enhancement ratio at Manaus and Reunion follows this characteristic as well (shown 375 

in Figure S3). The relative importance of regional and local enhancement ratio varies among species in Garmisch and 

Sodankyla. The regional enhancement ratio in CO/CO2 and local enhancement ratio in CO/CH4 ratio dominate for all seasons 
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at Garmisch (Figure 5) and Sodankyla (Figure S3) while the local enhancement ratio in CH4 /CO2 dominates during JJA 

(winter) and SON (spring) months compared to other seasons over these sites. Finally, irrespective of the season, regional 

enhancements in CO/CO2 dominate at Hefei and Burgos (Figure S3) while the same is true in CH4/CO2 at Anmyeondo (Figure 380 

S3). The local enhancement ratio in CH4/CO2 and CO/CH4 dominates only during DJF (winter) at Hefei, while local 

enhancement ratio in CO/CH4 dominates for all seasons at Anmyeondo except fall (SON). The local enhancement ratio in 

CO/CH4 also dominates regardless of season at Burgos.  

The average relative contribution of local and regional enhancement ratio towards the bulk enhancement ratio at the 

measurement site is provided in Table 3. The relative contribution of the regional and local enhancement ratio is calculated as 385 

BERr−AERr

BERr
 and 

AERr

BERr
 respectively. A clear difference is observed in the contribution of the local and regional enhancement ratios 

across each measurement site and among species. Locations like Pasadena and Wollongong show the dominant local influence 

for CO/CO2 whereas the rest of the locations report significant regional influences. This regional contribution in CO/CO2 to 

the bulk enhancement ratio is highest over Ascension followed by Burgos (>80%). This can be attributed to the fact that 

Ascension is a remote location and the sharp rise in the column abundance of CO at Ascension can be associated to a rise in 390 

transported CO from the nearby African region. Previous studies over Burgos and vicinity also reported enhanced CO and CH4 

due to transport of emissions from East Asia (Velazco et al., 2017; Hilario et al., 2021). This inference is in support of the 

location features provided in Section 2.1 and source information as reported in previous studies. The contribution of regional 

enhancement ratios dominates over Manaus, Anmyeondo, Sodankyla, Hefei and Burgos to the bulk enhancement ratio in 

CH4/CO2 while the remaining sites report dominance of its local enhancement ratio. Except for Ascension, Manaus, Darwin, 395 

Anmyeondo, and Reunion, the contribution of local enhancement ratio in CO/CH4 is higher than the regional at all other 

measurement sites.  

With the difference in the contributions of regional and local enhancement ratios, we can also derive the enhancement of each 

species due to these regional and local enhancements. The mean enhancement (ΔC𝑌
̅̅ ̅̅ ̅)𝑖 of a species, 𝑌 for example, can be 

calculated as the product of (
ΔC𝑌

ΔC𝑋
)

𝑖
and 𝐶𝑋

′ , where i is either 𝑅=BERr-AERr or 𝐿 =AERr, representing the regional (𝑅) and 400 

local (𝐿) enhancement ratio respectively and 𝐶𝑋
′  is the anomaly of species 𝑋 calculated using Method 2 (AERa). That is, the 

regional (𝑅) enhancement of CO for this example can be derived from the enhancement ratio in CO/CO2 as: ΔC𝑌|𝑋
𝑅 =

[(
ΔC𝑌

ΔC𝑋
)

𝑅
∙ 𝐶𝑋

′ ] and similarly from the enhancement ratio in CO/CH4 as: ΔC𝑌|𝑍
𝑅 = [(

ΔC𝑌

ΔC𝑍
)

𝑅
∙ 𝐶𝑍

′ ] . We then take the mean of two 

enhancements (ΔC𝑌|𝑋  𝑅 and ΔC𝑌|𝑍
𝑅) for species 𝑌 to account for species variations. Similar calculations are carried out for 

local (𝐿) enhancements. The average variation of the enhancements of CO, CO2, and CH4 from the local and regional 405 

enhancement is provided in Figure S4. A large difference (10-28 ppb) is observed in the relative increase of CO between 

regional and local enhancements over Burgos, Ascension, and Reunion. The relative increase of CO2 at Sodankyla, 

Anmyeondo, and Burgos show dominance of local enhancements while the remaining locations show higher importance of 
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regional processes. Except at Ascension and Anmyeondo, all other measurement sites show that the relative rise in CH4 is 

coming from regional processes. The difference in relative increase in CO2 and CH4 between regional and local enhancements 410 

is less in most of the locations compared to the corresponding relative increase in CO. This smaller difference in the relative 

increase can be attributed to the long lifetime, uniform mixing characteristic and the large background value of CO2 and CH4 

compared to that of CO in the atmosphere. The different process or source types leading to this regional variation and 

seasonality in the local and regional enhancement ratio is further analysed using the scatterplots of multiple species ratios in 

the next section. 415 

 

Table 3: Percent contribution of regional and local enhancements to the ratio of CO/CO2, CH4/CO2 and CO/CH4 during 2012-2019 

over Pasadena, Ascension, Manaus, Garmisch, Sodankyla, Anmyeondo, Burgos, Hefei, Darwin, Wollongong, and Reunion. 

 CO/CO2 CH4/CO2 CO/CH4 

Location Local (%) Regional (%) Local (%) Regional (%) Local (%) Regional (%) 

Pasadena 63.09 36.91 72.23 27.77 71.04 28.96 

Ascension 11.99 88.01 59.96 40.04 16.65 83.35 

Manaus 32.34 67.66 44.57 55.43 48.51 51.49 

Garmisch 33.46 66.54 50.64 49.36 51.78 48.22 

Sodankyla 30.43 69.57 41.65 58.35 52.84 47.16 

Anmyeondo 29.35 70.65 19.92 80.08 40.84 59.16 

Burgos 14.37 85.63 41.17 58.83 51.53 48.47 

Hefei 27.28 72.72 49.97 50.03 51.22 48.78 

Darwin 41.05 58.95 59.14 40.86 41.83 58.17 

Wollongong 59.64 40.36 58.94 41.06 46.11 53.89 

Reunion 24.56 75.44 58.35 41.65 41.93 58.07 

 

3.3. Inferring dominant process contribution from multi-species enhancement ratios 420 

Figure 6 shows the scatter plot of the ratio in CO/CO2 vs CO/CH4 and CH4/CO2 vs CH4/CO for regional and local 

enhancements. We use the relationship of the multi-species ratios (CO/CO2 vs CO/CH4 and CH4/CO2 vs CH4/CO) to 

qualitatively infer the processes influencing the regional and local enhancements ratios at each measurement site. For example, 

high temperature/more-efficient combustion processes lead to the emission of more CO2 compared to CO and low-temperature 

combustion produces more CO (Silva and Arellano, 2017). Similarly, activities associated with the extraction of coal, use and 425 

distribution of natural gas, wetland, rice cultivation, landfill, and livestock result in higher emission of CH4 compared to 

emissions of CO and CO2. Lower (higher) ratio values of both CO/CO2 vs CO/CH4 in the scatter plots can be related to 
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processes emitting lower (higher) CO. Similar approach is applied for ratio variations in CH4/CO2 vs CH4/CO. A summary of 

these categories for both regional and local enhancements are listed in Table 4 and 5. 

 430 

Figure 6: Scatter plot of average regional (left column) and local (right column) enhancement ratios in CO/CO2 vs CO/CH4 (top 

row) and CH4/CO2 and CH4/CO (bottom row) during 2012-2019. 

The scatter plot of regional enhancement ratio of species at Pasadena, Manaus, Garmisch, Sodankyla, Darwin, and Wollongong 

show relatively low value of CO/CO2 vs CO/CH4 and medium/high value of CH4/CO2 vs CH4/CO. The regional enhancement 

ratio showed a value between 2.24 and 3.75 ppb/ppm for CO/CO2, between 1.83 to 3.51 ppb/ppm for CH4/CO2 and 3.81 to 435 

4.69 ppm/ppm for CH4/CO over these regions. This pattern can suggest a dominant process (or a combination of) that is 

characterized by low CO and high CH4 and/or CO2 emissions from natural and biospheric sources, and/or anthropogenic 

sources with high activity and efficiency. These values fall within the range of previously reported ratios for a mixture of 

natural and anthropogenic emissions (2-6 ppb/ppb for CH4/CO2 and 3.3-8 ppb/ppm for CO/CO2, Bukosa et al., 2019). The 

location features of these measurement sites provided in Section 2.1 also support this result.   440 
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Table 4: Regional process inference based on the ratio of CO/CO2 vs CO/CH4 and CH4/CO2 and CH4/CO over Pasadena, Ascension, 

Manaus, Garmisch, Sodankyla, Anmyeondo, Burgos, Hefei, Darwin, Wollongong, and Reunion. 

Location CO/CO2 vs CO/CH4 CH4/CO2 vs CH4/CO Regional Process/Source Type 

Pasadena 2.24 vs 0.24 2.39 vs 4.15 Biogenic/biospheric and some combustion 

Ascension 9.12 vs 0.805 2.16 vs 1.24 Combustion processes (fires) 

Manaus 3.75 vs 0.262 1.83 vs 3.81 Biogenic/Biospheric and some combustion 

Garmisch 3.41 vs 0.213 3.51 vs 4.69 Biospheric/Wetland [or other CH4 sources] 

Sodankyla 3.72 vs 0.249 2.35 vs 4.00 Biospheric/ Wetland [or other CH4 sources] 

Anmyeondo 5.76 vs 0.518 7.69 vs 1.93 High temp combustion/Bio-fuel combustion 

Burgos 6.23 vs 0.369 5.72 vs 2.71 Biofuel, coal/some combustion 

Hefei 8.64 vs 0.575 2.95 vs 1.74 Low temp combustion (biomass burning) 

Darwin 2.96 vs 0.368 2.83 vs 2.72 Biospheric or fires (mixed) 

Wollongong 2.41 vs 0.397 3.21 vs 2.52 Biogenic, Bio-fuel combustion (or mixed) 

Reunion 6.55 vs 0.422 1.91 vs 2.37 Biospheric/Combustion 

 

Table 5: Local process inference based on the ratio of CO/CO2 vs CO/CH4 and CH4/CO2 and CH4/CO over Pasadena, Ascension, 445 
Manaus, Garmisch, Sodankyla, Anmyeondo, Burgos, Hefei, Darwin, Wollongong, and Reunion. 

Location CO/CO2 vs CO/CH4 CH4/CO2 vs CH4/CO Local Process/Source Type 

Pasadena 4.13 vs 0.617 6.18 vs 1.62 Biogenic/ Bio-fuel combustion (or fires) 

Ascension 0.653 0.119 4.26 vs 8.66 Non-combustion 

Manaus 1.57 vs 0.302 3.92 vs 3.31 Biogenic/Biospheric or other combustion 

Garmisch 1.42 vs 0.387 4.34 vs 2.59 Biospheric/Biogenic fires 

Sodankyla 1.74 vs 0.372 5.00 vs 2.69 Biospheric/Remote 

Anmyeondo 3.99 vs 0.890 2.20 vs 1.12 Low temp combustion/ Biofuel combustion 

Burgos 2.58 vs 0.462 4.78 vs 2.16 Biospheric and some combustion 

Hefei 1.74 vs 0.704 2.84 vs 1.42 Low temp combustion/Biofuel 

Darwin 5.73 vs 0.501 6.06 vs 1.99 Biospheric and some combustion 

Wollongong 7.02 vs 0.329 8.69 vs 3.04 Biogenic, Bio-fuel combustion (or fires) 

 Reunion 1.41 vs 0.294 4.49 vs 3.39 Biospheric/ Biogenic fires 

 

A relatively high/medium value of CO/CO2 (6.55-9.12 ppb/ppm) vs CO/CH4 ratio and relatively low value of CH4/CO2 (1.91-

2.95 ppb/ppm) vs CH4/CO (1.24-2.37 ppb/ppm) ratio can be seen in Reunion, Ascension, and Hefei. This variation appears to 
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suggest the presence of low-temperature combustion processes (i.e., biomass burning especially smouldering fires) emitting 450 

more CO. A study by Bremer et al. (2004) attributed the enhancement in MOPITT-based CO column abundance at Ascension 

to Sub-Saharan biomass burning emissions while Zhou et al. (2018) reported that the seasonality of CO at two sites, St Denis 

and Maido (in Reunion), is primarily driven by biomass burning emissions in Africa and South America. Wang et al. (2017) 

also reported an enhancement ratio of 5.6 ppb/ppm for CO/CO2 at Hefei during October 2014 and recognized incomplete 

combustion of fossil fuels as the main source of CO in this area. The relatively medium value of CO/CO2 (5.76 and 6.23 455 

ppb/ppm) vs CO/CH4 and high CH4/CO2 (7.69 and 5.72 ppb/ppm) vs CH4/CO (1.93 and 2.71 ppm/ppm) suggest the presence 

of fossil fuel emissions, coal/biofuel processes, agriculture, or wetland emissions over Anmyeondo and Burgos. The ratio is 

close to the range of ratios of 3.3-8 ppb/ppm for CO/CO2 and 1.6-4.2 ppb/ppb for CH4/CO reported in emissions of mixed 

anthropogenic sources from rural and urban areas (Bukosa et al., 2019). Initial analysis of TCCON data in Burgos by Velazco 

et al. (2017) suggested that the enhancement in CO over the northern part of the Philippines is mostly from fossil fuel emissions, 460 

which is dominated by transported emissions from East Asia, and have little influence from biomass burning, which can be 

large over the southern part of the region (Edwards et al., 2021). 

The scatter plot of local enhancement ratio over Wollongong conveys a relatively high/medium ratio in CO/CO2 (7.02 

ppb/ppm) vs CO/CH4 and relatively high/medium ratio in CH4/CO2 (8.69 ppb/ppm) vs CH4/CO (3.04 ppm/ppm). This appears 

to suggest active low-temperature combustion (biomass burning or fires) producing CO and biofuel combustion or coal 465 

activities leading to the production of more CH4. This value is within the range of values reported for mixed anthropogenic 

emissions in Wollongong (Buchholz et al., 2016). Our estimated value is less than the ratio of 13-61 ppb/ppm in CH4/CO2 

reported in Wollongong for coal mining. This may be due to the impact of mixing (dilution) of other sources. The ratio of 4.13 

and 5.73 ppb/ppm in CO/CO2, 6.18 and 6.06 ppb/ppm in CH4/CO2 and a lower ratio in CH4/CO (1.62 and 1.99 ppm/ppm) 

appears to suggest the presence of mixed emissions from anthropogenic or combustion activities in Pasadena and Darwin. This 470 

coincides with reports by Hedelius et al. (2018) of a canyon gas leak and wildfire activities based on a ratio of 7.3 ppb/ppm in 

CH4/CO2 and 7.1 ppb/ppm in CO/CO2 in Pasadena. The local enhancement ratio at remaining locations shows a relatively low 

ratio in CO/CO2 vs CO/CH4 and relatively medium/high ratio in CH4/CO2 vs CH4/CO, which can indicate dominance of 

biogenic or non-combustion processes influencing these ratios at these locations. The scatter plots of these enhancement ratios 

between species across seasons (Figures S5 to S8) reveal similar results shown in Figure 6, but slight seasonal variations are 475 

observed at Hefei, Reunion, Darwin, and Wollongong. 

Comparison with Emission Estimates. We show in Figure 7 the average contribution (in %) to the emissions of CO, CO2, 

and CH4 over these measurement sites from the anthropogenic sector as reported in the Copernicus Atmosphere Monitoring 

Service emission inventory (CAMS v4.1, Granier et al., 2019), and biomass burning sector as reported in the Global Fire 

Emission Database (GFED4, Giglio et al., 2013). These emission inventories are utilized for qualitative comparison of local 480 

emission sources or processes inferred from the scatterplot relationships of multi-species enhancement ratios (see Table 4 and 

5). It has to be noted that most of the emissions from the anthropogenic sector of CAMS have emissions with less temporal 
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variability compared to seasonal variability, including inter-annual variability of biomass burning emissions from GFED. The 

average total emissions around the grid location of the TCCON measurement site is also provided in Figure 7. 

 485 

Figure 7: Sectoral emission distribution (%) of CO, CO2, and CH4 from CAMS anthropogenic emissions (left) and GFED fire (right) 

at TCCON measurement sites during 2012 - 2019. Corresponding total emissions are indicated in the secondary (right) y-axis. 

Regionally, the anthropogenic and fire emission sectors dominate over Hefei, Wollongong, and Darwin compared to other 

sites (Figure 7). The anthropogenic emission sectors for CO, CO2, and CH4 are also significant over Hefei, Pasadena, 

Wollongong, and Anmyeondo. Residential combustion, industries, power generation, and road transport influence local CO at 490 

Hefei. Similarly, residential combustion, industries, and road transport influences local CO in Pasadena whereas in 

Wollongong CO emissions come from only residential combustion and road transport sectors. A large portion of CO2 emission 

in Hefei comes from the power generation sector followed by industries and residential combustion. The major CO2 emission 

sectors in Pasadena include industry and residential combustion. Wollongong has CO2 emissions from the following sectors: 
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industry, residential combustion, and ships. Note that Hefei, Pasadena, Anmyeondo, and Wollongong have significant 495 

emissions of CH4 from anthropogenic sectors. Solid waste, and agricultural soils are the significant emission sectors for CH4 

at Hefei. The main sectors for CH4 emissions at Anmyeondo include livestock and agricultural soils. Emissions from fugitives, 

solid waste and water are significant emitters of CH4 at Wollongong. These mixtures of emission sectors at these sites support 

the dominant processes identified in the previous section using the correlation of enhancement ratios of these species from 

TCCON (Figure 6, Table 4, and 5). 500 

The emission from biomass burning is one of the main factors influencing the seasonality and inter-annual variability in the 

abundance of species. The strong monthly variability of CO and CO2 at Darwin, Wollongong, Reunion, and Pasadena can be 

attributed to the seasonality of biomass burning emissions (Figure 2 and Figure 6). Agricultural waste burning is the main 

emission sector for CO, CO2, and CH4 at Hefei. The seasonality of CO, CO2, and CH4 at Wollongong is due to emissions from 

temperate forest fires (Figure 6) while the biomass burning activity at Darwin, Reunion, and Manaus appears to be dominated 505 

by savanna fires followed by agricultural waste burning (Figure 6). Sodankyla, Ascension, and Burgos sites are remote 

locations and surrounding (local) emissions are therefore smaller than that of the other sites. Even though Reunion Island is a 

relatively small and isolated island, contribution from local biomass burning activity and other anthropogenic sources is found 

to be considerable.  

4 Summary and Future Directions  510 

Despite the growing global burden in CO2 and CH4, current measurements of total column CO2 and CH4 provide a limited 

verifiable capability in identifying and quantifying specific types of their corresponding sources and sinks. In addition to the 

lack of vertical information from these column measurements, the diffusive nature of the atmosphere (mixing air masses 

influenced by spatially and temporally heterogenous sources and sinks), make it very challenging to track source type 

contributions to these observed column abundances. In this work, we combine simultaneous ground-based measurements of 515 

total column abundances of CO2 and CH4 with CO to further characterize the associated enhancements in the column 

abundance of the respective species by taking advantage of their temporal co-variations. A total of 11 sites from Total Carbon 

Column Observing Network (TCCON), including six stations in NH and five in SH, are selected to investigate associated 

multi-species patterns during 2012 to 2019 period. We also introduce a combination of established regression and anomaly 

approaches to derive mean local and bulk enhancement ratios between CO/CO2, CO/CH4 and CO2/CH4 across each month of 520 

daily data. We first derive “bulk” enhancement ratios (BERr) using 3 regression algorithms (ordinary least square, geometric 

regression, York regression) where we report the BERr as the mean across these algorithms weighted by the associated errors. 

We also employ a “local” anomaly approach, where observed columns are presubtracted by assumed “background” values. 

These values are derived as the mean of a) daily anomalies calculated by subtracting the morning from afternoon columns; 

and b) 5th percentile of daily data. The enhancement ratios based on anomalies are derived either from monthly mean ratios 525 

(AERa) or regressed slope (AERr) between these anomalies. This combination of approaches allows us to not only account 
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for the variability on our estimates of enhancement ratios due in fact from the algorithm and assumptions of background values, 

but also to separate the regional and local influences on these ratios by subtracting BERr (“bulk or global”) from AERr or 

AERr (“local”) estimates.  

Our results show that: a) estimates of enhancement ratios are within the range of ratio estimates reported in literature; b) 530 

regional and local influences to these ratios can be disentangled with resulting values that appear to be physically reasonable 

relative to current understanding of process drivers at these site locations; and c) multi-species analysis of these enhancement 

ratios can augment current techniques aimed at characterizing dominant types of sources and sinks influencing observed 

abundances. We find that Pasadena (Wollongong, Manaus) shows a dominant (moderate) local influence (>60% in Pasadena, 

>50% in Wollongong and Manaus) across CO, CH4, and CO2 which appear to come from a mixture of biospheric and 535 

combustion activities. In contrast, Anmyeondo show a dominant regional influence (>~60%) across all species, which appear 

to come from high temperature and/or biofuel combustion activities. Comparable influence of regional and local enhancement 

is observed in Darwin (biospheric and/or low-temperature combustion) for all species. Interestingly, Sodankyla and Garmisch 

(mostly biospheric and wetlands), Hefei (low-temperature combustion) and Burgos (biofuel combustion) are characterized by 

larger regional influence (~67 for Garmisch, ~70% for Sodankyla, ~73% for Hefei and 86% for Burgos) in CO/CO2 and 540 

relatively comparable regional and local influences in CH4/CO2 and CO/CH4. On the other hand, Ascension shows a large 

regional influence (>80%) for both CO/CO2 and CO/CH4 indicative of fire activities (high CO). While Ascension is relative 

characterized as “remote” with little local influence in column CO, it appears to show the impact of long-range transported 

emissions (most likely fires). Note that column CO can capture this fire signature as opposed to several reports over Ascension 

which have indicated that fire plumes from southern Africa cannot be observed from ground-based site in the island. Similar 545 

finding is observed in Reunion (albeit not as large regional influence, ~75 in CO/CO2 and ~58% in CO/CH4). As with 

Ascension, Reunion is on an isolated island and characterized as “remote” but with large presence of combustion (fire) 

influence as it receives higher amounts of smoke outflows from African fires on its west. These results are qualitatively 

consistent with corresponding estimates from CAMS and GFED emission inventories. 

This work is envisioned to serve as one of the bases for interpreting enhancement ratios derived from current space-borne 550 

collocated column measurements of CO, CO2, and/or CH4 (e.g., TROPOMI, GOSAT-2, OCO-2, and OCO-3). The method 

presented here can also be applied to future geostationary satellites that will provide sub-daily measurements such as 

GeoCARB (e.g., Moore et al., 2018). Our method provides a preliminary framework towards the evaluation of the enhancement 

ratios (i.e., species sensitivities) along with the abundances derived from these satellite missions to reduce the discrepancies 

between the top-down and bottom-up inversions and emission-based studies, as well as to provide more robust source type 555 

attribution of these abundances that otherwise is difficult to obtain by single species analysis alone. The use of enhancement 

ratios and their separation into regional and local influence allows us to effectively disentangle the source type and transport 

signatures of these species over the sites, unlike the correlation estimates in Section 3 which do not provide a complete picture 

considering the diffused (non-linear) behaviour of their sources and sinks. Separating the contributions of megacity emissions 
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from fire and biogenic sources is a future application of this study. Use of data-driven machine learning regression algorithms 560 

can also assist in inferring the contribution from different emission sources. 
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