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Abstract: 9 

For a slab avalanche to release, a crack in a weak snow layer beneath a cohesive snow slab has to initiate and propagate. 10 

Information on crack propagation is essential for assessing avalanche triggering potential. In the field, this information 11 

can be gathered with the Propagation Saw Test (PST), a field test that provides valuable data on crack propagation pro-12 

pensity. The first PSTs were performed about 20 years ago and standards have since been established. However, there are 13 

still differences in how the PST is performed. Standards in North America require the column ends to be cut vertically, 14 

whereas in Europe they are typically cut normal to the slope. In this study, we investigate the effect of these different 15 

column geometries on the critical cut length. To this end, we conducted 27 pairs of PST experiments, each pair consisting 16 

of one PST with slope normal cut ends and one PST with vertical cut ends. Our experiments showed that PSTs with 17 

normal cut ends have up to 50% shorter critical cut lengths, and the difference predominantly depends on the slope angle 18 

and slab thickness. We developed two load-based models to convert critical cut lengths between the test geometries: (i) a 19 

uniform slab model that treats the slab as one uniform layer and (ii) a layered model that accounts for stratification. For 20 

validation, we compare these models with a modern fracture mechanical model. For the rather uniform slabs of our ex-21 

periments, both load-based models were in excellent agreement with measured data. For slabs with an artificial layering, 22 

the uniform load-model predictions reveal deviations from the fracture mechanical model whereas the layered model was 23 

still in excellent agreement. This study reveals the influence that the geometry of field tests and the slope angle of the 24 

field site have on test results. It also shows that only accurately prepared field tests can be reliable and therefore mean-25 

ingful. However, we provide models to correct for imprecise field test geometry effects on the critical cut length. 26 

KEYWORDS: stability test, Propagation Saw Test, edge effect, failure initiation  27 

1 Introduction 28 

Accurate assessment of fracture initiation and crack propagation is essential to evaluate the potential for triggering ava-29 

lanches (Schweizer et al., 2016). In this context, the Propagation Saw Test (PST) is a field test that provides valuable 30 

insight into the propensity of cracks to propagate (Gauthier and Jamieson, 2006b). In the past 20 years several studies 31 

investigated the influence of PST geometry. They aimed to provide recommendations for the PST column length (Bair 32 

et al., 2014) or looked into the effect of changing slab thicknesses (Simenhois and Birkeland, 2008). It was also reported 33 

that the critical cut length depends on whether the ends of the PSTs are cut slope-normally or vertically (Gaume et al., 34 

2017). Although PSTs have been used for approximately 20 years and utilized in various studies (Bair et al., 2013; 35 

Bergfeld et al., 2022; Bergfeld et al., 2021; Birkeland et al., 2019; Gauthier and Jamieson, 2008b), the lack of widely 36 
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accepted standards hinders its consistent and reproducible application across locations and practitioners. Standards in 37 

North America require the PST column ends to be cut vertically (CAA, 2016; Greene et al., 2022), whereas in Europe 38 

they are typically cut at a normal to the slope (Sigrist and Schweizer, 2007; van Herwijnen et al., 2016). 39 

 This methodological difference could possibly explain why previous studies were not conclusive as to whether the crit-40 

ical cut length decreases (Gaume et al., 2017, slope normal cuts) or increases (Gauthier and Jamieson, 2008a; McClung, 41 

2009, both slope vertical cuts) with increasing slope angle. In both, North America and Europe the weak layer is most 42 

commonly cut upslope, but in rare cases, the weak layer is also cut downslope from the top. Gauthier and Jamieson 43 

(2006a) investigated this difference experimentally and observed no significant dependence of critical cut length on cut-44 

ting direction. However, they also found that critical cut length does not depend on slope angle. Another contradictory 45 

statement about the cut length to slope angle relationship. However, the geometric and/or methodological differences 46 

(column geometry and cutting direction of PSTs) are likely to affect the results of PSTs (Gaume et al., 2017; Heierli et 47 

al., 2008, Supplement Figure S3). Our study aims to investigate the effect of different column geometries and cutting 48 

directions on the critical cut length, a major structural property. To achieve this, we conducted a series of side-by-side 49 

PST experiments with normal and vertical ends. In addition, we also investigated the influence of cutting direction 50 

(upslope or downslope). 51 

 52 

The purpose of these experiments was to demonstrate the influence of PST column geometry and cutting direction on the 53 

critical cut length. We also explain where these differences come from and how the stratification of the snowpack influ-54 

ence these geometric effects. To this end, we developed a uniform- and layered load-based models to convert between 55 

PST geometries. In addition, the developed conversion models were validated against a modern fracture mechanics model 56 

(Rosendahl and Weissgraeber, 2020; Weißgraeber and Rosendahl, 2023). 57 

2 Methods 58 

Field Experiments 59 

In January and March 2021, we performed field experiments above Davos in the Eastern Swiss Alps, and in Montana, 60 

United States. All field sites were around 2400 m.a.s.l. and PSTs resulted in all possible propagation outcomes (slab 61 

fracture, crack arrest and full propagation). In Davos, we tested a weak layer consisting of surface hoar (grain size: 2-4 62 

mm), while in Montana the weak layer consisted of depth hoar (grain size: 1-4 mm) (Fierz et al., 2008). Slab thickness 63 

ranged from 52 to 96 cm.  64 

 65 

In total 27 pairs of PSTs were performed, with each pair consisting of one test using slope normal ends (results with 66 

superscript XN, Figure 1Figure 1Figure 1a) and the other with vertical ends (superscript XV, Figure 1Figure 1Figure 1b). 67 

For three pairs, hence for six PSTs, we performed additional PSTs in which the weak layer was cut in downslope direction 68 

immediately next to the PST cut in the upslope direction (𝑟c
up

 and 𝑟c
down in Figure 1Figure 1Figure 1b).  69 
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 70 

 71 

Figure 1: (a) PST with normal ends and a critical cut length  𝒓𝒄
𝑵. The red outline indicates the PST geometry. The dashed line 72 

indicates the height of the weak layer. (b) PST with vertical ends and a critical cut length 𝒓𝒄
𝑽. Additionally, the different cutting 73 

directions 𝒓𝐜
𝐮𝐩

 and 𝒓𝐜
𝐝𝐨𝐰𝐧 are indicated. The two cutting directions were used in both PST geometries. (c) Difference in PST 74 

geometry at the downslope end of a PST. The main difference is the additional slab load for the slope normal geometry shown 75 
by the grey triangle. 𝑯𝑫𝑽 is the vertical slope normal measured slab thickness and 𝜸 the slope angle. (d) In the layered load 76 
conversion model, each slab layer i (in both the vertical and normal PST configurations) contributes according to their density 77 
𝝆𝒊, layer thickness 𝒉𝒊 and depth in the slab 𝒛𝒊. 78 

For all PSTs, we recorded the critical cut length as  𝒓𝐜
𝐍 for PSTs with normal ends, and  𝒓𝐜

𝐕 for vertical ends. We then 79 

compute the ratio of both cut lengths 
𝒓𝐜

𝐕

𝒓𝐜
𝐍⁄ . To investigate the effect of cutting directions, we used the ratio 

𝒓𝐜
𝐮𝐩

𝒓𝐜
𝐝𝐨𝐰𝐧⁄ , 80 

where 𝒓𝐜
𝐮𝐩

 and 𝒓𝐜
𝐝𝐨𝐰𝐧 indicate whether the critical cut length was taken from upslope or downslope cutting of the weak 81 

layer, respectively (Figure 1Figure 1Figure 1b). Note that the ratio of the cutting direction was determined separately for 82 

the different PST geometries. 83 

Conversion Models 84 

Mechanically, cutting a a PST can be modelled as a cantilever beam that does not deform sufficiently to come into contact 85 

with the snow under the cut.. The cantilever (unsupported part of the slab) is loaded by the gravitational body forces, 86 

hence its own mass. This loading has to be carried through a combination of reaction forces (normal forces,, shear forces, 87 

and bending moments inside the slab), which all work together to resist the load and maintain the slab's structural integrity. 88 

The stress transmitted from the slab to the foundation is known as bearing stress or contact stress. As the foundation is 89 

provided by the intact weak layer, the contact stress is transmitted right ahead of the saw cut. Generally, the contact stress 90 

has stress intensity close to the saw cut, it fades out away from the saw cut, and has normal and shear stress components.  91 
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However, the actual distribution of contact stress is similar in the slope-vertical and slope-normal PST geometry. Simpli-92 

fied, the contact stress is related to a reaction force of the weak layer which supports the cantilever. For a levelled canti-93 

lever beam, the vertical mixed-mode (normal and shear) reaction force 𝑅 at the bedding is equal related to the total load 94 

of the unsupported part of the slab: 𝑅 =  𝑚 𝑔, where 𝑚 is the total mass of the slab above the saw cut and 𝑔 is the 95 

gravitational acceleration. The maximum load a weak layer can support before fracture is reached at the critical cut length. 96 

Hence, also 𝑅 is at a maximum at the critical cut length (𝑅𝑚𝑎𝑥). In our load models, we assume that 𝑅𝑚𝑎𝑥 is specific to a 97 

weak layer, which enables us to state that: 𝑅𝑚𝑎𝑥 =   𝑅𝑚𝑎𝑥
V =  𝑅𝑚𝑎𝑥

N , where 𝑅𝑚𝑎𝑥
V  and 𝑅𝑚𝑎𝑥

N  are the reaction forces at the 98 

critical cut length which bear the unsupported portion of the slab in the slope-vertical and slope-normal PST geometry, 99 

respectively. As the gravitational acceleration is constant, the masses of the unsupported slab of the two PST geometries 100 

are equal:  101 

𝑚V =  𝑚N         (1) 102 

Note that the mass of the slab above the intact weak layer contributes to 𝑅𝑚𝑎𝑥, but since these are additive terms which 103 

are independent of PST geometry, they cancel each other out in equation 1. 104 

Uniform Load Model (ULM). If we consider a uniform slab and express the mass 𝑚 through snowpack properties 105 

equation 1 becomes: 106 

 𝜌 𝑏 𝑟𝑐
V 𝐷 = 𝜌 𝑏 𝑟𝑐

N 𝐷 +
1

2
tan(𝛾)𝐷𝐷 𝜌 𝑏      (2) 107 

where 𝐷 is the slope normal measured slab thickness, 𝛾 the slope angle, b the PST column thickness and 𝜌 the slab density 108 

(Figure 1Figure 1Figure 1c). After rearranging, equation 2 results in the following model for the conversion of critical 109 

cut lengths (assumption of a uniform slab): 110 

𝑟𝑐
V =  𝑟𝑐

N +  
tan(𝛾) 𝐷

2
          (3) 111 

At this point we would like to point out that this relationship (Equation 3) was already suggested in the context of anticrack 112 

nucleation. However, the derivation was based purely on geometric considerations and no further verification was carried 113 

out (Heierli et al., 2008, Supplement Figure S3).  114 

Layered Load Model (LLM). The temporal sequence of weather conditions inevitably produces layered slabs in a nat-115 

ural snowpack. The individual layers differ, among other parameters, in their layer thickness and density. A sloped PST 116 

with layered slab in slope normal geometry results in more (compared to the ULM) load above the saw cut if high density 117 

layers are close to the snow surface (grey triangle in (Figure 1Figure 1Figure 1c and d). In addition to the slope angle 𝛾, 118 

the extra load depends on the individual layer thickness ℎ𝑖, density 𝜌𝑖, and on the relative depth 𝑧𝑖 within the slab (Figure 119 

1Figure 1Figure 1d). Conceptually, the layered load model is based on the same assumptions as the uniform load model. 120 

However, it considers the layering which makes the formulation to compute the additional load of PSTs with slope normal 121 

geometry more intricate: 122 

  𝑟𝑐
V  =   

∑ 𝑟c
Nℎ𝑖𝜌𝑖 +  

tan(𝛾) 
2

ℎ𝑖
2𝜌𝑖  + tan(𝛾) (𝑧𝑁 − 𝑧𝑖) ℎ𝑖𝜌𝑖  

𝑁
𝑖=1

 ∑ ℎ𝑖𝜌𝑖
𝑁
𝑖=1  

          (4) 123 

Where N is the number of layers. Hence for N = 1, equation 4 simplifies to the ULM (equation 3). For a detailed derivation 124 

of the layered load model, see Appendix A. 125 

 126 

Layered Mechanical Model (LMM). 127 
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For further verification of the load models, we use a closed-form analytical model for layered snowpacks (Weißgraeber 128 

and Rosendahl, 2023) that was recently validated with field data (Bergfeld et al., 2023), has been utilized. This model 129 

describes the slab as shear-deformable, layered beam, and allows cylindrical bending, while the weak layer is represented 130 

as a layer of smeared springs with a Young's and shear modulus. We used the model to determine the critical energy 131 

release rate 𝐺𝑐G from the measured critical cut length, depending of the geometric configuration (𝐺𝑐
N or 𝐺𝑐

V, respectively). 132 

This critical energy release rate, also called specific fracture energy, is a material property of the weak layer describing 133 

its resistance to crack growth, and it is hence a proxy for the fundamental physical process of crack growth in PSTs. 134 

Subsequently, we used the critical energy release rate determined from an experiment with slope normal beam ends to 135 

calculate back to the critical cut length of a vertically cut PST. This model is therefore also suitable to convert a critical 136 

cut length measured in one PST configuration to another. Compared to the ULM (Equation 3) and the LLM (Equation 4), 137 

the LMM requires many more snowpack properties. However, it represents the specific snowpack layering of a PST and 138 

its influence on the critical cut length in much more detail, as it takes into account the full deformation behaviour of the 139 

slab and weak layer system. Uniform slabs or symmetrically (with respect to the centre height of the slab) layered slabs 140 

are simplifications, usually slabs have a density gradient so that deeper layers have a higher density and are therefore 141 

stiffer. However, the load models take very little account of the effects of asymmetric slab layering.   We therefore used 142 

the LMM to verify the influence of an asymmetrically layered slab on our load-based models (ULM, LLM).  143 

Results 144 

In total we performed 66 PSTs at four different field sites. 54 PSTs aimed to investigate the effect of PST geometry 145 

(Appendix, Table C1), therefore the dataset include 27 pairs of PSTs and each pair consists of one PST with slope normal 146 

and one with vertical PST beam ends. The remaining 12 PSTs were performed to investigate the difference between 147 

upslope- and downslope cutting of a PST (Appendix, Table C2). 148 

Normal vs. vertical PST ends 149 

For upslope cutting, cCritical cut lengths were measured between 14 and 70 cm. Overall, 𝑟c
V was systematically larger 150 

than 𝑟c
N, on average almost 50 % (colored boxes in Figure 2a).  151 

 152 

Figure 2: (a) Ratio of critical cut lengths shown as boxplots for the different field days (colored). Ratio of the critical energy 153 
release rates computed with the mechanical model using the critical cut lengths of the experiments (grey). Boxes represent the 154 
inter-quartile range with the middle line representing the median value. (b) Ratio of critical cut length from PSTs with 155 
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downslope and upslope cuts. Results are shown for PSTs with normal and vertical PST ends. Both: The dashed line represents 156 
a ratio of 1. 157 

Differences in snowpack conditions (e.g. slab thickness, layering, …) at the various field sites resulted in different devi-158 

ations between PST geometries. Median ratios ranged from 136 % to 214 % (Figure 2a, horizontal lines in the colored 159 

boxes). 160 

Upslope vs. Downslope cutting 161 

Beside PST geometry, the cutting direction also affects the critical cut length. For PSTs with normal ends, 𝑟c
up

 was about 162 

40% of 𝑟𝑐
down (Figure 2b, left), while for vertical PST ends 𝑟c

up
 was about 20% longer than 𝑟𝑐

down (Figure 2b, right). 163 

Again, these rather large differences can be explained by slab loading and slab mechanics as will be detailed in the dis-164 

cussions section. 165 

Models 166 

With Equations (3) and (4) we provide a uniform load model and a layered load model, respectively. The models allow 167 

us to convert critical cut lengths between the different PST geometries. Our experiments show very good agreement with 168 

both the uniform-load model (Figure 3a, dots) and the layered load model (Figure 3a, crosses). The RMSE between the 169 

measured critical cut lengths in vertical geometry 𝑟c
V and the modelled counterpart is 4.4 cm for the uniform load model 170 

and 4.6 cm for the layered load model. 171 

 172 

Figure 3: (a) Modelled critical cut lengths for upslope cuts with vertical PST geometry 𝒓𝒄
𝑽 with the corresponding measured 173 

values, dots represent the uniform load model (ULM, Equation 2) and pluses the layered load model (LLD, Equation 3). Dif-174 
ferent colors indicate the different field days. The black line is the 1:1 line and indicates a perfect model. (b) Modelled differ-175 
ences in critical cut lengths with slope angle (upslope cutting). The blue dot represents the mean and uncertainty of the meas-176 
urements in Davos, as this field day served to define the artificial profiles by matching the mean density. The solid lines are the 177 
layered load model and the dashed lines result from the layered mechanical model (LMM). The grey shades indicate different 178 
slab profiles given at the top of the figure.  179 

Using the layered mechanical model to analyse the global energy balance at the onset of crack growth, we derived 180 

critical energy release rates from the experimental data. The model considers the layering and geometrical configuration 181 

of a PST experiment to determine the critical energy release rate at the critical cut length, i.e., the specific fracture energy. 182 
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Unlike the critical cut length, the critical energy release rate is a material property of the weak layer and should thus not 183 

depend on test geometry. In fact, the determined critical energy release rates, measured in the different PST configurations 184 

(vertical or normal beam ends), differed by a maximum of 20% (Figure 2a, grey boxes), whereas the deviations of the 185 

critical cut length were up to six times larger (Figure 2a, coloured boxes).  186 

 187 

Our uniform load model considers a homogeneous slab and gives a tangential slope dependence (see Equation 3 and 188 

black solid line in Figure 3b). For comparison, the layered load model and the layered mechanical model were evaluated 189 

for many different slope angles (Figure 3b, solid and dashed lines, respectively) and 3 different generic slab configurations 190 

(Figure 3b, top). In profile H the mean slab density matched the observed snow cover at our experiments in Davos. The 191 

direct comparison for the artificial profile H shows a very good agreement between the load models and the mechanical 192 

model (compare black solid line and black dashed line in Figure 3b). Note that for profile H the two load models are 193 

equal. The deviations of the critical cut lengths (𝑟c
V −  𝑟c

N) measured in Davos can be reproduced very accurately with all 194 

models (Figure 3b, black lines and blue dot). In the asymmetric profiles A and B, additional artificial layers with the 195 

minimum and maximum density of the Davos snow profile were inserted. For these highly asymmetric slabs (grey lines 196 

in Figure 3) there are deviations between the models. Of course, the uniform model cannot represent any differences 197 

induced by the layering. However, the layered load model and the mechanical model show good agreement over the entire 198 

angle range, whereby the deviations slightly increase with increasing slope angles.  199 

Discussion 200 

Normal vs. vertical PST ends 201 

PSTs with slope-normal and vertical ends showed large differences in the measured critical cut length. These differences 202 

can be explained with the different PST geometries and the corresponding slab-induced loading of the weak layer. We 203 

assume that PST beams were long enough, so that the tail end of the PST beam remains mechanically unchanged when 204 

the saw cut is increased and is therefore not relevant (Bair et al., 2014). The constellation is as shown schematically in 205 

Figure 1c. Even with no saw cut, the slope normal PST geometry already has an "unsupported" portion of the slab above 206 

the weak layer (Figure 4a, blue area at the right beam end). This additional load, in normal geometry, generates higher 207 

stresses in the weak layer (and higher energy release rate), leading to shorter critical cut lengths. The shorter critical cut 208 

lengths can therefore easily be attributed to this additional load. However, the extent of the difference depends on snow-209 

pack properties (e.g. slab thickness, density layering) and slope angle.  210 

 211 

This emphasizes that a measured critical cut length can only be interpreted for stability assessment if the applied geometric 212 

PST configuration (including slope angle) is considered. In other words, our data show that two equal snowpacks, which 213 

should exhibit a similar crack propagation propensity, likely result in completely different critical cut lengths depending 214 

on how the PST beam ends were cut and on which slope angle the PST was performed. To ensure comparability of 215 

measured critical cut lengths, it is thus imperative to account for the geometrical configuration and snowpack layering, 216 

using the models presented. 217 
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Upslope vs. Downslope cutting 218 

When cutting upslope, there is an additional part of the slab that induces an extra load on the weak layer in the slope 219 

normal configuration (Figure 4a, blue area at the right beam end). When cutting from the top, however, a part of the slab 220 

is missing, and there is less load (Figure 4a, blue area at the left beam end). The critical cut length of the upslope cut is 221 

thus much shorter, in our experiments about 60% shorter (left side in Figure 2b). 222 

 223 

In the vertical configuration, on the other hand, the load over the saw cut is always the same, independent of the cutting 224 

direction. The observed differences, however, come from the differences in shear stress at the crack tip. Indeed, at the 225 

weak layer, there are two shear stress components: (i) shear stress from the slope parallel gravitational pull on the slab 226 

(Figure 4b, arrows in the middle), and (ii) bending induced shear stresses (Figure 4b, arrows at the left and right beam 227 

end). The slope parallel gravitational pull is always in the same direction (downslope). The bending induced shear stresses 228 

at the height of the weak layer, on the other hand, are always in the cut direction. When cutting the weak layer from the 229 

bottom upwards, both contributions thus have an opposite effect and partially cancel each other out, while when cutting 230 

from the top, both shear stresses have the same sign and add up. This results in longer critical cut lengths when sawing 231 

upslope in vertical PSTs. In our measurements, these were 20% longer (right side in Figure 2b). 232 

 233 

 234 

Figure 4: (a) Schematic representation of a PST with normal ends and without a saw cut. The blue marked areas, at the right 235 
and left of the PST beam, indicate the additional and missing slab load, respectively, relative to vertical ends (black dashed 236 
lines). (b) PST with vertical ends and critical cut lengths 𝒓𝒄

𝒖𝒑
 and 𝒓𝒄

𝒅𝒐𝒘𝒏 for upslope and downslope cutting, respectively. At 237 
both PST beam ends the saw cut leads to bending, which results in a stress profile across the slab thickness (black arrows). In 238 
the middle part of the PST, the black arrows represent stress in the slab due to the slope parallel gravitational pull. 𝜸 is the 239 
slope angle. 240 

 241 

Models 242 

Overall, the load models effectively explained our field results. (Figure 3a). If the RMSE of the uniform load- and layered 243 

load model is compared, the uniform load model performs slightly better than the layered load model. However, since 244 

our snowpack profiles show relatively homogeneous slabs without pronounced asymmetry (see Appendix D), we would 245 

not attach any significance to this minor difference, especially for inhomogeneous and asymmetrical slabs. We believe 246 

the layered load model is more aaccurate. This becomes clear in Figure 3b. Profiles A and B have a density gradient 247 

within the slab (asymmetry). Deviations between the uniform and the layered load model seem plausible as higher density 248 

layers which are close to the snow surface contribute more to the additional load present in slope normal PSTs (blue 249 
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hashed in Figure 4a) than if they are deeper in the snowpack. The difference in critical cut lengths is expected to be larger 250 

(profile A) or smaller (profile B) than predicted by the uniform load model. 251 

 252 

Beside the overall good conversion performance of the models, a systematic offset for PSTs from 20 January 2021 seem 253 

to be present (orange dots in Figure 3). We suspect that in these PSTs the beam length was too short, the ratio between 254 

slab thickness and beam length was only about 0.5 and the cut length to beam length ratio was 0.25. It is therefore very 255 

likely that the geometric difference at the tail end of the beam was also relevant (Bair et al., 2014). However, this is not 256 

considered in the models. Overall, our results thus show that the PST geometry plays an important role in the measured 257 

critical cut length, and this is mostly driven by differences in load from the slab. 258 

 259 

Model application and limitation: 260 

PST datasets with different PST configurations can be homogenised using our models. This will increase the compara-261 

bility and ultimately the scientific utility of these datasets. In addition, it is often the case that the PST ends are cut 262 

imprecisely (not perfectly vertical or slope normal) on inclined terrain. The angle of the free edge can easily be determined 263 

from photos of the test, and a correction can then be applied using one of the load models with minor modifications 264 

(Appendix B). The scatter of the experimentally determined critical cut lengths should thus be reduced. 265 

Beside applications, shortcomings of the suggested load models are evident. Although, our experimental results show 266 

that the relationship is sufficiently accurate for the conversion of PST geometries, additional changes (e.g. a different 267 

slope anlges lead to different contributions of normal and shear loading of the weak layer, which may alter the critical 268 

loading a weak layer can withstand. Ultimately, also influencing measured critical cut lengths) beyond the PST geome-269 

try aregeometry are directly affecting model performance, so the relationship may no longer be sufficient. Imagine addi-270 

tional terms from factors 𝐴 and contributions 𝐵 in Equation 1: 271 

 𝐴(𝛾, 𝐻N𝐷, … )  𝑚V + 𝐵(𝛾, 𝐻N𝐷, … )  ∝ 𝐴(𝛾̃, 𝐷̃𝐻N, … ) 𝑚N + 𝐵(𝛾̃, 𝐷̃𝐻̃N, … ) 272 

Both can have functional relationships on properties such as slope angle (𝛾, 𝛾̃) and slab thickness (𝐷𝐻𝑁 , 𝐷̃𝐻̃N).  273 

As long as such properties remain unchanged (𝛾 = 𝛾̃, 𝐻𝑁𝐷 = 𝐷̃), the additional terms cancel each other out and our load 274 

models are applicable.  275 

However, if the critical cut length measured at a certain slope angle and snow cover has to be transferred to a different 276 

situation, the applicability of our models still needs to be confirmed with more experimental work. If necessary, the 277 

functional relationships A and B will probably have to be identified and added. A more generally valid conversion for 278 

critical cut lengths would be of great practical benefit as it allows to extrapolate measured point information on crack 279 

propagation propensity to other slope areas where experimental work is not possible. 280 

Conclusion and Outlook 281 

This work has shown that the result of a PST, i.e., the measured critical cut length, is strongly influenced by the test 282 

geometry and cutting direction. PSTs with slope normal beam ends (upslope cutting) systematically produce shorter crit-283 

ical cut lengths (48% on average). It also makes a significant difference whether the saw cut in a PST is made in the 284 

upslope or downslope direction (deviations up to 60%). Both deviations can be explained mechanically and are largely 285 

controlled by the difference in slab induced loads. Based on the slab load, a load model was derived for uniform, as well 286 

as for layered slabs. Both models agree well with the experimental results. The comparison with a more sophisticated 287 
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validated fracture mechanical model shows good agreement between all models as long as the slab is largely homogene-288 

ous. For layered slabs, the uniform load model shows greater deviations. The layered load model, on the other hand, 289 

shows only minor deviations. This demonstrates that the fracture mechanical model (LMM) is also largely load-driven in 290 

this specific application. Overall, our results show that the interpretation of measured critical cut length in a PST is not 291 

straightforward, as it is influenced by weak layer properties (specific fracture energy), slab properties (e.g. layering), and 292 

test geometry. 293 

 294 

Based on our findings, we show that PSTs with slope normal ends and a saw cut in upslope direction (Figure 1a) lead to 295 

the shortest critical cut lengths. Hence, this procedure gives us the most conservative information on crack propagation 296 

propensity (without post-processing). In addition, shorter critical cut lengths ensure that the overall column length is less 297 

likely to influence test result. However, the disadvantage of this approach is the greater effect of slope angle on critical 298 

cut lengths than for vertically cut PSTs. In order to compare tests on different slopes, this effect must be compensated for, 299 

which is not yet straight forward. For an unbiased interpretation of PST results, experiments therefore need to be post-300 

processed before results from different snow packs, slope inclinations, etc. are compared or combined. 301 

 302 

In general, the use of consistent PST standards will ensure that PST results are easy to interpret, will ensure scientific 303 

rigor and will improve the comparability of tests and their results. In addition, standardization and conversion models 304 

facilitate the comparison of results between researchers, leading to a deeper understanding of snowpack behavior. Prac-305 

titioners also benefit from standardized methods and interpretation aids that are invaluable in assessing avalanche risk 306 

based on stability tests. 307 

 308 

Appendix A: 309 

The load above the saw cut of a PST with slope vertical geometry (V-PST) is independent of the slope angle. However, 310 

the load of a PST with slope normal edges (N-PST) is not. In sloped terrain, a N-PST has more load above the saw cut 311 

than a V-PST. The difference depends on the slope angle, but the layering also has an influence. Layers close to the snow 312 

surface contribute more to the extra load than layers close to the weak layer (of the saw cut). In order to express the 313 

relationship between critical cut lengths (𝑟c
V, 𝑟c

N) the loads of layered snowpacks (𝑚V, 𝑚N) have to be formulated through 314 

density 𝜌
𝑖
, thickness ℎ𝑖 and the vertical location 𝑧𝑖 of the slab layers i (Figure A1).  315 

 316 
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 317 

Figure A1: (a) Schematic representation of a layered slab in a PST with slope vertical geometry (V-PST). (b) PST with slope 318 
normal geometry (N-PST). In both cases, “A” indicates the volume of the slab above the saw cut 𝒓𝐜

𝐗a The mass of volume A 319 
depends on column width b (not indicated), on 𝒓𝐜

𝐗 as well as the density 𝝆𝒊 and thickness 𝒉𝒊 of the slab layers i. In (b), the load 320 
of the N-PST depends additionally on the slope angle as the Volumes B and C of each layer i increase with increasing angle.  321 

First for the simpler case of a V-PST (Figure A1a) the mass 𝑚V is given by: 322 

𝑚V = 𝑚𝐴 =  𝑟c
V 𝑏 ∑ ℎ𝑖𝜌𝑖

𝑁

𝑖=1

   (A1) 323 

In the N-PST the Volumes B and C also contribute to the overall mass located above the saw cut: 324 

𝑚N = 𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶      (A2) 325 

The expression for the mass of Volume A remains the same as given in Equation A1. Now, however, the critical crack 326 

length 𝑟c
N is relevant instead of 𝑟c

V. The masses 𝑚𝐵 and 𝑚𝐶 are given by: 327 

𝑚𝐵 =
1

2
 ℎ1

2 tan(𝛾) 𝑏𝜌1 +
1

2
 ℎ2

2 tan(𝛾) 𝑏𝜌2 + ⋯ +
1

2
 ℎ𝑁

2 tan(𝛾) 𝑏𝜌𝑁 =    
𝑏 tan(𝛾) ∑ ℎ𝑖

2𝜌𝑖
𝑁
𝑖=1

2 
     (A3) 328 

𝑚𝐶 = (𝑧𝑁 − 𝑧1) tan(𝛾) ℎ1𝑏𝜌1 + (𝑧𝑁 − 𝑧2) tan(𝛾) ℎ2𝑏𝜌2 + ⋯ + (𝑧𝑁 − 𝑧𝑁) tan(𝛾) ℎ𝑁𝑏𝜌𝑁329 

= 𝑏tan(𝛾) ∑(𝑧𝑁 − 𝑧𝑖) ℎ𝑖𝜌𝑖

𝑁

𝑖=1

     (A5) 330 

Putting this together results in the overall mass of: 331 

𝑚N =  tan(𝛾) 𝑏 𝑟c
N ∑

ℎ𝑖𝜌𝑖

tan(𝛾)
 +  

ℎ𝑖
2𝜌𝑖

2 𝑟c
N

+  
(𝑧𝑁 − 𝑧𝑖) ℎ𝑖𝜌𝑖

𝑟c
N

 

𝑁

𝑖=1

     (A4) 332 

 333 

Inserting in Equation A1 results in the layered load model providing the relation between the critical cut lengths 𝑟c
V and 334 

𝑟c
N: 335 

 336 

𝑟c
V   =  𝑟c

N  
tan(𝛾) ∑

ℎ𝑖𝜌𝑖

tan(𝛾)
 +  

ℎ𝑖
2𝜌𝑖

2 𝑟c
N + 

(𝑧𝑁 − 𝑧𝑖) ℎ𝑖𝜌𝑖

𝑟c
N  𝑁

𝑖=1

 ∑ ℎ𝑖𝜌𝑖
𝑁
𝑖=1  

 337 

        =   
∑ 𝑟c

Nℎ𝑖𝜌𝑖 +  
tan(𝛾) 

2
ℎ𝑖

2𝜌𝑖  + tan(𝛾) (𝑧𝑁 − 𝑧𝑖) ℎ𝑖𝜌𝑖  
𝑁
𝑖=1

 ∑ ℎ𝑖𝜌𝑖
𝑁
𝑖=1  

     (A5) 338 
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 339 

Appendix B: 340 

The equations derived in appendix A can be used to formulate a model to correct for imprecisely cut PST beam ends. E.g. 341 

the sawing edge of a PST was close to cut slope normal, but with a deviation of angle β from slope normal (or vertical). 342 

As a result, the critical cut length 𝑟c
𝑁 is measured in such an experiment. To account for this deviation, we have to add a 343 

mass 𝑚𝐷 in Equation A2. Note that this “mass” can be negative in the case β is negative (less overhanging mass than the 344 

slope normal cut). The mass 𝑚𝐷 has the same contributions as 𝑚𝐵 and 𝑚𝐶 but is computed from the angle of error β: 345 

𝑚𝐷 =      
𝑏 tan(β) ∑ ℎ𝑖

2𝜌𝑖
𝑁
𝑖=1

2 
 + 𝑏tan(β) ∑(𝑧𝑁 − 𝑧𝑖) ℎ𝑖𝜌𝑖

𝑁

𝑖=1

     (B1) 346 

At the end, the loads (Equation 1) provide the relation between the critical cut lengths: 347 

 348 

 349 

𝑚𝐴(𝑟c
𝑁) + 𝑚𝐵 + 𝑚𝐶 + 𝑚𝐷 = 𝑚𝐴(𝑟c

N) + 𝑚𝐵 + 𝑚𝐶     350 

 351 

⇒ 𝑚𝐴(𝑟c
N) =  𝑚𝐴(𝑟c

𝑁) + 𝑚𝐷     (B2) 352 

By inserting the formulations for 𝑚𝐴 (equation A1), the formula to correct an imprecisely cut N-PST is derived as: 353 

𝑟c
N =   

𝑟c
𝑁𝑏 ∑ ℎ𝑖𝜌𝑖 +  𝑏 tan(β) ∑

ℎ𝑖
2𝜌𝑖

2 
𝑁
𝑖=1   + (𝑧𝑁 − 𝑧𝑖) ℎ𝑖𝜌𝑖  

𝑁
𝑖=1

𝑏 ∑ ℎ𝑖𝜌𝑖
𝑁
𝑖=1  

     354 

  = 𝑟c
𝑁 +  

tan(β) ∑
ℎ𝑖

2𝜌𝑖

2 
𝑁
𝑖=1   + (𝑧𝑁 − 𝑧𝑖) ℎ𝑖𝜌𝑖

∑ ℎ𝑖𝜌𝑖
𝑁
𝑖=1  

   (B3) 355 

  356 
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Appendix C: 357 

Table C1: Results of 27 pairs of PSTs, critical cut lengths 𝒓𝐜
𝐕 and 𝒓𝐜

𝐍 indicate whether PST beam ends were cut vertical or slope 358 
normal. Slab thickness 𝑯𝐍 was measured in slope normal direction. Slope angle is provided in degrees. For further snowpack 359 
data we refer to the Appendix D. 360 

PST-

pairs 

Location 

Date 

Critical cut 

length 𝑟c
V (cm) 

Critical cut 

length 𝑟c
N (cm) 

Slab thickness 

𝐻N (cm) 

Slope angle 

(°) 

1 Davos 1.12.21 55 (±2) 43 (±2) 62 (±2) 25 (±2) 

2 Davos 1.12.21 49 (±2) 36 (±2) 62 (±2) 25 (±2) 

3 Davos 1.12.21 47 (±2) 41 (±2) 62 (±2) 25 (±2) 

4 Davos 1.12.21 51 (±2) 37 (±2) 62 (±2) 25 (±2) 

5 Davos 1.12.21 56 (±2) 46 (±2) 62 (±2) 25 (±2) 

6 Davos 1.12.21 61 (±2) 45 (±2) 58 (±2) 25 (±2) 

7 Davos 1.12.21 59 (±2) 41 (±2) 58 (±2) 25 (±2) 

8 Davos 1.12.21 65 (±2) 47 (±2) 60 (±2) 25 (±2) 

9 Davos 1.12.21 66 (±2) 49 (±2) 63 (±2) 25 (±2) 

10 Davos 1.12.21 70 (±2) 49 (±2) 63 (±2) 25 (±2) 

11 Davos 1.12.21 61 (±2) 42 (±2) 63 (±2) 25 (±2) 

12 Davos 1.12.21 63 (±2) 52 (±2) 64 (±2) 25 (±2) 

13 Davos 1.12.21 62 (±2) 42 (±2) 64 (±2) 25 (±2) 

14 Davos 1.12.21 62 (±2) 49 (±2) 64 (±2) 25 (±2) 

15 Davos 1.12.21 67 (±2) 45 (±2) 64 (±2) 25 (±2) 

16 Davos 1.12.21 67 (±2) 51 (±2) 67 (±2) 25 (±2) 

17 Davos 1.12.21 60 (±2) 45 (±2) 67 (±2) 25 (±2) 

18 Bacon Rind 1.20.21 31 (±2) 25 (±2) 57 (±2) 29 (±2) 

19 Bacon Rind 1.20.21 33 (±2) 21 (±2) 56 (±2) 30 (±2) 

20 Bacon Rind 1.20.21 29 (±2) 16 (±2) 55 (±2) 30 (±2) 

21 Bacon Rind 1.20.21 29 (±2) 18 (±2) 55 (±2) 29 (±2) 

22 Bacon Rind 1.20.21 23 (±2) 17 (±2) 54 (±2) 29 (±2) 

23 Bacon Rind 1.25.21 29 (±2) 15 (±2) 52 (±2) 30 (±2) 

24 Bacon Rind 1.25.21 33 (±2) 15 (±2) 53 (±2) 30 (±2) 

25 Bacon Rind 1.25.21 30 (±2) 14 (±2) 54 (±2) 30 (±2) 

26 Mount Ellis 3.1.21 59 (±2) 38 (±2) 93 (±2) 25 (±2) 

27 Mount Ellis 3.1.21 50 (±2) 29 (±2) 95 (±2) 25 (±2) 

 361 

 362 
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Table C2: Critical cut lengths measured at Mount Ellis, Critical cut lengths 𝒓𝐜
𝐃𝐎𝐖𝐍 and 𝒓𝐜

𝐔𝐏 indicate if the weak layer was cut 363 
downslope or upslope, respectively. Slab thickness 𝑯𝐍 was measured in slope normal direction. Slope angle is provided in de-364 
grees. For further snowpack data we refer to the Appendix D. 365 

 366 

PST-

pairs 
Location Date PST Geometry 

Critical cut length 

𝑟c
DOWN (cm) 

Critical cut 

length 𝑟c
UP (cm) 

Slab thickness 

𝐻N (cm) 

Slope angle 

(°) 

1 Bacon Rind 1.25.21 Slope normal 49 (±2) 15 (±2) 50 (±2) 30 (±2) 

2 Bacon Rind 1.25.21 Vertical 24 (±2) 29 (±2) 52 (±2) 30 (±2) 

3 Bacon Rind 1.25.21 Slope normal 29 (±2) 33(±2) 54 (±2) 30 (±2) 

4 Bacon Rind 1.25.21 Vertical 50 (±2) 50 (±2) 53 (±2) 30 (±2) 

5 Bacon Rind 1.25.21 Slope normal 33 (±2) 14(±2) 53 (±2) 30 (±2) 

6 Bacon Rind 1.25.21 Vertical 24 (±2) 30 (±2) 53 (±2) 31 (±2) 

 367 

  368 
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Appendix D:  369 

At each of our four field sites we took a manual profile including density measures. The following four figures are excerpts 370 

from the corresponding snow profile databanks. 371 

 372 

 373 

Figure D1: Manual profile taken at the Davos field site. The hashed area at the left site represents the hand hardness with snow 374 
height, the red line snow temperature with snow height. On the right side, grain type, grain size, hand harness, lemons and 375 
snow density are given. On the very right, stability test results are written at the height, of the tested weak layer.  376 
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 377 

Figure D2: Manual profile taken at the Bacon Rind field site on January 20th 2021. The blue area at the left site represents the 378 
hand hardness with snow height, On the right side, grain type, grain size, moisture and snow density are given. On the very 379 
right, stability test results are written at the height, of the tested weak layer.  380 



 

17 
 

 381 

Figure D3: Manual profile taken at the Bacon Rind field site on January 25th. The blue area at the left site represents the hand 382 
hardness with snow height, On the right side, grain type, grain size, moisture and snow density are given. On the very right, 383 
stability test results are written at the height, of the tested weak layer.  384 

 385 
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 386 

Figure D4: Manual profile taken at the Mount Ellis field site on January 25th. The blue area at the left site represents the hand 387 
hardness with snow height, On the right side, grain type, grain size, moisture and snow density are given. On the very right, 388 
stability test results are written at the height, of the tested weak layer.  389 
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