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Abstract 10 

High contents of reactive nitrogen components aggravate air pollution and could also impact 11 

ecosystem structure and function across the terrestrial-aquatic-marine continuum. However, the 12 

long-term historical trends and future prediction of reactive nitrogen components at the global scale 13 

still remains high uncertainties. In our study, the field observations, satellite products, model output, 14 

and many other covariates were integrated into the machine-learning model to capture the global 15 

patterns of reactive nitrogen components during 2000-2019. In order to decrease the estimate 16 

uncertainties in the future scenarios, the constructed reactive nitrogen component dataset during the 17 

historical period was then utilized as the constraint to calibrate the CMIP6 dataset in four scenarios. 18 

The results suggested the cross-validation (CV) R2 values of four species showed satisfied 19 

performance (R2 > 0.55). The concentrations of estimated reactive nitrogen components in China 20 

experienced persistent increases during 2000-2013, while they suffered from drastic decreases since 21 

2013 except NH3. It might be associated with the impact of clean air policy. However, these 22 

compounds in Europe and the United States remained relatively stable since 2000. In the future 23 

scenarios, SSP3-7.0 (traditional energy scenario) and SSP1-2.6 (carbon neutrality scenario) showed 24 

the highest and lowest reactive nitrogen component concentrations, respectively. Although the 25 

reactive nitrogen concentrations in some heavy-pollution scenarios (SSP3-7.0) also experienced 26 

decreases during 2020-2100, SSP1-2.6 and SSP2-4.5 (middle emission scenario) still kept more 27 

rapid decreasing trends. Our results emphasize the need for carbon-neutrality pathway to reduce 28 

global atmospheric N pollution. 29 
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1. Introduction 30 

Along with the development of global urbanization and industrialization, the anthropogenic 31 

emissions of reactive nitrogen (e.g., NOx, NH3, HNO3) experienced drastic increases during the past 32 

decades (Chen et al., 2021; Liu et al., 2020b; McDuffie et al., 2020). The reactive nitrogen released 33 

from anthropogenic source could significantly alter the global nitrogen cycle throughout the Earth 34 

system (Altieri et al., 2021; Zhang et al., 2020). Reactive nitrogen in the atmosphere dominates the 35 

chemical formation of tropospheric O3 and aggravates the particle pollution (Geddes and Martin, 36 

2017), with implications for global air quality and climate change (He et al., 2022; Von 37 

Schneidemesser et al., 2015). Moreover, the ambient reactive nitrogen could be deposited into the 38 

land surface and could cause lake eutrophication and soil acidification (Bouwman et al., 2002; Chen 39 

et al., 2018). Therefore, it is highly necessary to understand the spatial distributions and temporal 40 

evolution trends of reactive nitrogen components at the global scale.  41 

Despite the global importance, observational constraints on reactive nitrogen in the atmosphere 42 

were still scarce in most parts of the world (Liu et al., 2020b). Furthermore, the majority of 43 

monitoring sites focused on China, Europe, and the United States (Du et al., 2014; Li et al., 2020; 44 

Li et al., 2019a; Li et al., 2016), and these uneven sites only possessed limited spatial 45 

representativeness (Shi et al., 2018), which restricted the accurate assessment of global reactive 46 

nitrogen pollution. Fortunately, the satellite observations gave us a unprecedent chance to capture 47 

the global variations of atmospheric reactive nitrogen. Geddes et al. (2017) used the satellite 48 

products to calibrate the simulated reactive nitrogen oxides (NOy) and improved the predictive 49 

performance (R = 0.83) compared with the chemical transport model (CTM) output alone (Geddes 50 

and Martin, 2017). Afterwards, Liu et al. (2022) also used the similar method to estimate the global 51 

wet deposition of reduced nitrogen (NH4
+) and the R value achieved 0.80(Liu et al., 2021). Although 52 

the calibration based on satellite products could improve the predictive accuracy compared with 53 

CTM output, the simulated values still largely biased from the ground-level observations. Moreover, 54 

the method cannot accurately fill the gaps of reactive nitrogen concentrations without satellite 55 

coverage. In our previous works, we developed a satellite-based ensemble machine-learning model 56 

to predict the wet NH4
+ deposition across China and the R2 value reached 0.76 (R = 0.88) (Li et al., 57 

2020). However, this technique was not expanded to the global scale and the high-accuracy and full-58 
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coverage global ambient reactive nitrogen dataset was still lack.  59 

Apart from the historical estimates, the future prediction of reactive nitrogen is also important 60 

because these components in the future scenarios could significantly affect the land carbon cycle 61 

and greenhouse gas emissions (Chen et al., 2015; Zaehle, 2013). To the best of our knowledge, only 62 

two studies focused on global aerosol prediction in the future scenarios. Chen et al. (2023) predicted 63 

the global PM2.5 levels and associated mortalities in 2100 under different climate scenarios and 64 

found that SSP3-7.0 scenario was linked with the highest PM2.5 exposure. Li et al., (2022) also 65 

simulated the global NO3
- and NH4

+ levels in the future four scenarios and demonstrated that both 66 

of these components showed marked decreases in most cases except SSP5-8.5 scenario. However, 67 

this study predicted the future reactive nitrogen based on historical CTM output alone, which lacks 68 

of observation constraints. The result might increase the uncertainty of assessment.   69 

In our study, we developed a multi-stage model to estimate the concentrations of four reactive 70 

nitrogen species (NO3
-, HNO3, NH3, and NH4

+) during 2000-2019 because these species were most 71 

important reactive nitrogen components for human health and ecological ecosystem and also 72 

showed abundant ground-level observations. Then, the species over the 2020-2100 period under the 73 

SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios were also corrected based on the historical 74 

estimates. Finally, the long-term dataset of reactive nitrogen during 2000-2100 was constructed. Our 75 

results were beneficial to assess the impacts of reactive nitrogen components on air pollution and 76 

climate change in the future. 77 

2. Material and methods 78 

2.1 Reactive nitrogen observations 79 

Most of reactive nitrogen observations focused on East Asia, Europe, and the United States. The 80 

monthly reactive nitrogen components monitoring data during 2010-2015 in China were 81 

downloaded from nationwide nitrogen deposition monitoring network (NNDMN) including 32 sites, 82 

and these sites could be classified into three types mixed with urban, rural, and background sites 83 

(Xu et al., 2019) (Table S1). The concentrations of reactive nitrogen components were determined 84 

using the active DEnuder for Long-Term Atmospheric sampling system (DELTA). The detailed 85 

sampling and analysis procedures have been described by Xu et al. (2019). The dataset of reactive 86 

nitrogen components in other countries of East Asia during 2000-2019 were download from the 87 
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Acid Deposition Monitoring Network in East Asia (EANET). The European Monitoring and 88 

Evaluation Programme (EMEP) provides records of long-term reactive nitrogen components in 86 89 

sites of most countries across West Europe. Monthly reactive nitrogen components dataset in 84 90 

locations across the United States could be obtained from the Clean Air Status and Trends Network 91 

(CASTNET) (Figure S1). 92 

2.2 Data preparation 93 

The GEOS-Chem (v13.4.0) model driven by MERRA2 meteorological parameters was applied 94 

to simulate the historical reactive nitrogen components (daily) during 2000-2019(Feng et al., 2021). 95 

The GEOS‐Chem model was composed of detailed ozone‐NOx‐VOC‐PM‐halogen tropospheric 96 

chemistry. The grid version of the model with a horizontal resolution of 2° × 2.5° was utilized. Wet 97 

deposition contained many processes including sub-grid scavenging in convective updrafts, in-98 

cloud rainout, and below-cloud washout (Liu et al., 2001). Dry deposition was estimated based on 99 

a resistance-in-series model (Wesely, 2007). The anthropogenic emission inventory in 2000-2019 100 

was downloaded from the website of Community Emissions Data System (CEDS) (Hoesly et al., 101 

2018). Then, the daily reactive nitrogen components were averaged to the monthly scale.  102 

 The IASI instrument aboard on the polar sun-synchronous MetOp platform traverses the 103 

equation twice each day (9:30 a.m. and 9:30 p.m. local solar time) (Whitburn et al., 2016a). The 104 

measurements in the daytime usually shows the better accuracy than those at night due to the high 105 

sensitivity to ambient NH3 (Van Damme et al., 2017; Whitburn et al., 2016a; Whitburn et al., 2016b). 106 

In our study, we used the IASI NH3 columns in morning during 2008-2019 to estimate the NH3 and 107 

NH4
+ concentrations globally. Besides, the NH3 column dataset with a cloud shield higher than 25% 108 

and relative error above 100% were eliminated. 109 

The tropospheric vertical column density (VCD) of NO2 retrieved from OMI aboard on Aura 110 

satellite crosses the earth once a day (Kim et al., 2016). OMI-derived tropospheric NO2 column 111 

densities during 2005-2019 was applied to develop the model. The tropospheric NO2 column density 112 

data with cloud radiance fraction > 0.5, terrain reflectivity > 30%, and solar zenith angles > 85° 113 

were screened (Cooper et al., 2022). Additionally, the NO2 columns from GOME (1995-2003), 114 

SCIAMACHY (2002-2011) and GOME-2 (2007-) were also collected to simulate the NO3
- and 115 

HNO3 levels. The similar overpass time of these three instruments (from about 09:30 to 10:30 LT, 116 
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local time) facilitates the simultaneous use to capture consistent long-term coverage. However, the 117 

dataset cannot cover the NO2 columns since 2017. To overcome the inconsistency of these satellite 118 

products, we applied the linear regression technique to construct the relationship between OMI-NO2 119 

columns and GOME/SCIAMACHY NO2 columns. The results suggested these satellite products 120 

showed good relationship (R2 > 0.6). At last, the long-term (2000-2019) NO2 columns at the global 121 

scale were constructed.  122 

The monthly meteorological parameters derived from ERA-5 comprise of 2 m dewpoint 123 

temperature (D2m), 2 m temperature (T2m), surface pressure (Sp), and total precipitation (Tp), 10 m 124 

U wind component (U10), and 10 m V wind component (V10). The population density data during 125 

2000-2020 around the world were downloaded from 126 

https://hub.worldpop.org/geodata/listing?id=64. The elevation data was extracted from ETOPO at a 127 

spatial resolution of 1’ (Amante and Eakins, 2009) (https://rda.ucar.edu/datasets/ds759.4/). In 128 

addition, the land use data including cropland, forest, grassland, shrubland, tundra, barren land, and 129 

snow/ice were obtained from Liu et al. (2020a). Besides, the CMIP6 dataset in four scenarios were 130 

also applied to predict the reactive nitrogen concentrations during 2020-2100. The dataset includes 131 

2-m air temperatures, wind speed at 850 and 500 hPa, total cloud cover, precipitation, relative 132 

humidity, and short-wave radiation. The modelled meteorological parameters derived from 16 earth 133 

system models were incorporated into the machine-learning model. The detailed models are 134 

summarized in Table S2. 135 

2.3 Model development 136 

A three-stage model was established to capture the full-coverage reactive nitrogen dataset at 137 

the global scale (Figure 1). In the first stage, the ground-level reactive nitrogen species, satellite 138 

products (e.g., OMI-NO2 and IASI-NH3 columns), meteorological factors, land use types, 139 

population, and simulated reactive nitrogen components derived from GEOS-Chem model were 140 

collected as the independent variables to estimate the gridded reactive nitrogen species at the 141 

period/grid with satellite product based on LightGBM algorithm. In the second stage, the 142 

meteorological parameters, GEOS-Chem output, land use data, and population were applied to fill 143 

the gaps without satellite retrievals. Then, the simulated results based on these models were fused 144 

to obtain the full-coverage reactive nitrogen components and the ground-level observations were 145 
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further used to calibrate the full-coverage dataset and the final reactive nitrogen components at the 146 

global scale were simulated. In the last stage, the reactive nitrogen components and meteorological 147 

parameters in four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) during 2020-2100 were 148 

collected from CMIP6 dataset including 16 earth system models (Table S2). Then, the data in the 149 

future scenarios were integrated into the ensemble model including XGBoost, LightGBM, and 150 

convolutional neural networks (CNN) to further calibrate the modeling results based on historical 151 

dataset (2000-2019) derived from previous two-stage model. The detailed equations of multiple 152 

machine-learning models are summarized as follows: 153 

(1) XGBoost model 154 
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where F(t) is the cost function at the t-th period;    is the derivative of the function; ( 1)

2
ty −  156 

represents the second derivative of the function; l denotes the differentiable convex loss function 157 

that reveals the difference of the predicted value ( y


) of the i-th instance at the t-th period and the 158 

target value (yi); ft(x) represents the increment; ( )tf  reflects the regularizer.  159 
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where Q(y,f(x)) reflects the a specific loss function; 
1

( )
T

t

t

f X
=

  denotes the regression trees. 163 

(3) CNN model 164 

The reactive nitrogen species and meteorological parameters in the future scenarios were applied to 165 

CNN model based on the historical (2000-2019) reactive nitrogen species derived from stage 1-2 166 

model.  167 

:f U Netx y−⎯⎯⎯⎯→     (4) 168 

where x (x1, x2,……, xn) represents the reactive nitrogen species and meteorological parameters 169 
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derived from CMIP6 dataset; y (y1, y2, ……, yn) denotes the historical (2000-2019) reactive nitrogen 170 

species.  171 

All of the convolution layers showed the same kernel size of 3×3 and used rectified linear unit 172 

(ReLU) as the activation function. Max-pooling layers were employed for adjusting the size of 173 

images to capture better bottleneck information. After each block, the image size could be halved 174 

by using the max pooling layer with kernel size of 2×2, but the number of channels will be doubled. 175 

In our study, the learning rate was set as 0.1 to achieve the best performance.  176 

All of the independent variables collected from multiple sources were resampled to 0.25° grids 177 

using appropriate algorithms. For example, both of the population density and land use type in each 178 

grid were calculated using spatial clipping toolbox. Later on, all of these variables were combined 179 

to develop the model. During the development of multi-stage model, it was highly imperative to 180 

remove some redundant explanatory variables and then determine the optimal variable group. The 181 

redundant variables means that the overall predictive accuracy could degrade after the removal of 182 

these variables. 183 

3. Results and discussion 184 

3.1 The modelling performance of historical reactive nitrogen estimates 185 

The multi-stage model was applied to capture the spatiotemporal variations of reactive nitrogen 186 

concentrations during 2000-2100. In our study, we employed XGBoost model to construct the full-187 

coverage reactive nitrogen dataset during 2000-2020. The cross-validation (CV) R2 values of the 188 

model for NO3
-, HNO3, NH3, and NH4

+ estimates reached 0.67, 0.62, 0.58, and 0.60, respectively 189 

(Figure 2). RMSE of NO3
-, HNO3, NH3, and NH4

+ were 0.55, 0.23, 2.32, and 1.71 μg N m-3, 190 

respectively. MAE of NO3
-, HNO3, NH3, and NH4

+ reached 0.19, 0.13, 1.23, and 0.59 μg N m-3. The 191 

CV R2 values of NO3
-, HNO3, and NH4

+ estimates were significantly higher than Jia et al. (2016) 192 

(0.22, 0.41, and 0.49), while the CV R2 value of NO3
- estimate in our study was comparable to 193 

Geddes et al. (2017) (0.68) (Geddes and Martin, 2017). The CV R2 value of NH3 estimates were 194 

also close to the results obtained by Liu et al. (2019) (0.45-0.71) (Liu et al., 2019). Overall, the 195 

predictive performances historical reactive nitrogen was satisfied. Although the CV R2 values in our 196 

study were not significantly higher than those in some previous studies, our study developed the 197 

full-coverage (gap-free) ambient reactive nitrogen dataset, which was superior to some previous 198 
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studies. Based on the constructed full-coverage reactive nitrogen dataset, we also developed the 199 

ensemble model to calibrate the CMIP6 dataset in the future scenarios. The CV R2 values of the 200 

model for NO3
-, HNO3, NH3, and NH4

+ estimates in the future scenarios reached 0.62, 0.67, 0.56, 201 

and 0.60, respectively (Figure S2). RMSE of NO3
-, HNO3, NH3, and NH4

+ were 0.58, 0.26, 2.12, 202 

and 1.91 μg N m-3, respectively. MAE of NO3
-, HNO3, NH3, and NH4

+ reached 0.22, 0.22, 1.04, and 203 

0.65 μg N m-3. Overall, the ensemble model for these species in the future scenarios still showed 204 

satisfied performance, and thus the result could be treated to be robust. 205 

3.2 The spatial patterns of nitrogen reactive components  206 

     The global annual mean concentrations of NO3
-, HNO3, NH3, and NH4

+ during 2000-2019 207 

ranged from 0.03 to 9.08, 0.03 to 1.73, 0.21 to 13.9, and 0.08 to 17.1 μg N m-3 with the mean values 208 

of 0.43 ± 0.24 (standard deviation over grids), 0.28 ± 0.13, 1.79 ± 0.85, and 0.65 ± 0.36 μg N m-3 209 

(Figure S3), respectively. China, West Europe, and the United States obtained widespread attention 210 

due to the developed economy and dense anthropogenic activity.  211 

In China, the overall mean ambient NO3
-, HNO3, NH3, and NH4

+ concentrations reached 212 

1.05 ± 0.62, 0.35 ± 0.19, 4.05 ± 1.84, and 2.38 ± 1.26 μg N m-3, ranging from 0.07-9.08, 0.06-1.73, 213 

0.84-11.6, and 0.18-13.1 μg N m-3. At the regional scale, the annual mean NO3
-, HNO3, NH3, and 214 

NH4
+ concentrations followed the order of North China Plain (NCP) (4.38, 1.12, 7.22, and 7.69 μg 215 

N m-3) > Sichuan Basin (2.40 ± 1.01, 0.52 ± 0.28, 4.92 ± 1.71, and 6.02 ± 1.82 μg N m-3) (Figure 216 

3). NCP displayed the higher NO3
- and HNO3 concentrations owing to dense human activities and 217 

strong industry foundation (Qi et al., 2023; Wen et al., 2018), which could emit a large amount of 218 

NOx to the atmosphere. In both of Yangtze River Delta (YRD) and Pearl River Delta (PRD), the 219 

combustion of fossil fuels and traffic emissions might be the major source of NOx emission, which 220 

aggravated nitrate events via gas-particle conversion processes (Huang et al., 2017; Li et al., 2017). 221 

For Sichuan Basin, the poor topographical or meteorological conditions were major factors 222 

responsible for the severe nitrate pollution (Zhang et al., 2019). It was not surprising that high 223 

ambient NH3 concentrations focused on NCP and Sichuan Basin because most of Chinese croplands 224 

are distributed on these regions (Karra et al., 2021; Potapov et al., 2022), which was the major source 225 

of NH3 emissions with frequent N fertilizer applications (Ma et al., 2022). Besides, N manure was 226 

another major source of NH3 emissions in China, and the percentage of N manure to NH3 emissions 227 
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exceeds 50% (Kang et al., 2016). The spatial pattern of NH4
+ level was in good agreement with the 228 

NH3 concentration because NH4
+ was often generated from the reaction of NH3 with SO2 and NO2 229 

(Ehrnsperger and Klemm, 2021).  230 

In Europe, the ambient NO3
-, HNO3, NH3, and NH4

+ concentrations ranged from 0.13 to 2.84, 231 

0.06 to 0.92, 0.35 to 7.81, and 0.22 to 3.77 μg N m-3, respectively. The annual mean NO3
-, HNO3, 232 

NH3, and NH4
+ levels reached 0.57 ± 0.28, 0.25 ± 0.11, 1.58 ± 0.68, and 0.89 ± 0.42 μg N m-3, 233 

respectively (Figure 3). High concentrations of reactive nitrogen components focused on the 234 

northern part of Italy, central and southern part of Germany, North France, Poland, and the western 235 

part of Russia, which was in good agreement with the spatial pattern of NOx and NH3 emissions 236 

(Luo et al., 2022; Qu et al., 2020). Emissions Database for Global Atmospheric Research (EDGAR) 237 

suggested that N fertilization and N manure accounted for 43% and 53% of total NH3 emissions in 238 

western Europe (Liu et al., 2019), respectively. Furthermore, Liu et al. (2019) confirmed that a good 239 

relationship between ambient NH3 level and N fertilization plus N manure (r = 0.62) was observed 240 

in Europe. Cooper et al. (2017) employed the inversion model to estimate NOx emission in Europe 241 

and also found that high NOx emission was also mainly distributed on North France, Germany, the 242 

northern part of Italy, and Russia, which partly explained the higher concentrations of reactive 243 

nitrogen components in these regions.  244 

    In the United States, the ambient NO3
-, HNO3, NH3, and NH4

+ concentrations reached 0.28 ± 245 

0.12, 0.19 ± 0.08, 2.12 ± 0.66, and 0.49 ± 0.25 μg N m-3, with the range of 0.03-2.35, 0.03-1.31, 246 

0.26-9.96, and 0.10-6.09 μg N m-3 (Figure 3), respectively. The hotspots of NO3
-, HNO3, and NH4

+ 247 

levels focused on the eastern part of the United States, while the higher NH3 concentration focused 248 

on Central Great Plains and some regions in California such as San Joaquin Valley (6.15 μg N m-3). 249 

Both of bottom-up and top-down NOx and NH3 emissions suggested that the spatial distributions of 250 

reactive nitrogen components were strongly dependent on the precursor emissions (McDuffie et al., 251 

2020; Qu et al., 2020). 252 

Besides, some other regions such as the northern part of India also experienced severe N 253 

pollution in the atmosphere. Meanwhile, some countries in South America such Brazil and 254 

Argentina also suffered from serious HNO3 and NH3 pollution. The higher ambient NH3 255 

concentration focused on the northern part of India might be contributed by two major reasons. First 256 
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of all, the intensive agricultural activities and high air temperature might be responsible for the 257 

higher NH3 level (Cui, 2023; Wang et al., 2020). Moreover, the relatively low sulfur dioxide (SO2) 258 

and nitrogen oxides (NOx) emissions coupled with high air temperature restricted the gas-to-particle 259 

conversion of NH3 (Wang et al., 2020). The severe HNO3 and NH3 pollution in Brazil and Argentina 260 

might be also linked with the dense agricultural activities (Huneeus et al., 2017). 261 

3.3 The seasonal variations of reactive nitrogen components 262 

The ambient NO3
-, HNO3, NH3, and NH4

+ concentrations exhibited significant seasonal 263 

variations (Figure S4-8). NO3
-, HNO3, and NH4

+ displayed the highest and lowest values in winter 264 

(December-February) and summer (June-August), respectively. On the one hand, the anthropogenic 265 

NOx emission for domestic heating might be higher in winter compared with other seasons (Lin et 266 

al., 2011). On the other hand, the stagnant meteorological conditions limited the pollutant diffusion 267 

(Li et al., 2019b; Liu et al., 2020c). Meanwhile, the higher relative humidity in winter facilitated the 268 

formation of NH4NO3 (Huang et al., 2016; Xu et al., 2012). However, both of ambient NO3
- and 269 

NH4
+ concentrations showed the lower concentrations in summer, which might be attributable to 270 

the decomposition of NH4NO3 under the condition of high air temperature. In contrast to the 271 

secondary inorganic nitrogen, the ambient NH3 level showed the highest concentration in summer 272 

(1.71 ± 0.45 μg N m-3). China, Europe, and the United States suffered from similar NH3 peaks in 273 

summer (4.20 ± 1.85, 1.77 ± 0.65, and 2.21 ± 1.04 μg N m-3). There are two reasons accounting for 274 

the fact. At first, mineral N fertilizer or manure application was mainly performed in spring and 275 

early summer (Paulot et al., 2014). Many field observations have obtained similar NH3 peak in 276 

summer (He et al., 2021; Pan et al., 2018). Moreover, summer often showed the higher air 277 

temperature, which promotes the volatilization of ammonium and limits the gas-to-particle of 278 

gaseous NH3 (Liu et al., 2019).  279 

3.4 The historical trends of reactive nitrogen components during 2000-2019 280 

The long-term trends of ambient NO3
-, HNO3, NH3, and NH4

+ concentrations are shown in 281 

Figure 4 and Figure S9-12. The NO3
- concentration in China displayed rapid increase (9.7%/yr) 282 

during 2000-2007, and then it kept the moderate increase (4.2%/yr) during 2007-2013. However, 283 

the NO3
- concentration in China experienced the drastic decrease (-2.6%/yr) since 2013. The 284 

ambient HNO3 and NH4
+ concentrations showed similar trends during this period. Due to the impact 285 
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of Clean Air Action, the concentrations of gaseous precursors (e.g., SO2 and NOx) suffered from 286 

substantial decreases, which could be transformed into nitrate and ammonium via heterogeneous 287 

reactions (Huang et al., 2019). However, the decreasing rates of NO3
- were still much lower than 288 

those of gaseous precursors (Li et al., 2023). On the one hand, it might be associated with the 289 

increased O3 level and enhanced atmospheric oxidation capacity (AOC), which led to an increase 290 

in the photochemical reaction rate of the secondary components (Wang et al., 2019). On the other 291 

hand, strong SO2 emission control under the Clean Air Action allowed more gaseous NH3 to form 292 

nitrate. The ambient NH3 level remained relatively stable status during 2000-2013, while it 293 

experienced rapid increases after 2013. The result was in good agreement with Liu et al. (2019). In 294 

fact, the ambient NH3 level in North China Plain still experienced dramatic increase (> 0.2 μg N m-295 

3/yr) during 2000-2013 because enhanced agricultural activities. Zhang et al. (2017) have 296 

demonstrated that the livestock manure and fertilizer application generally accounted for 43.1% and 297 

36.4% of the agricultural NH3 emission, respectively. Since 2013, the NH3 concentration in the 298 

entire China suffered from rapid increase, which might be associated with the drastic decrease of 299 

sulfate. It was well known that NH3 could react with HNO3 and gaseous H2SO4 to generate ammonia 300 

sulfate and ammonia nitrate (Wang et al., 2022; Wang et al., 2019). Substantial decreases of acidic 301 

gases (e.g., SO2) lead to the reduction of NH3 conversion to ammonia salts in the atmosphere (Chen 302 

et al., 2019), which result in excess NH3 remaining in the gaseous phase. 303 

Compared with China, the long-term trends of reactive nitrogen components Europe and the 304 

United States were relatively stable. In the Europe, the concentrations of NO3
-, HNO3, and NH3 305 

exhibited increases during 2000-2007 (0.7%/yr, 2.3%/yr, and 2.1%/yr), while they experienced 306 

slight decreases after 2007. The NH4
+ level displayed continuous decrease since 2000. The result 307 

was closely linked with the trends of NOx and NH3 emissions derived from satellite retrieval 308 

(Cooper et al., 2017; Luo et al., 2022). In the United States, both of NO3
- and NH4

+ showed persistent 309 

decreases during 2000-2019. Zhang et al. (2018) have confirmed that NOx emission in the eastern 310 

US has experienced persistent decrease since 1990, which facilitated the decreases of NO3
- and 311 

NH4
+ levels. However, the ambient HNO3 and NH3 concentrations displayed slight increases during 312 

2000-2007 (2.1%/yr), and then remained relatively stable since 2007. Liu et al. (2019) also found 313 

similar characteristic of ambient NH3 trend in the United States. In fact, the NH3 concentrations in 314 
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the Middle Plain and eastern US still showed increases due to the lack of NH3 emission control 315 

policies as well as the decline in acidic gases (Warner et al., 2017). 316 

3.5 Projection of future ambient reactive nitrogen components 317 

     For the future reactive nitrogen component estimates, the ensemble model was applied to 318 

predict the reactive nitrogen component concentrations under the SSP1-2.6, SSP2-4.5, SSP3-7.0, 319 

and SSP5-8.5 scenarios. The whole period (2021-2100) could be uniformly classified into four 320 

periods including 2021-2040 (2030s), 2041-2060 (2050s), 2061-2080 (2070s), and 2081-2100 321 

(2090s), respectively. In SSP1-2.6, the projected global mean NO3
- concentrations decreased from 322 

0.40 ± 0.12 μg N m-3 during 2030s to 0.38 ± 0.11 μg N m-3 during 2090s (Figure 5a-d and Figure 323 

S13). SSP2-4.5 scenario represents the middle range of plausible future pathways (Nazarenko et al., 324 

2022), and the predicted global average NO3
- concentrations in this scenario decreased from 0.40 ± 325 

0.14 μg N m-3 during 2030s to 0.37 ± 0.12 μg N m-3 during 2090s. SSP3-7.0 and SSP5-8.5 denote 326 

the less investment in the environment and heavily relies on traditional energy for rapid economic 327 

development, respectively. The ambient NO3
- levels in these scenarios showed more remarkable 328 

decreases from 2030s to 2090s. For instance, the NO3
- concentrations in China decreased from 1.07 329 

± 0.36 and 1.01 ± 0.30 μg N m-3 to 0.84 ± 0.46 and 0.60 ± 0.34 μg N m-3, respectively. The NO3
- 330 

levels in India also experienced rapid increases from 2.21 ± 1.04 to 3.30 ± 1.58 μg N m-3 in SSP3-331 

7.0 scenario, while they suffered from marked decreases from 2.33 ± 1.12 to 1.60 ± 0.84 μg N m-3 332 

in SSP5-8.5 scenario.  333 

The projected global average HNO3 concentrations remained relatively stable from 0.26 ± 0.13 334 

and 0.27 ± 0.14 μg N m-3 during 2030s to 0.25 ± 0.12 and 0.26 ± 0.13 μg N m-3 during 2090s in 335 

SSP1-2.6 and SSP2-4.5 scenarios, respectively (Figure 6a-d and Figure S14). However, some 336 

developing countries such as China and India experienced drastic HNO3 changes during these 337 

scenarios. The mean HNO3 concentrations in China and India decreased from 0.29 ± 0.17 and 0.43 338 

± 0.25 μg N m-3 to 0.26 ± 0.15 and 0.35 ± 0.22 μg N m-3 in SSP1-2.6 scenario, respectively. In SSP2-339 

4.5 scenario, the average HNO3 concentrations in China and India decreased from 0.31 ± 0.20 and 340 

0.55 ± 0.29 μg N m-3 in 2030s to 0.27 ± 0.18 and 0.45 ± 0.25 μg N m-3 in 2090s, respectively. 341 

Compared with SSP1-2.6 and SSP2-4.5, the heavy-pollution scenarios (e.g., SSP3-7.0 and SSP5-342 

8.5) showed the higher HNO3 concentrations. The HNO3 concentrations in China decreased from 343 

https://doi.org/10.5194/egusphere-2024-69
Preprint. Discussion started: 5 March 2024
c© Author(s) 2024. CC BY 4.0 License.



13 

 

0.34 ± 0.21 and 0.31 ± 0.20 μg N m-3 in 2030s to 0.31 ± 0.20 and 0.28 ± 0.14 μg N m-3 in 2090s for 344 

SSP3-7.0 and SSP5-8.5 scenarios, respectively. The HNO3 concentrations in India also experienced 345 

rapid increases from 0.54 ± 0.29 to 0.70 ± 0.38 μg N m-3 in SSP3-7.0 scenario. It was assumed that 346 

the government gave less investment in environment improvement and the anthropogenic emission 347 

did not show marked decrease under the condition of SSP3-7.0 scenario. However, the ambient 348 

HNO3 levels suffered from marked decreases from 0.63 ± 0.28 to 0.51 ± 0.22 μg N m-3 in SSP5-8.5 349 

scenario. Although the SSP5-8.5 scenario is heavily dependent on the fossil fuel production (Chen 350 

et al., 2020), the anthropogenic emission still displayed gradual decrease during the 80-year period. 351 

The higher ambient NH3 concentrations also focused on China and India (Figure 7 and Figure 352 

S15). In SSP1-2.6, the ambient NH3 concentrations in China and India decreased from 2.92 and 353 

5.59 μg N m-3 during 2030s to 1.77 and 2.73 μg N m-3 during 2090s, respectively. In SSP2-4.5, the 354 

ambient mean NH3 concentrations in China and India decreased from 3.43 and 7.57 μg N m-3 during 355 

2030s to 2.06 and 5.33 μg N m-3 during 2090s, respectively. Compared with SSP1-2.6 and SSP2-356 

4.5, the ambient NH3 concentrations in heavy-pollution scenarios did not show marked decreases 357 

from 2020-2100, which might be associated with ineffective NH3 emission control.  The temporal 358 

variations of ambient NH4
+ levels in the future scenarios show similar trends with NH3. The 359 

atmospheric NH4
+ levels in China decreased from 1.53 (SSP1-2.6), 1.95 (SSP2-4.5), 2.31 (SSP3-360 

7.0), and 1.87 μg N m-3 (SSP5-8.5) during 2030s to 0.60, 0.84, 1.78, and 0.97 μg N m-3 during 2090s, 361 

respectively (Figure 8 and Figure S16). Meanwhile, the ambient NH4
+ levels in India changed from 362 

3.68 (SSP1-2.6), 5.31 (SSP2-4.5), 5.49 (SSP3-7.0), and 6.07 μg N m-3 (SSP5-8.5) during 2030s to 363 

1.38, 3.49, 6.89, and 2.96 μg N m-3 during 2090s, respectively. 364 

3.6 Implications and limitations 365 

Global trends of four reactive nitrogen components during 2000-2100 emphasizes the urgent 366 

mitigation measures (carbon neutrality pathway) to reduce precursor emissions in order to decrease 367 

the concentrations and depositions of reactive nitrogen components especially in China and India. 368 

Furthermore, our result could give valuable insights into the impact of reactive nitrogen components 369 

on human health and ecological environment. However, this study still shows some limitations. First 370 

of all, the observation networks mainly focus on China, Europe, and the United States, and thus the 371 

simulations in many other regions might show large uncertainties. Secondly, the CMIP6 future 372 
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climate scenario data also exhibits large uncertainties, which could impact the reliability of this 373 

study. Lastly, our predictions were performed on the basis of the premise that the world was steadily 374 

developing, and cannot predict the impacts of uncontrollable factors (e.g., COVID-19, Russia-375 

Ukraine War). 376 
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Figure 1 The workflow of global full-coverage reactive nitrogen estimates during 2000-2100. 388 

GCoutput denotes the GEOS-Chem output.  389 

 390 
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Figure 2 The predictive performances of four reactive nitrogen components including NO3
- (a), 391 

HNO3 (b), NH3 (c), and NH4
+ (d). The model was constructed with 90% original data and the 392 

remained data was applied to validate the model. The black solid line denotes the best-fitting curve 393 

for all of the points, while the black dashed line represents the diagonal, which means the same 394 

observed and simulated values. The color scale denotes the sample size. 395 

 396 
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Figure 3 The spatiotemporal variations of NO3
-, HNO3, NH3, and NH4

+ concentrations in East Asia 397 

(a-d), Europe (e-h), and North America (i-l) (Unit: μg N m-3).  398 

 399 
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Figure 4 The long-term variations of NO3
-, HNO3, NH3, and NH4

+ concentrations in China (pink), 400 

Europe (green), and the United States (cyan) (Unit: μg N m-3). 401 

 402 
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Figure 5 Spatial variations of projected global ambient concentrations of reactive nitrogen 403 

components under different climate change scenarios (Unit: μg N m-3). Panels (a-d) represent the 404 

annual mean concentrations of ambient NO3
- under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 405 

during 2021-2100, respectively.  406 

 407 

 408 
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Figure 6 Spatial variations of projected global ambient concentrations of reactive nitrogen 409 

components under different climate change scenarios (Unit: μg N m-3). Panels (a-d) represent the 410 

annual mean concentrations of ambient HNO3 under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 411 

during 2021-2100, respectively. 412 

 413 

 414 
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Figure 7 Spatial variations of projected global ambient concentrations of reactive nitrogen 415 

components under different climate change scenarios (Unit: μg N m-3). Panels (a-d) represent the 416 

annual mean concentrations of ambient NH3 under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 417 

during 2021-2100, respectively. 418 

 419 
 420 
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Figure 8 Spatial variations of projected global ambient concentrations of reactive nitrogen 421 

components under different climate change scenarios (Unit: μg N m-3). Panels (a-d) represent the 422 

annual mean concentrations of ambient NH4
+ under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 423 

during 2021-2100, respectively. 424 

425 

https://doi.org/10.5194/egusphere-2024-69
Preprint. Discussion started: 5 March 2024
c© Author(s) 2024. CC BY 4.0 License.



23 

 

References 426 

Altieri, K.E., Fawcett, S.E., Hastings, M.G. (2021) Reactive nitrogen cycling in the atmosphere and 427 

ocean. Annual Review of Earth and Planetary Sciences 49, 523-550. 428 

Amante, C., Eakins, B.W. (2009) ETOPO1 arc-minute global relief model: procedures, data sources and 429 

analysis. 430 

Bouwman, A., Van Vuuren, D., Derwent, R., Posch, M. (2002) A global analysis of acidification and 431 

eutrophication of terrestrial ecosystems. Water, Air, and Soil Pollution 141, 349-382. 432 

Chen, H., Li, D., Gurmesa, G.A., Yu, G., Li, L., Zhang, W., Fang, H., Mo, J. (2015) Effects of nitrogen 433 

deposition on carbon cycle in terrestrial ecosystems of China: A meta-analysis. Environmental pollution 434 

206, 352-360. 435 

Chen, W., Lu, X., Yuan, D., Chen, Y., Li, Z., Huang, Y., Fung, T., Sun, H., Fung, J.C. (2023) Global PM2. 436 

5 Prediction and Associated Mortality to 2100 under Different Climate Change Scenarios. Environmental 437 

science & technology 57, 10039-10052. 438 

Chen, X., Wang, Y.-h., Ye, C., Zhou, W., Cai, Z.-c., Yang, H., Han, X. (2018) Atmospheric nitrogen 439 

deposition associated with the eutrophication of Taihu Lake. Journal of Chemistry 2018. 440 

Chen, Y., Liu, A., Cheng, X. (2020) Quantifying economic impacts of climate change under nine future 441 

emission scenarios within CMIP6. Science of the Total Environment 703, 134950. 442 

Chen, Y., Shen, H., Russell, A.G. (2019) Current and future responses of aerosol pH and composition in 443 

the US to declining SO2 emissions and increasing NH3 emissions. Environmental science & technology 444 

53, 9646-9655. 445 

Chen, Y., Zhang, L., Henze, D.K., Zhao, Y., Lu, X., Winiwarter, W., Guo, Y., Liu, X., Wen, Z., Pan, Y. 446 

(2021) Interannual variation of reactive nitrogen emissions and their impacts on PM2. 5 air pollution in 447 

China during 2005–2015. Environmental Research Letters 16, 125004. 448 

Cooper, M., Martin, R.V., Padmanabhan, A., Henze, D.K. (2017) Comparing mass balance and adjoint 449 

methods for inverse modeling of nitrogen dioxide columns for global nitrogen oxide emissions. Journal 450 

of Geophysical Research: Atmospheres 122, 4718-4734. 451 

Cooper, M.J., Martin, R.V., Hammer, M.S., Levelt, P.F., Veefkind, P., Lamsal, L.N., Krotkov, N.A., Brook, 452 

J.R., McLinden, C.A. (2022) Global fine-scale changes in ambient NO2 during COVID-19 lockdowns. 453 

Nature 601, 380-387. 454 

Cui, L. (2023) Impact of COVID-19 restrictions on the concentration and source apportionment of 455 

atmospheric ammonia (NH3) across India. Science of the Total Environment 881, 163443. 456 

Du, E., de Vries, W., Galloway, J.N., Hu, X., Fang, J. (2014) Changes in wet nitrogen deposition in the 457 

United States between 1985 and 2012. Environmental Research Letters 9, 095004. 458 

Ehrnsperger, L., Klemm, O. (2021) Source apportionment of urban ammonia and its contribution to 459 

secondary particle formation in a Mid-size European City. Aerosol and Air Quality Research 21, 200404. 460 

Feng, X., Lin, H., Fu, T.-M., Sulprizio, M.P., Zhuang, J., Jacob, D.J., Tian, H., Ma, Y., Zhang, L., Wang, 461 

X. (2021) WRF-GC (v2. 0): online two-way coupling of WRF (v3. 9.1. 1) and GEOS-Chem (v12. 7.2) 462 

for modeling regional atmospheric chemistry–meteorology interactions. Geoscientific Model 463 

Development 14, 3741-3768. 464 

Geddes, J.A., Martin, R.V. (2017a) Global deposition of total reactive nitrogen oxides from 1996 to 2014 465 

constrained with satellite observations of NO2 columns. Atmos. Chem. Phys. 17, 10071-10091. 466 

He, Y., Pan, Y., Gu, M., Sun, Q., Zhang, Q., Zhang, R., Wang, Y. (2021) Changes of ammonia 467 

concentrations in wintertime on the North China Plain from 2018 to 2020. Atmospheric Research 253, 468 

105490. 469 

https://doi.org/10.5194/egusphere-2024-69
Preprint. Discussion started: 5 March 2024
c© Author(s) 2024. CC BY 4.0 License.



24 

 

He, Z., Liu, P., Zhao, X., He, X., Liu, J., Mu, Y. (2022) Responses of surface O3 and PM2. 5 trends to 470 

changes of anthropogenic emissions in summer over Beijing during 2014–2019: A study based on 471 

multiple linear regression and WRF-Chem. Science of the Total Environment 807, 150792. 472 

Hoesly, R.M., Smith, S.J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J.J., Vu, 473 

L., Andres, R.J., Bolt, R.M. (2018) Historical (1750–2014) anthropogenic emissions of reactive gases 474 

and aerosols from the Community Emissions Data System (CEDS). Geoscientific Model Development 475 

11, 369-408. 476 

Huang, L., An, J., Koo, B., Yarwood, G., Yan, R., Wang, Y., Huang, C., Li, L. (2019) Sulfate formation 477 

during heavy winter haze events and the potential contribution from heterogeneous SO 2+ NO 2 reactions 478 

in the Yangtze River Delta region, China. Atmospheric Chemistry and Physics 19, 14311-14328. 479 

Huang, T., Chen, J., Zhao, W., Cheng, J., Cheng, S. (2016) Seasonal variations and correlation analysis 480 

of water-soluble inorganic ions in PM2. 5 in Wuhan, 2013. Atmosphere 7, 49. 481 

Huang, X., Liu, Z., Liu, J., Hu, B., Wen, T., Tang, G., Zhang, J., Wu, F., Ji, D., Wang, L. (2017) Chemical 482 

characterization and source identification of PM 2.5 at multiple sites in the Beijing–Tianjin–Hebei region, 483 

China. Atmospheric Chemistry and Physics 17, 12941-12962. 484 

Huneeus, N., Granier, C., Dawidowski, L., van Der Gon, H.D., Alonso, M., Castesana, P., Diaz, M., Frost, 485 

G.J., Gallardo, L., Gomez, D., (2017) Anthropogenic emissions in South America for air quality and 486 

climate modelling, 2017 International Emission Inventory Conference “Applying Science and 487 

Streamlining Processes to Improve Inventories”. 488 

Kang, Y., Liu, M., Song, Y., Huang, X., Yao, H., Cai, X., Zhang, H., Kang, L., Liu, X., Yan, X. (2016) 489 

High-resolution ammonia emissions inventories in China from 1980 to 2012. Atmospheric Chemistry 490 

and Physics 16, 2043-2058. 491 

Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J.C., Mathis, M., Brumby, S.P., (2021) Global 492 

land use/land cover with Sentinel 2 and deep learning, 2021 IEEE international geoscience and remote 493 

sensing symposium IGARSS. IEEE, pp. 4704-4707. 494 

Kim, H.C., Lee, P., Judd, L., Pan, L., Lefer, B. (2016) OMI NO 2 column densities over North American 495 

urban cities: the effect of satellite footprint resolution. Geoscientific Model Development 9, 1111-1123. 496 

Li, H., Yang, Y., Wang, H., Wang, P., Yue, X., Liao, H. (2022) Projected aerosol changes driven by 497 

emissions and climate change using a machine learning method. Environmental science & technology 498 

56, 3884-3893. 499 

Li, H., Zhang, Q., Zhang, Q., Chen, C., Wang, L., Wei, Z., Zhou, S., Parworth, C., Zheng, B., Canonaco, 500 

F. (2017) Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North 501 

China Plain: significant contribution from coal and biomass combustion. Atmospheric Chemistry and 502 

Physics 17, 4751-4768. 503 

Li, R., Cui, L., Fu, H., Zhao, Y., Zhou, W., Chen, J. (2020) Satellite-Based Estimates of Wet Ammonium 504 

(NH4-N) Deposition Fluxes Across China during 2011–2016 Using a Space–Time Ensemble Model. 505 

Environmental science & technology 54, 13419-13428. 506 

Li, R., Cui, L., Zhao, Y., Zhang, Z., Sun, T., Li, J., Zhou, W., Meng, Y., Huang, K., Fu, H. (2019a) Wet 507 

deposition of inorganic ions in 320 cities across China: spatio-temporal variation, source apportionment, 508 

and dominant factors. Atmospheric Chemistry and Physics 19, 11043-11070. 509 

Li, R., Gao, Y., Xu, J., Cui, L., Wang, G. (2023) Impact of Clean Air Policy on Criteria Air Pollutants 510 

and Health Risks Across China During 2013–2021. Journal of Geophysical Research: Atmospheres 128, 511 

e2023JD038939. 512 

Li, R., Wang, Z., Cui, L., Fu, H., Zhang, L., Kong, L., Chen, W., Chen, J. (2019b) Air pollution 513 

https://doi.org/10.5194/egusphere-2024-69
Preprint. Discussion started: 5 March 2024
c© Author(s) 2024. CC BY 4.0 License.



25 

 

characteristics in China during 2015–2016: Spatiotemporal variations and key meteorological factors. 514 

Science of the Total Environment 648, 902-915. 515 

Li, Y., Schichtel, B.A., Walker, J.T., Schwede, D.B., Chen, X., Lehmann, C.M., Puchalski, M.A., Gay, 516 

D.A., Collett Jr, J.L. (2016) Increasing importance of deposition of reduced nitrogen in the United States. 517 

Proceedings of the National Academy of Sciences 113, 5874-5879. 518 

Lin, W., Xu, X., Ge, B., Liu, X. (2011) Gaseous pollutants in Beijing urban area during the heating period 519 

2007–2008: variability, sources, meteorological, and chemical impacts. Atmospheric Chemistry and 520 

Physics 11, 8157-8170. 521 

Liu, H., Gong, P., Wang, J., Clinton, N., Bai, Y., Liang, S. (2020a) Annual dynamics of global land cover 522 

and its long-term changes from 1982 to 2015. Earth System Science Data 12, 1217-1243. 523 

Liu, H., Jacob, D.J., Bey, I., Yantosca, R.M. (2001) Constraints from 210Pb and 7Be on wet deposition 524 

and transport in a global three‐dimensional chemical tracer model driven by assimilated meteorological 525 

fields. Journal of Geophysical Research: Atmospheres 106, 12109-12128. 526 

Liu, L., Yang, Y., Xi, R., Zhang, X., Xu, W., Liu, X., Li, Y., Liu, P., Wang, Z. (2021) Global Wet‐Reduced 527 

Nitrogen Deposition Derived From Combining Satellite Measurements With Output From a Chemistry 528 

Transport Model. Journal of Geophysical Research: Atmospheres 126, e2020JD033977. 529 

Liu, L., Zhang, X., Wong, A.Y., Xu, W., Liu, X., Li, Y., Mi, H., Lu, X., Zhao, L., Wang, Z. (2019) 530 

Estimating global surface ammonia concentrations inferred from satellite retrievals. Atmospheric 531 

Chemistry and Physics 19, 12051-12066. 532 

Liu, L., Zhang, X., Xu, W., Liu, X., Lu, X., Wei, J., Li, Y., Yang, Y., Wang, Z., Wong, A.Y. (2020b) 533 

Reviewing global estimates of surface reactive nitrogen concentration and deposition using satellite 534 

retrievals. Atmospheric Chemistry and Physics 20, 8641-8658. 535 

Liu, Y., Zhou, Y., Lu, J. (2020c) Exploring the relationship between air pollution and meteorological 536 

conditions in China under environmental governance. Scientific reports 10, 14518. 537 

Luo, Z., Zhang, Y., Chen, W., Van Damme, M., Coheur, P.-F., Clarisse, L. (2022) Estimating global 538 

ammonia (NH 3) emissions based on IASI observations from 2008 to 2018. Atmospheric Chemistry and 539 

Physics 22, 10375-10388. 540 

Ma, R., Yu, K., Xiao, S., Liu, S., Ciais, P., Zou, J. (2022) Data‐driven estimates of fertilizer‐induced soil 541 

NH3, NO and N2O emissions from croplands in China and their climate change impacts. Global Change 542 

Biology 28, 1008-1022. 543 

McDuffie, E.E., Smith, S.J., O'Rourke, P., Tibrewal, K., Venkataraman, C., Marais, E.A., Zheng, B., 544 

Crippa, M., Brauer, M., Martin, R.V. (2020) A global anthropogenic emission inventory of atmospheric 545 

pollutants from sector-and fuel-specific sources (1970–2017): an application of the Community 546 

Emissions Data System (CEDS). Earth System Science Data 12, 3413-3442. 547 

Nazarenko, L.S., Tausnev, N., Russell, G.L., Rind, D., Miller, R.L., Schmidt, G.A., Bauer, S.E., Kelley, 548 

M., Ruedy, R., Ackerman, A.S. (2022) Future climate change under SSP emission scenarios with GISS‐549 

E2. 1. Journal of Advances in Modeling Earth Systems 14, e2021MS002871. 550 

Pan, Y., Tian, S., Zhao, Y., Zhang, L., Zhu, X., Gao, J., Huang, W., Zhou, Y., Song, Y., Zhang, Q. (2018) 551 

Identifying ammonia hotspots in China using a national observation network. Environmental science & 552 

technology 52, 3926-3934. 553 

Paulot, F., Jacob, D.J., Pinder, R., Bash, J., Travis, K., Henze, D. (2014) Ammonia emissions in the 554 

United States, European Union, and China derived by high‐resolution inversion of ammonium wet 555 

deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3). Journal 556 

of Geophysical Research: Atmospheres 119, 4343-4364. 557 

https://doi.org/10.5194/egusphere-2024-69
Preprint. Discussion started: 5 March 2024
c© Author(s) 2024. CC BY 4.0 License.



26 

 

Potapov, P., Hansen, M.C., Pickens, A., Hernandez-Serna, A., Tyukavina, A., Turubanova, S., Zalles, V., 558 

Li, X., Khan, A., Stolle, F. (2022) The global 2000-2020 land cover and land use change dataset derived 559 

from the Landsat archive: first results. Frontiers in Remote Sensing 3, 856903. 560 

Qi, L., Zheng, H., Ding, D., Wang, S. (2023) Responses of sulfate and nitrate to anthropogenic emission 561 

changes in eastern China-in perspective of long-term variations. Science of the Total Environment 855, 562 

158875. 563 

Qu, Z., Henze, D.K., Cooper, O.R., Neu, J.L. (2020) Impacts of global NO x inversions on NO 2 and 564 

ozone simulations. Atmospheric Chemistry and Physics 20, 13109-13130. 565 

Shi, X., Zhao, C., Jiang, J.H., Wang, C., Yang, X., Yung, Y.L. (2018) Spatial representativeness of PM2. 566 

5 concentrations obtained using observations from network stations. Journal of Geophysical Research: 567 

Atmospheres 123, 3145-3158. 568 

Van Damme, M., Whitburn, S., Clarisse, L., Clerbaux, C., Hurtmans, D., Coheur, P.-F. (2017) Version 2 569 

of the IASI NH 3 neural network retrieval algorithm: near-real-time and reanalysed datasets. 570 

Atmospheric Measurement Techniques 10, 4905-4914. 571 

Von Schneidemesser, E., Monks, P.S., Allan, J.D., Bruhwiler, L., Forster, P., Fowler, D., Lauer, A., 572 

Morgan, W.T., Paasonen, P., Righi, M. (2015) Chemistry and the linkages between air quality and climate 573 

change. Chemical reviews 115, 3856-3897. 574 

Wang, M., Xiao, M., Bertozzi, B., Marie, G., Rörup, B., Schulze, B., Bardakov, R., He, X.-C., Shen, J., 575 

Scholz, W. (2022) Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation. Nature 605, 576 

483-489. 577 

Wang, T., Song, Y., Xu, Z., Liu, M., Xu, T., Liao, W., Yin, L., Cai, X., Kang, L., Zhang, H., Zhu, T. (2020) 578 

Why is the Indo-Gangetic Plain the region with the largest NH3 column in the globe during pre-monsoon 579 

and monsoon seasons? Atmos. Chem. Phys. 20, 8727-8736. 580 

Wang, Y., Li, W., Gao, W., Liu, Z., Tian, S., Shen, R., Ji, D., Wang, S., Wang, L., Tang, G. (2019) Trends 581 

in particulate matter and its chemical compositions in China from 2013–2017. Science China Earth 582 

Sciences 62, 1857-1871. 583 

Warner, J., Dickerson, R., Wei, Z., Strow, L.L., Wang, Y., Liang, Q. (2017) Increased atmospheric 584 

ammonia over the world's major agricultural areas detected from space. Geophysical Research Letters 585 

44, 2875-2884. 586 

Wen, L., Xue, L., Wang, X., Xu, C., Chen, T., Yang, L., Wang, T., Zhang, Q., Wang, W. (2018) 587 

Summertime fine particulate nitrate pollution in the North China Plain: increasing trends, formation 588 

mechanisms and implications for control policy. Atmospheric Chemistry and Physics 18, 11261-11275. 589 

Wesely, M. (2007) Parameterization of surface resistances to gaseous dry deposition in regional-scale 590 

numerical models. Atmospheric Environment 41, 52-63. 591 

Whitburn, S., Van Damme, M., Clarisse, L., Bauduin, S., Heald, C., Hadji‐Lazaro, J., Hurtmans, D., 592 

Zondlo, M.A., Clerbaux, C., Coheur, P.F. (2016a) A flexible and robust neural network IASI‐NH3 593 

retrieval algorithm. Journal of Geophysical Research: Atmospheres 121, 6581-6599. 594 

Whitburn, S., Van Damme, M., Clarisse, L., Turquety, S., Clerbaux, C., Coheur, P.F. (2016b) Doubling 595 

of annual ammonia emissions from the peat fires in Indonesia during the 2015 El Niño. Geophysical 596 

Research Letters 43, 11,007-011,014. 597 

Xu, L., Chen, X., Chen, J., Zhang, F., He, C., Zhao, J., Yin, L. (2012) Seasonal variations and chemical 598 

compositions of PM2. 5 aerosol in the urban area of Fuzhou, China. Atmospheric Research 104, 264-599 

272. 600 

Xu, W., Zhang, L., Liu, X. (2019) A database of atmospheric nitrogen concentration and deposition from 601 

https://doi.org/10.5194/egusphere-2024-69
Preprint. Discussion started: 5 March 2024
c© Author(s) 2024. CC BY 4.0 License.



27 

 

the nationwide monitoring network in China. Scientific data 6, 1-6. 602 

Zaehle, S. (2013) Terrestrial nitrogen–carbon cycle interactions at the global scale. Philosophical 603 

Transactions of the Royal Society B: Biological Sciences 368, 20130125. 604 

Zhang, L., Guo, X., Zhao, T., Gong, S., Xu, X., Li, Y., Luo, L., Gui, K., Wang, H., Zheng, Y. (2019) A 605 

modelling study of the terrain effects on haze pollution in the Sichuan Basin. Atmospheric Environment 606 

196, 77-85. 607 

Zhang, X., Ward, B.B., Sigman, D.M. (2020) Global nitrogen cycle: critical enzymes, organisms, and 608 

processes for nitrogen budgets and dynamics. Chemical reviews 120, 5308-5351. 609 

Zhang, X., Wu, Y., Liu, X., Reis, S., Jin, J., Dragosits, U., Van Damme, M., Clarisse, L., Whitburn, S., 610 

Coheur, P.-F. (2017) Ammonia emissions may be substantially underestimated in China. Environmental 611 

science & technology 51, 12089-12096. 612 

Zhang, Y., Mathur, R., Bash, J.O., Hogrefe, C., Xing, J., Roselle, S.J. (2018) Long-term trends in total 613 

inorganic nitrogen and sulfur deposition in the US from 1990 to 2010. Atmospheric Chemistry and 614 

Physics 18, 9091-9106. 615 

 616 

 617 

https://doi.org/10.5194/egusphere-2024-69
Preprint. Discussion started: 5 March 2024
c© Author(s) 2024. CC BY 4.0 License.


