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Abstract 12 

High contents of reactive nitrogen components aggravate air pollution and could also impact 13 

ecosystem structure and function across the terrestrial-aquatic-marine continuum. However, the 14 

long-term historical trends and future prediction of reactive nitrogen components at the global scale 15 

still remains high uncertainties. In our study, the field observations, satellite products, model output, 16 

and many other covariates were integrated into the multi-stage machine-learning model to capture 17 

the global patterns of reactive nitrogen components during 2000-2019. In order to decrease the 18 

estimate uncertainties in the future scenarios, the constructed reactive nitrogen component dataset 19 

during the historical period was then utilized as the constraint to calibrate the CMIP6 dataset in four 20 

scenarios. The results suggested the cross-validation (CV) R2 values of four species showed satisfied 21 

performance (R2 > 0.55). The concentrations of estimated reactive nitrogen components in China 22 

experienced persistent increases during 2000-2013, while they suffered from drastic decreases since 23 

2013 except NH3. It might be associated with the impact of clean air policy. However, these 24 

compounds in Europe and the United States remained relatively stable since 2000. In the future 25 

scenarios, SSP3-7.0 (traditional energy scenario) and SSP1-2.6 (carbon neutrality scenario) showed 26 

the highest and lowest reactive nitrogen component concentrations, respectively. Although the 27 

reactive nitrogen concentrations in some heavy-pollution scenarios (SSP3-7.0) also experienced 28 

decreases during 2020-2100, SSP1-2.6 and SSP2-4.5 (middle emission scenario) still kept more 29 
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rapid decreasing trends. Our results emphasize the need for carbon-neutrality pathway to reduce 30 

global atmospheric N pollution. 31 

1. Introduction 32 

Along with the development of global urbanization and industrialization, the anthropogenic 33 

emissions of reactive nitrogen (e.g., NOx, NH3) experienced drastic increases during the past 34 

decades, and caused the higher concentrations of NO2, NH3, and many secondary components such 35 

as NO3
- (NO3-N), NH4

+ (NH4-N), and HNO3 (Chen et al., 2021; Liu et al., 2020b; McDuffie et al., 36 

2020). The reactive nitrogen released from anthropogenic source could significantly alter the global 37 

nitrogen cycle throughout the Earth system (Altieri et al., 2021; Zhang et al., 2020). Reactive 38 

nitrogen in the atmosphere dominates the chemical formation of tropospheric O3 and aggravates the 39 

particle pollution (Geddes and Martin, 2017), with implications for global air quality and climate 40 

change (He et al., 2022; Von Schneidemesser et al., 2015). Moreover, the ambient reactive nitrogen 41 

could be deposited into the land surface and could cause lake eutrophication and soil acidification 42 

(Bouwman et al., 2002; Chen et al., 2018). Therefore, it is highly necessary to understand the spatial 43 

distributions and temporal evolution trends of reactive nitrogen components at the global scale.  44 

Despite the global importance, observational constraints on reactive nitrogen in the atmosphere 45 

were still scarce in most parts of the world (Liu et al., 2020b). Furthermore, the majority of 46 

monitoring sites focused on China, Europe, and the United States (Du et al., 2014; Li et al., 2020; 47 

Li et al., 2019a; Li et al., 2016), and these uneven sites only possessed limited spatial 48 

representativeness (Shi et al., 2018), which restricted the accurate assessment of global reactive 49 

nitrogen pollution. Fortunately, the satellite observations gave us a unprecedent chance to capture 50 

the global variations of atmospheric reactive nitrogen. Geddes et al. (2017) used the satellite 51 

products to calibrate the simulated reactive nitrogen oxides (NOy) and improved the predictive 52 

performance (R = 0.83) compared with the chemical transport model (CTM) output alone (Geddes 53 

and Martin, 2017). Afterwards, Liu et al. (2022) also used the similar method to estimate the global 54 

wet deposition of reduced nitrogen (NH4
+) and the R value achieved 0.80(Liu et al., 2021). Although 55 

the calibration based on satellite products could improve the predictive accuracy compared with 56 

CTM output, the simulated values still largely biased from the ground-level observations. Moreover, 57 

the method cannot accurately fill the gaps of reactive nitrogen concentrations without satellite 58 
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coverage. In our previous works, we developed a satellite-based ensemble machine-learning model 59 

to predict the wet NH4
+ deposition across China and the R2 value reached 0.76 (R = 0.88) (Li et al., 60 

2020). However, this technique was not expanded to the global scale and the high-accuracy and full-61 

coverage global ambient reactive nitrogen dataset was still lack.  62 

Apart from the historical estimates, the future prediction of reactive nitrogen is also important 63 

because these components in the future scenarios could significantly affect the land carbon cycle 64 

and greenhouse gas emissions, both of which could aggravate the global climate change and affect 65 

the earth system safety (Chen et al., 2015; Zaehle, 2013). To the best of our knowledge, only two 66 

studies focused on global aerosol prediction in the future scenarios. Chen et al. (2023) predicted the 67 

global PM2.5 levels and associated mortalities in 2100 under different climate scenarios and found 68 

that SSP3-7.0 scenario was linked with the highest PM2.5 exposure. Li et al., (2022) also simulated 69 

the global NO3
- (NO3-N) and NH4

+ (NH4-N) levels in the future four scenarios and demonstrated 70 

that both of these components showed marked decreases in most cases except SSP5-8.5 scenario. 71 

However, this study predicted the future reactive nitrogen based on historical CTM output alone, 72 

which lacks of observation constraints. The result might increase the uncertainty of assessment.   73 

In our study, we developed a multi-stage model to estimate the concentrations of four reactive 74 

nitrogen species (NO3
- (NO3-N), HNO3, NH3, and NH4

+ (NH4-N)) during 2000-2019 because these 75 

species were most important reactive nitrogen components for human health and ecological 76 

ecosystem and also showed abundant ground-level observations. Then, the species over the 2020-77 

2100 period under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios were also corrected 78 

based on the historical estimates. Finally, the long-term dataset of reactive nitrogen during 2000-79 

2100 was constructed. Our results were beneficial to assess the impacts of reactive nitrogen 80 

components on air pollution and climate change in the future. 81 

2. Material and methods 82 

2.1 Reactive nitrogen observations 83 

Most of reactive nitrogen observations focused on East Asia, Europe, and the United States. The 84 

monthly reactive nitrogen components monitoring data during 2010-2015 in China were 85 

downloaded from nationwide nitrogen deposition monitoring network (NNDMN) including 32 sites, 86 

and these sites could be classified into three types mixed with urban, rural, and background sites 87 
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(Xu et al., 2019) (Table S1). The concentrations of reactive nitrogen components were determined 88 

using the active DEnuder for Long-Term Atmospheric sampling system (DELTA). The detailed 89 

sampling and analysis procedures have been described by Xu et al. (2019). The dataset of reactive 90 

nitrogen components in other countries of East Asia during 2000-2019 were download from the 91 

Acid Deposition Monitoring Network in East Asia (EANET), which includes 41 sites. The European 92 

Monitoring and Evaluation Programme (EMEP) provides records of long-term reactive nitrogen 93 

components in 86 sites of most countries across West Europe. Monthly reactive nitrogen 94 

components dataset in 84 locations across the United States could be obtained from the Clean Air 95 

Status and Trends Network (CASTNET) (Figure S1). 96 

2.2 Data preparation 97 

The GEOS-Chem (v13.4.0) model driven by MERRA2 meteorological parameters was applied 98 

to simulate the historical reactive nitrogen components (daily) during 2000-2019 (Feng et al., 2021). 99 

The GEOS‐Chem model was composed of detailed ozone‐NOx‐VOC‐PM‐halogen tropospheric 100 

chemistry. The grid version of the model with a horizontal resolution of 2° × 2.5° was utilized. Wet 101 

deposition contained many processes including sub-grid scavenging in convective updrafts, in-102 

cloud rainout, and below-cloud washout (Liu et al., 2001). Dry deposition was estimated based on 103 

a resistance-in-series model (Wesely, 2007). The estimates of aerosol optical properties account for 104 

the hygroscopic growth (Drury et al., 2010). Vertical mixing in the boundary layer follows a non-105 

local scheme implemented by Lin and McElroy (2010), and convection employs the relaxed 106 

Arakawa-Schubert scheme. The anthropogenic emission inventory in 2000-2019 was downloaded 107 

from the website of Community Emissions Data System (CEDS) (Hoesly et al., 2018). CEDS 108 

emission inventory includes eight sectors such as agriculture, energy, industry, residential, shipping, 109 

solvents, transportation, and waste incineration. Then, the daily reactive nitrogen components were 110 

averaged to the monthly scale.  111 

 The IASI instrument aboard on the polar sun-synchronous MetOp platform traverses the 112 

equation twice each day (9:30 a.m. and 9:30 p.m. local solar time) (Whitburn et al., 2016a). The 113 

measurements in the daytime usually shows the better accuracy than those at night due to the high 114 

sensitivity to ambient NH3 (Van Damme et al., 2017; Whitburn et al., 2016a; Whitburn et al., 2016b). 115 

In our study, we used the IASI NH3 columns in morning during 2008-2019 to estimate the NH3 and 116 
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NH4
+ concentrations globally. Besides, the NH3 column dataset with a cloud shield higher than 25% 117 

and relative error above 100% were eliminated. 118 

The tropospheric vertical column density (VCD) of NO2 retrieved from OMI aboard on Aura 119 

satellite crosses the earth once a day (Kim et al., 2016). OMI-derived tropospheric NO2 column 120 

densities during 2005-2019 was applied to develop the model. The tropospheric NO2 column density 121 

data with cloud radiance fraction > 0.5, terrain reflectivity > 30%, and solar zenith angles > 85° 122 

were screened (Cooper et al., 2022). Additionally, the NO2 columns from GOME (1995-2003), 123 

SCIAMACHY (2002-2011) and GOME-2 (2007-) were also collected to simulate the NO3
- (NO3-124 

N) and HNO3 levels. The similar overpass time of these three instruments (from about 09:30 to 125 

10:30 LT, local time) facilitates the simultaneous use to capture consistent long-term coverage. 126 

However, the dataset cannot cover the NO2 columns since 2017. To overcome the inconsistency of 127 

these satellite products, we applied the linear regression technique to construct the relationship 128 

between OMI-NO2 columns and GOME/SCIAMACHY NO2 columns. The results suggested these 129 

satellite products showed good relationship (R2 > 0.6). At last, the long-term (2000-2019) NO2 130 

columns at the global scale were constructed.  131 

The monthly meteorological parameters derived from ERA-5 comprise of 2 m dewpoint 132 

temperature (D2m), 2 m temperature (T2m), surface pressure (Sp), and total precipitation (Tp), 10 m 133 

U wind component (U10), and 10 m V wind component (V10). The population density data during 134 

2000-2020 around the world were downloaded from 135 

https://hub.worldpop.org/geodata/listing?id=64. The elevation data was extracted from ETOPO at a 136 

spatial resolution of 1’ (Amante and Eakins, 2009) (https://rda.ucar.edu/datasets/ds759.4/). In 137 

addition, the land use types including cropland, forest, grassland, shrubland, tundra, barren land, 138 

and snow/ice were obtained from Liu et al. (2020a). Besides, the CMIP6 dataset in four scenarios 139 

were also applied to predict the reactive nitrogen concentrations during 2020-2100. The dataset 140 

includes 2-m air temperatures, wind speed at 850 and 500 hPa, total cloud cover, precipitation, 141 

relative humidity, and short-wave radiation. The modelled meteorological parameters derived from 142 

16 earth system models were incorporated into the machine-learning model. The detailed models 143 

are summarized in Table S2. 144 

2.3 Model development 145 

https://hub.worldpop.org/geodata/listing?id=64
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A three-stage model was established to capture the full-coverage reactive nitrogen dataset at 146 

the global scale (Figure 1). In the first stage, the ground-level reactive nitrogen species, satellite 147 

products (e.g., OMI-NO2 and IASI-NH3 columns), meteorological parameters, land use types, 148 

population, and simulated reactive nitrogen components derived from GEOS-Chem model were 149 

collected as the independent variables to estimate the gridded reactive nitrogen species at the 150 

period/grid with satellite product based on XGBoost algorithm. In the second stage, the 151 

meteorological parameters, GEOS-Chem output, land use types, and population were applied to fill 152 

the gaps without satellite retrievals. Then, the simulated results based on these models were fused 153 

to obtain the full-coverage reactive nitrogen components and the ground-level observations were 154 

further used to calibrate the full-coverage dataset and the final reactive nitrogen components at the 155 

global scale were simulated. In the last stage, the reactive nitrogen components and meteorological 156 

parameters in four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) during 2020-2100 were 157 

collected from CMIP6 dataset including 16 earth system models (Table S2). Then, the data in the 158 

future scenarios were integrated into the ensemble model including XGBoost, LightGBM, and 159 

convolutional neural networks (CNN) to further calibrate the modeling results based on historical 160 

dataset (2000-2019) derived from previous two-stage model. The detailed equations of multiple 161 

machine-learning models are summarized as follows: 162 

(1) XGBoost model 163 

( 1) ( 1)

( 1) ( 1) ( 1)
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where F(t) is the cost function at the t-th period;    is the derivative of the function; ( 1)

2
ty −  165 

represents the second derivative of the function; l denotes the differentiable convex loss function 166 

that reveals the difference of the predicted value ( y


) of the i-th instance at the t-th period and the 167 

target value (yi); ft(x) represents the increment; ( )tf   reflects the regularizer. Maximum tree 168 

depth and learning rate reached 15 and 0.1, respectively.  169 

(2) LightGBM model 170 
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where Q(y,f(x)) reflects the a specific loss function; 
1
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t

t
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=

   denotes the regression trees. 173 

Maximum tree depth, learning rate, and feature fraction reached 25, 0.2, and 0.7, respectively. 174 

(3) CNN model 175 

The reactive nitrogen species and meteorological parameters in the future scenarios were applied to 176 

CNN model based on the historical (2000-2019) reactive nitrogen species derived from stage 1-2 177 

model.  178 

:f U Netx y−⎯⎯⎯⎯→     (4) 179 

where x (x1, x2,……, xn) represents the reactive nitrogen species and meteorological parameters 180 

derived from CMIP6 dataset; y (y1, y2, ……, yn) denotes the historical (2000-2019) reactive nitrogen 181 

species.  182 

All of the convolution layers showed the same kernel size of 3×3 and used rectified linear unit 183 

(ReLU) as the activation function. Max-pooling layers were employed for adjusting the size of 184 

images to capture better bottleneck information. After each block, the image size could be halved 185 

by using the max pooling layer with kernel size of 2×2, but the number of channels will be doubled. 186 

In our study, the learning rate was set as 0.1 to achieve the best performance.  187 

All of the independent variables collected from multiple sources were resampled to 0.25° grids 188 

using Kriging interpolation. For example, both of the population density and land use types in each 189 

grid were calculated using spatial clipping toolbox. Later on, all of these variables were combined 190 

to develop the model. During the development of multi-stage model, it was highly imperative to 191 

remove some redundant explanatory variables and then determine the optimal variable group. The 192 

redundant variables means that the overall predictive accuracy could degrade after the removal of 193 

these variables. 194 

3. Results and discussion 195 

3.1 The modelling performance of historical reactive nitrogen estimates 196 

The multi-stage model was applied to capture the spatiotemporal variations of reactive nitrogen 197 

concentrations during 2000-2100. In our study, we employed XGBoost model to construct the full-198 
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coverage reactive nitrogen dataset during 2000-2020. The cross-validation (CV) R2 values of the 199 

model for NO3
- (NO3-N), HNO3, NH3, and NH4

+ (NH4-N) estimates reached 0.67, 0.62, 0.58, and 200 

0.60, respectively (Figure 2). RMSE of NO3
- (NO3-N), HNO3, NH3, and NH4

+ (NH4-N) were 0.55, 201 

0.23, 2.32, and 1.71 μg N m-3, respectively. MAE of NO3
- (NO3-N), HNO3, NH3, and NH4

+ (NH4-202 

N) reached 0.19, 0.13, 1.23, and 0.59 μg N m-3. The CV R2 values of NO3
- (NO3-N), HNO3, and 203 

NH4
+ (NH4-N) estimates were significantly higher than Jia et al. (2016) (0.22, 0.41, and 0.49), while 204 

the CV R2 value of NO3
- estimate in our study was comparable to Geddes et al. (2017) (0.68) 205 

(Geddes and Martin, 2017). The CV R2 value of NH3 estimates were also close to the results 206 

obtained by Liu et al. (2019) (0.45-0.71) (Liu et al., 2019). Overall, the predictive performances 207 

historical reactive nitrogen was satisfied. Although the CV R2 values in our study were not 208 

significantly higher than those in some previous studies, our study developed the full-coverage (gap-209 

free) ambient reactive nitrogen dataset, which was superior to some previous studies. Based on the 210 

constructed full-coverage reactive nitrogen dataset, we also developed the ensemble model to 211 

calibrate the CMIP6 dataset in the future scenarios. The CV R2 values of the model for NO3
- (NO3-212 

N), HNO3, NH3, and NH4
+ (NH4-N) estimates in the future scenarios reached 0.62, 0.67, 0.56, and 213 

0.60, respectively (Figure S2). RMSE of NO3
- (NO3-N), HNO3, NH3, and NH4

+ (NH4-N) were 0.58, 214 

0.26, 2.12, and 1.91 μg N m-3, respectively. MAE of NO3
- (NO3-N), HNO3, NH3, and NH4

+ (NH4-215 

N) reached 0.22, 0.22, 1.04, and 0.65 μg N m-3. Overall, the ensemble model for these species in the 216 

future scenarios still showed satisfied performance, and thus the result could be treated to be robust. 217 

3.2 The spatial patterns of nitrogen reactive components  218 

     The global annual mean concentrations of NO3
-, HNO3, NH3, and NH4

+ during 2000-2019 219 

ranged from 0.03 to 9.08, 0.03 to 1.73, 0.21 to 13.9, and 0.08 to 17.1 μg N m-3 with the mean values 220 

of 0.43 ± 0.24 (standard deviation over grids), 0.28 ± 0.13, 1.79 ± 0.85, and 0.65 ± 0.36 μg N m-3 221 

(Figure S3), respectively. East Asia especially China, West Europe, and the United States obtained 222 

widespread attention due to the developed economy and dense anthropogenic activity.  223 

In China, the overall mean ambient NO3
- (NO3-N), HNO3, NH3, and NH4

+ (NH4-N) 224 

concentrations reached 1.05 ± 0.62, 0.35 ± 0.19, 4.05 ± 1.84, and 2.38 ± 1.26 μg N m-3, ranging 225 

from 0.07-9.08, 0.06-1.73, 0.84-11.6, and 0.18-13.1 μg N m-3. At the regional scale, the annual mean 226 

NO3
-, HNO3, NH3, and NH4

+ concentrations followed the order of North China Plain (NCP) (4.38, 227 
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1.12, 7.22, and 7.69 μg N m-3) > Sichuan Basin (2.40 ± 1.01, 0.52 ± 0.28, 4.92 ± 1.71, and 6.02 ± 228 

1.82 μg N m-3) (Figure 3). NCP displayed the higher NO3
- and HNO3 concentrations owing to dense 229 

human activities and strong industry foundation (Qi et al., 2023; Wen et al., 2018), which could emit 230 

a large amount of NOx to the atmosphere. In both of Yangtze River Delta (YRD) and Pearl River 231 

Delta (PRD), the combustion of fossil fuels and traffic emissions might be the major source of NOx 232 

emission, which aggravated nitrate events via gas-particle conversion processes (Huang et al., 2017; 233 

Li et al., 2017). For Sichuan Basin, the poor topographical or meteorological conditions were major 234 

factors responsible for the severe nitrate pollution (Zhang et al., 2019). It was not surprising that 235 

high ambient NH3 concentrations focused on NCP and Sichuan Basin because many croplands (dry 236 

land) are distributed on these regions (Karra et al., 2021; Potapov et al., 2022), which was the major 237 

source of NH3 emissions with frequent N fertilizer applications (Ma et al., 2022). Besides, N manure 238 

was another major source of NH3 emissions in China, and the percentage of N manure to NH3 239 

emissions exceeds 50% (Kang et al., 2016). The spatial pattern of NH4
+ level was in good agreement 240 

with the NH3 concentration because NH4
+ was often generated from the reaction of NH3 with SO2 241 

and NO2 (Ehrnsperger and Klemm, 2021). Apart from China, many other countries such as South 242 

Korea and Japan also showed the higher ambient reactive nitrogen concentrations. As shown in 243 

Figure 3, the higher reactive N concentrations occurred on the western coasts of South Korea than 244 

on the eastern coasts. The higher reactive N concentrations in Japan mainly focused on the urban 245 

areas around Tokyo, which might be linked with the dense anthropogenic emission in this region 246 

(Li et al., 2024). In Southeast Asia, Indonesia (NO3
- (NO3-N), HNO3, NH3, and NH4

+ (NH4-N): 0.18, 247 

0.47, 5.72, and 0.44 μg N m-3) suffered from the most serious reactive N pollution compared with 248 

other surrounding countries.  249 

In Europe, the ambient NO3
- (NO3-N), HNO3, NH3, and NH4

+ (NH4-N) concentrations ranged 250 

from 0.13 to 2.84, 0.06 to 0.92, 0.35 to 7.81, and 0.22 to 3.77 μg N m-3, respectively. The annual 251 

mean NO3
- (NO3-N), HNO3, NH3, and NH4

+ (NH4-N) levels reached 0.57 ± 0.28, 0.25 ± 0.11, 1.58 252 

± 0.68, and 0.89 ± 0.42 μg N m-3, respectively (Figure 4). High concentrations of reactive nitrogen 253 

components focused on the northern part of Italy, central and southern part of Germany, North 254 

France, Poland, and the western part of Russia, which was in good agreement with the spatial pattern 255 

of NOx and NH3 emissions (Luo et al., 2022; Qu et al., 2020). Emissions Database for Global 256 
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Atmospheric Research (EDGAR) suggested that N fertilization and N manure accounted for 43% 257 

and 53% of total NH3 emissions in western Europe (Liu et al., 2019), respectively. Furthermore, Liu 258 

et al. (2019) confirmed that a good relationship between ambient NH3 level and N fertilization plus 259 

N manure (r = 0.62) was observed in Europe. Cooper et al. (2017) employed the inversion model to 260 

estimate NOx emission in Europe and also found that high NOx emission was also mainly distributed 261 

on North France, Germany, the northern part of Italy, and Russia, which partly explained the higher 262 

concentrations of reactive nitrogen components in these regions.  263 

    In the United States, the ambient NO3
- (NO3-N), HNO3, NH3, and NH4

+ (NH4-N) 264 

concentrations reached 0.28 ± 0.12, 0.19 ± 0.08, 2.12 ± 0.66, and 0.49 ± 0.25 μg N m-3, with the 265 

range of 0.03-2.35, 0.03-1.31, 0.26-9.96, and 0.10-6.09 μg N m-3 (Figure 5), respectively. The 266 

hotspots of NO3
- (NO3-N), HNO3, and NH4

+ (NH4-N) levels focused on the eastern part of the United 267 

States, while the higher NH3 concentration focused on Central Great Plains and some regions in 268 

California such as San Joaquin Valley (6.15 μg N m-3). Both of bottom-up and top-down NOx and 269 

NH3 emissions suggested that the spatial distributions of reactive nitrogen components were 270 

strongly dependent on the precursor emissions (McDuffie et al., 2020; Qu et al., 2020). 271 

Besides, some other regions such as India (1.4, 0.5, 6.6, and 4.4 μg N m-3) especially the 272 

northern part of India (3.1, 0.8, 12.6, and 8.4 μg N m-3) also experienced severe reactive N pollution 273 

in the atmosphere. Meanwhile, some countries in South America such Brazil and Argentina and in 274 

Africa such as West Africa Coast (Nigeria, Ivory Coast, Ghana, Togo, and Benin) (HNO3 and NH3: 275 

0.3 and 5.0 μg N m-3) and Democratic Congo (0.4 and 1.6 μg N m-3) also suffered from serious 276 

HNO3 (Brazil and Argentina: 0.3 and 0.2 μg N m-3) and NH3 (3.6 and 2.8 μg N m-3) pollution. The 277 

higher ambient NH3 concentration focused on the northern part of India might be contributed by 278 

two major reasons. First of all, the intensive agricultural activities and high air temperature might 279 

be responsible for the higher NH3 level (Cui, 2023; Wang et al., 2020). Moreover, the relatively low 280 

sulfur dioxide (SO2) and nitrogen oxides (NOx) emissions coupled with high air temperature 281 

restricted the gas-to-particle conversion of NH3 (Wang et al., 2020). The severe HNO3 and NH3 282 

pollution in Brazil, Argentina, and West Africa Coast might be also linked with the dense agricultural 283 

activities (Huneeus et al., 2017). 284 

3.3 The seasonal variations of reactive nitrogen components 285 
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The ambient NO3
- (NO3-N), HNO3, NH3, and NH4

+ (NH4-N) concentrations exhibited 286 

significant seasonal variations (Figure S4-8). NO3
-, HNO3, and NH4

+ displayed the highest and 287 

lowest values in winter (December-February) and summer (June-August), respectively. On the one 288 

hand, the anthropogenic NOx emission for domestic heating might be higher in winter compared 289 

with other seasons (Lin et al., 2011). On the other hand, the stagnant meteorological conditions 290 

limited the pollutant diffusion (Li et al., 2019b; Liu et al., 2020c). Meanwhile, the higher relative 291 

humidity in winter facilitated the formation of NH4NO3 (Huang et al., 2016; Xu et al., 2012). 292 

However, both of ambient NO3
- and NH4

+ concentrations showed the lower concentrations in 293 

summer, which might be attributable to the decomposition of NH4NO3 under the condition of high 294 

air temperature. In contrast to the secondary inorganic nitrogen, the ambient NH3 level showed the 295 

highest concentration in summer (1.71 ± 0.45 μg N m-3). China, Europe, and the United States 296 

suffered from similar NH3 peaks in summer (4.20 ± 1.85, 1.77 ± 0.65, and 2.21 ± 1.04 μg N m-3). 297 

There are two reasons accounting for the fact. At first, mineral N fertilizer or manure application 298 

was mainly performed in spring and early summer (Paulot et al., 2014). Many field observations 299 

have obtained similar NH3 peak in summer (He et al., 2021; Pan et al., 2018). Moreover, summer 300 

often showed the higher air temperature, which promotes the volatilization of ammonium and limits 301 

the gas-to-particle of gaseous NH3 (Liu et al., 2019).  302 

3.4 The historical trends of reactive nitrogen components during 2000-2019 303 

The long-term trends of ambient NO3
- (NO3-N), HNO3, NH3, and NH4

+ (NH4-N) concentrations 304 

are shown in Figure 6 and Figure S9-12. The NO3
- concentration in China displayed rapid increase 305 

(9.7%/yr) during 2000-2007, and then it kept the moderate increase (4.2%/yr) during 2007-2013. 306 

However, the NO3
- (NO3-N) concentration in China experienced the drastic decrease (-2.6%/yr) 307 

since 2013. The ambient HNO3 and NH4
+ (NH4-N) concentrations showed similar trends during this 308 

period. Due to the impact of Clean Air Action, the concentrations of gaseous precursors (e.g., SO2 309 

and NOx) suffered from substantial decreases, which could be transformed into nitrate and 310 

ammonium via heterogeneous reactions (Huang et al., 2019). However, the decreasing rates of NO3
- 311 

were still much lower than those of gaseous precursors (Li et al., 2023). On the one hand, it might 312 

be associated with the increased O3 level and enhanced atmospheric oxidation capacity (AOC), 313 

which led to an increase in the photochemical reaction rate of the secondary components (Wang et 314 
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al., 2019). On the other hand, strong SO2 emission control under the Clean Air Action allowed more 315 

gaseous NH3 to form nitrate. The ambient NH3 level remained relatively stable status during 2000-316 

2013, while it experienced rapid increases after 2013. The result was in good agreement with Liu et 317 

al. (2019). In fact, the ambient NH3 level in North China Plain still experienced dramatic increase 318 

(> 0.2 μg N m-3/yr) during 2000-2013 because enhanced agricultural activities. Zhang et al. (2017) 319 

have demonstrated that the livestock manure and fertilizer application generally accounted for 43% 320 

and 36% of the agricultural NH3 emission, respectively. Since 2013, the NH3 concentration in the 321 

entire China suffered from rapid increase, which might be associated with the drastic decrease of 322 

sulfate. It was well known that NH3 could react with HNO3 and gaseous H2SO4 to generate ammonia 323 

sulfate and ammonia nitrate (Wang et al., 2022; Wang et al., 2019). Substantial decreases of acidic 324 

gases (e.g., SO2) lead to the reduction of NH3 conversion to ammonia salts in the atmosphere (Chen 325 

et al., 2019), which result in excess NH3 remaining in the gaseous phase. Different from China, the 326 

reactive N concentrations in some other Asia and Africa countries especially India (NO3
-, HNO3, 327 

NH3, and NH4
+: 54%, 46%, 11%, and 94%), South Korea (76%, 42%, 40%, and 9%), Indonesia 328 

(21%, 5%, 14%, and 41%), Democratic Congo (9%, 16%, 145%, 41%), and West Africa Coast (4%, 329 

11%, 37%, and 106%) still exhibited stable increases during 2000-2019. The results indicated that 330 

no strong reactive N emission control measures were implemented in these countries, which should 331 

be further exerted imperatively.  332 

Compared with China, the long-term trends of reactive nitrogen components Europe and the 333 

United States were relatively stable. In the Europe, the concentrations of NO3
- (NO3-N), HNO3, and 334 

NH3 exhibited increases during 2000-2007 (0.7%/yr, 2.3%/yr, and 2.1%/yr), while they experienced 335 

slight decreases after 2007. The NH4
+ (NH4-N) level displayed continuous decrease since 2000. The 336 

result was closely linked with the trends of NOx and NH3 emissions derived from satellite retrieval 337 

(Cooper et al., 2017; Luo et al., 2022). In the United States, both of NO3
- and NH4

+ showed persistent 338 

decreases during 2000-2019. Zhang et al. (2018) have confirmed that NOx emission in the eastern 339 

US has experienced persistent decrease since 1990, which facilitated the decreases of NO3
- and 340 

NH4
+ levels. However, the ambient HNO3 and NH3 concentrations displayed slight increases during 341 

2000-2007 (2.1%/yr), and then remained relatively stable since 2007. Liu et al. (2019) also found 342 

similar characteristic of ambient NH3 trend in the United States. In fact, the NH3 concentrations in 343 
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the Middle Plain and eastern US still showed increases due to the lack of NH3 emission control 344 

policies as well as the decline in acidic gases (Warner et al., 2017). The reactive N concentrations 345 

in some countries in South America such as Brazil (9%, 0%, 13%, and 34%) and Argentina (10%, 346 

12%, 18%, and 7%) also remained relatively stable because local anthropogenic emission of reactive 347 

N did not show dramatic increases in the past two decades (McDuffie et al., 2020). 348 

3.5 Projection of future ambient reactive nitrogen components 349 

     For the future reactive nitrogen component estimates, the ensemble model was applied to 350 

predict the reactive nitrogen component concentrations under the SSP1-2.6, SSP2-4.5, SSP3-7.0, 351 

and SSP5-8.5 scenarios. SSP1-2.6 represents the low emission pathways. In SSP1-2.6, the projected 352 

average NO3
- concentrations in most countries experienced rapid decreases from 2020 to 2100 353 

(Figure 7 and Table 1). The mean concentrations of NO3
- in China, India, Europe, and the United 354 

States decreased from 1.16 ± 0.35, 1.23 ± 0.42, 0.41 ± 0.14, and 0.27 ± 0.09 μg N m-3 to 0.33 ± 0.10, 355 

0.65 ± 0.21, 0.10 ± 0.03, and 0.06 ± 0.02 μg N m-3 during 2020-2100 in SSP1-2.6 scenario, 356 

respectively. Besides, the NO3
- concentrations in many other countries of Africa and South America 357 

such as Brazil (-127%) and Democratic Congo (-162%) also suffered from drastic decreases in this 358 

scenario. SSP2-4.5 scenario represents the middle range of plausible future pathways (Nazarenko 359 

et al., 2022). In this scenario, the predicted average NO3
- concentrations in China, India, Europe, 360 

and the United States decreased from 1.19 ± 0.40, 1.43 ± 0.35, 0.44 ± 0.13, and 0.24 ± 0.08 μg N 361 

m-3 to 0.41 ± 0.14, 0.95 ± 0.32, 0.24 ± 0.08, and 0.05 ± 0.02 μg N m-3 during 2020-2100, respectively. 362 

SSP3-7.0 and SSP5-8.5 denote the less investment in the environment and heavily relies on 363 

traditional energy for rapid economic development, respectively. The ambient NO3
- in these 364 

scenarios generally showed the higher concentrations compared with other scenarios. For instance, 365 

the NO3
- concentrations in China reduced from 1.25 ± 0.40 (SSP3-7.0) and 1.21 ± 0.39 (SSP5-8.5) 366 

to 0.75 ± 0.25 (SSP3-7.0) and 0.58 ± 0.18 (SSP5-8.5) μg N m-3 during 2020-2100 (Figure 8), 367 

respectively. The higher NO3
- concentrations in SSP3-7.0 and SSP5-8.5 might be associated with 368 

the higher anthropogenic NOx emission. Compard with SSP1-2.6 and SSP2-4.5, the NO3
- 369 

concentrations in some countries during SSP3-7.0 and SSP5-8.5 scenarios displayed slight increases 370 

from 2020 to 2040. For instance, the ambient NO3
- concentrations in Indonesia increased by 12% 371 

(SSP3-7.0) and 5% (SSP5-8.5), respectively.  372 
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The temporal variations of ambient HNO3 were similar to those of NO3
- concentrations. The 373 

mean concentrations of HNO3 in China, India, Europe, and the United States decreased from 0.25 374 

± 0.09, 0.50 ± 0.16, 0.18 ± 0.06, and 0.08 ± 0.03 μg N m-3 to 0.05 ± 0.01, 0.24 ± 0.08, 0.05 ± 0.02, 375 

and 0.03 ± 0.01 μg N m-3 during 2020-2100 in SSP1-2.6 scenario (Figure S13-S14 and Table S3), 376 

respectively. However, the decreasing ratios of ambient HNO3 levels especially in some developing 377 

countries such as Democratic Congo (-13%) and West Africa Coast (-47%) were much less than 378 

those of ambient NO3
- levels. For the SSP3-7.0 and SSP5-8.5 scenarios, the HNO3 levels in some 379 

developing countries such as Democratic Congo (18%), West Africa Coast (16%), Indonesia (13%) 380 

even experienced moderate increases. It was assumed that the government gave less investment in 381 

environment improvement and the anthropogenic emission did not show marked decrease under the 382 

condition of SSP3-7.0 scenario (Chen et al., 2023; Chen et al., 2020). 383 

As shown in Figure S15-S18 and Table S4-S5, the higher ambient NH3 and NH4
+ 384 

concentrations also focused on India and North China. In SSP1-2.6, the ambient NH3 (NH4
+) 385 

concentrations in China, India, Europe, and the United States decreased from 3.51 ± 1.12 (2.00 ± 386 

0.62), 6.30 ± 2.12 (4.26 ± 1.42), 1.54 ± 0.51 (0.75 ± 0.24), and 1.79 ± 0.59 (0.53 ± 0.17) μg N m-3 387 

to 1.75 ± 0.58 (0.58 ± 0.19), 2.57 ± 0.85 (1.25 ± 0.41), 1.15 ± 0.36 (0.50 ± 0.16), and 1.58 ± 0.52 388 

(0.45 ± 0.15) μg N m-3 during 2020-2100. Compared with SSP1-2.6, the ambient NH3 and NH4
+ 389 

concentrations in heavy-pollution scenarios (SSP3-7.0, and SSP5-8.5) scenarios did not show 390 

marked decreases from 2020-2100. Some developing countries such as Argentina (9%), Democratic 391 

Congo (25%), and West Africa Coast (24%) even suffered from persistent increases of ambient NH3 392 

and NH4
+ levels. It might be associated with ineffective control of NH3 emission compared with 393 

NOx emission. 394 

3.6 Conclusions and limitations 395 

The ground-level ambient reactive nitrogen observations, satellite retrievals, GEOS-Chem 396 

model output, and many other geographical covariates were integrated into the multi-stage model 397 

to reveal the global patterns of ambient reactive nitrogen components during 2000-2019. Then, these 398 

high-resolution reactive nitrogen dataset during the historical period was then utilized as the 399 

constraint to calibrate the CMIP6 dataset in four scenarios during 2020-2100. The results indicated 400 

the cross-validation (CV) R2 values of four reactive nitrogen species showed satisfied performance 401 
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(R2 > 0.55). At the spatial scale, four reactive nitrogen components exhibited the higher 402 

concentrations in China and India. For the temporal variations, the concentrations of estimated 403 

ambient reactive nitrogen components in China experienced persistent increases during 2000-2013, 404 

while they suffered from drastic decreases since 2013 except NH3, which might be linked with the 405 

impact of clean air policy. However, the concentrations of these species in Europe and the United 406 

States remained relatively stable since 2000. In the future scenarios, SSP3-7.0 (traditional energy 407 

scenario) and SSP1-2.6 (carbon neutrality scenario) displayed the highest and lowest reactive 408 

nitrogen component concentrations, respectively.  409 

Global trends of four reactive nitrogen components during 2000-2100 emphasizes the urgent 410 

mitigation measures (carbon neutrality pathway) to reduce precursor emissions in order to decrease 411 

the concentrations and depositions of reactive nitrogen components especially in China and India. 412 

Furthermore, our result could give valuable insights into the impact of reactive nitrogen components 413 

on human health and ecological environment. However, this study still shows some limitations. First 414 

of all, the observation networks mainly focus on China, Europe, and the United States, and thus the 415 

simulations in many other regions might show large uncertainties. Secondly, both of the GEOS-416 

Chem output and CMIP6 future climate scenario data also exhibits large uncertainties, which could 417 

impact the reliability of this study. Lastly, our predictions were performed on the basis of the premise 418 

that the world was steadily developing, and cannot predict the impacts of uncontrollable factors 419 

(e.g., COVID-19, Russia-Ukraine War). 420 
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Figure 1 The workflow of global full-coverage reactive nitrogen estimates during 2000-2100. 635 

GCoutput denotes the GEOS-Chem output.  636 

 637 
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Figure 2 The predictive performances of four reactive nitrogen components including NO3
- (NO3-638 

N) (a), HNO3 (b), NH3 (c), and NH4
+ (NH4-N) (d). The model was constructed with 90% original 639 

data and the remained data was applied to validate the model. The black solid line denotes the best-640 

fitting curve for all of the points, while the black dashed line represents the diagonal, which means 641 

the same observed and simulated values. The color scale denotes the sample size. 642 
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Figure 3 The spatiotemporal variations of NO3
- (NO3-N), HNO3, NH3, and NH4

+ (NH4-N) 644 

concentrations in East Asia (a-d) (Unit: μg N m-3).  645 

 646 

 647 
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Figure 4 The spatiotemporal variations of NO3
- (NO3-N), HNO3, NH3, and NH4

+ (NH4-N) 648 

concentrations in Europe (a-d) (Unit: μg N m-3). 649 

 650 
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Figure 5 The spatiotemporal variations of NO3
- (NO3-N), HNO3, NH3, and NH4

+ (NH4-N) 652 

concentrations in North America (a-d) (Unit: μg N m-3). 653 
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Figure 6 The long-term variations of NO3
- (NO3-N), HNO3, NH3, and NH4

+ (NH4-N) concentrations 655 

in China (pink), Europe (green), and the United States (cyan) (Unit: μg N m-3). 656 
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Figure 7 Spatial variations of projected global ambient concentrations of reactive nitrogen 658 

components under different climate change scenarios (Unit: μg N m-3). Panels (a-b) represent the 659 

annual mean concentrations of ambient NO3
- (NO3-N) under SSP1-2.6, SSP2-4.5 during 2021-2100, 660 

respectively.  661 

 662 
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Figure 8 Spatial variations of projected global ambient concentrations of reactive nitrogen 664 

components under different climate change scenarios (Unit: μg N m-3). Panels (a-b) represent the 665 

annual mean concentrations of ambient NO3
- (NO3-N) under SSP3-7.0, and SSP5-8.5 during 2021-666 

2100, respectively. 667 

 668 
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Table 1 The temporal variations of ambient NO3
- (NO3-N) concentrations (average concentrations, 670 

Unit: μg N m-3) in selected countries during 2000-2100. 671 

Scenario NO3
- China India Europe United 

States 

Brazil Argentina Democratic 

Congo 

West 

Africa 

Coast 

Indonesia South 

Korea 

Historical 2000 0.66 0.95 0.57 0.31 0.29 0.21 0.56 0.30   0.31 1.06 

 2005 0.91 1.26 0.60 0.30 0.31 0.22 0.56 0.30 0.34 1.38 

 2010 1.17 1.53 0.60 0.28 0.33 0.23 0.58 0.31 0.32 1.43 

 2013 1.39 1.63 0.57 0.27 0.30 0.24 0.58 0.31 0.33 1.57 

 2015 1.16 1.34 0.56 0.26 0.32 0.22 0.58 0.32 0.45 1.88 

 2019 1.18 1.46 0.54 0.26 0.32 0.23 0.61 0.32 0.37 1.87 

SSP1-2.6 2020 1.16 1.23  0.41  0.27  0.25  0.18  0.55  0.28  0.34  1.81  

 2040 0.82 1.12  0.28  0.10  0.21  0.14  0.62  0.32  0.28  1.46  

 2060 0.69 1.01  0.15  0.05  0.18  0.13  0.43  0.25  0.24  0.69  

 2080 0.41 0.89  0.12  0.05  0.17  0.12  0.32  0.17  0.20  0.39  

 2100 0.33 0.65  0.10  0.06  0.11  0.08  0.21  0.11  0.16  0.23  

SSP2-4.5 2020 1.19 1.43  0.44  0.24  0.26  0.19  0.52  0.29  0.37  1.85  

 2040 1.09 1.35  0.43  0.16  0.22  0.16  0.57  0.31  0.35  1.80  

 2060 0.89 1.22  0.35  0.11  0.20  0.15  0.51  0.27  0.32  1.25  

 2080 0.63 1.06  0.29  0.07  0.17  0.12 0.42  0.23  0.23  0.68  

 2100 0.41 0.95  0.24  0.05  0.14  0.10  0.36  0.19  0.20  0.38  

SSP3-7.0 2020 1.25 1.59  0.53  0.33  0.31  0.22  0.64  0.34  0.42  1.95  

 2040 1.36 1.50  0.47  0.24  0.26  0.19  0.61  0.33  0.47  1.89  

 2060 1.18 1.35  0.42  0.19  0.22  0.16  0.56  0.30  0.41  1.56  

 2080 0.96 1.15  0.36  0.16  0.18  0.13 0.54  0.29  0.35  1.35  

 2100 0.75 1.08  0.33  0.12  0.15  0.11  0.51  0.27  0.30  1.24  

SSP5-8.5 2020 1.21 1.50 0.53  0.28  0.28  0.20  0.57  0.31  0.37  1.91  

 2040 1.28 1.42 0.49  0.23  0.25  0.18  0.60  0.32  0.39  1.85  

 2060 1.05 1.30 0.47  0.24  0.20  0.15  0.55  0.29  0.35  1.44  

 2080 0.86 1.10 0.44  0.25  0.15  0.11  0.50  0.27  0.29  1.26  

 2100 0.58 1.02 0.31  0.20  0.13  0.09  0.46  0.25  0.25  1.05  
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