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Abstract. Water stable isotope records in polar ice cores have been largely used to reconstruct past local temperatures and 

other climatic information such as evaporative source region conditions of the precipitation reaching the ice core sites. 

However, recent studies have identified post-depositional processes taking place at the ice sheet's surface modifying the 

original precipitation signal and challenging the traditional interpretation of ice core isotopic records. In this study, we use a 

combination of existing and new datasets of the precipitation, snow surface and subsurface isotopic compositions (δ18O and 20 

d-excess), meteorological parameters, ERA5 reanalyses, outputs from the isotope-enabled climate model ECHAM6-wiso, 

and a simple modelling approach to investigate the transfer function of water stable isotopes from precipitation to the snow 

surface and subsurface at Dome C, in East Antarctica. We first show that water vapor fluxes at the surface of the ice sheet 

result in a net annual sublimation of snow, from 3.1 to 3.7 mm water equivalent per year between 2018 and 2020, 

corresponding to 12 to 15% of the annual surface mass balance. We find that the precipitation isotopic signal cannot fully 25 

explain the mean, nor the variability of the isotopic composition observed in the snow, from annual to intra-monthly 

timescales. We observe that the mean effect of post-depositional processes over the study period enriches the snow surface 

in δ18O by 3.0‰ to 3.3‰ and lowers the snow surface d-excess by 3.4‰ to 3.5‰ compared to the incoming precipitation 

isotopic signal. We also show that the mean isotopic composition of the snow subsurface is not statistically different from 

that of the snow surface, indicating the preservation of the mean isotopic composition of the snow surface in the top 30 

centimetres of the snowpack. This study confirms previous findings about the complex interpretation of the water stable 
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isotopic signal in the snow and provides the first quantitative estimation of the impact of post-depositional processes on the 

snow isotopic composition at Dome C, a crucial step for the accurate interpretation of isotopic records from ice cores. 

1 Introduction 

Polar ice cores have been widely used in paleoclimate studies to reconstruct past atmospheric conditions, up to 800 000 years 35 

back in time (EPICA community members 2004). Within the ice matrix of the core, δ18O and δD (Craig, 1961) 

measurements have been commonly used as a proxy for past atmospheric temperatures based on the observed relationships 

between the local atmospheric temperature and both the isotopic composition of precipitation samples (Dansgaard, 1964) 

and the snow across spatial transects in Antarctica (Lorius et al., 1969, Masson-Delmotte et al., 2008).  

The second order parameter deuterium excess (d-excess), defined as the deviation from the existing linear relationship 40 

between δ18O and δD (d-excess = δD – 8 ×	δ18O, Dansgaard, 1964), is driven by physical processes involving non-

equilibrium, or kinetic fractionation of the different isotopes. The d-excess measured in ice cores has been interpreted as a 

proxy for moisture origin (Masson‐Delmotte et al., 2005) and conditions at the moisture source region, such as sea-surface 

temperatures and relative humidity above the ocean’s surface (Merlivat and Jouzel, 1979; Jouzel et al., 1982; Vimeux et al., 

1999; Stenni et al., 2001; Uemura et al., 2008, 2012; Landais et al., 2021; Steen-Larsen et al., 2014a). Further kinetic 45 

processes along the distillation path of an air mass have been identified to contribute to the d-excess signal in precipitation, 

such as condensation in supersaturated conditions (Jouzel and Merlivat, 1984) or mixing of air masses from different origins 

(Risi et al., 2013). 

 

The reconstruction of the climatic parameters from the water isotopic records in polar ice cores relies on the assumption that 50 

the isotopic composition of precipitation is preserved from snowfall to burial and transformation into ice. However, this has 

been challenged by recent field studies highlighting the significant role of post-depositional processes at the surface of both 

the Greenland and Antarctic ice sheets modifying the isotopic composition of precipitation after snowfall (Touzeau et al., 

2016; Münch et al., 2017; Casado et al., 2018, 2021; Hughes et al., 2021; Wahl et al., 2021, 2022; Zuhr et al., 2023). The 

post-depositional processes commonly proposed to affect the water isotopes at the ice sheet’s surface include (i) water vapor 55 

exchanges between the snow and the lower atmosphere through sublimation and condensation cycles, (ii) wind redistribution 

and (iii) diffusion of water vapor within the snowpack.  

On the Greenland Ice Sheet, Steen-Larsen et al. (2014b) provided the first evidence of a co-variation of the snow surface and 

the lower atmosphere water vapor isotopic compositions during precipitation-free periods in the summertime, suggesting 

seasonal vapor exchanges between the snow and the atmosphere. Wahl et al. (2021) later measured a depleted sublimation 60 

humidity flux compared to the snow surface, showing that fractionation of water isotopes was taking place during 

sublimation. Including fractionation during sublimation in a simple model also improved the prediction of the day-to-day 

variability in the snow isotopic composition during summertime (Wahl et al., 2022). Additional laboratory and modelling 
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studies showed that sublimation leads to an enrichment in δ18O together with a lowering of d-excess in the snow surface and 

in the firn (Hughes et al., 2021; Dietrich et al., 2023).  65 

In addition, diffusion of water vapor within the snowpack is driven by temperature and isotopic gradients and affects the 

isotopic composition of the snow and firn continuously (Johnsen et al., 2000; Gkinis et al., 2014). Field studies on both the 

Greenland and Antarctic Ice Sheets identified snow metamorphism associated with water vapor diffusion within the top 

layers of the snow to affect the snow isotopic composition (δ18O and d-excess) after snowfall (Casado et al., 2021; Harris 

Stuart et al., 2023). 70 

Lastly, the wind blowing at the surface of the ice sheet leads to a heterogeneous accumulation by redistributing the snow on 

the surface (Libois et al., 2014; Picard et al., 2019; Zuhr et al., 2021) which impacts the build-up of the isotopic signal in the 

snow (Zuhr et al., 2023). Wind is also hypothesized to impact the snowpack isotopic composition through forced pumping 

and ventilation of the snowpack (Town et al., 2008).  

 75 

At Dome C, on the East Antarctic Plateau, previous studies have focused on qualitative description of the impact of post-

depositional processes on the snow surface at Dome C (Casado et al., 2018), monitoring the atmospheric water vapor, snow 

surface and precipitation isotopic compositions (Casado et al., 2016; Touzeau et al., 2016; Stenni et al., 2016; Dreossi et al., 

2024a) or exploring the isotopic signature of snow metamorphism (Casado et al., 2021). However, a comprehensive 

understanding of the formation of the isotopic signal in the snow, is still missing.  80 

In this study we address the transfer function of stable water isotopes from precipitation to the snow surface and subsurface 

at Dome C, from intra-monthly to multi-annual timescales. We use a combination of existing and new datasets of the 

isotopic composition of precipitation, snow surface and snow subsurface over five consecutive years (2017-2021), ERA5 

reanalysis products, outputs from the isotope-enabled climate model ECHAM6-wiso and a simple modelling approach to 

investigate the contribution of precipitation to the variability observed in the snow surface and subsurface isotopic 85 

composition. In addition, we use the meteorological parameters measured continuously on-site to estimate the magnitude of 

sublimation and condensation fluxes between the surface and the lower atmosphere over three consecutive years (2018-

2020) and qualitatively evaluate their impact on the snow isotopic composition at Dome C. 

2 Data and methods 

2.1 Geographical settings 90 

Dome C is located on the East Antarctic Plateau (75.1°S, 123.3°E), at 3233 m a.s.l. and 1000 km from the coast and is the 

site where the permanent research station Concordia is installed (see location on Fig. 1a). The site is characterized by a mean 

annual temperature of about -52°C (Genthon et al., 2021a) and a low accumulation rate of about 2.5 cm w.e. year-1 (Genthon 

et al., 2015). Due to the very small local slope and the location on a dome, the site is not subjected to strong katabatic winds, 

the mean annual wind speed close to the surface is about 4 m s-1 (Genthon et al., 2021a). 95 
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Figure 1. (a) Aerial view of Concordia station. The coloured circles indicate the location of the meteorological measurements used in this 
study (Sect. 2.4) and in red (rectangle and snowflake) the location of the samples presented in this study (Sect. 2.2 and 2.3). The wind rose 
for the five-year period 2017-2021 of the wind at 3 m is shown in the upper right corner. Background image from CNES (Pléiade satellite 
image of Concordia Station, Antarctica, CNES 2016, Distribution Airbus Defence and Space). (b) Snow sampling scheme taking place in 100 
the red rectangle in panel (a) (described in Sect. 2.2). SD stands for sampling day.  

2.2 Snow surface and subsurface sampling 

The regular sampling of the top few centimetres of the snow started in November 2013 and the sampling of a subsurface 

layer was added in 2017. Since then, the sampling strategy remained the same. In this study we focus on the 5-year period 

2017-2021, where both surface and subsurface samples are available for analysis (see also Table 1). 105 

The sampling takes place in the clean area about 800 m upwind of the main buildings (see location on Fig. 1a), twice a week 

and all-year round. The samples are taken at two different locations 50 m apart along a straight line, 3 to 10 m next to the 

line of the previous sampling day. At each location along the line, a small vertical snowpit is dug (about 20 cm deep). The 

snow surface and subsurface are collected with two 50 mL Corning tubes, placed horizontally from the snowpit wall, at the 

surface and just below. The two snow samples correspond to depths of 0 to 1 cm deep for the surface sample and from 1 to 4 110 

cm for the subsurface sample, although the exact sampling depths was not recorded and may have slightly varied with the 

change of operator throughout the years or within one year due for instance to hard snow. The sampling scheme is illustrated 

in Fig. 1b. 

Once the snow samples are collected, the tubes are sealed to prevent air exchange with the surrounding atmosphere and 

stored at temperatures well below freezing. The samples are shipped back once a year to LSCE (CNRS Paris-Saclay) to 115 

measure their isotopic composition with a laser spectrometer PICARRO L2130-i in liquid mode. We report the snow 

isotopic composition with delta-notation in ‰ (Craig, 1961) with respect to the Vienna Standard Mean Ocean Water 

(VSMOW) (Gonfiantini, 1978). The associated uncertainty (one standard deviation including quality control samples, 
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standards and sample replicates) on these measurements is ± 0.2‰ for δ18O and ± 0.7‰ for δD, which yields an uncertainty 

of ± 0.9‰ for d-excess (one standard deviation). 120 

2.3 Precipitation sampling 

Since 2008, precipitation samples have been collected in the vicinity of Concordia station, as part of different projects 

operated by the Italian Antarctic Research Programme (PNRA). Part of this long time series have been published in Stenni et 

al. (2016) (2008-2010) and Dreossi et al. (2024a) (up to 2017). Here we extend the record of the precipitation isotopic 

composition to 2021 and use the time series from 2017 to 2021 for our analysis (see also Table 1).  125 

Precipitation samples are collected every day on a wooden platform (bench) 1 m above the ground, covered by a PTFE 

surface and shielded by an 8 cm rail. The bench is situated about 800 m upwind of the main buildings (see location in Fig. 

1a). The samples are collected at 10 AM local time (UTC+8), although it has varied throughout the years depending on the 

operator. All the snow laying on the bench is collected, whether it is precipitation (including diamond dust), blown snow or 

air hoar from atmospheric condensation. It cannot be ruled out that some of the samples might have undergone sublimation 130 

especially during the summertime, because of exposure to 24-hour solar radiation before sample collection (Stenni et al., 

2016; Dreossi et al., 2024a). Each precipitation sample collected is weighted, and we use these weights as approximate 

estimates of the precipitation amounts (details in Sect. 2.5). 

After collection, the plastic bag containing the sample is sealed and stored at temperatures well below freezing before annual 

shipment to the Ca’Foscari University of Venice, Italy, where the isotopic composition of the samples is measured with a 135 

PICARRO laser spectrometers (L2130-i and L2140-i). We report the snow isotopic composition with delta-notation in ‰ 

(Craig, 1961) with respect to the Vienna Standard Mean Ocean Water (VSMOW) (Gonfiantini, 1978). The associated 

uncertainty (one standard deviation of quality standard replicates) on these measurements is ± 0.1‰ for δ18O and ± 0.7‰ for 

δD, which yields an uncertainty of ± 0.8‰ for d-excess (one standard deviation). 

2.4 Meteorological parameters 140 

2.4.1 Atmospheric monitoring 

Atmospheric parameters are measured continuously at Dome C by different weather stations and instruments installed 

nearby Concordia station. For the 2017-2021 period of interest of this study, we used meteorological observations both from 

an Automatic Weather Station operated by the PNRA (referred as AWSIT hereinafter) and from a 42 m meteorological 

tower (referred as USt hereinafter). A summary of the meteorological parameters used in this study is available in Table 1. 145 

The AWSIT is located about 800 m upwind of Concordia station (see location in Fig. 1a) and has been operating since 2005. 

Hourly data from the AWSIT is available in Grigioni et al. (2022). In this study, we use the atmospheric pressure measured 

at 1 m above the surface with a Vaisala PTB100 and a 3-month period of the atmospheric temperature measured at 1.5 m by 
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a Vaisala HMP45D. To match the same time step of the observations from the USt described below, we linearly interpolated 

the data to 30 min.  150 

The USt is part of the CALVA project and located about 1 km of Concordia station (see location in Fig. 1a). Meteorological 

instruments are installed at six different levels in the atmosphere measuring continuously for more than ten years (Genthon et 

al., 2021a). Due to snow accumulation, the sensors installed on the lowest level of the tower, at 3 m above the surface, were 

40 cm closer to the surface in 2021 than in 2017. This height change was not considered here, and the lowest level of the 

tower is referred to as the 3 m level. All atmospheric parameters are sampled at 30 s intervals, however in this study we use 155 

the 30 min averages.  

The atmospheric temperature is measured by a PT100 in a Vaisala HMP155 combined sensor (thermohygrometer) placed in 

a mechanically aspirated shield (Young 43502) and the wind speed and direction are measured by Young 05103 aerovanes. 

The quality-controlled (QC) data for temperature and wind speed from 2010 to 2019 is available in Genthon et al. (2021b, c). 

Here we use this dataset from 2017 to 2019 and extend the record up to 2021 using the data from the same instruments 160 

available on the CALVA project website (see Table 1). Since the quality-control of this additional period (2019-2021, 

referred as non-QC) is not guaranteed, we compared the QC and non-QC datasets during an overlapping period (not shown). 

We found a linear correlation (Pearson correlation coefficient) of 1.0 between the datasets for both temperature and wind 

speed. Therefore, we use the temperature and wind records from the USt between 2017 and 2021 in our analysis. Note that to 

fill a 3-month period of missing temperature data from the USt in 2021 (August to October), we use the temperature 165 

measured by the AWSIT (described above). The linear correlation (Pearson correlation coefficient) between the two 

temperature records during overlapping periods is 0.99 (not shown). The mean temperature and wind speed over the period 

2017-2021 are summarized in Table 1. The dominant wind direction over the same period is shown in the windrose in Fig. 

1a. 

Atmospheric water vapor content (or humidity) is also measured continuously by sensors installed on the meteorological 170 

tower. At Dome C, the surface atmosphere is very cold and frequently above saturation (Genthon et al., 2017), and in these 

conditions the standard humidity sensors fail to accurately measure the true atmospheric humidity content. To cope with this 

issue, a modified HMP155 was designed and installed on the USt at 3 m above the ground, and proved its utility to measure 

atmospheric moisture accurately, capture supersaturation conditions and expand the temperature operating range of the 

humidity sensor (Genthon et al., 2017, 2022). The sensor reports atmospheric humidity with respect to liquid (RHwrtl) water 175 

even at temperature below 0°C, we therefore convert RHwrtl to the relative humidity with respect to ice (RHwrti), as in 

Genthon et al. (2017) and Vignon et al. (2022) (see also Supplement S1). The relative humidity at 3 m in the atmosphere and 

at 30 min resolution over the 2018-2021 period is available in Genthon et al. (2021d) and an analysis of the dataset is 

available in Genthon et al. (2022). Vignon et al. (2022) further provides estimations of the uncertainties for RHwrti associated 

with the temperature and humidity measurements. In this study, we use this 3-year atmospheric humidity record to estimate 180 

water vapor fluxes at the snow surface. The method is described in the following section. The mean RHwrti between 2018 and 

2020 is indicated in Table 1. 
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Table 1. Summary of samples and meteorological parameters used in this study and the reference to the data. The average values for 
temperature and wind speed are calculated over the 2017-2021 period; the relative humidity with respect to ice, the atmospheric pressure 185 
and the surface temperature are calculated over 2018-2020. 

2.4.1 Estimation of water vapor flux 

During the period of interest of this study, no direct Eddy-Covariance (EC) fluxes measurements were available at Dome C. 

We instead make use of the standard atmospheric parameters measured on site (described in the previous section) to apply 

the bulk method as described in Genthon et al. (2017) and estimate water vapor fluxes between the surface and the 3 m 190 

atmospheric level. We report the 30 min averages vapor fluxes during the 3-year period 2018-2020 in mm water equivalent 

per timestep.  

The bulk method is based on the Monin-Obukhov (MO) Similarity Theory (Monin and Obukhov, 1954) and relies on several 

assumptions, which may not hold over the Antarctic Plateau (Vignon et al., 2016). Nevertheless, this method is still 

commonly used as the parametrization of surface turbulent fluxes in global and regional climate models (e.g. MAR model, 195 

Gallée and Schayes 1994) and have been compared against Eddy-Covariance measurements both at Dome C on the East 

Antarctic Ice Sheet (sensible heat fluxes, Vignon et al., 2016) and at EastGRIP on the Greenland Ice Sheet (water vapor 

fluxes, Dietrich et al., 2024). It requires the following parametrizations: (1) the choice of roughness length for momentum 

(z0), (2) the choice of functions representing the atmospheric stability and (3) the calculation of the roughness lengths for 

water vapor (z0q) and heat (z0t). In their sensitivity study on the parametrization for sensible heat flux estimations at Dome C, 200 

Vignon et al. (2016) recommend the use of the stability functions from Holtslag and De Bruin (1988, referred hereinafter as 

H88) for stable cases and the functions from Högström (1996) for unstable cases. They also recommend the use of a constant 

z0 of 0.56 mm, which corresponds to the average value observed with an EC system over one year at Dome C (Vignon et al., 

2016).  For the parametrization of z0q and z0t, we use the same approach as in Genthon et al. (2017) and King et al. (2001) 

where z0 = z0q = z0t. We used this parametrization (H88, z0 = z0q = z0t = 0.56 × 10-3 m) as the reference parametrization. In 205 

Project Type/depth or height 
Sampling 

rate/averaging time 
step 

Average Reference to dataset 

NIVO Snow samples: surface (0-1 cm) 
and subsurface (1-4 cm) 2x / week – Landais et al. (2024) 

PRE-REC/ 
WHETSTONE Precipitation samples daily – Dreossi et al. (2024b) 

CALVA (USt) 3 m temperature 30 min -52.1°C 
Genthon et al. (2021b) & 
CALVA website (see data 
availability section) 

CALVA (USt) 3 m wind speed 30 min 3.9 m s-1 
Genthon et al. (2021c) & 
CALVA website (see data 
availability section) 

CALVA (USt) 3 m RHwrti 30 min 104.5% Genthon et al. (2021d) 
AMCO (AWSIT) Pressure at 1 m 1 h 642.6 hPa Grigioni et al. (2022) 

NIVO (CNR4) Surface temperature 10 min -55.4°C * see data availability section 
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addition, and similarly as in Vignon et al. (2016) and Genthon et al. (2017), we computed the water vapor fluxes using three 

other stability functions for stable conditions and a range of z0 to estimate the sensitivity of the final flux calculations on the 

parametrization (fluxes computed 16 times, see Table 2 for stability functions and range of z0). The range of z0 tested 

corresponds to the observed range over one year at Dome C (Vignon et al., 2016).  
 210 
Table 2. Set of roughness lengths for momentum z0 and stability functions for stable conditions used to compute water vapor fluxes with 
the bulk method. The reference parametrization is highlighted in bold.  
 

Roughness length for momentum z0 0.01 × 10-3 m 
 0.56 × 10-3 m 
 1 × 10-3 m 
 6.3 × 10-3 m 

Stability function for stable conditions Holtslag and De Bruin (1988) – H88 
 Lettau (1979) 
 Grachev et al. (2007) 
 King and Anderson (1994) 

 

To compute the water vapor fluxes, the bulk method requires temperature, wind speed, specific humidity, and pressure at the 215 

chosen atmospheric level (3 m here), as well as the snow surface temperature and the specific humidity at the surface.  

For the atmospheric level, we use the temperature, wind and humidity sensors installed at 3 m above the surface on the USt 

together with the atmospheric pressure measured by the AWSIT (measurements described in Sect. 2.4.1). The formulas from 

Murphy and Koop (2005) are used to convert RHwrti into specific humidity. To guarantee that the stationary conditions 

required to apply the bulk method are met, we removed all 30 min temperature and wind speed data for which the 220 

differences in temperature and wind speed with the previous half-hour were above 2°C and 1.1 m s-1, respectively (Vignon et 

al., 2016). This represents 4% of the whole dataset. 

For the surface level, the snow surface temperature is computed from upward and downward longwave radiative fluxes with 

the same method as in Vignon et al. (2016) (their Eq. 1), using the same snow emissivity of 0.99 (value given by Brun et al., 

2011, used in Vignon et al., 2016 and Genthon et al., 2017). We use the longwave radiative measurements from a CNR4 225 

radiometer installed approximately 500 m away from the USt (see location in Fig. 1a). We average the data over 30 min to 

match the time resolution of the atmospheric measurements (originally 10-min resolution). Note that to fill a 3-month period 

of missing data in the CNR4 record at the end 2020, we use the data provided by the BSRN network (Lupi et al., 2021). The 

BSRN data was corrected on the CNR4 data during overlapping periods beforehand, due to a shift identified in the upward 

longwave flux measured by the BSRN pyrgeometer from December 2019 onwards. The mean surface temperature over the 230 

2018-2021 time-period is reported in Table 1. The specific humidity at the snow surface is converted from the surface 

temperature using the formulas from Murphy and Koop (2005) and assuming saturation. 

In total, due to gaps in the different input datasets and the removal of non-stationary data, the missing data in the bulk 

estimations represents 9% of the whole dataset. 
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2.5 Snow Isotopic Signal Generator (SISG) 235 

To evaluate the contribution of precipitation to the isotopic variability observed in the snow surface and subsurface samples 

collected at Dome C (described in Sect. 2.2), we use a simple modelling approach to create synthetic snow layers solely 

based on the incoming precipitation. This approach was used in Casado et al. (2018, 2021) for a similar purpose, but focused 

on the top layer of the snowpack. Here we re-implemented the same simple model and added the snow subsurface.  

The model (referred to as the Snow Isotopic Signal Generator – SISG) simulates snow layers by stacking precipitation events 240 

until the thickness of the stacked precipitation reaches the depths of the snow surface and subsurface layers given as input of 

the model. The isotopic composition of each snow layer is then calculated as the weighted average (by precipitation 

amounts) isotopic composition of all precipitation events necessary to build the snow layers. We choose the input snow 

layers depths to be 0 to 1 cm for the surface layer and 1 to 4 cm for the subsurface layer to match the snow samples collected 

at Dome C. We run the model at daily resolution over the 5-year period 2017-2021 and retrieve the model results for the 245 

same days as the observations. Table 5 summarizes the five model experiments performed with different inputs for the 

precipitation isotopic composition and precipitation amounts (described in Sect. 2.5.1 and 2.5.2). 

 

Table 3. Experiments performed with the SISG model, with respective inputs for the daily precipitation amounts (described in Sect. 2.5.1) 
and the daily isotopic composition of precipitation (described in Sect. 2.5.2). Note that the precipitation amounts from the observations, 250 
ERA5 and ECHAM6-wiso are scaled to match the mean annual accumulation observed at Dome C. 
 

Experiment Daily precipitation amount Daily precipitation isotopic composition 

“Iso from T & cst accu” Constant Assuming constant iso vs temperature 
relationship 

“Iso from T & ERA5 accu” ERA5 Assuming constant iso vs temperature 
relationship 

“Iso from wg. mm & obs accu” Observations Precipitation-weighted mean annual isotope 
cycle 

“Iso from ar. mm & obs accu” Observations Arithmetic mean annual isotope cycle 
“Iso from ECHAM6 & ECHAM6 

accu” ECHAM6-wiso Modelled by ECHAM6-wiso 

2.5.1 Daily precipitation amounts 

The first SISG experiment uses a time series with a constant daily precipitation amount, calculated by dividing the mean 

annual accumulation at Dome C by 365 days. We use a mean annual accumulation of 2.5 cm w.e. year-1 estimated from stake 255 

measurements (Genthon et al., 2015). This corresponds to 8 cm year-1 using a snow density of 320 kg m-3, a typical value for 

the snow surface at Dome C (Picard et al., 2014; Genthon et al., 2015; Leduc-Leballeur et al., 2017). Hereinafter, we use this 

same snow density to convert precipitation amounts from snow water equivalent (SWE in mm w.e.) to snow depths (mm of 

snow) and inversely.  

The second experiment uses the precipitation amount time series from ERA5 reanalysis (Hersbach et al., 2020, dataset 260 

available in Hersbach et al., 2023). We use the 24h-average of the hourly snowfall rate data for the grid point nearest 

Concordia station as an input to the model.  
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The third and fourth experiments use the observed precipitation amounts. As in Kopec et al. (2019), we assume that the 

weight of the daily precipitation samples collected on site for isotopic analysis (Sect. 2.3) is proportional to the amount of 

precipitation that has fallen over the day.  265 

The fifth experiment uses the precipitation amounts given by the isotope-enabled global circulation model (GCM) 

ECHAM6-wiso (described in Cauquoin et al., 2019). The simulation was performed at a spatial resolution of 0.9° and 

nudged to ERA5 reanalyses (Cauquoin and Werner, 2021). The daily precipitation amounts were extracted for the grid point 

closest to Dome C. As the days with very low precipitation rates are not considered as “precipitation days”, any precipitation 

rate below 0.0016 mm w.e. day-1 is set to zero. Because East Antarctica is a very dry region, this threshold was chosen to be 270 

ten times lower than the one commonly used for rain gauges (0.5 mm w.e. month-1, e.g. used for the Global Network of 

Isotopes in Precipitation data). Note that such a threshold was not applied to the precipitation amounts given by ERA5. The 

ECHAM6-wiso outputs are available in Cauquoin and Werner (2024).  

Because the cumulative sum of the precipitation amounts according to the observations, ERA5 and ECHAM6-wiso was too 

low (18, 18, and 32 cm of snow after five years, respectively) compared to the mean accumulation over five years at Dome C 275 

(40 cm of snow), we scaled up all daily precipitation amounts in the three time series to match the mean annual accumulation 

(8 cm year-1), acknowledging that this value is still underestimated because of net annual sublimation (Sect. 3.1). These 

scaled time series were used as inputs for the SISG model. The comparison of the three time series is shown in Fig. 5 (Sect. 

3.3.1).  

2.5.2 Daily precipitation isotopic composition 280 

Due to some gaps in the daily precipitation samples collected at Dome C (described in Sect. 2.3), the time series of isotopic 

composition cannot be used as a direct input to the SISG model. Instead, we generate three artificial time series based on (1) 

the atmospheric temperature, (2) the precipitation-weighted mean annual isotope cycle in precipitation and (3) the arithmetic 

mean annual isotope cycle in precipitation. A comparison of these three artificial time series and the daily observations of the 

precipitation isotopic composition is shown in Fig. S4 (Supplement S4.1). 285 

The first and second SISG experiment uses the artificial time series based on the atmospheric temperature. The precipitation 

isotopic composition is calculated from the atmospheric temperature using the linear relationships between δ18O and δD of 

the precipitation samples and the 3 m daily mean temperature (Eq. 1 and 2 in Sect. 3.3.3). Deuterium excess is then 

calculated from the theoretical values of δ18O and δD. 

The third SISG experiment uses an artificial time series where all days in each month have the same isotopic composition 290 

than the corresponding monthly precipitation-weighted mean isotopic composition calculated over five years (results 

presented in Sect. 3.3.2, Fig. 6c and f).  

The fourth experiment uses an artificial time series where all days in each month have the same isotopic composition than 

the corresponding monthly arithmetic mean isotopic composition calculated over five years (results presented in Sect. 3.3.2, 

Fig. 6b and e). 295 
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The fifth experiment uses the daily precipitation isotopic composition modelled by ECHAM6-wiso. To prevent any 

unrealistic values because of a numerical effect when the precipitation amounts are very low, days with precipitation 

amounts below 0.0016 mm w.e. (Section 2.5.1) were associated with missing values of the precipitation isotopic 

composition. In addition, all data points outside of the 5-year average ± three standard deviation range were discarded (six 

data points for δ18O and 20 data points for d-excess over five years). A comparison of the observed daily precipitation 300 

isotopic composition and ECHAM6-wiso simulations is shown in Fig. 6 (Sect. 3.3.2). 

3 Results 

3.1 Surface water vapor flux 

The water vapor flux from the surface to the lower atmosphere for the period 2018-2020 estimated using the meteorological 

parameters measured at Dome C and the bulk method (described in Sect. 2.4.2) are shown in Fig. 2. 305 

 
Figure 2. Water vapor flux at Dome C during the period 2018-2020 (positive for sublimation, negative for condensation). Panel (a) 
displays the 3-year time series of daily mean water vapor flux in mm water equivalent. The red line corresponds to the reference 
parametrization and the grey shading corresponds to the 10-90th percentile range of all parametrizations (described in Sect. 2.4.2). Panel 
(b) shows the net annual water vapor flux (sum of sublimation and condensation over one year). The red stars indicate the reference 310 
parametrization, and the three other black markers indicate the results using the stability function H88 with different z0. The whiskers of 
the grey boxplots indicate the 10-90th percentile range of all parametrizations, and the grey circles indicate the outliers outside of this 
range. The secondary axis to the right in blue gives water vapor fluxes in cm of snow, using a snow density of 320 kg m-3 to convert SWE 
to snow height. 
 315 

During the 3-year period 2018-2020, the daily mean water vapor flux calculated with the reference parametrization varied 

from -0.05 (condensation) to 0.35 (sublimation) mm water equivalent per day (red line in Fig. 2a). The seasonality of water 

vapor fluxes over this period is characterised by sublimation during the summer months while little condensation is observed 

during the rest of the year. This seasonal pattern is observed independently of the parametrization used in the bulk method, 

which only affects the magnitude of the fluxes (grey shading in Fig. 2a).  320 

The net annual water vapor flux between 2018 and 2020 is positive, meaning a net annual sublimation of snow, regardless of 

which parametrization is used (grey boxplots in Fig. 2b). In 2018, 2019, and 2020, water vapor fluxes calculated with the 
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reference parametrization led to a net mass loss of 3.7, 3.6, and 3.1 mm w.e., respectively (red stars in Fig. 2b), which is 

slightly higher than the net water vapor flux of 2.8 mm w.e. in 2015 (Genthon et al., 2017). These values correspond to 1.2, 

1.1, and 1.0 cm of snow, respectively, using a snow density of 320 kg m-3 to convert from SWE to snow height. They are 325 

doubled when using a roughness length for momentum of 6.3 × 10-3 m instead of 0.56 × 10-3 m (black pentagons in Fig. 2b) 

and divided by approximately two when using a roughness length for momentum of 0.01 × 10-3 m (black triangles in Fig. 

2b). The net annual water vapor fluxes are increased by 0.1 mm w.e. using a sensor height of 2 m above the surface instead 

of 3 m to consider height changes of the sensors (Sect. 2.4.1). During the summer periods only (from November to February, 

both months included), water vapor fluxes led to a net sublimation of 4.4, 4.1, and 3.8 mm w.e. in 2018, 2019, and 2020, 330 

respectively (not shown).  

3.2 Snow isotopic composition 

3.2.1 Temporal variations over five years 

The five-year time series of the snow surface and subsurface isotopic composition (δ18O and d-excess) is displayed in Fig. 3, 

together with the respective mean annual cycle (monthly means) for each layer over the whole period. 335 

 
Figure 3. Observations of the snow surface and subsurface isotopic compositions at Dome C. Panels (a) and (c) show the 5-year time 
series (2017-2021) for δ18O and d-excess (dxs) respectively. The circles represent the horizontal average between the two samples taken at 
the two locations 50 m apart on the sampling lines (described in Sect. 2.2) and the solid lines show a 30-day running mean of these 
horizontal averages. The shaded area represents the 30-day running average of the spatial spread between the two samples taken at the two 340 
locations 50 m apart on the sampling lines (one standard deviation). Panels (b) and (d) show the mean annual cycles (monthly means) of 
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the snow surface and subsurface layers calculated over the period 2017-2021 for δ18O and d-excess respectively. The shaded area 
represents the inter-annual variability around the mean annual cycle (one standard deviation). The symbols on the right vertical axis 
indicate the mean isotopic composition of the snow surface and subsurface layers across all years. In all four panels, the darker colours 
correspond to the surface samples and the lighter colours to the subsurface samples. 345 
 

Considering all samples collected during the five-year period, the δ18O in the snow has a large amplitude, with values 

ranging from -60.9‰ to -45.1‰ in the surface layer and from -59.8‰ to -44.7‰ in the subsurface layer (circles in Fig. 3a). 

Both snow layers have a higher δ18O during the summertime and lower values in the wintertime (lines in Fig. 3a).  

This seasonality is further visible in their respective mean annual cycles (Fig. 3b), with the snow surface δ18O highest in 350 

February (-47.8‰) and lowest in October (-53.6‰, dark blue in Fig. 3b). Compared to the snow surface, the mean annual 

cycle in the snow subsurface has a smaller amplitude and is shifted in time, with a maximum in March (-49.5‰) and a 

minimum in November (-53.1‰, light blue in Fig. 3b).  

The temporal variation of the snow surface δ18O is characterized by sharp increases during the summertime followed by slow 

decreases through the winter, which is particularly clear for the summers 2017-2018, 2018-2019 and 2019-2020 (dark blue 355 

line in Fig. 3a). This asymmetric seasonal pattern has been previously identified by Casado et al. (2018) for earlier years and 

is reflected in the mean annual cycle of the snow surface δ18O (dark blue in Fig. 3b). A similar pattern is visible in the snow 

subsurface, although with a reduced amplitude (light blue in Fig. 3a and b).  

The variations of δ18O in the snow surface and the subsurface generally follow each other, except for specific periods when 

the surface and subsurface differ by several per mill, for example at the beginning of 2020 (solid lines and shaded areas in 360 

Fig. 3a). This difference between the two snow layers is reflected in their respective mean annual cycles and is the largest 

during the summer (Fig. 3b). 

The overall mean δ18O of the snow surface and subsurface is -51.0 ± 0.2‰ and -51.4 ± 0.1‰, respectively (dark and light 

blue dots in Fig. 3b). The uncertainty around these mean values corresponds to the standard error of the mean (SEM), 

calculated using the effective number of independent samples in the time series (Bretherton et al., 1999, Supplement S2). 365 

 

As for δ18O, the snow surface and subsurface show large variations in d-excess over the five-year period (Fig. 3c). 

Considering all samples collected over the period, d-excess ranges from -0.9‰ to 21.0‰ in the snow surface and from 2.8‰ 

to 21.1‰ in the snow subsurface (dots in Fig. 3c). In opposition to δ18O, high d-excess values are encountered in the 

wintertime and lower d-excess in the summertime (lines in Fig. 3c).  370 

This seasonality in d-excess is further reflected in the mean annual cycles of both snow layers (Fig. 3d). The snow surface d-

excess is the highest in July (12.7‰) and the lowest in January (6.0‰, dark purple in Fig. 3d). As for δ18O, the mean annual 

cycle in the snow subsurface has also a smaller amplitude compared to the surface layer, with a maximum in July (12.2‰) 

and a minimum in February (8.9‰, violet in Fig. 3d). However, contrary to δ18O, the mean annual cycle in the snow 

subsurface does not show a clear time lag compared to the surface. Instead, the variations in the subsurface follows the ones 375 

of the surface, apart from the summer months of January and December where the subsurface has larger d-excess than the 
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surface layer (Fig. 3d). This summertime difference in d-excess between the surface and subsurface layers is also visible in 

the time series, in particular during the summer 2019-2020 (Fig. 3c). 

Lastly, the variations in d-excess in the snow surface do not have the same pattern as for δ18O (sharp increase in summertime 

and slow decrease in the wintertime). Instead, the d-excess in the snow surface shows a more symmetric seasonal evolution 380 

than δ18O (dark purple line in Fig. 3c). This symmetry is reflected in the mean annual cycle in d-excess of the snow surface 

(Fig. 3d). 

The overall mean d-excess of the snow surface and subsurface is 10.4 ± 0.2‰ and 10.8 ± 0.1‰, respectively (dark purple 

and violet dots in Fig. 3d). The uncertainty around these mean values corresponds to the SEM, calculated the same way as 

for δ18O. 385 

3.2.2 Vertical difference between the snow surface and subsurface 

In the previous section, we identified a seasonal pattern in the vertical difference between the snow surface and subsurface 

isotopic compositions (δ18O and d-excess). The vertical difference is defined here as the isotopic composition of the surface 

layer minus the isotopic composition of the subsurface layer.  

Considering all samples collected during the five-year period (displayed as dots in Fig. 3a and c), the minimum difference in 390 

δ18O between the snow surface and the subsurface is -7.5‰ (surface depleted in δ18O compared to subsurface) and the 

maximum difference is 9.1‰ (surface enriched in δ18O compared to subsurface). The corresponding minimum and 

maximum values in the vertical difference in d-excess are -10.6‰ and 12.3‰, respectively.  

 
Figure 4. Mean annual cycle (monthly means) of the observed vertical difference between the snow surface and subsurface isotopic 395 
composition at Dome C. Panel (a) shows the mean annual cycle of the vertical difference in δ18O, panel (b) shows the mean annual cycle 
of the vertical difference in d-excess. In both panels, the black diamonds correspond to the overall monthly means calculated over the 
2017-2021 period. The shaded area shows the inter-annual variability of individual years around the overall monthly means (one standard 
deviation) and the coloured markers show the monthly means for each individual year. 
 400 
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The mean annual cycles of the vertical difference in δ18O and d-excess between the two depths show a clear seasonal pattern 

(Fig. 4a and b). The snow surface is relatively enriched in δ18O from November to April and relatively depleted from May to 

October compared to the subsurface (black diamonds in Fig. 4a). The maximum vertical difference is 2.7‰ and occurs in 

January, the minimum difference is -1.0‰ and occurs in September. However, compared to the inter-annual variability 

within the averaging period (coloured markers and shaded area in Fig. 4a), only the months of January, February, September, 405 

and December show a substantial vertical difference in δ18O between the snow layers.  

In opposition to δ18O, the snow surface has a lower d-excess in the summer months of January and December, with a 

maximum monthly mean difference of -3.2‰ in January (black diamonds in Fig. 4b). The minimum difference of 0.9‰ is 

found in June and is, however, negligible compared to the inter-annual variability within the averaging period (coloured 

markers and shaded area in Fig. 4b). 410 

3.3 Precipitation amounts and isotopic composition in observations, ECHAM6-wiso and ERA5 reanalyses 

3.3.1 Precipitation amounts 

To evaluate whether ERA5 reanalysis data and ECHAM6-wiso results correctly capture the precipitation amounts at Dome 

C, we compare them with the observations in Fig. 5 (all three time series scaled to the observed mean annual accumulation, 

Sect. 2.5). 415 

 
Figure 5. Precipitation amounts at Dome C from observations, ERA5 reanalyses and ECHAM6-wiso simulation outputs. Panel (a) shows 
the mean annual cycles (monthly means) of the daily precipitation amounts (in mm w.e. per day) calculated over the period 2017-2021. 
Panel (b) shows the cumulative sum of precipitation over 5 years, reported as percentage of the total amount of precipitation (black and 
coloured thick lines), and the cumulative sum of days (black and coloured dotted lines) against the daily snowfall rate in mm w.e. per day. 420 
The red dashed lines guide the reading of the plot to get the snowfall rate and percentage of days responsible for 50% of the total 
snowfalls. Note the linear x-axis between 0 and 0.05 mm w.e. day-1 and logarithmic above. 
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Over the whole 5-year period, the precipitation amounts in the observations, ERA5 and ECHAM6-wiso have a comparable 

seasonal amplitude: from 0.03 to 0.1 mm w.e. day-1 for the observations (black in Fig. 5a), from 0.04 to 0.11 mm w.e. day-1 425 

for ERA5 (blue in Fig. 5a) and from 0.04 to 0.1 mm w.e. day-1 for ECHAM6-wiso (light green in Fig. 5a). The three 

precipitation time series show a very similar seasonality, with an increase in snowfall rate at the end of the summertime 

(from January to February) and in the middle of the winter (from June to July), as well as a decrease from July to December 

(Fig. 5a). 

All three precipitation cumulative sums given by the observations, ERA5 and ECHAM6-wiso show a similar shape with a 430 

faster increase with increasing snowfall rates (plain lines in Fig. 5b). The cumulative sums from ERA5 and ECHAM6-wiso 

are superposed in the whole range of snowfall rates, whereas the precipitation cumulative sum is lower for the observations 

up to 0.35 mm w.e. day-1, where the three curves meet.  

In the observations, 50% of the total snowfalls over five years is due to precipitation events with a snowfall rate above 0.32 

mm w.e. day-1 (red dashed lines and black plain line in Fig. 5b), which represent only 6% of all days within the 5-year period 435 

(red dashed lines and black dotted line in Fig. 5b). It should be noted that these results are dependent on the precipitation 

samples collected on site, which have biases (i.e. too little precipitation to collect or blown snow instead of true precipitation, 

Sect. 2.3). Similarly, in ERA5 precipitation, 50% of the total snowfalls is due to precipitation events with snowfall rates 

above 0.27 mm w.e. day-1 which corresponds to 7% of all days (Fig. 5b). In ECHAM6-wiso simulations, 50% of the total 

snowfalls is due to precipitation events with snowfall rates above 0.28 mm w.e. day-1 which corresponds to 6% of all days 440 

(Fig. 5b). 

For all three time series (observations, ERA5 and ECHAM6-wiso), we find that the largest precipitation events described 

above (contributing to 50% of the total accumulation) occur alongside higher temperatures than average. In the observations, 

the mean temperature during all precipitation days within the 5-year period and with snowfall rates above 0.32 mm w.e. per 

day is 2.8°C warmer than the mean temperature over the whole period (-52.1°C). For ERA5, the mean temperature (given by 445 

ERA5) during the largest precipitation events with snowfall rates above 0.27 mm w.e. per day is 8.1°C above the mean 

temperature of -49.9°C. Lastly, for ECHAM6-wiso, the mean temperature (given by the model) during the largest 

precipitation events with snowfall rates above 0.28 mm w.e. per day is 5.7°C above the mean temperature of -51.1°C. These 

results are in agreement with previous studies (Kino et al., 2021; Servettaz et al., 2023).  

3.3.2 Precipitation isotopic composition 450 

The daily temporal variability of the precipitation isotopic composition (δ18O and d-excess) from both observations and 

ECHAM6-wiso simulations is presented in Fig. 6, together with the corresponding mean annual cycles over the same period. 

In this section, all mean values across the whole period are given with an uncertainty corresponding to the SEM (see Sect. 

3.2.1). 

The observed precipitation δ18O shows a large seasonal cycle, ranging from -82.6‰ to -21.8‰, with higher values in the 455 

summertime and lower values in the wintertime (dark blue dots in Fig. 6a), following the atmospheric temperature (grey line 



17 
 

in Fig. 6a). The mean value over the whole period is -56.2 ± 0.5‰ (dark blue dot in Fig. 6b). In comparison, the daily 

precipitation δ18O modelled by ECHAM6-wiso show a similar seasonality as the observations, with higher and lower δ18O in 

the summertime and wintertime respectively, and a comparable amplitude with values ranging from -82.9‰ to -22.8‰ (blue 

triangles in Fig. 6a). However, the mean modelled δ18O in precipitation over the whole period is higher than the observed 460 

one (-52.7 ± 0.5‰, blue triangle in Fig. 6b). The precipitation-weighted overall means are higher than the arithmetic means, 

for both observations and ECHAM6-wiso simulations (-53.4 ± 0.5‰ and -45.7 ± 0.5‰, respectively, dark blue dot and blue 

triangle in Fig. 6c).  

The observed mean annual cycle (arithmetic monthly means) in the precipitation δ18O is characterised by the highest δ18O in 

December (-46.5‰) and the lowest δ18O in June (-62.0‰, dark blue dots in Fig. 6b). In comparison, the modelled mean 465 

annual cycle shows a similar seasonality but systematically higher than the observed one, ranging from -59.9‰ in June to -

38.4‰ in December (blue triangles in Fig. 6b). The difference between the observations and ECHAM6-wiso results is 

especially large in the summertime (November to January), with a maximum difference of 8.1‰ in December.  

The observed and modelled precipitation-weighted δ18O mean annual cycles also show a similar seasonality (Fig. 6c). 

However, the bias between ECHAM6-wiso and observations is visible throughout the whole year, with a maximum 470 

difference of 10.2‰ in October (Fig. 6c). The large difference between the observations and ECHAM6-wiso during the 

summertime (arithmetic mean, Fig. 6b) decreases when the precipitation δ18O is weighted by the precipitation amounts (Fig. 

6c). 

 
Figure 6. Observed and modelled precipitation isotopic composition at Dome C. Panels (a) and (d) show the 5-year time series (2017-475 
2021) for δ18O and d-excess (dxs) respectively. The dots represent the daily samples collected in the field (sample description in Sect. 2.3) 
and the triangles represent the daily precipitation isotopic composition modelled by ECHAM6-wiso (description of simulations in Sect. 
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2.5). In grey in panel (a) is displayed the atmospheric temperature measured at 3 m (described in Sect. 2.4.1). Panels (b) and (e) show the 
observed (dots) and modelled by ECHAM6-wiso (triangles) mean annual cycle, calculated over the period 2017-2021 (arithmetic means) 
for δ18O and d-excess, respectively. The shaded area represents the inter-annual variability around the mean annual cycle (one standard 480 
deviation). The markers on the right vertical axis indicate the mean observed and simulated precipitation isotopic composition over the 
whole period. Panels (c) and (f) are the same as (b) and (e) but showing the weighted monthly means (by precipitation amounts).  
 

The d-excess in the precipitation samples also shows a large seasonal amplitude, with values ranging from -38.6‰ to 65.9‰ 

(dark purple dots in Fig. 6d). d-excess is in anti-phase to δ18O, with maximum values found in the wintertime and minimum 485 

values in the summertime, which have been previously identified by Stenni et al. (2016) and Dreossi et al. (2024a). The 

mean observed precipitation d-excess over the whole period is equal to 15.2 ± 0.5‰ (dark purple dot in Fig. 6e). In 

comparison, the daily precipitation d-excess modelled by ECHAM6-wiso has a lower amplitude with values ranging from -

26.0‰ to 37.2‰ (violet triangles in Fig. 6d). The overall mean modelled d-excess is also lower than the observations with a 

value of 5.8 ± 0.3‰ (violet triangle in Fig. 6e). The precipitation-weighted overall means are lower than the arithmetic 490 

means, for both observations and ECHAM6-wiso results (12.2 ± 0.5‰ and 5.1 ± 0.3‰, respectively, dark purple dot and 

violet triangle in Fig. 6f).  

The observed mean annual cycle (arithmetic monthly means) in the precipitation d-excess is characterised by the lowest 

value in December (0.1‰) and the highest value in June (22.3‰, dark purple dots in Fig. 6e). In comparison, the mean 

annual cycle in the modelled precipitation d-excess has a lower amplitude than the observed one and a different timing in the 495 

minimum and maximum (from 1.0‰ in October to 10.1‰ in March, violet triangles in Fig. 6e). As opposed to δ18O, the 

difference between the observations and ECHAM6-wiso simulations is large in the wintertime (April to October), with a 

maximum difference of 15.9‰ in June.  

Compared to the arithmetic mean annual cycles for d-excess, the bias between the precipitation-weighted monthly means in 

ECHAM6-wiso and the observations is reduced in the winter but increased in the summer months January and December 500 

(Fig. 6f). The maximum difference is also lowered to 12.6‰ and found later in the year (August, Fig. 6f). 
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Figure 7. Daily observed precipitation δ18O (a) and d-excess (b) versus daily modelled precipitation isotopic composition at Dome C. All 
precipitation samples collected between 2017 and 2021 are shown (described in Sect. 2.3), together with the corresponding daily values 505 
from ECHAM6-wiso simulation results (described in Sect. 2.5). Note that due to missing observations and post-processing of ECHAM6-
wiso outputs, 886/1826 days are shown in panel (a) and 882/1826 days in panel (b). The coloured lines correspond to the linear fits 
between the observations and the model results (slope coefficients given in legends, both linear regression coefficients are significant with 
a p-value < 0.001). 

 510 

We evaluate the performance of ECHAM6-wiso to model the observed daily precipitation isotopic composition in Fig. 7. 

The daily precipitation δ18O modelled by ECHAM6-wiso shows a good agreement with the observations, with a linear 

regression slope of 0.84 ± 0.03 (1.0 being the perfect fit), a Pearson correlation coefficient of 0.65 and a root mean square 

error (RMSE) of 8.8‰ (Fig. 7a). The model mostly overestimates the observations with an increase in bias towards more 

depleted values (Fig. 7a). For d-excess, the ECHAM6-wiso model results only poorly represent the observations, with a 515 

linear regression slope of 0.1 ± 0.02, a Pearson correlation coefficient of 0.17 and a RMSE of 16.4‰ (Fig. 7b). These results 

are similar to the comparison of the precipitation samples and ECHAM6-wiso simulation results between 2008 and 2017 

(RMSE=6.1‰ for δ18O and 13.6‰ for d-excess, Dreossi et al., 2024a). 

3.3.3 Isotope versus temperature relationships in precipitation 

From the isotopic composition of the daily precipitation samples collected on site and the corresponding daily average 520 

temperature measured at 3 m above the surface (described in Sect. 2.4.1), we determine the following linear relationships 

over the 2017-2021 time-period: 

δ18Op = 0.47 ± 0.01 × T3m – 31.2 ± 0.6 ‰                      (1) 

δDp = 3.3 ± 0.1 × T3m – 262 ± 4 ‰                    (2) 

Equation (1) has a coefficient of determination (R2) of 0.62 and Eq. (2) has a R2 of 0.63. Both linear regression slopes are 525 

significant (p-values < 0.001, Fig. A1). There are no significant changes in the linear relationships if using the daily mean 

atmospheric temperature of the day before the sample collection day instead of the daily mean temperature of the sampling 

day itself (Fig. A1). The slopes in Eq. (1) and (2) are also comparable to the ones found for the 2008-2010 period (0.49 ± 

0.02 for δ18O, Stenni et al., 2016) and for the 2008-2017 period (0.52 ± 0.01 for δ18O, 3.52 ± 0.07 for δD, Dreossi et al., 

2024a). 530 

In ECHAM6-wiso simulations, the linear relationships between the modelled precipitation isotopic composition and the 

modelled temperature differ from the observed ones:  

δ18Op, ECHAM6wiso = 0.68 ± 0.02 × T2m, ECHAM6wiso – 17.0 ± 0.9 ‰                 (3) 

δDp, ECHAM6wiso = 5.3 ± 0.1 × T2m, ECHAM6wiso – 134 ± 6 ‰                (4) 

These relationships are also established over the period from 2017 to 2021. Equation (3) has a R2 of 0.54 and Eq. (4) has a R2 535 

of 0.57. Both linear regression slopes are significant (p-values < 0.001, Fig. A2). 
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3.4 Contribution of precipitation to the snow isotopic composition 

In this section we investigate the contribution of the precipitation isotopic composition to the intra-monthly and seasonal 

variability in the snow δ18O and d-excess at Dome C, by comparing the observations and the results from the SISG 

experiments (described in Sect. 2.5). 540 

3.4.1 Snow surface 

Some of the features observed in the snow surface δ18O variability are reproduced by the different experiments performed 

with the SISG model (Fig. 8a). For example, the observed summer δ18O values in the snow surface are correctly reproduced 

in four out of five experiments (“iso from T & cst accu”, “iso from T & ERA5 accu”, “iso from wg. mm & obs accu”, “iso 

from ar. mm & obs accu”). All five experiments correctly reproduce the seasonality in δ18O observed in the snow surface, 545 

with higher values in the summer and lower values in the winter (Fig. 8a and b). In addition, the two model experiments “iso 

from T & ERA5 accu” and “iso from ECHAM6 & ECHAM6 accu” reproduce some of the short-term increases in the snow 

surface δ18O during the wintertime, such as the events in August 2018, July 2020, or August 2021 (orange shadings in Fig. 

8a). The other three experiments fail to reproduce these events because of the inputs given to the SISG model: either a 

constant daily precipitation that weighs equally the days with high or low δ18O (“iso from T & cst accu”) or a daily isotopic 550 

composition that does not vary within one month and fails to represent the high δ18O events (“iso from wg. mm & obs accu” 

and “iso from ar. mm & obs accu”, Fig S4 in Supplement S4.1). 

However, regardless of the model experiment, the amplitude of the seasonal cycle in the snow surface δ18O is systematically 

overestimated compared to the observations (Fig. 8a and b). All five experiments fail to reproduce the slow decrease in δ18O 

during the wintertime observed in the snow surface. This is particularly visible for the winters 2019 and 2020 where all 555 

simulated snow surface has too low δ18O values (Fig. 8a). Most of the short-term variations in the snow δ18O occurring 

within the month are also not reproduced by any of the experiments (Fig. 8a). In addition, the experiment “iso from 

ECHAM6 & ECHAM6 accu” gives too high δ18O compared to the observations throughout the whole time-period (blue-

green lines in Fig. 8a and b), which is consistent with the positive bias between the precipitation-weighted δ18O modelled by 

ECHAM6-wiso and the observations, identified in Sect. 3.3.2 (Fig. 6c).  560 

 

As for δ18O, all model experiments fail to reproduce the variability in d-excess observed in the snow surface. Although in 

some of the experiments (“iso from T & cst accu”, “iso from T & ERA5 accu”, “iso from wg. mm & obs accu”, “iso from ar. 

mm & obs accu”), the low summer d-excess in the snow surface is well captured (Fig. 8c), all the simulated mean annual 

cycles have a too large amplitude (Fig. 8d). The experiment “iso from ECHAM6 & ECHAM6 accu” provides worse results 565 

than the other experiments (pink line in Fig. 8c and d), which can be explained by the poor representation of the observed 

precipitation-weighted annual cycle in d-excess by ECHAM6-wiso simulations, identified in Sect. 3.3.2 (Fig. 6f). 
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Figure 8. Comparison between observed and simulated snow surface (0 to 1 cm depth) isotopic compositions at Dome C. Panels (a) and 
(c) show the 5-year time series (2017-2021) of δ18O and d-excess (dxs) respectively. The black dots represent the horizontal average 570 
between the two samples taken at the two locations 50 m apart on the sampling lines (described in Sect. 2.2, also presented in Fig. 3). The 
coloured lines (dotted and plain) represent the different SISG model experiments (described in Table 3). In panel (a), the orange vertical 
shadings highlight three specific events (August 2018, July 2020, August 2021). Panels (b) and (d) show the mean annual cycles (monthly 
means) of δ18O and d-excess, respectively, calculated over the period 2017-2021. The black dots and line represent the observations and 
the shaded area represents the inter-annual variability around the mean annual cycle (one standard deviation). The coloured lines (dotted 575 
and plain) represent the different SISG experiments (described in Table 3). The markers on the right vertical axis indicate the mean 
isotopic composition of the observed and simulated snow surface over 5 years (see Table S2 in Supplement S4.2). 
 

To evaluate which SISG experiment best represent the observed snow surface isotopic composition, we perform a linear 

regression between all modelled and observed monthly means δ18O and d-excess in the five-year period. The linear 580 

regression slopes (a) and the RMSE between the model results and the observations are summarized in Table 4. 

The best representation of the observed δ18O in the snow surface is given by the experiment “iso from wg. mm & obs accu” 

(a=1.1, RMSE=3.4‰, Table 4). The experiment “iso from T & cst accu” results in the highest RMSE of all configurations 
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tested (RMSE=6.9‰, Table 4), which is expected due to the intermittent nature of precipitation at Dome C. In addition, the 

experiment “iso from ECHAM6 & ECHAM6 accu” gives a high RMSE (6.3‰, Table 4). 585 

For d-excess, out of the five model experiments, “iso from wg. mm & obs accu” gives the lowest RMSE (3.9‰, Table 4). As 

for δ18O, the experiment “iso from T & cst accu” results in the highest RMSE (8.8‰, Table 4). Lastly, the experiment “iso 

from ECHAM6 & ECHAM6 accu” has a RMSE of 7.1‰ and a non-significant slope compared to the observations (p-value 

> 0.05). 

 590 
Table 4. Linear regression slope (a) and RMSE between the observed and modelled monthly mean isotopic composition of the surface 
layer (δ18O in normal font, d-excess in parenthesis and italic). The sample size is 60 for all experiments except “iso from wg. mm & obs 
accu” and “iso from ar. mm & obs accu” (n=59). All linear slopes are significant (p-value < 0.05), except the ones marked with an asterisk 
(*, p-value > 0.05).  
 595 

Experiment “Iso from T 
& cst accu” 

“Iso from T & 
ERA5 accu” 

“Iso from wg. mm 
& obs accu” 

“Iso from ar. mm & 
obs accu” 

“Iso from ECHAM6 & 
ECHAM6 accu” 

a 1.4 (1.4) 1.2 (1.0) 1.1 (0.9) 1.3 (1.1) 1.1 (0*) 
RMSE (‰) 6.9 (8.8) 3.7 (5.3) 3.4 (3.9) 5.8 (5.5) 6.3 (7.1) 

3.4.2 Snow subsurface 

For δ18O in the snow subsurface, we find comparable results as for the surface layer. We find that all five model experiments 

fail to capture the short-term variations in the snow subsurface, and all experiments result in a too-large amplitude in the 

mean annual cycle over five years (Fig. 9a and b). The systematic positive bias given by the model experiment “iso from 

ECHAM6 & ECHAM6 accu” is also visible in the simulated subsurface layer (Fig. 9a and b). In addition, all five model 600 

experiments provide a mean annual cycle shifted compared to the observed one, with a maximum δ18O occurring one to two 

months later than the observed maximum (Fig. 9b). 

 

For d-excess, we find that four out of five of the model experiments (“iso from T & cst accu”, “iso from T & ERA5 accu”, 

“iso from wg. mm & obs accu”, “iso from ar. mean & obs accu”) give too high d-excess variations over time, which is 605 

reflected in the too large amplitude of the modelled mean annual cycle compared to the observed one (Fig. 9c and d). As for 

δ18O, the annual cycle in d-excess modelled in these three experiments is shifted, with the minimum in d-excess found two 

months later than the observed one (Fig. 9d).  

On the other hand, although giving too low d-excess compared to the observations, the experiment “iso from ECHAM6 & 

ECHAM6 accu” results in a similar mean annual cycle as in the observations, with minimum d-excess in the summertime 610 

and maximum d-excess during the wintertime (pink line in Fig. 9d). However, because the precipitation d-excess modelled 

by ECHAM6-wiso poorly represent the observations (Fig. 6e and f), we argue that the good resemblance (besides the 

negative bias) between the modelled and observed d-excess in the snow subsurface is due to compensating effects between 

the precipitation d-excess and precipitation amounts. 
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 615 
Figure 9. Comparison between observed and simulated snow subsurface (1 to 4 cm depth) isotopic compositions at Dome C. Panels (a) 
and (c) show the 5-year time series (2017-2021) of δ18O and d-excess (dxs) respectively. The grey dots represent the horizontal average 
between the two samples taken at the two locations 50 m apart on the sampling lines (described in Sect. 2.2, also presented in Fig. 3). The 
coloured lines (dotted and plain) represent the different SISG model experiments (described in Table 3). Panels (b) and (d) show the mean 
annual cycles (monthly means) of δ18O and d-excess, respectively, calculated over the period 2017-2021. The grey dots and line represent 620 
the observations and the shaded area represents the inter-annual variability around the mean annual cycle (one standard deviation). The 
coloured lines (dotted and plain) represent the different SISG experiments (described in Table 3). The markers on the right vertical axis 
indicate the mean isotopic composition of the observed and simulated snow subsurface over 5 years (see Table S2 in Supplement S4.2).  
 

 As for the snow surface, we perform a linear regression between all modelled and observed monthly means δ18O and d-625 

excess. The linear slopes (a) and the RMSE between the model results and the observations are summarized in Table 5. 

Contrary to the surface layer, the best representation of δ18O in the subsurface layer is given by the experiment “iso from T 

& ERA5 accu” (a=0.8, RMSE=3.3‰, Table 5). The model experiment “iso from ECHAM6 & ECHAM6 accu” gives the 

best correlation with observations, although with the highest RMSE (a=1.1, RMSE=6.7‰, Table 5). 

For d-excess in the snow subsurface, only the experiment “iso from ECHAM6 & ECHAM6 accu” gives a significant slope 630 

with the observations (a=0.8, RMSE=6.0‰, Table 5) while all other experiments have a non-significant linear slope with the 
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observations (p-value > 0.05, Table 5). However, as stated above, we argue that this good agreement between the simulated 

snow subsurface in the experiment “iso from ECHAM6 & ECHAM6 accu” is due to compensating effects between the 

precipitation d-excess and precipitation amounts. 
 635 
Table 5. Linear regression slope (a) and RMSE between the observed and modelled monthly mean isotopic composition of the subsurface 
layer (δ18O in normal font, d-excess in parenthesis and italic). The sample size is 60 for all experiments except “iso from wg. mm & obs 
accu” and “iso from ar. mm & obs accu” (n=54). All linear slopes are significant (p-value < 0.05), except the ones marked with an asterisk 
(*, p-value > 0.05). 
 640 

Experiment “Iso from T & 
cst accu” 

“Iso from T & 
ERA5 accu” 

“Iso from wg. mm 
& obs accu” 

“Iso from ar. mm & 
obs accu” 

“Iso from ECHAM6 & 
ECHAM6 accu” 

a 1.0 (0.5*) 0.8 (0.2*) 0.5 (0.4*) 0.7 (0.3*) 1.1 (0.8) 
RMSE (‰) 6.2 (8.4) 3.3 (5.1) 3.5 (3.5) 6.1 (6.0) 6.7 (6.0) 

4 Discussion 

4.1 Limits of the methodological approach 

4.1.1 Reliability of the datasets 

Our study of the snow water stable isotopic composition is based on snow samples collected regularly all-year round at 

Dome C. In Fig. 3, 8 and 9, we use the average of the two samples collected 50 m apart (Sect. 2.2) to describe the variability 645 

in δ18O and d-excess in the snow surface and subsurface. To ensure that the observed variations reflect a signal of local 

weather and climate rather than random noise, we analysed the temporal variations of the two samples independently 

(locations 1 & 2, Fig. S2 in Supplement S3). We see that the variations in δ18O and d-excess at the sampling locations 1 and 

2 generally follow each other. Additionally, a wavelet coherence analysis (Grinsted et al., 2004) revealed significant in-phase 

coherence between both locations for δ18O and d-excess in the snow surface and subsurface samples, over approximately 120 650 

days and above throughout the 5-year period (Fig. S3 in Supplement S3). Note that this is a bit less evident for the d-excess 

in the subsurface samples. We also see some episodic coherence between the two locations at 30 to 60 days. We argue that 

this shared signal between both locations indicates that the intra-annual to multi-annual variations in δ18O and d-excess 

observed in the snow samples reflect a true temporal climate or weather driven signal. This brings confidence in using this 

dataset to investigate the formation of the isotopic signal in the snow. At shorter time scales (intra-monthly), the δ18O and d-655 

excess variations that are not shared by both locations most likely reflect the spatial heterogeneity of the surface, arising 

from snow erosion and redistribution leading to an accumulation by patches (Picard et al., 2019). This is one aspect of post-

depositional processes that is further discussed in Sect. 4.2.1. 

Certain limitations should also be mentioned concerning the precipitation isotopic composition time series presented in Fig. 

6. As detailed in Sect. 3.2, all the snow laying on the bench is collected, whether it is precipitation (including diamond dust), 660 

blown snow or hoar formed from atmospheric condensation. In addition, some of the samples might have been affected by 

ad hoc sublimation, especially during the summertime, due to their exposure to the atmosphere before sample collection. As 
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already pointed out by Dreossi et al. (2024a), the precipitation dataset might also be biased towards higher precipitation 

events, because it was not possible to collect or measure the isotopic composition of the sample when very little snow was 

present on the table, due to too little precipitation during the day or because the sample was blown away. Lastly, some days 665 

with precipitation are missing in the dataset, because the sample was simply not collected, due to harsh conditions for 

example. This also affects the observed precipitation amounts presented in Fig. 5, as they are inferred from the weights of 

the samples collected on site (Sect. 2.3 and 2.5.1). 

Considering the points discussed and to avoid overinterpreting the differences in the isotopic compositions of the individual 

precipitation and snow samples, we instead use the full datasets presented here to quantify the mean effect of post-670 

depositional processes over five years (Sect. 4.2.2). 

4.1.2 SISG setup and inputs 

In Sect. 3.4.1 and 3.4.2, we showed that none of the five SISG experiments fully represent the variability observed in the 

snow surface and subsurface isotopic composition (δ18O and d-excess). However, it should be mentioned that the results of 

the simple model used in our study come with some limitations.  675 

The model was designed with a fixed depth for both snow samples to best represent the observations, although the depths of 

the samples collected in the field might have varied over time (Sect. 2.2). Changing the sample depths in the SISG model 

does not significantly improve the agreement between the model results and the observations (Table S3 in Supplement S4.3), 

however implementing a varying depth for each time step of the model could improve the concordance between the synthetic 

and observed snow layers. 680 

The inputs of the model might also explain some of the discrepancies between the observed and synthetic snow layers. For 

example, there are fewer small precipitation events in the observations than given by ERA5 and ECHAM6-wiso (Fig. 5b), 

which reflects the possible bias of the observations towards higher precipitation events (Sect. 4.1.1). This could lead to an 

underestimation of the contribution of smaller precipitation events (e.g. diamond dust) to the total accumulation and explain 

the differences between the experiments “iso from wg. mm and obs accu” and “iso from ar. mm and obs accu” and the 685 

observations (Fig. 8 and 9). On the other hand, it might be ERA5 and ECHAM6-wiso that overestimate the contribution of 

smaller precipitation events to the total accumulation, due for example to too frequent precipitation days with low 

precipitation rates. Some snowfall events in ERA5 and ECHAM6-wiso could also be occurring too early or too late and 

explain why the short-term increases and decreases in the snow isotopic composition are not reproduced in the experiments 

using ERA5 and ECHAM6-wiso precipitation amounts (Fig. 8a and c, Fig. 9a and c). In addition, we scaled up all three 690 

precipitation time series to match the mean annual accumulation of 8 cm year-1 at Dome C (Sect. 2.5), although this value 

can vary and estimations over other time periods have given higher mean accumulation rates (e.g. Frezzotti et al., 2005). One 

way to improve the model results would be to scale the precipitation time series with a different mean annual accumulation 

rate for each individual year using recent data from the GLACIOCLIM stake network (Genthon et al., 2015; 

https://glacioclim.osug.fr/). Lastly, due to missing data in the observations of the daily precipitation isotopic composition, we 695 

https://glacioclim.osug.fr/
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used an artificial time series in three out of five experiments (Sect. 2.5), but none of these represent accurately the 

observations (Fig. S4 in Supplement S4.1). This could also partly explain the differences between the observed and synthetic 

snow layers. 

For the different reasons stated above, we don’t quantify the effect of post-depositional processes by comparing directly the 

model results and the observations, but rather use it as a tool to discuss the role of the different surface processes on the snow 700 

isotopic composition (Sect. 4.2.1).  

4.2 Transfer of the isotopic signal between precipitation, snow surface and subsurface 

In this section we discuss the potential processes at the surface of the ice sheet responsible for the discrepancies between the 

precipitation signal and the observed snow surface and subsurface layers and assess the overall impact of these processes on 

the transfer of the isotopic signal between precipitation to the snow.  705 

4.2.1 Short-term, inter-annual and seasonal variability in the snow isotopic composition 

Several studies have shown that water vapor fluxes between the lower atmosphere and the snow can modify the isotopic 

composition of the snow surface (Casado et al., 2021; Hughes et al., 2021; Wahl et al., 2021, 2022) and deeper firn cores 

(Dietrich et al., 2023). Although the impact depends on the isotopic composition of the atmospheric water vapor above, 

sublimation generally leads to an enrichment in δ18O of the snow surface and a lowering of its d-excess. In addition, Casado 710 

et al. (2018) hypothesized that the inter-annual variability of the summer snow surface isotopic composition is related to the 

strength of metamorphism and surface vapor fluxes.  

We showed that at Dome C, sublimation occurs during the summertime (Fig. 2a) and that there is a net annual sublimation of 

snow (Fig. 2b), which means that the surface snow isotopic composition must have been affected by these fluxes. We find 

that in the δ18O vs δD domain, most of the snow surface samples collected in December and January are below the 715 

precipitation samples (i.e. with a lower d-excess) collected in the same months (not shown), indicating an effect of 

sublimation on the snow surface isotopic composition in the summertime. In addition, we observe some inter-annual 

variability in the vertical difference between the snow surface and subsurface isotopic compositions (Fig. 4). This difference 

between the layer exposed to the atmosphere and the subsurface could be explained by the inter-annual variability in vapor 

fluxes (Fig. 2a). For example, the snow surface is most enriched in δ18O compared to the subsurface in December 2019 and 720 

January-February 2020 (Fig. 4). In parallel, we observe strong sublimation occurring in November and December 2019 (Fig. 

2a), probably enriching the snow surface in δ18O, and leading to a much more enriched snow surface compared to the 

subsurface in the samples collected in the following months. Yet, the highest sublimation rate occurring in December 2018 

(Fig. 2a) is not necessarily reflected in the vertical difference between the snow surface and subsurface layers (Fig. 4). This 

could be explained by the length of the sublimation period, critical for the overall impact on the snow surface (Hughes et al., 725 

2021; Wahl et al., 2022).  
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The mean seasonal cycle in the difference between the surface and subsurface isotopic compositions can, on the other hand, 

most likely be explained by the depths of the samples that integrate the precipitation events fallen during the last couple of 

months for the surface sample and up to the previous winter for the subsurface sample (assuming no removal or 

redistribution and no compaction of snow, Fig. S5 in Supplement S4.4). The higher δ18O and lower d-excess in the summer 730 

precipitation compared to the winter precipitation (Fig. 6) explains why the mean summer snow surface is enriched in δ18O 

and has a lower d-excess than the snow subsurface (Fig. 4). This integration process can also explain, at first order, why the 

maximum and minimum monthly mean δ18O in the precipitation, the snow surface and the snow subsurface do not occur at 

the same time (January and May for the precipitation-weighted, Fig. 6c; February and October for the snow surface; and 

March and November for the snow subsurface, Fig. 3b). 735 

If we would include vapor fluxes in the simple SISG model, the amplitude of the modelled seasonal cycle in the snow 

surface would be increased (summer months enriched in δ18O and reduced in d-excess), increasing the discrepancy with the 

observations (Fig. 8b and d). This shows that an additional process reducing the amplitude of the mean annual cycle in the 

snow surface takes place. Diffusion is a good candidate. 

Indeed, the isotopic composition of the snowpack is affected by diffusion of water molecules along isotopic and temperature 740 

gradients (Johnsen et al., 2000; Gkinis et al., 2014). Implementing this process in the model would possibly reduce the too 

large amplitude of the seasonal cycles in the synthetic snow layers to match the observations (Fig. 8b and d, 9b and d). 

Diffusion might also partly explain the difference observed at the seasonal scale between the precipitation and the snow 

surface isotopic compositions (Fig. 3b and d, Fig. 6c and f), smoothing the incoming high-amplitude seasonal signal of 

precipitation and leading to a snow surface enriched in δ18O (and with lower d-excess) in the wintertime compared to 745 

precipitation. In addition, some of the short-term variations observed in the snow subsurface that are not explained by the 

incoming precipitation (Fig. 9a and c) could instead be explained by changes occurring in the smow surface and diffused 

downwards, as suggested by Casado et al. (2018).  

Lastly, although Dome C is not affected by strong katabatic winds, surface winds can still be strong enough to erode and 

redistribute the snow (Libois et al., 2014). In a study of the process of snow accumulation at Dome C, Picard et al. (2019) 750 

showed that the snow surface changes very frequently due to snow erosion and accumulation by small patches (10% of the 

surface only is affected by each precipitation events), and that the snow in a patch can be as old as one year at the surface, 

while another patch was deposited by the last precipitation event. In the snow samples collected at Dome C, we observe 

higher differences in δ18O and d-excess between two consecutive sampling days of the snow surface and subsurface when 

the wind speed increases from one sampling day to another (Fig. S6 in Supplement S5), as well as a decrease in δ18O and d-755 

excess vertical difference between the snow surface and the subsurface (Fig. S7 in Supplement S5). This could indicate that 

some of the short-term variations observed in the snow surface isotopic composition that cannot be explained by new 

precipitation falling on the surface (Fig. 3, 8a and c) be caused instead by wind erosion and redistribution. 

The wind blowing at the surface of the ice sheet during or beside snowfall could lead to a mixing of new precipitation with 

already deposited snow. This process was proposed by Casado et al. (2018) to explain the slow decrease in the surface snow 760 



28 
 

δ18O during the winter, a pattern observed in our study (Fig. 3a and b) and that cannot be explained by precipitation only 

(Fig. 8a and b). A recent laboratory study also suggests that snow metamorphism during wind transport (“airborne snow 

metamorphism”) has the potential to impact the snow isotopic composition in both δ18O and d-excess (Wahl et al., 2024). 

This could be an additional process occurring at Dome C explaining some of the differences between the precipitation and 

snow isotopic signals, including in the wintertime. 765 

Overall, our results show evidence that the snow isotopic composition is affected by post-depositional processes at different 

timescales. Disentangling the contribution of the different processes described above on the final isotopic signal found in the 

snow is beyond the scope of this study and requires the use of an isotope-equipped snowpack model that includes post-

depositional processes at the surface, such as the one developed recently by Wahl et al. (2022) and Dietrich et al. (2023). 

4.2.2 Mean effect of post-depositional processes 770 

The datasets presented in this study permit to quantify the overall impact of post-depositional processes on the snow isotopic 

composition. Table 6 summarizes the mean isotopic composition over five years of precipitation (weighted average by the 

observed precipitation amounts, see Sect. 2.5.1), the snow surface, and the snow subsurface. The mean isotopic composition 

of precipitation excluding all samples with negative d-excess and modelled by ECHAM6-wiso are also provided. All mean 

values are given with their respective standard error (see Sect. 3.2.1 and Supplement S2) and 95% confidence interval 775 

(Student t-test, Supplement S2). 

 
Table 6. Five-year mean isotopic composition of precipitation (weighted by the observed precipitation amounts) and snow samples (δ18O 
in normal font, d-excess in parenthesis and italic). The mean values are given with their respective standard error (see Sect. 3.2.1) and in 
brackets their 95% confidence interval (Student t-test, Supplement S2). 780 
 

 Observations Observations (excl. samples with dxs < 0) ECHAM6-wiso 

Precipitation-weighted (‰) -53.4 ± 0.5 [1.0] 
(12.2 ± 0.5 [1.0]) 

-54.3 ± 0.4 [0.9] 
(13.9 ± 0.4 [0.8]) 

-45.7 ± 0.5 [0.9] 
(5.1 ± 0.3 [0.5]) 

Snow surface (‰) -51.0 ± 0.2 [0.4] 
(10.4 ± 0.2 [0.5]) 

– 
– 

– 
– 

Snow subsurface (‰) -51.4 ± 0.1 [0.3] 
(10.8 ± 0.1 [0.3]) 

– 
– 

– 
– 

 

As shown in Section 3.3.2, the observed δ18O precipitation-weighted mean over five years is higher than the overall mean (-

53.4 and -56.2‰, respectively). This is explained by the lowest δ18O values in precipitation being associated with smaller 

precipitation amounts (Fig. S8 in Supplement S6), and therefore weigh less when computing the precipitation-weighted 785 

average. The opposite applies for d-excess: the weighted overall mean is lower than the arithmetic overall mean (12.2 and 

15.2‰, respectively) because high d-excess values are associated with lower precipitation amounts (Fig. S8 in Supplement 

S6).  

Now because the snow surface layer represents the amount of snow accumulated over a certain period, its mean isotopic 

composition should reflect the weighted mean (by precipitation amounts) isotopic composition of precipitation. Therefore, 790 
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we express the mean effect of post-depositional processes at Dome C as the difference between the observed 5-year 

weighted mean isotopic composition of precipitation and the observed 5-year mean isotopic composition of the snow 

surface.  

Considering all precipitation and snow samples, the snow surface δ18O is 2.4‰ higher than in precipitation and the snow 

surface d-excess is 1.8‰ lower than in precipitation (Table 6). However, to exclude any imprint of sublimation on the 795 

precipitation isotopic composition, we re-compute the mean isotopic composition of precipitation discarding all the samples 

with a d-excess below zero, as in Steen-Larsen et al. (2011). Although the zero threshold might be arbitrary, it is supported 

by laboratory and field studies that showed a decrease in d-excess during snow sublimation and metamorphism (Hughes et 

al., 2021; Casado et al., 2021; Harris Stuart et al., 2023). In addition, Stenni et al. (2016) and Dreossi et al. (2024a) already 

stated that some of the samples collected in the summertime at Dome C might have been affected by sublimation and we 800 

observe in the precipitation dataset presented here that the samples with very negative d-excess were collected during the 

summertime (e.g. December 2019, Fig. 6d) when sublimation occurred (Fig. 2a). We therefore argue that removing all 

precipitation samples with a d-excess below zero improves the representation of the true precipitation falling at Dome C. 

Now considering this new precipitation time series, the δ18O in the snow surface is 3.3‰ higher than in precipitation and the 

d-excess in the snow surface is 3.5‰ lower than in precipitation (Table 6). Both differences are significant on a 95% 805 

confidence level (Table 6).  

The weighted mean isotopic composition of precipitation is computed using the observed precipitation amounts, estimated 

from the weights of the samples collected on site (Sect. 2.3 and 2.5.1). However, as discussed in Sect. 4.1.3, these amounts 

might not accurately represent the precipitation falling at Dome C. Using the precipitation amounts given by ERA5 instead, 

the weighted mean δ18O of precipitation is -54.0‰ and 13.8‰ for d-excess, which leads to similar differences between the 810 

precipitation and the snow surface: δ18O in the snow surface is 3.0‰ higher than in precipitation and d-excess in the snow 

surface is 3.4‰ lower than in precipitation.  

The discrepancies between the precipitation and the snow surface show that the mean isotopic composition of precipitation is 

not preserved from snowfall to the snow surface. On average over a 5-year period at Dome C, post-depositional processes 

lead to an enrichment in δ18O of the snow surface by 3.0‰ to 3.3‰ (depending on which precipitation amounts are 815 

considered) and a lowering of d-excess in the snow surface by 3.4‰ to 3.5‰ compared to the precipitation signal. It is still 

to be determined the individual contribution of the different post-depositional processes (discussed in Sect. 4.2.1) on the 

isotopic difference observed between the precipitation and the snow surface. 

In contrast to the isotopic difference between the precipitation and snow surface, there is no significant difference between 

the mean snow surface and subsurface isotopic compositions, for both δ18O and d-excess (Table 6). This shows that despite a 820 

seasonality in the vertical difference between the two snow layers (discussed in Sect. 4.2.1), the mean isotopic composition 

of the snow surface layer is preserved in the top few centimetres of the snowpack. 

From the sampling of a 2 m snow pit at Dome C, Touzeau et al. (2016) reported mean values (plus-minus standard error of 

the mean) of -51.1 ± 0.2‰ and 9.1 ± 0.2‰ for the δ18O and d-excess profiles, respectively. As found in our study for the 
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upper layers of the snow, the average isotopic composition of the snow pit is enriched in δ18O and has a lower d-excess than 825 

the mean incoming precipitation isotope signal.  

 

The weighted-mean isotopic composition of precipitation modelled by ECHAM6-wiso over the whole period is 7.7‰ higher 

in δ18O and 7.1‰ lower in d-excess than the observed precipitation (Table 6, Fig. 6c and f). These large differences result 

from the biases identified in the model (Sect. 3.3.2, Fig. 6 and 7), combined with the distribution of the daily isotopic values 830 

against precipitation amounts (Fig. S8 in Supplement S6), which influences both the overall mean and the seasonal 

difference between the observations and the model (Fig. 6 and Supplement S6). This shows the limitations of using 

ECHAM6-wiso simulations to interpret the isotopic composition of the snow at Dome C. A thorough investigation of the 

biases in ECHAM6-wiso is beyond the scope of this study, but they might arise from different processes in the model, such 

as the environmental conditions at the moisture source region, the moisture transport and pathway, the supersaturation 835 

parametrization or the condensation height and temperature at Dome C. The fourteen-year record of the precipitation isotopic 

composition (Dreossi et al., 2024a and this study) gives the opportunity to evaluate isotope-enabled GCMs and can be used 

to improve the tuning of the empirical parameterization of supersaturation in polar clouds (e.g. Risi et al., 2013). 

4.2.3 Seasonal δ18O versus temperature relationships in precipitation and snow 

In precipitation, the δ18O-temperature relationship is determined between the δ18O in the daily precipitation samples and the 840 

corresponding daily atmospheric temperature (Sect. 3.3.3, Eq. (1)). For the snow surface and subsurface, we determine the 

relationships between the δ18O composition of each snow sample and the weighted-average temperature (by precipitation 

amounts) over the entire period during which precipitation accumulated and formed the snow sample (Fig. A3). We use the 

observed precipitation amounts to determine this averaging period (Fig. S5 in Supplement S4.4). Table 7 summarizes the 

linear regression slopes (a) with their standard errors and the coefficient of determination (R2). 845 

 
Table 7. Summary of mean seasonal δ18O versus temperature linear relationships in precipitation and snow samples between 2017 and 
2021. The slopes (a) are given with their standard error and all three slopes are significant (p-value < 0.001).  
 

 Precipitation Snow surface Snow subsurface 
a (‰ °C-1) 0.47 ± 0.01 0.17 ± 0.01 0.12 ± 0.02 

R2 0.62 0.25 0.1 
 850 

We find a mean seasonal δ18O-temperature slope in precipitation of 0.47 ± 0.01‰ °C-1, in agreement with previous studies 

for the same location for earlier years (Stenni et al., 2016; Dreossi et al., 2024a). We find a mean seasonal slope of 0.17 ± 

0.01‰ °C-1 in the snow surface (top 1 cm) and a mean seasonal slope of 0.12 ± 0.02‰ °C-1 in the snow subsurface (1 to 4 

cm, Table 7). The snow surface slope coincides with the one found for the snow top 1-2 mm at Dome C (0.14 ± 0.03‰ °C-1, 

Touzeau et al., 2016) but is lower than the ones found by Casado et al. (2018) for similar samples in earlier years (slopes 855 

ranging from 0.22 to 0.49‰ °C-1). This difference can be due to uncertainties on the precipitation amounts used to determine 
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the averaging period of temperature (i.e. some precipitation days with colder temperatures are not captured), the method used 

to determine the averaging period of temperature (i.e. assumes that snowfall is not redistributed or removed and does not 

include snow compaction, Supplement S4.4), or due to the different method used in Casado et al. (2018) where they compute 

the slope as the ratio of the maximum amplitude in δ18O and the maximum amplitude in temperature.  860 

Our results indicate that deriving a temporal slope from seasonal variations of δ18O in the snow surface to be used for ice 

core studies is not consistent with other in-situ and proxy temperature reconstructions. First, the snow surface δ18O is not 

showing a symmetric seasonal cycle. Instead, the δ18O minimum is shifted towards spring (Fig. 3, Sect. 3.2.1) while the 

minimum temperature occurs in winter. Secondly, our determination of the seasonal relationship between the snow δ18O and 

the atmospheric temperature results in a weaker correlation and a lower slope (0.12 – 0.17‰ °C-1, Table 7) than what is 865 

found for precipitation (0.47‰ °C-1, Table 7). Using the δ18O-temperature slope found in the upper layers of the snow for 

temperature reconstructions from ice cores would lead to unrealistic glacial-interglacial temperature change exceeding 30°C. 

The change in the seasonal δ18O-temperature relationship between the precipitation and the upper layers of the snow shows 

the difficulty to interpret quantitatively the δ18O variations in the snow at Dome C in terms of temperature. Instead, it 

provides the opportunity to document the effects of post-depositional processes at this site and improve the future 870 

quantitative interpretation of water isotopic records in ice cores from Dome C for longer timescales (decadal and longer 

timescales).  

4.3 Long-term perspectives for the interpretation of ice core isotope records 

The classical paleothermometer approach (Lorius and Merlivat, 1975) to determine past temperature variations from the 

water isotopic profiles in ice cores uses the present-day spatial slope between the water isotopic composition of the snow 875 

surface and the local temperature. However, as illustrated in Casado et al. (2017), this spatial slope differs from the various 

estimates of the temporal slope between temperature and δ18O found in the literature and in this study, determined for 

different regions and timescales. These discrepancies show the need of calibration of the isotopic paleothermometer. Such 

calibration has been done using alternative methods at the glacial-interglacial scale (e.g. borehole thermometry and firn 

properties, Buizert et al., 2021), or using isotope-enabled GCMs to determine the relationship between temperature and 880 

water isotopes during past periods (e.g. Werner et al., 2018). However, in these models, the absence of explicit modelling of 

how the water isotopic signal is archived in the snow and firn limits their use for paleo-reconstructions. 

To progress towards an accurate quantitative interpretation of isotopes in ice cores, we recommend developing a proxy 

system model (Evans et al., 2013) that can be coupled to isotope-enabled GCMs. A first step toward such a model has been 

developed recently by Wahl et al. (2022) and Dietrich et al. (2023) for Greenland and includes mechanical processes leading 885 

to the recording of isotopes at the ice sheet’s surface and in firn cores. The datasets presented in our study can therefore be 

useful to calibrate and validate this kind of model at intra-annual, seasonal, and inter-annual timescales at the deep drilling 

site of the EPICA Dome C ice core. 
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5 Conclusions 

We have presented the compilation of new and existing datasets of the isotopic composition of precipitation, snow surface 890 

and subsurface together with meteorological parameters, reanalysis products, model outputs and a simple modelling 

approach to investigate the origin of the stable water isotopic signal in the upper layers of the snowpack at Dome C, East 

Antarctica.  

From in-situ meteorological observations, we have quantified the amount of water vapor fluxes between the snow and the 

lower atmosphere. Our results show that vapor fluxes contribute to the surface mass balance at Dome C with a net annual 895 

mass loss of snow from 3.1 to 3.7 mm w.e. year-1 between 2018 and 2020, which corresponds to 12 to 15% of the annual 

surface mass balance. Sublimation is relatively strong in the summertime and there is small condensation in the wintertime. 

From the comparison between the snow surface and subsurface isotopic compositions and a simple modelling approach, we 

show that the precipitation deposited onto the ice sheet cannot explain the variability observed in the snow isotopic 

composition (δ18O and d-excess) at seasonal to intra-monthly timescales, highlighting the existence of post-depositional 900 

processes affecting the snow isotopic composition. 

We quantified the cumulative effect of post-depositional processes on the snow surface over five years by comparing the 

mean isotopic compositions of the precipitation and the snow layers. Our results show that post-depositional processes lead 

to an enrichment of the snow surface (top 1 cm) in δ18O by 3.0‰ to 3.3‰ (depending on the precipitation amounts 

considered) and a lowering of the snow surface d-excess by 3.4‰ to 3.5‰. In addition, our results show that the mean 905 

isotopic composition of the snow subsurface (1 to 4 cm depth) is not significantly different than the snow surface, which 

indicates that the mean isotopic composition of the snow surface layer is preserved in the top centimetres of the snowpack 

and that the processes altering the precipitation isotopic signal mainly take place in the top one centimetre of the snow.  

In both the observations, ERA5 reanalyses and ECHAM6-wiso simulation, we showed that 50% of the accumulation at 

Dome C over five years occurs during large but rare precipitation events associated with warmer temperatures than average, 910 

leading to a warm bias in the δ18O record of precipitation compared to the mean annual temperature. We further find 

different seasonal relationships between the atmospheric temperature and δ18O in the precipitation and the snow, showing the 

difficulty to interpret the variations of δ18O in the snow at Dome C.  

Overall, our results show that post-depositional processes at the ice sheet’s surface have an impact on the isotopic signal 

(both δ18O and d-excess) found in the upper layers of the snowpack at Dome C, East Antarctica. The datasets presented in 915 

our study open the possibility to calibrate and validate proxy system models including post-depositional processes that are 

needed to quantitatively attribute the different mechanisms building up the isotopic signal in the snow surface and to 

accurately reconstruct the climatic information from the water stable isotope records in ice cores. 

 

 920 



33 
 

Appendix A 

 
Figure A1. Daily observed precipitation δ18O (a) and δD (b) versus observed daily mean temperature at Dome C. All precipitation samples 
collected between 2017 and 2021 are shown against the corresponding daily mean temperature (T3m, dark colours) and the daily mean 
temperature of the day before (T3m shifted, light colours). The linear regressions with the associated coefficients of determination (R2) are 925 
shown. Both linear slopes are significant (p-values < 0.001).  
 

 
Figure A2. Daily precipitation δ18O (a) and δD (b) modelled by ECHAM6-wiso versus daily mean temperature modelled by ECHAM6-
wiso. The linear regressions with the associated coefficients of determination (R2) are shown. Both linear slopes are significant (p-values < 930 
0.001).   
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Figure A3. Bi-weekly observed snow surface (a) and subsurface (b) δ18O versus temperature at Dome C. All snow samples collected 
between 2017 and 2021 are shown against the weighted-average temperature (by precipitation amounts) over the period corresponding to 935 
the accumulation of the snow samples (see Sect. 4.2.3). The linear regressions with the associated coefficients of determination (R2) are 
shown. Both linear slopes are significant (p-values < 0.001). 
 

Code availability. The code for the estimation of water vapor fluxes with the bulk method is available at 

https://doi.org/10.5281/zenodo.13833912 and the SISG model code is available at https://doi.org/10.5281/zenodo.13833981. 940 

 

Data availability. All the observational and meteorological datasets used in this study are available in public repositories. 

The isotopic composition of the snow surface and subsurface samples between 2017 and 2021 is available in Landais et al. 

(2024) (https://doi.pangaea.de/10.1594/PANGAEA.971486). The 2017-2021 dataset of the isotopic composition and weights 

of the daily precipitation samples is available in Dreossi et al. (2024b) (https://doi.pangaea.de/10.1594/PANGAEA.972031). 945 

The atmospheric temperature dataset is available in Genthon et al. (2021b) 

(https://doi.pangaea.de/10.1594/PANGAEA.932512) and at 

https://web.lmd.jussieu.fr/~cgenthon/SiteCALVA/CalvaData.html. The wind speed dataset is available in Genthon et al. 

(2021c) (https://doi.pangaea.de/10.1594/PANGAEA.932513) and at 

https://web.lmd.jussieu.fr/~cgenthon/SiteCALVA/CalvaData.html. The atmospheric relative humidity dataset is available in 950 

Genthon et al. (2021d) (https://doi.pangaea.de/10.1594/PANGAEA.939421). The atmospheric pressure dataset is available 

in Grigioni et al. (2022) (https://doi.org/10.12910/DATASET2022-002). The radiative fluxes dataset from the BSRN 

network is available in Lupi et al. (2021) (https://doi.pangaea.de/10.1594/PANGAEA.935421). The CNR4 radiative fluxes 

dataset will be published upon acceptance of the article. 
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