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Abstract9

Relying on geological data to construct 3D models can provide a more intuitive10

and easily comprehensible spatial perspective. This process aids in exploring11

underground spatial structures and geological evolutionary processes, providing12

essential data and assistance for the exploration of geological resources, energy13

development, engineering decision-making, and various other applications. As one of14

the methods for 3D geological modeling, multipoint statistics can effectively describe15

and reconstruct the intricate geometric shapes of nonlinear geological bodies.16

However, existing multipoint statistics algorithms still face challenges in efficiently17

extracting and reconstructing the global spatial distribution characteristics of18

geological objects. Moreover, they lack a data-driven modeling framework that19

integrates diverse sources of heterogeneous data. This research introduces a novel20

approach that combines multipoint statistics with multimodal deep artificial neural21

networks and constructs the 3D crustal P-wave velocity structure model of the South22

China Sea by using 44 OBS forward profiles, gravity anomalies, magnetic anomalies23

and topographic relief data. The experimental results demonstrate that the new24

approach surpasses multipoint statistics and Kriging interpolation methods, and can25

generate a more accurate 3D geological model through the integration of multiple26

geophysical data. Furthermore, the reliability of the 3D crustal P-wave velocity27
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structure model, established using the novel method, was corroborated through visual28

and statistical analyses. This model intuitively delineates the spatial distribution29

characteristics of the crustal velocity structure in the South China Sea, thereby30

offering a foundational data basis for researchers to gain a more comprehensive31

understanding of the geological evolution process within this region.32

Keywords: multipoint statistics, multimodal deep learning, South China Sea, 3D33

crustal velocity structure model34

35

1.Introduction36

3D modeling of the geological bodies and structures can be realized based on37

geological data such as boreholes and profiles, providing more intuitive and38

easier-to-understand descriptions. Therefore, the construction of 3D geological39

models has become an important analytical tool for studying the formation and40

evolution of the Earth. It not only provides a foundation and framework for various41

geological applications such as spatial analysis (Lindsay et al., 2012), energy42

exploration (Yin et al., 2011), resource prediction (Kaufmann et al., 2008; Ma et al.,43

2018), and engineering construction (Qu et al., 2015; Zhang et al., 2019), but also44

offers a multi-perspective understanding of geological objects from a microscopic45

scale, such as micrometer to centimeter scale (Song et al., 2018; Li et al., 2019).46

The MultiPoint Statistics (MPS) method, a technique for 3D modeling,47

leverages the correlation features between multiple points in space derived from a48

training image (TI). This is achieved by incorporating conditional data and prior49

geological knowledge during the simulation process. The MPS approach effectively50

addresses the limitations of two-point statistics, such as the Kriging51

interpolation algorithm, in measuring spatial correlation of data. It provides an52

effective description and reconstruction of the complex geometric shapes of nonlinear53

geological bodies (Mariethoz et al., 2010).54

However, limited by the method of extracting spatial patterns from TI, most MPS55
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methods cannot consider the global spatial structure characteristics of the modeled56

objects in the reconstruction process (Hou et al., 2023). Moreover, in order to57

construct a more reliable 3D geologic model, it is necessary to integrate data obtained58

from various observation methods for modeling, thereby reducing the ambiguity59

caused by modeling based on a single source of data. Existing MPS algorithms lack60

an integrated framework for handling multi-source heterogeneous data. Directly using61

multiple heterogeneous data sources as soft data constraints makes it difficult to apply62

them directly to the simulation process, ignoring the physical significance of the data.63

This approach also fails to capture the coupling and differences between the data, and64

the selection of their weights is relatively subjective (Hansen et al., 2018; Wang et al.,65

2022; Yin et al., 2011).66

One of the solutions for 3D simulation based on multi-source heterogeneous data67

in the field of MPS is to integrate a data fusion framework by incorporating68

multimodal deep learning techniques. In such a framework , multiple geophysical data69

can be integrated, which makes it possible to extract feature distributions and70

coupling relationships between different geophysical data, thereby improving71

modeling accuracy. At the same time, the ability of deep learning to extract and72

reconstruct features from datasets (Hou et al., 2023; Chen et al., 2020; Cui et al., 2022)73

can be used to comprehensively consider the global spatial characteristics of various74

geological objects during the modeling process.75

Drawing upon the aforementioned concepts, our study developed a 3D76

geological modeling algorithm that amalgamates multimodal deep learning with MPS.77

We applied this algorithm to the South China Sea (SCS) as a representative case study.78

The SCS is not only a crucial strategic zone for China in terms of energy, economy,79

and security but also an important frontier region for studying continental rifting,80

seafloor spreading processes, and deep-seated dynamic mechanisms. The SCS is one81

of the largest marginal basins in the western Pacific Ocean, situated at the intersection82

of the Eurasian Plate, the Indian-Australian Plate, and the Pacific Plate. It formed83

during the Oligocene-Middle Miocene (33-15 Ma) through seafloor spreading (Li et84

al., 2014; Taylor and Hayes, 1983; Piao et al., 2022). Its evolution has been influenced85
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by the interaction of continental and oceanic plates, making it one of the most active86

zones of tectonic movement globally (Liu, 2011; Xia et al., 2018; Xie et al., 2022).87

Complex tectonic processes such as continental collision and subduction, have shaped88

the present-day tectonic patterns in the SCS, making it a natural laboratory for89

studying continental rifting, seafloor spreading processes, and deep-seated dynamic90

mechanisms. Additionally, the SCS is also one of the most important offshore areas91

for oil and gas reserves, as well as natural gas hydrates in China (Wu et al., 2005;92

Wang et al., 2011; Xu et al., 2022). These resources have significant strategic value,93

and their exploration is an important aspect of China’s deep-sea strategy. Therefore,94

constructing a 3D crustal P-wave velocity structure model of the SCS can provide95

important data foundation for studying its tectonic evolution, resource exploration,96

and other related research.97

Currently, there exists no comprehensive and publicly accessible 3D crustal98

P-wave velocity structure model of the SCS, which impedes research in Earth99

sciences and interdisciplinary studies. Additionally, due to natural100

topographical conditions and constraints in manpower and resources, large-scale data101

exploration is challenging. The methods employed often depend on point sources or102

line sources, leading to a paucity of data relative to the study area.103

Furthermore, various exploration methods yield different types of geological data104

such as borehole data, profile data, mineral geological data, and105

hydrogeological data. These data have distinct organizational forms and distribution106

ranges, complicating their effective integration for geological understanding.107

In this study, we integrate deep learning method, geostatistical method, and108

multi-source heterogeneous data fusion techniques to investigate the theory and109

methods of stochastic modeling of 3D geological structures. The new method110

overcomes the limitations of traditional algorithms in characterizing non-stationary111

geological structures under conditions of single or sparse data, providing new112

approaches for constructing large-scale and high-precision 3D geological models. In113

addition, high-resolution forward profiles and multi-source geophysical data were114

collected and used to construct a 3D crustal P-wave velocity structure model of the115
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SCS, which can support the study of tectonic evolution, dynamic mechanisms,116

resource exploration, and related issues in SCS.117

This paper is structured into six sections: the first introduces the current state of118

research and existing issues with 3D stochastic modeling methods; the second119

outlines the data foundation employed in this study; the third presents proposed120

methods; the fourth features modeling examples based on the forward velocity121

structure profiles of the SCS; the fifth examines and discusses the performance of the122

algorithms applied to these examples; and the final section provides a comprehensive123

summary.124

2.Data Foundation125

The seismic exploration data and geological information accumulated in the SCS126

have diverse characteristics, making it challenging to directly incorporate data from127

different sources, scales, dimensions, and storage formats into the construction of a128

3D model. To effectively utilize these geological data, several steps must be129

taken. First, it is essential to standardize the representation and storage formats of the130

data, converting similar types of data into consistent graphical or textual131

formats. Second, the standardization of units and coding methods for similar data132

types ensures accurate retrieval and matching with clear numerical133

standards. Finally, unifying the spatiotemporal framework of different data categories134

and establishing a consistent spatial coordinate system allows for the establishment of135

spatial relationships between different types of data. This enables the construction of a136

heterogeneous database at different scales.137

After data sorting, the modeling process in this study divides the data into two138

parts: the target modeling data and the auxiliary data. The former includes the139

attributes of the 3D geological information model that needs to be constructed,140

which is related to spatial coordinates (X, Y, Z). In this study, the target modeling data141

are used as MPS TIs, deep learning label data, and constraints for the modeling142
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process. The latter corresponds to attributes that are not part of the 3D modeling143

objectives and covers the study area in a 2D plane, which is related to spatial144

coordinates (X, Y). This type of data can serve as input data for the deep learning145

framework of fusing multi-source heterogeneous data. Some of this auxiliary data146

directly related to the distribution of some geological attributes in the 3D geological147

model will constrain the modeling process, such as DEM data and geological maps. In148

this study, the target modeling data used are forward modeling of P-wave velocity149

structure in two-dimensional profile form.150

In this study, the velocity structure profiles are used as the target modeling data.151

44 forward-simulated velocity structure profiles, with OBS as the main detection152

instrument, were collected from different locations in the SCS (Table 1). The153

distribution of these profiles in the SCS is shown in Fig. 1. After redrawing these154

forward profiles by tracing and unifying color labels, the colors were converted to155

grayscale values.156
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157

Figure 1: The distribution of forward-simulated profile data in the SCS.158

159

Tabel 1 Forward profile data source list160

OBS1993 Yan et al., 2001
EW1~EW6,NS2,NS5,NS8 Fan et al., 2017, 2019
OBS2001 Wang et al., 2006
OBS2006-1 Wu et al., 2012
OBS2006-2 Ao et al., 2012
OBS2006-3 Wei et al., 2011
OBS2010-1 Cao et al., 2014
OBS2010-2 Zhu et al., 2018
OBS2011-1 Huang et al., 2011
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OBS2011-2 Xia et al., 2022
OBS2012 Wan et al., 2017
OBS2013-1 Huang et al., 2021
OBS2013-3 Guo et al., 2016
OBS2015-1 Li et al., 2017
OBS2015-2 Liu et al., 2018
OBS2016-2 Hou et al., 2019
OBS2017-1 Zhang et al.,2023
OBS2017-2 Li et al., 2020
OBS2018-L5 Wang et al.,2022
OBS2018-H2 Zhao et al., 2022
OBS973-1 Yu et al., 2017
OBS973-2 Wei et al., 2015
OBS2019-1 Liu et al., 2021
OBS2019-2 Guo et al., 2022
OBS2011-Pichot Pichot et al., 2014
SW-T1 Zhang et al., 2016
OBSMW Xiong et al., 2018
P1~P4 Zhao et al., 2018
T3 Lester et al., 2014;
EPS-E Nissen et al., 1995
OBS2019ZX1 Not yet published
OBS2020-1 Not yet published

161

Four auxiliary modeling datasets were used in our study, including the IGPP162

Global Free Air Gravity Anomaly Data_01m (Fig. 2a, Pavlis et al., 2012; Sandwell et163

al., 2019), EMAG2 Global Magnetic Anomaly Model_02m (Fig. 2b, Meyer et al.,164

2017), SRTM+ Global Topography Data Data_01m (Fig. 2c, Tozer et al., 2019), and165

Moho Surface Model (Fig. 2d, not yet published). These datasets were subjected to166

dimensionless processing before being imported as modeling auxiliary data. The167

SRTM+ Global Topography Data_01m and the Moho Surface Model were also used168

to constrain the geometric morphology of the 3D crustal model.169

170
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171

172

Figure 2: The auxiliary modeling datasets that used in this study. (a)IGPP Global Free173

Air Gravity Anomaly Data_ 01m. (b)EMAG2 Global Magnetic Anomaly Model_174

02m. (c)Moho surface model. (d)SRTM+ Global Topography Data_01m.175

3. Method176

The key issues to be addressed when using MPS to construct a 3D geological177

model are as follows: how to identify and extract the geological structural features178

from known geological images, i.e., TI, and how to restructure the extract the179

geological structures in 3D space with appropriate stochastic methods. Since the180

introduction of MPS by Guardiano and Srivastava (1993), many practical MPS181

algorithms have been proposed over the past three decades. Algorithms such as182

ANSIM (Yu et al., 2016), DISPAT (Arpat and Caers, 2007), GOSIM (Yang et al.,183
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2016), MS-CCSIM (Tahmasebi et al., 2014), SIMPAT (Honarkhah and Caers, 2010),184

FILTERSIM (Zhang et al., 2006), and PCTO-SIM (Pourfard et al., 2017) extract local185

spatial patterns using a sliding window approach. On the other hand, methods like186

SNESIM (Strebelle, 2002), IMPALA (Straubhaar et al., 2011), HOSIM187

(Dimitrakopoulos et al., 2010; Yao et al., 2021) use data events to obtain probability188

distribution functions of the desired attributes at the simulation points. However, these189

methods only extract local spatial relationships among multiple points from the TI190

without considering the correlations and macro spatial distributions between191

geological bodies and structures. Some MPS methods divide the TI into several192

subregions with stationary attribute features and extract statistical information from193

these subregions to simulate non-stationary models (de Vris et al., 2009; Chen et al.,194

2015). Others incorporate soft data constraints to simulate specific statistical feature195

distributions (Honarkhah and Caers, 2012; Chen et al., 2015; Straubhaar et al., 2021).196

However, independent modeling of different blocks can lead to discontinuities or197

misalignments at contact boundaries. In addition, it is not easy to accurately partition198

a 3D simulation grid into multiple subregions based on statistical information199

or add 3D soft data constraints.200

In recent years, deep learning (DL) has made significant progress in fields such201

as data mining, natural language recognition, and computer vision. The term DL was202

introduced to the field of machine learning in 1986 (Minar and Naher, 2018), but due203

to hardware performance limitations and training methods, deep learning was not204

widely uesd. It wasn’t until 2006 that Hinton (2006) proposed a method of205

unsupervised layer-by-layer training of neural networks, followed by optimization206

using supervised backpropagation, which provided a solution to the problem of207

vanishing gradients in artificial neural networks, and ushered in the era of deep208

learning in artificial neural network research. By training deep artificial neural209

networks using known data, the weights of artificial neurons can be changed to obtain210

outputs that fit the known data based on the inputs. DL methods perform well in211

extracting nonlinear features from mining data (Li et al., 2021). Essentially, a DL212

model is an artificial neural network with multiple hidden layers. By using hidden213
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layers in the model, input data is gradually transformed into combinations of214

low-level, mid-level, and high-level features until the output object is reached,215

learning the overall data features of the training dataset through multi-layer216

abstraction (LeCun et al., 2015). Therefore, DL has strong capabilities for recognizing217

and reconstructing nonlinear and nonstationary data, as well as extracting and218

recognizing global patterns in datasets.219

Besides, research has shown that deep learning algorithms can be applied to220

multimodal inputs and extract overall features from the dataset (Adler et al., 2021;221

LeCun et al., 2015). They can effectively extract, merge, and transform features from222

multi-source heterogeneous data. The network uses a deep architecture for nonlinear223

feature extraction and can capture the relationship between different types of data,224

thereby improving the accuracy and robustness of the model. However, existing deep225

learning algorithms for multi-source heterogeneous data fusion (Bergado et al., 2021;226

Zhang et al., 2021) mainly classify simulation grid nodes based on multi-source227

heterogeneous data, and there are few algorithms that predict geological attributes228

such as seismic velocity structure and crustal structure at unsampled locations based229

on multi-source heterogeneous data. Therefore, in future research, it is necessary to230

design how to organize the structure of deep artificial neural networks to extract and231

reconstruct the mapping relationship between multi-source heterogeneous data and232

the geological attributes to be simulated.233

This study proposes a 3D geological stochastic reconstruction algorithm that234

combines deep learning and with MPS. The algorithmic flow is shown in Fig. 3. After235

preprocessing the data, we trained two groups of multimodal artificial neural networks.236

The first group was used to predict the geological layer interfaces and generate the237

initial model, R0. After optimizing the R0 using MPS iteration, we obtained R1. Then,238

on the basis of R1, we used the second group of multimodal artificial neural networks239

to predict the P-wave velocity values at each spatial nodes. The final step is to apply a240

smoothing filter to output the 3D P-wave velocity structure model, Rfinal.241
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242

Figure 3: Algorithm flowchart.243

244

3.1 Multimodal deep artificial neural network245

The deep learning model used in this study is a multimodal deep feed-forward246

fully connected artificial neural network. The overall architecture is inspired by an247

autoencoder, as shown in Fig. 4. It takes the coordinate of spatial nodes (x, y) or (h, x,248

y) and the normalized value of multiple heterogeneous geophysical data249

corresponding to those coordinates as input. This model consists of multiple hidden250

layers, with the number of artificial neurons gradually decreasing in each layer, which251

helps to convert input data into fused feature vectors. This process achieves the fusion252

of multi-source heterogeneous data under a data-driven framework. Then, similar to a253

decoder, multiple hidden layers are used to convert feature vectors into geological254

information A(x, y)` or A(h, x, y)` for spatial nodes (x, y) or (h, x, y) by increasing the255

number of artificial neurons layer by layer. In this study, a hierarchical modeling256

strategy is combined, and two groups of multimodal deep neural networks with the257
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same architecture are used in total.258

The deep neural network training process in this study is as follows:259

(1) Construct a multimodal deep neural network for the geological attributes that260

need to be reconstructed in 3D. The algorithm used in this study employs a261

feed-forward fully connected artificial neural network with nine hidden layers,262

comprising a total of 1,211,451 parameters.263

(2) The training data is input into the deep neural network and the264

training parameters are set. Train the deep neural network by comparing the TD data265

A(x, y) or A(h, x, y) corresponding to spatial nodes (x, y) or (h, x, y) with A(x, y)` or266

A(h, x, y)`. The loss values between them are adjusted by backpropagation, which267

updates the weights and biases of artificial neurons in each hidden layer. The268

simulation is limited to a maximum of 10,000 epochs, and when the loss value is269

stable below a predefined threshold of 0.5×10-5, the training is terminated early,270

resulting in the corresponding deep neural networkM.271

In order to study the internal structure of the SCS region, it is necessary to272

determine the P-wave velocity values at each spatial node. However, due to the273

complexity of the region and the sparseness of the data, using a single deep artificial274

neural network for modeling can lead to difficulty in convergence. Therefore, in this275

study, a hierarchical modeling strategy is introduced to deal with the complexity of276

the data and the heterogeneity of the spatial distribution.277

Hierarchical modeling is a technique that divides a large, complex system into278

multiple levels for more manageable modeling. By doing so, the overall complexity of279

the task is effectively reduced. This approach simplifies the definition and280

management of variables and parameters for each module, enabling separate analysis281

and testing. Additionally, different tasks resulting from decomposition can be282

parallelized, thereby improving the efficiency of model construction.283

In this study, the difficulty of modeling is reduced by dividing the problem of284

generating unsampled P-wave velocity values into two problems and each problem is285

modeled using a separately trained multimodal deep artificial neural network model.286

The first problem involves simulating the geologic layering structure of the crust287
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based on multi-source heterogeneous data. The first group of deep artificial neural288

network is used to generate the initial model R0 of the crust structure, which includes289

the 3D spatial distribution of sedimentary layers(1.7~5.5km/s), upper290

crust(5.5~6.5km/s) and lower crust(6.5~8km/s). The artificial artifacts in the model291

are then removed using a MPS optimization algorithm, resulting in the refined crust292

structure model R1. This process includes the following steps:293

(1) Traverse the TI and assign different layer attributes to each grid node based294

on the range of values at that node, and get TI` with layer attributes.295

(2) Use a window of size h×1×1 to traverse the TI` with layer attributes,296

simplifying the information on each depth plane coordinate node (x, y) into a297

sequence of thicknesses of the three geologic layers: the sedimentary layer, upper298

crust, lower crust. Normalize this sequence and use it as the label for the training299

dataset of the multimodal deep artificial neural network. The plane coordinate node (x,300

y) and the multi-source heterogeneous data Bn(x,y) corresponding to that node are301

used as inputs.302

(3) Train the multimodal deep artificial neural network using the training dataset303

described above to predict the thicknesses of each geologic layer at a given coordinate304

node. This trained network is denoted asM1.305

(4) UseM1 to predict the thicknesses of the sedimentary layer, upper crust, lower306

crust, and mantle for all unsampled plane coordinate nodes (x, y) in the SG. Based on307

these thicknesses and constraints from topography and Moho depth, reconstruct the308

various layers in the SG and obtain the initial model R0.309

(5) Combine the MPS iteration process to optimize the R0 and obtain the refined310

crust structure model R1.311

The second problem involves the simulation of the P-wave velocity structure in312

each geologic layer based on multi-source heterogeneous data. Upon obtaining the313

refined interface model R1, the second group of multimodal deep artificial neural314

networks is employed to calculate the 3D P-wave velocity structure at the unsampled315

grid nodes between each geological interface. The final step requires integrating all316

models generated by the second set of neural networks to derive a comprehensive 3D317
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crustal velocity structure model. This process includes several key steps:318

(1) For each layer Qn, traverse the TI` and origin TI, then obtain the spatial nodes319

(h, x, y) with attributes corresponding to layer Qn and their corresponding P-wave320

velocity structure values from the assigned regions.321

(2) Use the spatial nodes (h, x, y) and the corresponding multi-source322

heterogeneous data Bn(x,y) as inputs. After that, employ the values A(h, x, y) of the323

nodes as labels to constructa training dataset for the multimodal deep artificial neural324

networks.325

(3) Train the multimodal deep artificial neural networks with the training dataset326

to obtain the deep learning modelMQn.MQn is capable of predicting the P-wave327

velocity structure based on spatial coordinates and multi-source heterogeneous data.328

(4) For each layer Qn, traverse the grid nodes in the refined crust structure model329

R1 with attributes corresponding to Qn. Use the coordinates (h, x, y) and their330

associated Bn(x,y) as inputs for the multimodal deep artificial neural network331

MQn. This will yield the P-wave velocity structure at these nodes.332

(5) Repeat the above steps until all the unsampled nodes in each layer of the333

model are assigned values. After smoothing, the final model Rfinal of the 3D crustal334

velocity structure is obtained.335

336
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337

Figure 4 Network Architecture Diagram338

339

3.2 Multipoint statistical iterative process340

The results generated by the multimodal deep artificial neural network can also341

be regarded as one implementation. However, directly generating models often342

exhibits discontinuity and artifacts, and deep learning does not optimize local spatial343

features during simulation process. To address this, this study adopts a EM344

(Expectation-Maximization) iteration procedure similar to GOSIM (Yang et al., 2016;345

Hou et al., 2022) to improve the simulation result R0. This iteration process has made346

improvements in parallel optimization, optimal mode selection, and update rules. The347

process is illustrated in Fig. 5.348

349

EM Iterative Algorithm Process

01 For each EM iteration process

02 For each TI*：
03 Define a temporary simulation grid Ez of the same size as SG to store
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the candidate mode coordinates obtained from TI, and define a

temporary grid ED of the same size as SG to store the distance

between the corresponding candidate pattern u
TIP and the pattern

u
RP centered on grid node u.

04 Randomly assign a TI pattern u
TIP

to each node u in SG, store its

coordinates in Ez(u), calculate the similarity between u
TIP

and u
RP ,

and then update ED (u).

05 For each E-step：

06 For each currently accessed grid node u：
07 Propagation step: Calculate the similarity between the

candidate patterns nu
TIP

of grid node un around grid node u

and the patterns u
RP , compare them with ED (u). Select the

most similar pattern as the new candidate pattern, and

update Ez(u) and ED (u). Only three adjacent grid nodes in

the top, front, left, or bottom, back, and right directions are

selected as un in the same E step.

08 Random search step: For each grid node u, set a search

window centered around the position of its candidate

pattern u
TIP in TI, i.e. Ez(u). In this search window, randomly

extract 5 pattern 'u
TIP

and compare its distance to the

current candidate pattern u
RP . If there is a pattern u

TIP
that

is more similar to u
RP , it will be used as a new u

TIP
and

updated Ez(u) and ED (u). If not, reduce the window by the

magnification and continue searching until the window size

is smaller than the pattern size.

09 End

10 Change the direction of selecting adjacent nodes in the

propagation step. If it is left in the current round, it will be
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changed to right in the next round.

11 End

12 End

13 For each currently accessed grid node u（M-step）：

14 For each TI:

15 Select candidate patterns u
TIP

from TI based on Ez(u) and record

the attribute values ( )
wTIC uP of the corresponding position of

grid node u in the u
TIP .

16 End

17 Select the most frequent occurrence from all ( )
wTIC uP to update

the grid node u.

18 End

19 End

*Indicates the use of parallel optimization350

Figure 5 EM Iteration Algorithm Process.351

352

4. The 3D crustal P-wave velocity structure353

model of the SCS354

Fig. 6 shows the results of a simulation grid with dimensions of 70 × 400 × 400,355

and a total number of 11,200,000 grid cells. The modeling area covers the SCS region356

from 106°E to 122°E and 8°N to 24°N, with a vertical depth range from sea level to357

-35km. The vertical grid spacing is 0.5 km/grid, and the horizontal grid spacing is358

0.04°/grid. The artificial neural network was trained for 10,000 epochs. On a desktop359

computer, it took about 30 h to build one single model.360

361

The thickness maps of the sedimentary layer, upper crust, and lower crust in the362
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modeling results are shown in Fig.9. The average thickness of the sedimentary layer is363

3.64 km, with a maximum thickness of 13.0 km. Regions with relatively large364

thickness are concentrated near the Yinggehai Basin (Fig. 6b). The average thickness365

of the upper crust model is 6.95km, while the average thickness of the lower crust366

model is 7.0 km. A clear thinning phenomenon was observed in the SCS basin, with367

minimum thicknesses of 0.5 km and 1 km, respectively (Figs. 6c and 6d).368

369

Figure 6 (a) The sedimentary layer, upper crust and lower crust in the modeling370

results are displayed, and (b) (c) (d) their corresponding thicknesses are displayed371

respectively.372

373

Fig. 7 depict the depth maps of the sedimentary interface, Moho interface, crustal374

top interface, and HVL (High Velocity Layer) top interface in the modeling results.375

The sedimentary interface in the modeling results indicate that the sedimentary376

interface within the SCS basin region has a deeper average depth of 1.61km, with a377

maximum depth of 5.0km. The crustal top interface also exhibits similar378

characteristics, with an overall average depth of 5.24km. The deepest point is located379

near the Yinggehai Basin, reaching a maximum depth of 14.0km.In contrast, both the380

HVL top interface and Moho interface display similiar characteristics. The HVL top381

interface is shallower in the SCS basin and deeper in other areas. The overall average382

https://doi.org/10.5194/egusphere-2024-684
Preprint. Discussion started: 26 March 2024
c© Author(s) 2024. CC BY 4.0 License.



20

depth of the HVL top interface is 17.94m, while the Moho interface has an overall383

average depth of 21.0km. From the outer edges to the central basin, the depth of the384

Moho interface decreases abruptly from around 20km to approximately 10km.385

Overall, the 3D crustal model of the SCS aligns well with previous studies in terms of386

the velocity structure.387

388

Figure 7 The sedimentary interface (a) , the crustal top interface (b), the HVL top389

interface (c) and the Moho surface(d) in the modeling results.390

391

392

393

5. Discussion394

As shown in Fig. 8 and 9, the deep learning neural network, trained with395

multisource heterogeneous data, demonstrates lower loss values, higher accuracy, or396
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lower average absolute error in predicting velocity structures. Moreover, these models397

requires relatively fewer training iterations to reach a relatively stable state. Compared398

with the curves of loss values, error value, and accuracy obtained under the same399

parameters without utilizing multi-source heterogeneous data, the integration of400

multi-source heterogeneous data reduces the fluctuation range of the curves.401

Furthermore, we calculated several fitting goodness-of-fit parameters for the model.402

Under the premise of using heterogeneous data from multiple sources, the model403

achieved a goodness-of-fit of 0.96029, which is better than the result of 0.95717404

obtained without using heterogeneous data. The prediction results showed that405

the MSE was 0.16505, MAE was 0.15696 and MAPE was 0.0307. Compared with the406

modeling results without using heterogeneous data, these values were reduced by407

0.01151, 0.00915 and 0.00213 respectively. This shows that the model has superior408

performance in reducing errors and significantly improving prediction accuracy.409

These results show that the multimodal deep artificial neural network architecture410

developed in this study can effectively integrate diverse geophysical data from SCS,411

thereby improving the performance of 3D geological information modeling412

algorithms.413

414

Figure 8 The curve graphs depict the variation of algorithm accuracy (a) and415

training loss (b) with increasing training epochs for a deep artificial neural network416

simulating geological stratigraphy.417

418
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419

Figure 9 The curve graph illustrates the variation of training loss and mean absolute420

error (MAE) with increasing training epochs and iterations, respectively, for a deep421

artificial neural network simulating the internal velocity structure of the sedimentary422

layers (a, d), upper crust (b, e), and lower crust (c, f).423

424

To verify the accuracy of the model, the multi-source heterogeneous data fusion425

model developed in this study was compared with the model that without using426

multi-source heterogeneous data (Fig. 10b), the Kriging interpolation model (Fig. 10c)427

and the MPS interpolation model(Fig. 10d) . From a visual point of view, compared428

with the model built in this study (Fig. 10a), the Kriging interpolation result is429

excessively smooth and lacks local details. There are significant differences in terrain430

variations and Moho depth compared to existing models, and there are also numerous431

artificial artifacts. In the model constructed without using multi-source heterogeneous432

data and the model constructed by MPS, both the upper crust and lower crust have a433

large number of discontinuities and abrupt thickenings. The model constructed by434

MPS even has stratigraphic misalignment, which is clearly inconsistent with previous435

knowledge.436

Under the premise of not including OBS2017-2 data (Li et al., 2021), this study437

https://doi.org/10.5194/egusphere-2024-684
Preprint. Discussion started: 26 March 2024
c© Author(s) 2024. CC BY 4.0 License.



23

constructed the above four types of models mentioned above and compared the438

extracted profiles at that location (Fig.11). After calculating the residuals between the439

profile of the multi-source heterogeneous fusion model (Fig. 11c) and OBS2017-2440

data (Fig. 11a), the root mean square error (RMSE) was found to be 0.6281 km/s, and441

the Jensen-Shannon divergence (JS divergence) was 0.03484. For the profile of the442

model without integrating multi-source heterogeneous data (Fig. 11e), the RMSE was443

0.8246 km/s and the JS divergence was 0.05443, while for the Kriging interpolation444

result（Fig. 11g）, the RMSE was 0.8723 km/s and the JS divergence was 0.05881. The445

latter three models clearly deviate more from the actual conditions. Similarly, the446

comparisons without including OBS2012-2 data and OBS973-2 are shown in447

Appendices. This verifies that the model constructed by the algorithm proposed in448

this study is closer to the reality.449

450

451

Figure 10 The modeling results of the SCS model constructed without452

integrating multi-source heterogeneous data. (a) is the overall 3D velocity structure453

model. (b) represents the result of modeling for sedimentary layer, (c) for the upper454

crust, and (d) and (e) respectively represent the lower crust and Mantle in the455

modeling results.456
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457

458

Figure 11 OBS2017-2 forward modeling profile. (b) Schematic diagram of the459

location of OBS2017-2 profile data, where the red line represents the OBS2017-2460

profile. (c) (e) (g) are the profiles of OBS2017-2 position in the model constructed by461

using multi-source heterogeneous data, not using multi-source heterogeneous data,462

and Kriging interpolation respectively, and (d) (f) (h) are the residual maps of these463

profiles and OBS2017-2 profile data.464

465

Attribute proportion statistics refer to the proportions of different geological466

attributes in the model, which intuitively reflect the differences between the modeling467

results and known data in terms of geologicial attributes. Fig. 12 shows the468

comparison of attribute proportions for various geologic layers in the 3D model,469

which are classified according to velocity. Compared with the Kriging interpolation470

method and MPS method, the modeling results of the new method are more similar to471

the known data in terms of attribute proportions. The use or non-use of multi-source472

heterogeneous data has little impact on the attribute proportions in the simulation473

results.474
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475

Figure 12 Comparison of attribute proportions.476

477

By calculating the average thickness of the geological layer (Fig. 13a), maximum478

thickness (Fig. 13b), minimum thickness (Fig. 13c), average elevation479

of the top surface (Fig. 13d), maximum elevation of the top surface (Fig. 13e),480

minimum elevation of the top surface (Fig. 13f), average elevation481

of the bottom surface (Fig. 13g), maximum elevation of the bottom surface (Fig.482

13h) and minimum elevation of the bottom surface (Fig. 13i), it is possible483

to visually evaluate the similarities and differences between the simulation results and484

the known data at the level of the geological layers. The traditional Kriging485

interpolation method tends to simulate the geological interfaces as curved surfaces, so486

in general, the simulation results of the Kriging interpolation method show that the487

top surfaces of the geologic layers are shallower and the bottom surfaces are deeper.488

Compared with the Kriging interpolation model, MPS interpolation model and the489

simulation result without utilizing multiple sources of heterogeneous data, the490

modeling results obtained by integrating multi-source hetereogeneous data showed491

greater consistency with the training data in terms of statistical indicators, and492

they were more consistent with actual conditions.493
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494

Figure 13 Comparison of geologic layer structure thickness (a-c), top interface depths495

(d-f), and bottom interface depths (g-i) displaying the statistics of average, maximum,496

and minimum values for each layer in the simulation results.497

498

The variogram function can effectively extract and represent the spatial structure499

and randomness of regionalized variables (Chiles et al., 2012; Pyrcz et al., 2014). As500

shown in Fig. 14, the variation function curves of the modeling results fused with501

multi-source heterogeneous data are distributed in the middle of the variation function502

curve set of 44 forward profile data, which indicating that the variogram curves of the503

modeling results obtained by integrating multi-source heterogeneous data are more504

similar to the training data than other results.505
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506
Figure 14 Comparison of Variation Function Graphs of Simulation Results.(a), (b)507

and (c) represent the statistical results of depth, east-west, and north-south508

components, respectively. Due to the different distribution directions of 44 OBS509

profiles, the statistical direction of the variation function of the training data in (b) and510

(c) corresponds to the direction of the forward profile.511

512

Fig. 15a reveals that, although the model constructed by DeepLearning has an513

overall trend , it still exhibits some artificial artifacts and discontinuous structures.514

The red circle highlights the steep velocity transition. These observations show that515

the proposed deep artificial neural network can capture the global spatial516

characteristics of known geological objects but lacks precise characterization of local517

spatial features. On the other hand, the iterative MPS algorithm effectively reduces or518

eliminates the artificial artifacts in the model(Fig 15b), and provides fine local519

characterization based on the local spatial features obtained from TIs,520

while correcting some local errors.521

522
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523

Figure 15 Comparison of the simulation result without using the iterative524

algorithm (a) and simulation result after using the MPS iterative algorithm (b). The525

red circles highlight the areas where the artificial artifacts in the model have been526

corrected after the iteration.527

528

By visually inspecting and comparing the geological statistical parameters and529

profile sections, we can initial assess that our 3D crustal velocity structure model of530

the SCS is reasonably reliable and superior to traditional 3D model constructed using531

Kriging interpolation, model that do not utilize heterogeneous multi-source data, and532

model constructed by MPS. The model successfully reconstructs the global spatial533

characteristics of the crustal P-wave velocity structure, which aligns well with our534

prior knowledge acquired from the SCS. The model shows better consistency with the535

original data in terms of attribute proportions, variogram statistics, geological536

interface elevation, and thickness statistics.537

During the 3D random simulation process, the availability of conditional data538

directly influences the diversity of spatial distribution patterns. The more data we539

have, the greater the constraints imposed on the simulation by known information,540

thereby bringing the model closer to reality. Multimodal deep artificial541

neural networks, when trained with a larger dataset or additional modalities, exhibit542

superior generalization and stability. Furthermore, an increased amount of target543

modeling data offers more local spatial patterns for multipoint statistics. This544
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allows the 3D geological model to better capture local spatial features that correspond545

to real-world situations during iterative optimization. By gathering546

more heterogeneous data from various sources, the proposed algorithm can update,547

calibrate, and refine previously constructed 3D geological models, enhancing its548

adaptability to new data distributions.549

It is worth noting that the data used to train the multimodal deep artificial neural550

network is not limited to the data in study area. In subsequent work, it can also be551

attempted to use data from other regions to provide references for the construction of552

geological models in the study area, such as seismic exploration profiles and553

geophysical data on land, seismic exploration profiles and geophysical data on other554

oceans, etc. Different regions may share certain similarities and correlations in555

geological conditions, which can provide references for building higher-quality556

models. Theoretically, the use of cross-regional data can imporve the accuracy and557

generalization abilities of the deep artificial neural networks, allowing the algorithm558

to extract and summarize more universal geological features or patterns from the data.559

This in turn improves the understanding and predictive ability of the algorithm with560

respect to the geological conditions of the study area.561

Apart from the P-wave velocity structure, other attributes can also be used as562

target modeling data for this algorithm, such as S-wave velocity structure, density563

structure, etc. By amassing and organizing data into datasets, this algorithm is capable564

of constructing corresponding 3D models of geophysical and geological attributes.565

The construction of these geological and geophysical attribute models can also566

provide foundational information for various fields including geological research,567

resource exploration, seismic activity, and Earth evolution studies.568

6. Conclusion569

Our research introduces a novel 3D modeling technique that merges multimodal570

deep learning with MPS. This method aims to overcome the challenges associated571
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with reconstructing non-stationary features of geological structures and integrating572

heterogeneous data from multiple sources. By leveraging multimodal deep learning,573

it amalgamates diverse data sources to enhance the precision of 3D model574

construction and minimize modeling ambiguity. The hierarchical modeling575

strategy employed during the process simplifies the training of deep learning576

networks to convergence, ensuring that the final model results take into account both577

local and global spatial features of the original data. This approach yields superior578

alignment with prior knowledge and raw data.579

Based on this new method and the collected data, the research has successfully580

constructed a high-quality 3D crustal P-wave velocity structure model of the SCS. A581

range of indicators, including the proportions of lithological attributes, leave-one-out582

comparisons, and variogram analyses, have been employed to validate both the583

feasibility of the new algorithm and the reliability of the crustal model of the SCS.584

The model provides an intuitive representation of spatial distribution characteristics of585

geological structures, thereby serving as a robust data foundation for researchers586

to gain a more comprehensive understanding of geological evolution processes of the587

SCS.588
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907

Appendices908

A. Simulated results of the new algorithm compared to909

other algorithms910

In this section, we present a comparison of the multi-source heterogeneous data911

fusion model (Fig. A1) developed in this study with the model that does not utilize912

multi-source heterogeneous data (Fig. A2), the Kriging interpolation model (Figure913

A3), and the MPS interpolation model (Fig. A4).914

915
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916

Figure A1 The modeling results of the SCS structure model constructed by integrating917

multi-source heterogeneous data. (a) is the overall 3D velocity structure model. (b)918

represents the result of modeling for the sedimentary layer, (e) for the upper crust, and919

(d) and (e) respectively represent the lower crust and mantle in the modeling results.920
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921

Figure A2 The modeling results of the SCS model constructed without922

integrating multi-source heterogeneous data. (a) is the overall 3D velocity structure923

model. (b) represents the result of modeling for sedimentary layer, (c) for the upper924

crust, and (d) and (e) respectively represent the lower crust and Mantle in the925

modeling results.926

927

https://doi.org/10.5194/egusphere-2024-684
Preprint. Discussion started: 26 March 2024
c© Author(s) 2024. CC BY 4.0 License.



41

928
Figure A3 The modeling results of the SCS model constructed by Kriging929

interpolation. (a) is the overall 3D velocity structure model. (b) represents the result of930

modeling for the sedimentary layer, (c) for the upper crust, and (d) and (e)931

respectively represent the lower crust and Mantle in the modeling results.932

933

934
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935

Figure A4 The modeling results of the SCS model constructed by Multipoint936

statistics. (a) is the overall 3D velocity structure model. (b) represents the result of937

modeling for the sedimentary layer, (c) for the upper crust, and (d) and (e)938

respectively represent the lower crust and Mantle in the modeling results.939

940

B. Comparison of profiles with other algorithms941

In this section, we present a comparison of the simulation results of each942

algorithm at the corresponding position profile without adding OBS2012-2 (Fig. B1)943

and OBS973-2 (Fig B2) to the original data. Together with OBS2017-2, these three944

profile data are located at the northeast edge, south edge, and central part of the study945

area, and the amount of data from other OBS profiles around them also varies946

significantly. In this case, the results of the three profiles are compared, and the947

models constructed by our new algorithm are closer to the real situation.948
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949
Figure B1 (a) OBS2012-2 forward modeling profile. (b) Schematic diagram of the950

location of OBS2012-2 profile data, where the red line represents the OBS2012-2951

profile.(c) (e) (g) are the profiles of OBS2012-2 position in the model constructed by952

using multi-source heterogeneous data, not using multi-source heterogeneous data,953

and Kriging interpolation respectively, and (d) (f) (h) are the residual maps of these954

profiles and OBS2012-2 profile data.955

956
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957

Figure B2 OBS973-2 forward modeling profile. (b) Schematic diagram of the958

location of OBS973-2 profile data, where the red line represents the OBS973-2959

profile.(c) (e) (g) are the profiles of OBS973-2 position in the model constructed by960

using multi-source heterogeneous data, not using multi-source heterogeneous data,961

and Kriging interpolation respectively, and (d) (f) (h) are the residual maps of these962

profiles and OBS973-2 profile data.963

964

965
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