

1 Measurement report: Oxidation potential of water-soluble

- 2 aerosol components in the southern and northern of Beijing
- 3
- 4 Wei Yuan¹, Ru-Jin Huang¹, Chao Luo², Lu Yang¹, Wenjuan Cao¹, Jie Guo¹, Huinan
- 5 Yang²
- 6
- 7 ¹State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in
- 8 Quaternary Science and Global Change, Institute of Earth Environment, Chinese
 9 Academy of Sciences, Xi'an 710061, China.
- ²School of Energy and Power Engineering, University of Shanghai for Science and
- 11 Technology, Shanghai 200093, China
- 12 Correspondence: Ru-Jin Huang (rujin.huang@ieecas.cn) and Huinan Yang
- 13 (yanghuinan@usst.edu.cn)
- 14

15 Abstract

16 Water-soluble components have significant contribution to the oxidative potential (OP) of atmospheric fine particles, while our understanding of their 17 18 relationship is still limited. In this study, the water-soluble OP levels in wintertime 19 PM_{2.5} in the south and north of Beijing, representing the difference in sources, were measured with dithiothreitol (DTT) assay. The volume normalized DTT (DTT_y) in the 20 north $(3.5 \pm 1.2 \text{ nmol min}^{-1} \text{ m}^{-3})$ was comparable to that in the south $(3.9 \pm 0.9 \text{ nmol})$ 21 min⁻¹ m⁻³), while the mass normalized DTT (DTT_m) in the north (65.3 \pm 27.6 pmol 22 min⁻¹ μ g⁻³) was almost twice that in the south (36.1 ± 14.5 pmol min⁻¹ μ g⁻³). In both 23 the south and north of Beijing, DTT_v was better correlated with soluble elements 24 instead of total elements. In the north, soluble elements (mainly Mn, Co, Ni, Zn, As, 25 Cd and Pb) and water-soluble organic compounds, especially light-absorbing 26 compounds (also known as brown carbon), had positive correlations with DTT_v. 27 However, in the south, the DTT_v was mainly related to soluble As, Fe and Pb. The 28

sources of DTT_v were further resolved using the positive matrix factorization (PMF) model. Traffic-related emissions (39.1%) and biomass burning (25.2%) were the main sources of DTT_v in the south, and traffic-related emissions (> 50%) contributed the most of DTT_v in the north. Our results indicate that vehicle emission was the important contributor to OP in Beijing ambient PM_{2.5} and suggest that more study is needed to understand the intrinsic relationship between OP and light absorbing organic compounds.

36

37 1 Introduction

Atmospheric fine particulate matter (PM_{2.5}) pollution is one of the major global 38 environmental issues, affecting air quality, climate and human health (Huang et al., 39 2014; Burnett et al., 2018; An et al., 2019; Zheng et al., 2020). The exposure to PM_{2.5} 40 was estimated to be responsible for 8.9 million deaths worldwide in 2015, of which 41 42 28% occurred in China (Burnett et al., 2018). Numerous studies have shown that oxidative stress is one of the main mechanisms underlying the adverse effects of 43 PM_{2.5} on human health (Chowdhury et al., 2019; Lelieveld et al., 2021; Yu et al., 44 45 2022b). When entering the human body, PM_{2.5} can induce the production of excessive reactive oxygen species (ROS) (e.g., H_2O_2 , $\cdot OH$ and $\cdot O_2^-$), leading to cellular redox 46 47 imbalance and generating oxidative stress effects. The ability of PM2.5 to cause oxidative stress is defined as oxidative potential (OP). 48

The methods to determine the OP of PM2.5 include cellular and acellular assays, 49 and acellular methods are more widely used than cellular methods (Charrier and 50 51 Anastasio, 2012; Xiong et al., 2017; Calas et al., 2018; Bates et al., 2019; Wang et al., 2020b; Campbell et al., 2021; Oh et al., 2023). Among acellular methods, the 52 dithiothreitol (DTT) assay is extensively applied to determine the OP of ambient 53 particles (Charrier and Anastasio, 2012; Xiong et al., 2017; Liu et al., 2018; Wang et 54 al., 2020b; Puthussery et al., 2022; Wu et al., 2022a). DTT is a surrogate of cellular 55 reductants, and the consumption rate of DTT was used to assess the OP of PM2.5. 56 Previous studies have shown that organic matters (e.g., water-soluble organic species 57

58 and PAHs) and some transition metals (e.g., Mn and Cu) are the important contributors to DTT consumption of PM_{2.5} (Charrier and Anastasio, 2012; Verma et 59 al., 2015; Bates et al., 2019; Wu et al., 2022a; Wu et al., 2022b). For example, 60 61 Charrier and Anastasio (2012) measured the OP of PM_{2.5} in San Joaquin Valley, California and reported that about 80% of DTT consumption was contributed by 62 transition metals. Verma et al. (2015) measured the OP of water-soluble PM_{2.5} in the 63 southeastern United States and reported that about 60% of DTT activity was 64 contributed by water-soluble organic. The mixtures of metals and organics may 65 produce synergistic or antagonistic effects, such as O_2^- produced from oxidation of 66 DTT by quinones is more efficiently transformed to ·OH in the presence of Fe, while 67 the DTT consumption and ·OH generation of quinones are reduced in the presence of 68 Cu (Xiong et al., 2017; Yu et al., 2018; Bates et al., 2019). 69

A number of studies have investigated the OP of water-soluble components in 70 71 $PM_{2.5}$, which show that the average water-soluble OP values in urban areas ranged from 0.1 to 10 nmol min⁻¹ m⁻³ (Fang et al., 2016; Liu et al., 2018; Chen et al., 2019; 72 Wu et al., 2022a; Yu et al., 2022a; Xing et al., 2023). Due to the complexity in 73 74 chemical composition and sources of PM_{2.5} that determine the OP levels, the sources of OP are also diverse (Verma et al., 2015; Bates et al., 2019; Tuet et al., 2019; Yu et 75 76 al., 2019; Cao et al., 2021). Several studies have investigated the emission sources and 77 ambient samples to identify the sources of OP (Tuet et al., 2019; Yu et al., 2019; Wang et al., 2020b; Cao et al., 2021), which include both primary and secondary sources. 78 For example, Cao et al. (2021) measured the water-soluble OP of PM_{2.5} samples from 79 80 six biomass and five coal burning emissions in China, with average values of 4.5-7.4 and 0.5-2.1 pmol min⁻¹ μ g⁻¹, respectively. Tong et al. (2018) investigated the OP of 81 secondary organic aerosols (SOA) from oxidation of naphthalene, isoprene and β -82 pinene with \cdot OH or O₃, which were 104.4 \pm 7.6, 48.3 \pm 7.9 and 36.4 \pm 3.1 pmol min⁻¹ 83 μg^{-1} , respectively. Verma et al. (2014) identified the source of water-soluble OP of 84 PM_{2.5} in Atlanta, United States from June 2012 to September 2013 with positive 85 matrix factorization (PMF) and chemical mass balance (CMB) methods, of which 86

biomass burning was the largest contributor. Wang et al. (2020b) quantified the sources of water-soluble OP of $PM_{2.5}$ in Xi'an, China in 2017 using PMF and multiple linear regression (MLR) methods, with significant contributions from secondary sulfates, vehicle emissions and coal combustion. Despite these efforts, comparative studies on the differences in pollution levels and sources of $PM_{2.5}$ OP in different districts are still limited.

In this study, the DTT activity of water-soluble matter in PM2.5 samples collected 93 simultaneously in the southern and northern of Beijing in January 2018 were 94 measured. The concentration and light absorption of water-soluble organic carbon 95 (WSOC), as well as the concentrations of 14 trace elements and 7 light-absorbing 96 nitroaromatic compounds (NACs) were quantified. The sources of DTT activity were 97 then identified with PMF model. The results acquired in this study provide a 98 comprehensive comparison of PM2.5 OP in different districts of Beijing and its 99 100 connection with organic compounds, trace elements and sources, which could be 101 helpful for further study of the regional differences in the effects of PM_{2.5} on human 102 health.

103

104 2 Materials and methods

105 2.1 Sampling

106 Ambient 24 h integrated PM_{2.5} filter samples were collected from January 1 to 31, 2018 simultaneously in the south (the Dingfuzhuang village (DFZ), Daxing district; 107 39.61°N, 116.28°E) and north (the National Center for Nanoscience and Technology 108 109 (NCNT), Haidian district; 39.99°N, 116.32°E) of Beijing (Figure S1). The south site is surrounded by agricultural, industrial, and transportation areas, and the north site is 110 surrounded by residential, transportation and commercial areas. PM_{2.5} samples were 111 collected on pre-baked (780 °C, 3 h) quartz-fiber filters (20.3 × 25.4 cm; Whatman, 112 QM-A, Clifton, NJ, USA) using high-volume PM_{2.5} samplers (1.13 m⁻³ min⁻¹; Tisch, 113 Cleveland, OH, USA) which were placed on the roof of buildings at heights of about 114 5 m (south) and 20 m (north) above the ground. After collection, the samples were 115

116 wrapped in baked aluminum foils and stored in a freezer (-20 °C) until further

117 analysis.

118 2.2 Chemical analysis

The mass of PM_{2.5} on the filter was measured by a digital microbalance with a precision of 0.1 mg (LA130S-F, Sartorius, Germany) after 24-h equilibration at a constant temperature (20-23 °C) and humidity (35-45%) chamber. Each filter was weighted at least two times, and the deviations for blank and sampled filters among the repetitions were less than 5 and 10 μ g, respectively. The PM_{2.5} mass concentration was calculated by dividing the weight difference before and after sampling by the volume of sampled air.

For WSOC analysis, one punch (1.5 cm² for concentration analysis and 0.526 126 cm^2 for light absorption measurement) of filter was taken from each sample and 127 extracted ultrasonically with ultrapure water (> 18.2 M Ω cm) for 30 min. After, the 128 129 extracts were filtered with a 0.45 µm PVDF pore syring filter to remove insoluble substances. Finally, the concentration of WSOC was measured with a total organic 130 131 carbon-total nitrogen analyzer (TOC-L, Shimadzu, Japan; (Ho et al., 2015)) and the 132 light absorption of WSOC was measured by an UV-Vis spectrophotometer equipped with a liquid waveguide capillary cell (LWCC-3100, World Precision Instruments, 133 134 Sarasota, FL, USA; (Yuan et al., 2020)). The absorption coefficient (Abs) of WSOC were calculated according to formula S1 in the Supporting Information (SI). 135

The total concentration and soluble fraction concentration of 14 trace elements 136 (i.e., Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Cd, Ba, and Pb) were quantified by an 137 138 inductively coupled plasma mass spectrometer (ICP-MS, 7700x, Agilent Technologies, USA), and the details are shown in the SI. For soluble fraction concentration analysis, 139 a punch of filter (47 mm diameter) was extracted with ultrapure water and then 140 centrifuged from residues. For total concentration analysis, another filter with same 141 size was used and digestion after added of 10 mL HNO₃ and 1 mL HF. The extracts 142 were then heated and concentrated to ~ 0.1 mL, and diluted to 5 mL with 2% HNO₃. 143 Afterwards, the diluents were filtered with a 0.22 µm PTFE pore syring filter and 144

145 stored in a freezer $(-4 \text{ }^\circ\text{C})$ until further ICP-MS analysis.

The concentrations of organic markers (including levoglucosan, mannosan, 146 galactosan, hopanes, picene, phthalic acid, isophthalic acid and terephthalic acid) and 147 light-absorbing NACs (including 4-nitrophenol (4NP), 2-methyl-4-nitrophenol 148 (2M4NP), 3-methyl-4-nitrophenol (3M4NP), 4-nitrocatechol (4NC), 3-methyl-5-149 150 nitrocatechol (3M5NC), 4-methyl-5-nitrocatechol (4M5NC) and 4-nitro-1-naphthol (4N1N)) were determined by a gas chromatograph-mass spectrometer (GC-MS; 151 Agilent Technologies, Santa Clara, CA, USA) following the method described 152 elsewhere (Wang et al., 2020a), and more details about the analysis can be found in SI. 153

154 2.3 Oxidative potential

The DTT assay was applied to determine the oxidative potential of water-soluble 155 components in $PM_{2.5}$ according to the method by Gao et al. (2017). In brief, a quarter 156 of a 47 mm filter was ultrasonically extracted with 5 mL ultrapure water for 30 min 157 158 and then filtered with a 0.45 µm PVDF pore syring filter to remove insoluble substances. Afterwards, 0.5 mL of the extract was mixed with 1 mL of potassium 159 phosphate buffer (pH = 7.4) and 0.5 mL of 2 mM DTT in a brown vial, and then 160 161 placed in a water bath at 37 °C. Then, 20 µL of this mixture was taken at designated time intervals (2, 7, 13, 20, and 28 min) and mixed with 1 mL trichloroacetic acid 162 (TCA; 1% w/v) in another brown vial to terminate the reaction. Then, 0.5 mL of 5,5'-163 dithiobis-(2-nitrobenzoic acid) (DTNB; 2.5 μ M) and 2 mL of tris buffer (pH = 8.9) 164 were added to form 2-nitro-5-thiobenzonic acid (TNB) which has light absorption at 165 412 nm. Finally, the absorption of TNB was measured by a LWCC-UV-Vis. The DTT 166 167 consumption rate was quantified by the remaining DTT concentration at different reaction times. The DTT activities were normalized by the volume of sampled air 168 (DTT_v, nmol min⁻¹ m⁻³) and the mass concentration of PM_{2.5} (DTT_m, pmol min⁻¹ μ g⁻¹). 169

170 2.4 Source apportionment

The sources of DTT activities were identified and quantified using PMF model implemented by the multilinear engine (ME-2; (Paatero, 1997)) following the method described in our previous studies (Huang et al., 2014; Yuan et al., 2020). The input

- 174 data include species concentration (including DTT_v, 14 trace elements and 8 organic
- 175 markers) and uncertainties.
- 176

177 3 Results and discussion

178 **3.1 DTT activity and concentrations of water-soluble PM2.5 components**

179 Figure 1 shows the daily variation of DTT activity, light absorption of WSOC at wavelength 365 nm (Abs₃₆₅), together with the concentrations of PM_{2.5}, WSOC, 180 NACs and total elements in the south and north of Beijing. Their average values are 181 shown in Table S1. Generally, the average values of PM_{2.5}, WSOC, Abs₃₆₅, NACs and 182 total elements were higher in the south than in the north. Specifically, the 183 concentrations of PM_{2.5} and WSOC in the south (122.3 ± 48.9 and $8.1 \pm 5.0 \ \mu g \ m^{-3}$, 184 respectively) were both about two times higher than that in the north (62.3 ± 27.9 and 185 $4.0 \pm 2.0 \ \mu g \ m^{-3}$, respectively), indicating that the proportion of WSOC in PM_{2.5} was 186 187 similar in the south and north. However, the Abs₃₆₅ in the south was about three times 188 that in the north, indicating that the chemical composition of WSOC was different between the south and north. Previous studies have reported that NACs are the main 189 190 water-soluble light-absorbing organic compounds (also known as brown carbon, BrC) of PM_{2.5} (Lin et al., 2017; Huang et al., 2020; Li et al., 2020). For the 7 NACs 191 192 quantified in this study, the total concentration of nitrophenols (4NP, 2M4NP and 193 3M4NP), nitrocatechols (4NC, 3M5NC and 4M5NC), and 4N1N in the south (108.5 \pm 72.9 ng m⁻³, 118.5 \pm 91.5 ng m⁻³ and 12.4 \pm 8.2 ng m⁻³, respectively) was about three, 194 five and four times, respectively, those in the north $(35.5 \pm 21.7 \text{ ng m}^{-3}, 24.1 \pm 30.4 \text{ ng})$ 195 m^{-3} and 3.1 \pm 3.0 ng m^{-3} , respectively). These results indicate that the sources and 196 emission strength of water-soluble organic compounds were different in the south and 197 north of Beijing, suggesting the different contribution of water-soluble organic 198 compounds to DTT activity. The concentration trend of elements was also different 199 between the south and north of Beijing, with Fe > Zn > Ti > Mn > Cu > Ba > Pb >200 Sr > Cr > As > V > Ni > Cd > Co in the south, and Fe > Ti > Zn > Ba > Mn > Pb > Co201 Cu > Cr > Sr > As > Ni > V > Cd > Co in the north. It should be noted that although 202

203 the content of PM_{2.5}, WSOC and total elements measured in this study were higher in the south than in the north, the average DTT_v value in the south (3.9 \pm 0.9 nmol min⁻¹ 204 m⁻³) was comparable to that in the north (3.5 \pm 1.2 nmol min⁻¹ m⁻³), meanwhile, the 205 average DTT_m value was much higher (1.8 times) in the north (65.3 \pm 27.6 pmol min⁻¹ 206 μg^{-1}) than in the south (36.1 ± 14.5 pmol min⁻¹ μg^{-1}). The lower DTT_m in the south 207 than in the north may be due to that the increased PM2.5 in the south contains more 208 substances with no or little contribution to DTT activity, and indicates that the 209 intrinsic OP of $PM_{2.5}$ was higher in the north than in the south. The similar DTT_{y} 210 values in the south and north indicate that the exposure-relevant toxicity of PM_{2.5} was 211 comparable in the two sites, and the water-soluble DTT_v was not consistent with the 212 content of water-soluble substances. 213

Figure 2 shows the comparison of DTT_v and DTT_m values measured in this study 214 with those measured in other regions of Asia during similar periods. It can be seen 215 216 that the DTT_v values measured in Beijing (Campbell et al., 2021; Oh et al., 2023; this 217 study) were lower than that in Jinzhou, Tianjin, Yantai, and Shanghai in China, Lahore and Peshawar in Pakistan, and Delhi in India (Liu et al., 2018; Ahmad et al., 2021; 218 219 Puthussery et al., 2022; Wu et al., 2022a), higher than that in Xi'an, Nanjing, Hangzhou, Guangzhou, and Shenzhen in China, and Gwangju in Korea (Wang et al., 220 221 2019; Wang et al., 2020b; Ma et al., 2021; Yu et al., 2022c; Oh et al., 2023; Xing et al., 222 2023), and comparable with that in Ningbo, China (Chen et al., 2022). Different from DTT_v, the DTT_m value measured in NCNT in Beijing was similar with that in Jinzhou, 223 Tianjin, Yantai, Shanghai and Ningbo in China (Liu et al., 2018; Chen et al., 2022; 224 225 Wu et al., 2022a), and higher than that in other regions. The differences in DTT_v and DTT_m values in different regions reflect the regional differences in PM_{2.5} exposure 226 risk and intrinsic toxicity, which can be explained by the differences in chemical 227 composition, sources and atmospheric formation processes (Tong et al., 2017; Wong 228 et al., 2019; Daellenbach et al., 2020; Wang et al., 2020b; Cao et al., 2021). For 229 230 example, Cao et al. (2021) reported the water-soluble DTT activity of PM_{2.5} from biomass and coal burning emissions in China, and the average value of biomass 231

burning (4.5-7.4 pmol min⁻¹ μ g⁻¹) was much higher than that of coal burning (0.5-2.1 pmol min⁻¹ μ g⁻¹). Tuet et al. (2017) measured the water-soluble DTT activity of SOA generated under different precursors and reaction conditions, with SOA from naphthalene photooxidation under RO₂ + NO-dominant dry reaction conditions had the highest DTT activity.

237 3.2 Correlation between DTT activity and water-soluble PM_{2.5} components

Figure 3 shows the correlations of DTT_v with PM_{2.5}, WSOC and Abs₃₆₅ in the 238 south and north of Beijing. It can be seen that the correlation coefficient between 239 DTT_{v} and $PM_{2.5}$ was moderate in both the south (r = 0.42) and north (r = 0.45), 240 indicating that the toxicity of particles can not be evaluated solely by the total PM2.5 241 concentration. The correlations between DTT_y with WSOC and Abs₃₆₅ were strong in 242 the north (r of 0.69 and 0.70, respectively), while relatively weak in the south (r of 243 0.41 and 0.40, respectively). The high correlations between DTT_v with WSOC and 244 245 Abs₃₆₅ in the north of Beijing are coincide with previous studies in Xi'an, China and Atlanta, United States (Verma et al., 2012; Chen et al., 2019), and suggest that water-246 soluble organic matter, especially BrC, has a significant contribution to DTT 247 248 consumption in the north. Light-absorbing BrC typically has conjugated electrons, making it more likely to transport electrons for catalytic reactions, thereby 249 250 contributing to DTT activity (Chen et al., 2019; Wu et al., 2022). Further, in the north, 251 the DTT_v was closely related to the concentrations of NACs (r of 0.57 to 0.79) (Figure S2), suggesting that NACs could be important contributors to DTT consumption. 252 Feng et al. (2022) reported the positive correlations between NACs and biomarkers in 253 254 saliva and urine (interleukin-6 and 8-hydrox-2'-deoxyguanosine). Zhang et al. (2023) also reported that NACs are major proinflammatory components in organic aerosols, 255 contributing about 24% of the interleukin-8 response of all compounds detected by 256 Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) in 257 electrospray ionization negative mode (ESI-). 258

The correlation coefficients between DTT_v and 14 trace elements are shown in Figure 4. Generally, the correlations between DTT_v and soluble elements were higher

261 than that between DTT_{v} and total elements in both the south and north of Beijing, suggesting that the consumption of DTT from elements depend primarily on its 262 soluble fraction instead of their total content. For soluble elements, in the south, the 263 264 DTT_v showed positive correlations with Mn, Fe, Cr, Co, As and Pb (r > 0.5), while in the north, it exhibited strong positive correlations with Mn, Co, Ni, Zn, As, Cd and Pb 265 266 (r > 0.7), indicating the different sources of DTT_v in the south and north of Beijing. It is worth noting that the concentrations of all soluble elements were higher in the south 267 than in the north (Figure S3), while the correlation between DTT_v and most soluble 268 269 elements was lower in the south than in the north (Figure 4). The high correlations between DTT_v and soluble elements in the north of Beijing suggests that soluble 270 elements also had significant contribution to DTT consumption. The low correlations 271 272 between DTT_y and soluble elements in the south of Beijing may be due to the nonlinear relationship between DTT consumption and elements concentrations 273 274 (Charrier and Anastasio, 2012; Wu et al., 2022a).

275 In addition to being associated with individual water-soluble species, the 276 interaction between metal and organic compounds also affects the consumption of 277 DTT (Xiong et al., 2017; Wu et al., 2022b), with both synergistic and antagonistic effects. For example, Wu et al. (2022b) measured the DTT consumption of Fe(III) and 278 279 Cu(II) interacting with 1,4-naphthoquinone, 9,10-phenanthraquinone, citric acid, and 280 4-nitrocatechol, respectively. Their results showed that Cu(II) had antagonistic effects in interacting with most organics except for citric acid, and Fe(III) had an additive 281 effect on DTT consumption of 1,4-naphthoquinone and citric acid, while it had an 282 283 antagonistic effect on 1,4-naphthoquinone and 9,10-phenanthraquinone. Due to the complex composition of water-soluble organic aerosols, the knowledge about the 284 effects of organics and metal-organic interactions on DTT activity are still limited, 285 especially the effects of BrC chromophores and their interactions with metals. 286

287 3.3 Sources of DTT activity

The PMF model was applied to quantify the sources of DTT_v in the south and the north of Beijing, which was widely used for the source apportionment of $PM_{2.5}$ OP

290 (Liu et al., 2018; Shen et al., 2022; Cui et al., 2023). The input species include DTT_v, soluble elements, and organic markers (including levoglucosan, mannosan, and 291 galactosan for biomass burning, hopanes for vehicle emissions, picene for coal 292 293 combustion, and phthalic acid, isophthalic acid and terephthalic acid for secondary formation). The correlation coefficients between DTT_v and organic markers are 294 295 shown in Figure S4. In the south, levoglucosan, mannosan, galactosan, and hopanes had moderate correlation with DTT_v (r of 0.41 to 0.48); phthalic acid, isophthalic acid 296 and terephthalic acid had low to moderate correlation with DTT_v (r of 0.28 to 0.54); 297 picene had low correlation with DTT_{y} (r of 0.21). These results suggest that biomass 298 burning and vehicle emissions could have significant contribution to water-soluble 299 $PM_{2.5}$ OP in the south. In the north, hopanes had the highest correlation with DTT_v (r 300 = 0.70, indicating that vehicle emissions could have an important contribution. 301 Levoglucosan, mannosan, galactosan, phthalic acid, isophthalic acid, terephthalic acid, 302 303 and picene had moderate to high correlations with DTT_v in the north, suggesting that 304 biomass and coal burning, and secondary formation may also have certain 305 contribution to water-soluble PM_{2.5} OP.

306 Six factors were resolved in the south and north of Beijing, including biomass burning, coal burning, traffic-related, dust, oil combustion, and secondary formation, 307 308 and the profiles of these sources are shown in Figure S5. Factor 1 is characterized by 309 high contribution of levoglucosan, mannosan, and galactosan, mainly from biomass burning (Huang et al., 2014; Chow et al., 2022). The DTT activity of biomass burning 310 organic aerosol was measured by Wong et al. (2019), which was 48 ± 6 pmol min⁻¹ 311 312 μg^{-1} of WSOC. Liu et al. (2018) quantified the sources of DTT_v in coastal cities (Jinzhou, Tianjin, and Yantai) in China with PMF model and multiple linear 313 regression method, and the results showed that biomass burning contributed 27.8% on 314 average in wither. Factor 2 exhibits a large fraction of picene, Zn, Mn, Cd, As, and Pb, 315 which is considered to be coal burning (Huang et al., 2014; Huang et al., 2018). Joo et 316 al. (2018) measured the DTT activity of PM2.5 emitted from coal combustion at 317 different temperatures, with the highest values of 26.2 ± 20.5 pmol min⁻¹ µg⁻¹ and 318

319	0.10 ± 0.06 nmol min ⁻¹ m ⁻³ occurring at 550 °C. Factor 3 is identified as traffic-related
320	emissions, which is characterized by the higher loading of hopanes, Ba, Sr, Cu and Ni
321	(Huang et al., 2018; Chow et al., 2022). Vreeland et al. (2017) measured the DTT
322	activity of $PM_{2.5}$ emitted by side street and highway vehicles in Atlanta, with values
323	of 0.78 \pm 0.60 nmol min $^{-1}$ m $^{-3}$ and 1.08 \pm 0.60 nmol min $^{-1}$ m $^{-3}$, respectively. Ting et al.
324	(2023) reported that the DTT activity of $PM_{2.5}$ from vehicle emissions in Ziqing
325	tunnel in Taiwan, China, was 0.15-0.46 nmol min ⁻¹ m ⁻³ . Factor 4, secondary formation,
326	which is identified by high levels of phthalic acid, isophthalic acid, and terephthalic
327	acid (Al-Naiema and Stone, 2017; Wang et al., 2020a). Verma et al. (2014) reported
328	that secondary formation contributed about 30% to the water-soluble DTT activity of
329	$PM_{2.5}\xspace$ in urban Atlanta. It is worth noting that the DTT activity of SOA generated
330	from different precursors is different (Tuet et al., 2017; Tong et al., 2018). For
331	example, the DTT activity of SOA from naphthalene was higher than that from
332	isoprene (Tuet et al., 2017; Tong et al., 2018). Factor 5 is dominated by crustal
333	elements Fe and Ti, mainly from dust (Huang et al., 2018). The DTT activity of
334	atmospheric particulate matter during dust periods were reported in previous studies
335	(Chirizzi et al., 2017; Khoshnamvand et al., 2023) and it has a low contribution in this
336	study. Factor 6 is identified as oil combustion because of the high levels of V and Ni
337	(Moreno et al., 2011; Minguillón et al., 2014; Huang et al., 2018).

338 The source contributions of DTT_v in the south and north of Beijing are shown in Figure 5, exhibiting obvious regional differences. In the south, traffic-related 339 emissions (39.1%) and biomass burning (25.2%) had the most contribution to DTT_v , 340 341 followed by secondary formation (17.2%), coal burning (15%), dust (2%), and oil combustion (1.5%). In the north, traffic-related emissions (51.6%) had the highest 342 contribution to DTT_v, followed by coal burning (19.9%), secondary formation (13%), 343 biomass burning (8.4%), oil combustion (4.1%), and dust (3%). The large regional 344 differences in sources of DTT_v of water-soluble PM_{2.5} call for more research on the 345 relationship between sources, chemical composition, formation processes and OP of 346 PM_{2.5}. 347

348

349 4 Conclusions

In this study, the water-soluble OP of ambient PM2.5 collected in winter in the 350 351 south and north of Beijing were quantified, together with the concentration and light absorption of WSOC, and concentrations of 7 light-absorbing NACs and 14 trace 352 elements. The average DTT_v value was comparable in the south $(3.9 \pm 0.9 \text{ nmol min}^{-1})$ 353 m⁻³) and north (3.5 \pm 1.2 nmol min⁻¹ m⁻³), while the DTT_m was higher in the north 354 $(65.3 \pm 27.6 \text{ pmol min}^{-1} \text{ }\mu\text{g}^{-1})$ than in the south $(36.1 \pm 14.5 \text{ }\text{pmol min}^{-1} \text{ }\mu\text{g}^{-1})$, 355 indicating that the $PM_{2.5}$ exposure-relevant toxicity was similar in the two sites and 356 that the PM_{2.5} intrinsic toxicity was higher in the north than in the south. The 357 correlation between DTT_v and soluble elements was higher than that between DTT_v 358 and total elements in both the south and north. In the north, the DTT_y was strongly 359 correlated with soluble Mn, Co, Ni, Zn, As, Cd and Pb (r > 0.7), and in the south it 360 361 positively correlated with Mn, Fe, Cr, Co, As and Pb (r > 0.5). In addition, in the north the DTT_v was also positively correlated with WSOC, Abs₃₆₅ and NACs (r of 0.56 to 362 363 0.79), while in the south it was weakly correlated ($r \le 0.4$). These results indicate that 364 in the north trace elements and water-soluble organic compounds, especially BrC chromophores, both had significant contributions to DTT consumption, and in the 365 south the consumption of DTT may be mainly from trace elements. Six sources of 366 DTT_v were resolved with the PMF model, including biomass burning, coal burning, 367 traffic-related, dust, oil combustion, and secondary formation. On average, traffic-368 related emissions (39.1%) and biomass burning (25.2%) were the major contributors 369 370 of DTT_v in the south, and traffic-related emissions (51.6%) was the predominated source in the north. The differences in DTT_v sources in the south and north of Beijing 371 suggest that the relationship between source emissions and atmospheric processes and 372 PM_{2.5} OP deserve further exploration in order to better understand the regional 373 differences of health impacts of PM_{2.5}. 374

375

377	
378	Date availability. Raw data used in this study can be obtained from the following
379	open link: https://doi.org/10.5281/zenodo.10791126 (Yuan et al., 2024). It is also
380	available on request by contacting the corresponding author.
381	
382	Supplement. The Supplement related to this article is available online.
383	
384	Author contributions. RJH designed the study. Data analysis was done by WY, CL,
385	LY, HY and RJH. WY, CL, LY, HY and RJH interpreted data, prepared the display
386	items and wrote the manuscript. All authors commented on and discussed the
387	manuscript.
388	
389	Competing interests. The authors declare that they have no conflict of interest.
390	
391	Acknowledgements. We are very grateful to the National Natural Science Foundation
392	of China (NSFC) under Grant No. 41925015, the Strategic Priority Research Program
393	of Chinese Academy of Sciences (XDB40000000), the Key Research Program of
394	Frontier Sciences from the Chinese Academy of Sciences (ZDBS-LY-DQC001), the
395	New Cornerstone Science Foundation through the XPLORER PRIZE, and the
396	Postdoctoral Fellowship Program of CPSF (no. GZC20232628) supported this study.
397	
398	Financial support. This work was supported by the National Natural Science
399	Foundation of China (NSFC) under Grant No. 41925015, the Strategic Priority
400	Research Program of Chinese Academy of Sciences (XDB40000000), the Key
401	Research Program of Frontier Sciences from the Chinese Academy of Sciences
402	(ZDBS-LY-DQC001), the New Cornerstone Science Foundation through the
403	XPLORER PRIZE, and the Postdoctoral Fellowship Program of CPSF (no.
404	GZC20232628).

 Ahmad, M., Yu, Q., Chen, J., Cheng, S., Qin, W., and Zhang, Y.: Cheng characteristics, oxidative potential, and sources of PM_{2.5} in wintert Lahore and Peshawar, Pakistan, J. Environ. Sci., 102, 14 10.1016/j.jes.2020.09.014, 2021. Al-Naiema, I. M. and Stone, E. A.: Evaluation of anthropogenic secondary of aerosol tracers from aromatic hydrocarbons, Atmos. Chem. Phys., 17, 16 	
 410 Lahore and Peshawar, Pakistan, J. Environ. Sci., 102, 14 411 10.1016/j.jes.2020.09.014, 2021. 412 Al-Naiema, I. M. and Stone, E. A.: Evaluation of anthropogenic secondary of 	ime in
 411 10.1016/j.jes.2020.09.014, 2021. 412 Al-Naiema, I. M. and Stone, E. A.: Evaluation of anthropogenic secondary of 	
412 Al-Naiema, I. M. and Stone, E. A.: Evaluation of anthropogenic secondary of	8-158,
413 aerosol tracers from aromatic hydrocarbons, Atmos. Chem. Phys., 17,	organic
	2053-
414 2065, 10.5194/acp-17-2053-2017, 2017.	
415 An, Z., Huang, R. J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi, Z., Han,	Y., Gu,
416 Z., and Ji, Y.: Severe haze in northern China: A synergy of anthrop	ogenic
417 emissions and atmospheric processes, Proc. Natl. Acad. Sci. U. S. A	, 116,
418 8657-8666, 10.1073/pnas.1900125116, 2019.	
419 Bates, J. T., Fang, T., Verma, V., Zeng, L., Weber, R. J., Tolbert, P. E., Abrams	, J. Y.,
420 Sarnat, S. E., Klein, M., Mulholland, J. A., and Russell, A. G.: Rev	iew of
421 Acellular Assays of Ambient Particulate Matter Oxidative Potential: M	ethods
422 and Relationships with Composition, Sources, and Health Effects, E	nviron.
423 Sci. Technol., 53, 4003-4019, 10.1021/acs.est.8b03430, 2019.	
424 Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A., 3rd	, Apte,
425 J. S., Brauer, M., Cohen, A., Weichenthal, S., Coggins, J., Di, Q., Brun	ekreef,
426 B., Frostad, J., Lim, S. S., Kan, H., Walker, K. D., Thurston, G. D., Ha	yes, R.
427 B., Lim, C. C., Turner, M. C., Jerrett, M., Krewski, D., Gapstur, S. M.,	Diver,
428 W. R., Ostro, B., Goldberg, D., Crouse, D. L., Martin, R. V., Peters, P., H	Pinault,
429 L., Tjepkema, M., van Donkelaar, A., Villeneuve, P. J., Miller, A. B.,	Yin, P.,
430 Zhou, M., Wang, L., Janssen, N. A. H., Marra, M., Atkinson, R. W., Tsa	ng, H.,
431 Quoc Thach, T., Cannon, J. B., Allen, R. T., Hart, J. E., Laden, F., Cesar	oni, G.,
432 Forastiere, F., Weinmayr, G., Jaensch, A., Nagel, G., Concin, H., and Sp	badaro,
433 J. V.: Global estimates of mortality associated with long-term expos	sure to
434 outdoor fine particulate matter, Proc. Natl. Acad. Sci. U. S. A., 115, 959	2-9597,

435 10.1073/pnas.1803222115, 20

- Calas, A., Uzu, G., Kelly, F. J., Houdier, S., Martins, J. M. F., Thomas, F., Molton, F.,
 Charron, A., Dunster, C., Oliete, A., Jacob, V., Besombes, J.-L., Chevrier, F.,
 and Jaffrezo, J.-L.: Comparison between five acellular oxidative potential
 measurement assays performed with detailed chemistry on PM₁₀ samples from
 the city of Chamonix (France), Atmos. Chem. Phys., 18, 7863-7875,
 10.5194/acp-18-7863-2018, 2018.
- Campbell, S. J., Wolfer, K., Utinger, B., Westwood, J., Zhang, Z. H., Bukowiecki, N.,
 Steimer, S. S., Vu, T. V., Xu, J., Straw, N., Thomson, S., Elzein, A., Sun, Y.,
 Liu, D., Li, L., Fu, P., Lewis, A. C., Harrison, R. M., Bloss, W. J., Loh, M.,
 Miller, M. R., Shi, Z., and Kalberer, M.: Atmospheric conditions and
 composition that influence PM_{2.5} oxidative potential in Beijing, China, Atmos.
 Chem. Phys., 21, 5549-5573, 10.5194/acp-21-5549-2021, 2021.
- Cao, T., Li, M., Zou, C., Fan, X., Song, J., Jia, W., Yu, C., Yu, Z., and Peng, P. a.:
 Chemical composition, optical properties, and oxidative potential of waterand methanol-soluble organic compounds emitted from the combustion of
 biomass materials and coal, Atmos. Chem. Phys., 21, 13187-13205,
 10.5194/acp-21-13187-2021, 2021.
- Charrier, J. G. and Anastasio, C.: On dithiothreitol (DTT) as a measure of oxidative
 potential for ambient particles: evidence for the importance of soluble
 transition metals, Atmos. Chem. Phys., 12, 9321-9333, 10.5194/acp-12-93212012, 2012.
- Chen, K., Xu, J., Famiyeh, L., Sun, Y., Ji, D., Xu, H., Wang, C., Metcalfe, S. E., Betha,
 R., Behera, S. N., Jia, C., Xiao, H., and He, J.: Chemical constituents, driving
 factors, and source apportionment of oxidative potential of ambient fine
 particulate matter in a Port City in East China, J. Hazard. Mater., 440,
 10.1016/j.jhazmat.2022.129864, 2022.
- Chen, Q., Wang, M., Wang, Y., Zhang, L., Li, Y., and Han, Y.: Oxidative Potential of
 Water-Soluble Matter Associated with Chromophoric Substances in PM_{2.5}

464	over Xi'an, China, Environ. Sci. Technol., 53, 8574-8584,
465	10.1021/acs.est.9b01976, 2019.
466	Chirizzi, D., Cesari, D., Guascito, M. R., Dinoi, A., Giotta, L., Donateo, A., and
467	Contini, D.: Influence of Saharan dust outbreaks and carbon content on
468	oxidative potential of water-soluble fractions of $PM_{2.5}$ and $PM_{10},\ Atmos.$
469	Environ., 163, 1-8, 10.1016/j.atmosenv.2017.05.021, 2017.
470	Chow, W. S., Huang, X. H. H., Leung, K. F., Huang, L., Wu, X., and Yu, J. Z.:
471	Molecular and elemental marker-based source apportionment of fine
472	particulate matter at six sites in Hong Kong, China, Sci. Total Environ., 813,
473	152652, 10.1016/j.scitotenv.2021.152652, 2022.
474	Chowdhury, P. H., He, Q., Carmieli, R., Li, C., Rudich, Y., and Pardo, M.: Connecting
475	the Oxidative Potential of Secondary Organic Aerosols with Reactive Oxygen
476	Species in Exposed Lung Cells, Environ. Sci. Technol., 53, 13949-13958,
477	10.1021/acs.est.9b04449, 2019.
478	Cui, Y., Zhu, L., Wang, H., Zhao, Z., Ma, S., and Ye, Z.: Characteristics and Oxidative
479	Potential of Ambient $PM_{2.5}$ in the Yangtze River Delta Region: Pollution Level
480	and Source Apportionment, Atmosphere, 14, 10.3390/atmos14030425, 2023.
481	Daellenbach, K. R., Uzu, G., Jiang, J., Cassagnes, L. E., Leni, Z., Vlachou, A.,
482	Stefenelli, G., Canonaco, F., Weber, S., Segers, A., Kuenen, J. J. P., Schaap, M.,
483	Favez, O., Albinet, A., Aksoyoglu, S., Dommen, J., Baltensperger, U., Geiser,
484	M., El Haddad, I., Jaffrezo, J. L., and Prevot, A. S. H.: Sources of particulate-
485	matter air pollution and its oxidative potential in Europe, Nature, 587, 414-419,
486	10.1038/s41586-020-2902-8, 2020.
487	Fan, X., Li, M., Cao, T., Cheng, C., Li, F., Xie, Y., Wei, S., Song, J., and Peng, P. a.:
488	Optical properties and oxidative potential of water- and alkaline-soluble
489	brown carbon in smoke particles emitted from laboratory simulated biomass
490	burning, Atmos. Environ., 194, 48-57, 10.1016/j.atmosenv.2018.09.025, 2018.
491	Fang, T., Verma, V., Bates, J. T., Abrams, J., Klein, M., Strickland, M. J., Sarnat, S. E.,
492	Chang, H. H., Mulholland, J. A., Tolbert, P. E., Russell, A. G., and Weber, R. J.:

493	Oxidative potential of ambient water-soluble $PM_{2.5}$ in the southeastern United
494	States: contrasts in sources and health associations between ascorbic acid (AA)
495	and dithiothreitol (DTT) assays, Atmos. Chem. Phys., 16, 3865-3879,
496	10.5194/acp-16-3865-2016, 2016.
497	Feng, R., Xu, H., Gu, Y., Wang, Z., Han, B., Sun, J., Liu, S., Lu, H., Ho, S. S. H.,
498	Shen, Z., and Cao, J.: Variations of Personal Exposure to Particulate Nitrated
499	Phenols from Heating Energy Renovation in China: The First Assessment on
500	Associated Toxicological Impacts with Particle Size Distributions, Environ.
501	Sci. Technol., 56, 3974-3983, 2022.
502	Gao, D., Fang, T., Verma, V., Zeng, L., and Weber, R. J.: A method for measuring total
503	aerosol oxidative potential (OP) with the dithiothreitol (DTT) assay and
504	comparisons between an urban and roadside site of water-soluble and total OP,
505	Atmos. Meas. Tech., 10, 2821-2835, 10.5194/amt-10-2821-2017, 2017.
506	Hecobian, A., Zhang, X., Zheng, M., Frank, N., Edgerton, E. S., and Weber, R. J.:
507	Water-Soluble Organic Aerosol material and the light-absorption
508	characteristics of aqueous extracts measured over the Southeastern United
509	States, Atmos. Chem. Phys., 10, 5965-5977, 10.5194/acp-10-5965-2010, 2010.
510	Ho, K. F., Ho, S. S. H., Huang, RJ., Liu, S. X., Cao, JJ., Zhang, T., Chuang, HC.,
511	Chan, C. S., Hu, D., and Tian, L.: Characteristics of water-soluble organic
512	nitrogen in fine particulate matter in the continental area of China, Atmos.
513	Environ., 106, 252-261, 10.1016/j.atmosenv.2015.02.010, 2015.
514	Huang, R. J., Cheng, R., Jing, M., Yang, L., Li, Y., Chen, Q., Chen, Y., Yan, J., Lin, C.,
515	Wu, Y., Zhang, R., El Haddad, I., Prevot, A. S. H., O'Dowd, C. D., and Cao, J.:
516	Source-Specific Health Risk Analysis on Particulate Trace Elements: Coal
517	Combustion and Traffic Emission As Major Contributors in Wintertime
518	Beijing, Environ. Sci. Technol., 52, 10967-10974, 10.1021/acs.est.8b02091,
519	2018.
520	Huang, R. J., Yang, L., Shen, J., Yuan, W., Gong, Y., Guo, J., Cao, W., Duan, J., Ni, H.,
521	Zhu, C., Dai, W., Li, Y., Chen, Y., Chen, Q., Wu, Y., Zhang, R., Dusek, U.,

522	O'Dowd, C., and Hoffmann, T.: Water-Insoluble Organics Dominate Brown
523	Carbon in Wintertime Urban Aerosol of China: Chemical Characteristics and
524	Optical Properties, Environ. Sci. Technol., 54, 7836-7847,
525	10.1021/acs.est.0c01149, 2020.
526	Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y., Daellenbach, K. R.,
527	Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M.,
528	Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M.,
529	Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S.,
530	Baltensperger, U., El Haddad, I., and Prevot, A. S.: High secondary aerosol
531	contribution to particulate pollution during haze events in China, Nature, 514,
532	218-222, 10.1038/nature13774, 2014.
533	Joo, H. S., Batmunkh, T., Borlaza, L. J. S., Park, M., Lee, K. Y., Lee, J. Y., Chang, Y.
534	W., and Park, K.: Physicochemical properties and oxidative potential of fine
535	particles produced from coal combustion, Aerosol Sci. Technol., 52, 1134-
536	1144, 10.1080/02786826.2018.1501152, 2018.
537	Khoshnamvand, N., Nodehi, R. N., Hassanvand, M. S., and Naddafi, K.: Comparison
538	between oxidative potentials measured of water-soluble components in
539	ambient air PM_1 and $PM_{2.5}$ of Tehran, Iran, Air Qual. Atmos. Hlth., 16, 1311-
540	1320, 10.1007/s11869-023-01343-у, 2023.
541	Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of atmospheric brown carbon,
542	Chem. Rev., 115, 4335-4382, 10.1021/cr5006167, 2015.
543	Lelieveld, S., Wilson, J., Dovrou, E., Mishra, A., Lakey, P. S. J., Shiraiwa, M., Poschl,
544	U., and Berkemeier, T.: Hydroxyl Radical Production by Air Pollutants in
545	Epithelial Lining Fluid Governed by Interconversion and Scavenging of
546	Reactive Oxygen Species, Environ. Sci. Technol., 55, 14069-14079,
547	10.1021/acs.est.1c03875, 2021.
548	Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and Laskin, A.:
549	Molecular chemistry of atmospheric brown carbon inferred from a nationwide
550	biomass burning event, Environ. Sci. Technol., 51, 11561–11570, 2017.

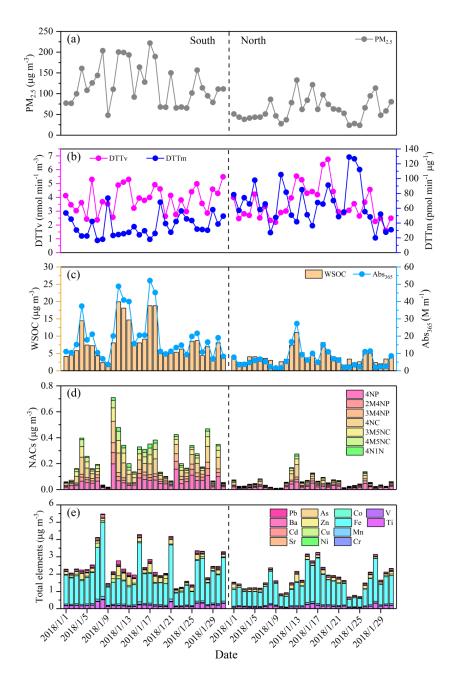
551	Liu, W., Xu, Y., Liu, W., Liu, Q., Yu, S., Liu, Y., Wang, X., and Tao, S.: Oxidative
552	potential of ambient $PM_{2.5}$ in the coastal cities of the Bohai Sea, northern
553	China: Seasonal variation and source apportionment, Environ. Pollut., 236,
554	514-528, 10.1016/j.envpol.2018.01.116, 2018.
555	Ma, X., Nie, D., Chen, M., Ge, P., Liu, Z., Ge, X., Li, Z., and Gu, R.: The Relative
556	Contributions of Different Chemical Components to the Oxidative Potential of
557	Ambient Fine Particles in Nanjing Area, Int. J. Environ. Res. Public Health, 18,
558	2789, 10.3390/ijerph18062789, 2021.
559	Minguillón, M. C., Cirach, M., Hoek, G., Brunekreef, B., Tsai, M., de Hoogh, K.,
560	Jedynska, A., Kooter, I. M., Nieuwenhuijsen, M., and Querol, X.: Spatial
561	variability of trace elements and sources for improved exposure assessment in
562	Barcelona, Atmos. Environ., 89, 268-281, 10.1016/j.atmosenv.2014.02.047,
563	2014.
564	Moreno, T., Querol, X., Alastuey, A., Reche, C., Cusack, M., Amato, F., Pandolfi, M.,
565	Pey, J., Richard, A., Prévôt, A. S. H., Furger, M., and Gibbons, W.: Variations
566	in time and space of trace metal aerosol concentrations in urban areas and their
567	surroundings, Atmos. Chem. Phys., 11, 9415-9430, 10.5194/acp-11-9415-2011,
568	2011.
569	Oh, S. H., Park, K., Park, M., Song, M., Jang, K. S., Schauer, J. J., Bae, G. N., and
570	Bae, M. S.: Comparison of the sources and oxidative potential of $PM_{2.5}$ during
571	winter time in large cities in China and South Korea, Sci. Total Environ., 859,
572	160369, 10.1016/j.scitotenv.2022.160369, 2023.
573	Paatero, P.: Least squares formation of robust non negative factor analysis,
574	Chemometr. Intell. Lab., 37, 23-35, 1997.
575	Puthussery, J. V., Dave, J., Shukla, A., Gaddamidi, S., Singh, A., Vats, P., Salana, S.,
576	Ganguly, D., Rastogi, N., Tripathi, S. N., and Verma, V.: Effect of Biomass
577	Burning, Diwali Fireworks, and Polluted Fog Events on the Oxidative
578	Potential of Fine Ambient Particulate Matter in Delhi, India, Environ. Sci.
579	Technol., 56, 14605-14616, 10.1021/acs.est.2c02730, 2022.

580	Shen, J., Taghvaee, S., La, C., Oroumiyeh, F., Liu, J., Jerrett, M., Weichenthal, S., Del
581	Rosario, I., Shafer, M. M., Ritz, B., Zhu, Y., and Paulson, S. E.: Aerosol
582	Oxidative Potential in the Greater Los Angeles Area: Source Apportionment
583	and Associations with Socioeconomic Position, Environ. Sci. Technol., 56,
584	17795-17804, 10.1021/acs.est.2c02788, 2022.
585	Ting, Y. C., Chang, P. K., Hung, P. C., Chou, C. C., Chi, K. H., and Hsiao, T. C.:
586	Characterizing emission factors and oxidative potential of motorcycle
587	emissions in a real-world tunnel environment, Environ. Res., 234, 116601,
588	10.1016/j.envres.2023.116601, 2023.
589	Tong, H., Lakey, P. S. J., Arangio, A. M., Socorro, J., Kampf, C. J., Berkemeier, T.,
590	Brune, W. H., Poschl, U., and Shiraiwa, M.: Reactive oxygen species formed
591	in aqueous mixtures of secondary organic aerosols and mineral dust
592	influencing cloud chemistry and public health in the Anthropocene, Faraday
593	Discuss., 200, 251-270, 10.1039/c7fd00023e, 2017.
594	Tong, H., Lakey, P. S. J., Arangio, A. M., Socorro, J., Shen, F., Lucas, K., Brune, W.
595	H., Poschl, U., and Shiraiwa, M.: Reactive Oxygen Species Formed by
596	Secondary Organic Aerosols in Water and Surrogate Lung Fluid, Environ. Sci.
597	Technol., 52, 11642-11651, 10.1021/acs.est.8b03695, 2018.
598	Tuet, W. Y., Chen, Y., Xu, L., Fok, S., Gao, D., Weber, R. J., and Ng, N. L.: Chemical
599	oxidative potential of secondary organic aerosol (SOA) generated from the
600	photooxidation of biogenic and anthropogenic volatile organic compounds,
601	Atmos. Chem. Phys., 17, 839-853, 10.5194/acp-17-839-2017, 2017.
602	Tuet, W. Y., Liu, F., de Oliveira Alves, N., Fok, S., Artaxo, P., Vasconcellos, P.,
603	Champion, J. A., and Ng, N. L.: Chemical Oxidative Potential and Cellular
604	Oxidative Stress from Open Biomass Burning Aerosol, Environ. Sci. Technol.
605	Lett., 6, 126-132, 10.1021/acs.estlett.9b00060, 2019.
606	Verma, V., Fang, T., Xu, L., Peltier, R. E., Russell, A. G., Ng, N. L., and Weber, R. J.:
607	Organic aerosols associated with the generation of reactive oxygen species
608	(ROS) by water-soluble PM2.5, Environ. Sci. Technol., 49, 4646-4656,

609 10.1021/es505577w, 20	15.
---------------------------	-----

610	Verma, V., Rico-Martinez, R., Kotra, N., King, L., Liu, J., Snell, T. W., and Weber, R.
611	J.: Contribution of water-soluble and insoluble components and their
612	hydrophobic/hydrophilic subfractions to the reactive oxygen species-
613	generating potential of fine ambient aerosols, Environ. Sci. Technol., 46,
614	11384-11392, 10.1021/es302484r, 2012.
615	Verma, V., Fang, T., Guo, H., King, L., Bates, J. T., Peltier, R. E., Edgerton, E.,
616	Russell, A. G., and Weber, R. J.: Reactive oxygen species associated with
617	water-soluble PM _{2.5} in the southeastern United States: spatiotemporal trends
618	and source apportionment, Atmos. Chem. Phys., 14, 12915-12930,
619	10.5194/acp-14-12915-2014, 2014.
620	Vreeland, H., Weber, R., Bergin, M., Greenwald, R., Golan, R., Russell, A. G., Verma,
621	V., and Sarnat, J. A.: Oxidative potential of PM _{2.5} during Atlanta rush hour:
622	Measurements of in-vehicle dithiothreitol (DTT) activity, Atmos. Environ.,
623	165, 169-178, 10.1016/j.atmosenv.2017.06.044, 2017.
624	Wang, J., Lin, X., Lu, L., Wu, Y., Zhang, H., Lv, Q., Liu, W., Zhang, Y., and Zhuang,
625	S.: Temporal variation of oxidative potential of water soluble components of
626	ambient PM2.5 measured by dithiothreitol (DTT) assay, Sci. Total Environ.,
627	649, 969-978, 10.1016/j.scitotenv.2018.08.375, 2019.
628	Wang, T., Huang, R. J., Li, Y., Chen, Q., Chen, Y., Yang, L., Guo, J., Ni, H., Hoffmann,
629	T., Wang, X., and Mai, B.: One-year characterization of organic aerosol
630	markers in urban Beijing: Seasonal variation and spatiotemporal comparison,
631	Sci. Total Environ., 743, 140689, 10.1016/j.scitotenv.2020.140689, 2020a.
632	Wang, Y., Wang, M., Li, S., Sun, H., Mu, Z., Zhang, L., Li, Y., and Chen, Q.: Study on
633	the oxidation potential of the water-soluble components of ambient $\ensuremath{\text{PM}_{2.5}}$ over
634	Xi'an, China: Pollution levels, source apportionment and transport pathways,
635	Environ. Int., 136, 105515, 10.1016/j.envint.2020.105515, 2020b.
636	Wong, J. P. S., Tsagkaraki, M., Tsiodra, I., Mihalopoulos, N., Violaki, K., Kanakidou,
637	M., Sciare, J., Nenes, A., and Weber, R. J.: Effects of Atmospheric Processing

638	on the Oxidative Potential of Biomass Burning Organic Aerosols, Environ. Sci.
639	Technol., 53, 6747-6756, 10.1021/acs.est.9b01034, 2019.
640	Wu, N., Lu, B., Chen, Q., Chen, J., and Li, X.: Connecting the Oxidative Potential of
641	Fractionated Particulate Matter With Chromophoric Substances, J. Geophys.
642	Res-Atmos., 127, 10.1029/2021jd035503, 2022a.
643	Wu, N., Lyu, Y., Lu, B., Cai, D., Meng, X., and Li, X.: Oxidative potential induced by
644	metal-organic interaction from PM _{2.5} in simulated biological fluids, Sci. Total
645	Environ., 848, 157768, 10.1016/j.scitotenv.2022.157768, 2022b.
646	Xing, C., Wang, Y., Yang, X., Zeng, Y., Zhai, J., Cai, B., Zhang, A., Fu, T. M., Zhu, L.,
647	Li, Y., Wang, X., and Zhang, Y.: Seasonal variation of driving factors of
648	ambient PM _{2.5} oxidative potential in Shenzhen, China, Sci. Total Environ., 862,
649	160771, 10.1016/j.scitotenv.2022.160771, 2023.
650	Xiong, Q., Yu, H., Wang, R., Wei, J., and Verma, V.: Rethinking Dithiothreitol-Based
651	Particulate Matter Oxidative Potential: Measuring Dithiothreitol Consumption
652	versus Reactive Oxygen Species Generation, Environ. Sci. Technol., 51, 6507-
653	6514, 10.1021/acs.est.7b01272, 2017.
654	Yu, H., Wei, J., Cheng, Y., Subedi, K., and Verma, V.: Synergistic and Antagonistic
655	Interactions among the Particulate Matter Components in Generating Reactive
656	Oxygen Species Based on the Dithiothreitol Assay, Environ. Sci. Technol., 52,
657	2261–2270, 2018.
658	Yu, Q., Chen, J., Qin, W., Ahmad, M., Zhang, Y., Sun, Y., Xin, K., and Ai, J.:
659	Oxidative potential associated with water-soluble components of $\ensuremath{\text{PM}_{2.5}}$ in
660	Beijing: The important role of anthropogenic organic aerosols, J. Hazard.
661	Mater., 433, 128839, 10.1016/j.jhazmat.2022.128839, 2022a.
662	Yu, S., Liu, W., Xu, Y., Yi, K., Zhou, M., Tao, S., and Liu, W.: Characteristics and
663	oxidative potential of atmospheric $PM_{2.5}$ in Beijing: Source apportionment and
664	seasonal variation, Sci. Total Environ., 650, 277-287,
665	10.1016/j.scitotenv.2018.09.021, 2019.
666	Yu, Y., Sun, Q., Li, T., Ren, X., Lin, L., Sun, M., Duan, J., and Sun, Z.: Adverse



667	outcome pathway of fine particulate matter leading to increased cardiovascular
668	morbidity and mortality: An integrated perspective from toxicology and
669	epidemiology, J. Hazard. Mater., 430, 128368, 10.1016/j.jhazmat.2022.128368,
670	2022b.
671	Vu V Chang P Li V Cu I Cong V Han B Vang W Sun I Wu C Song

- Yu, Y., Cheng, P., Li, Y., Gu, J., Gong, Y., Han, B., Yang, W., Sun, J., Wu, C., Song,
 W., and Li, M.: The association of chemical composition particularly the
 heavy metals with the oxidative potential of ambient PM_{2.5} in a megacity
 (Guangzhou) of southern China, Environ. Res., 213, 113489,
 10.1016/j.envres.2022.113489, 2022c.
- Yuan, W., Huang, R.-J., Luo, C., Yang, L., Cao, W., Guo, J., and Yang, H.:
 Measurement report: Oxidation potential of water-soluble aerosol components
 in the southern and northern of Beijing, Zenodo [data set],
 https://doi.org/10.5281/zenodo.10791126, 2024.
- Yuan, W., Huang, R.-J., Yang, L., Guo, J., Chen, Z., Duan, J., Wang, T., Ni, H., Han,
 Y., Li, Y., Chen, Q., Chen, Y., Hoffmann, T., and O'Dowd, C.: Characterization
 of the light-absorbing properties, chromophore composition and sources of
 brown carbon aerosol in Xi'an, northwestern China, Atmos. Chem. Phys., 20,
 5129-5144, 10.5194/acp-20-5129-2020, 2020.
- Zhang, Q., Ma, H., Li, J., Jiang, H., Chen, W., Wan, C., Jiang, B., Dong, G., Zeng, X.,
 Chen, D., Lu, S., You, J., Yu, Z., Wang, X., and Zhang, G.: Nitroaromatic
 Compounds from Secondary Nitrate Formation and Biomass Burning Are
 Major Proinflammatory Components in Organic Aerosols in Guangzhou: A
 Bioassay Combining High-Resolution Mass Spectrometry Analysis, Environ.
 Sci. Technol., 57, 21570-21580, https://doi.org/10.1021/acs.est.3c04983, 2023.
- Zheng, Y., Davis, S. J., Persad, G. G., and Caldeira, K.: Climate effects of aerosols
 reduce economic inequality, Nat. Clim. Chang., 10, 220-224, 2020.
- 693
- 694
- 695

697 **Figure 1.** Time series of (a) $PM_{2.5}$ concentration, (b) DTT_v and DTT_m , (c) 698 concentration and light absorption at wavelength 365 nm (Abs₃₆₅) of WSOC, 699 concentrations of (d) NACs and (e) elements.

700

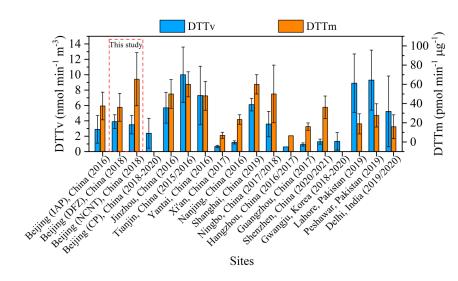
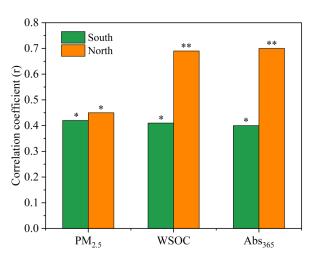
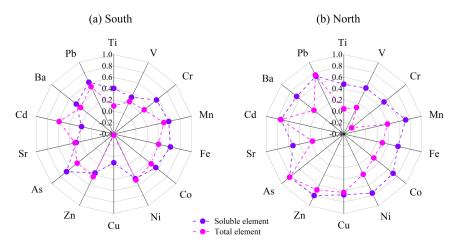



Figure 2. Comparison of DTT_v and DTT_m values measured in this study with those

- 703 measured in other areas of Asia during similar period.
- 704

701


705

706 **Figure 3.** Correlation coefficients between DTT_v and PM_{2.5}, WSOC, and Abs₃₆₅ in the

707 south and north of Beijing.

709

710 **Figure 4.** Correlation coefficients between DTT_v and elements in the (a) south and (b)

- 711 north of Beijing.
- 712

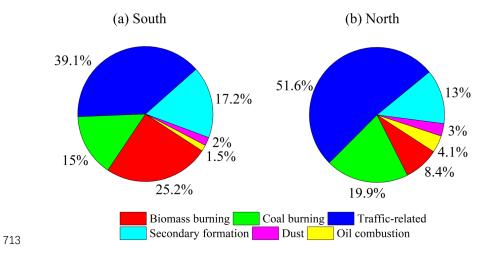


Figure 5. Contributions of resolved sources to DTT_v in the (a) south and (b) north of

715 Beijing.