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Abstract. Tropical glaciers are essential water resources in the central Andes as vital water resources and crucial climate 

indicators, currently undergoing rapid retreat. However, understanding their vulnerability to the combined effects of persistent 10 

warming, short-term climate phenomena, and interannual fluctuations remains limited. Here we automate mapping of key 

mass balance parameters on the Quelccaya Ice Cap (QIC), the world’s largest tropical ice cap. Using Landsat's near-infrared 

(NIR) band, we analyze snow cover area (SCA) and total area (TA) and calculate the Accumulation Area Ratio (AAR) and 

Equilibrium Line Altitude (ELA) over nearly 40 years (1985-2023). Between 1985 and 2022, the QIC lost ~46% and ~34% of 

its SCA and TA, respectively. We show that the QIC’s loss in SCA and rise in ELA are exacerbated by El Niño events, which 15 

are strongly correlated to the preceding wet season’s Ocean Niño Index (ONI). We observe lower levels of correlation to more 

recent El Niño events as anthropogenic climatic impacts overwhelm the natural forcing and continue to exacerbate loss at the 

QIC. 

1 Introduction  

Tropical glaciers are known to be especially sensitive to climate shifts (Kaser & Osmaston, 2002) and their accelerated decline 20 

has been well documented in recent decades (Bradley et al., 2006; Braun et al., 2019; Hanshaw & Bookhagen, 2014a; Hugonnet 

et al., 2021; Pepin, 2015; Seehaus et al., 2020; Thompson et al., 2011, 2021; Vuille et al., 2015). In the low latitudes and 

southern Andes, glaciers are projected to lose ~76-99% and ~49-74% of their 2015 mass, respectively, depending on the 

emissions scenario (Rounce et al., 2023). The freezing level height in the tropics is affected on an interannual basis by El Niño 

Southern Oscillation (ENSO) variations and follows the Multivariate ENSO Index (MEI) on a year-to-year basis (Bradley et 25 

al., 2009; Favier et al., 2004; Thompson, 2000; Vuille et al., 2000). The decline of the Quelccaya Ice Cap (QIC; the world’s 

largest tropical ice cap; Fig. 1), located in the Cordillera Vilcanota (CV) range in the outer tropical region of the Andes, is one 

such concern with worst case (RCP8.5) projections suggesting its disappearance as early as 2050 (Yarleque et al., 2018). 

Contemporary changes in the QIC’s outlet glaciers have been monitored frequently (Brecher & Thompson, 1993) with modern 

rates exceeding those reconstructed from Holocene moraines (Mark et al., 2002). Further evidence of the QIC has recently 30 
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been placed within a longer-term context using radiocarbon-dated plant remains from the ice margin suggesting that the ice 

cap’s present-day magnitude of retreat has not occurred since at least 7,000 years ago (Lamantia et al., 2023). In addition, the 

QIC’s high-resolution ice-core records have proven invaluable for understanding of past climatic and environmental variability 

in the region (Thompson, 2000; Thompson et al., 1985, 2013, 2017, 2021). Thus, the ongoing loss of tropical glaciers will not 

only impact local communities that depend on glacial meltwater but has implications for the preservation of long-term climate 35 

records, essential for assessing the rate and magnitude of current changes (Thompson et al., 2021). 

Figure 1: Aerial view of the Quelccaya Ice Cap (13°56’S; 70°50’W) from October 11, 2023. The summit of the QIC reaches 5,670 m a.s.l 
with a handful of outlet glaciers to the west and a steep-sided eastern portion. Base Imagery was obtained from Planet Labs Dove Satellite 
with 3-meter resolution and inset (top left) was obtained from the OpenStreetMap database (© OpenStreetMap contributors 2023. Distributed 
under the Open Data Commons Open Database License (ODbL) v1.0.) 40 
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In the tropics, there is no seasonal snow cover beyond the glacierized area that would provide an additional buffer to the ice 

cap’s decline (Vuille et al., 2018). The southern wet outer tropics are climatically controlled by fluctuations in the Intertropical 

Convergence Zone (ITCZ) and glaciers such as  the QIC have enhanced temperature sensitivity relative to those in the dry 

outer tropics (Veettil et al., 2017). There has been no significant change in precipitation around the QIC over the last fifty 

years, with 10% of stations in the CV recording only a slight decrease in rainfall (Casimiro et al., 2013) but ice core records 45 

from the QIC core reveal the net accumulation in the region has been above average for the last century (Thompson L.G., 

2017). The average temperature has increased by ~0.09°C per decade over the last sixty years with the summer months 

recording a higher magnitude increase in maximum temperature (Casimiro et al., 2013) and ice cores recording documenting 

the accelerating enrichment (Thompson L.G, 2017). Nearby mountain ranges such as the Cordillera Blanca and Real have 

experienced an increase in the freezing level height (FLH) by 160 m over the last five and a half decades with implications for 50 

where snow can survive and accumulate (Bradley et al., 2009; Schauwecker et al., 2014; Seehaus et al., 2020). High-resolution 

ice core records show that the QIC is an excellent recorder of the El Niño and La Niña events that create elevated sea surface 

temperatures (SSTs) in the Eastern Pacific Ocean, recording years of strong El Niño events with isotopically enriched δ18O 

(Thompson et al., 2011, 2017). Alongside these ice core records,  the QIC’s contemporary and past margin has been monitored 

and reconstructed, but it has yet to be evaluated for ice loss and response to these short-term climate phenomena that may play 55 

a role in its current decline. Thus, the QIC is an ideal setting to assess the combined effects of sustained warming and short-

term climate variations, such as ENSO, on tropical glacier vulnerability.  

 

Since routine ground-based measurements in a remote location such as south-central Peru are difficult to maintain, using 

satellite imagery to estimate the Equilibrium Line Altitude (ELA) has become a viable solution. Previous studies have shown 60 

that the end of dry season (September) location of the snowline altitude (SLA) can act as a proxy for the ELA and ultimately 

be used to infer the mass balance of a glacier or ice cap (Fang et al., 2011; Hu et al., 2020; Liu et al., 2021; Racoviteanu et al., 

2019). Here, we use a suite of imagery spanning 1985 to 2023 to assess the QIC at the end of the dry season through a cloud-

based analysis of satellite imagery. We automate not only the detection of the snow-covered area (SCA) and total area (TA), 

but also the calculation of the accumulation area ratio (AAR), the median elevation of the SCA, and the SLA as a proxy for 65 

the ELA. Changes to the ELA, SCA, and AAR are analyzed alongside ERA5 – Land Reanalysis Climate Data from the 

European Centre for Medium Weather Range Weather Forecast (ECMWF) including total precipitation and surface 

temperature as well as multiple ENSO Indices including the MEI, the Ocean Niño Index (ONI), and the Southern Oscillation 

Index (SOI). We additionally focus on the most recent El Niño events (1998, 2016, & 2023) and the QIC’s response to these 

short-term climate anomalies.  70 
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2 Methods 

2.1 Current Analysis Techniques 

Recent advances in image analysis have included the automation of snowline detection as often manual tracing is limited to 

higher quality imagery to determine snow versus ice presence. Typically, a suite of images, often from Landsat satellites are 

paired with one or more Digital Elevation Models (DEMs) and a glacier outline from the beginning of the temporal scale of 75 

interest (Li et al., 2022). From there, a variety of thresholds are evaluated and set for the area of interest with the SLA extracted 

from automated calculations to be used as the ELA (Racoviteanu et al., 2019) or manual tracing of outputs (Liu et al., 2021). 

There are challenges in this process including adjusting surface reflectance from the topography, patchy snow cover on a 

glacier, and highly variable atmospheric conditions that require the algorithm to be adjusted to the location of interest 

(Racoviteanu et al., 2019). Previous studies have included a handful of techniques including satellite imagery analysis and 80 

spectral mixing from the Landsat short-wave infrared (SWIR) and near-infrared (NIR) bands (Klein & Isacks, 1999), as well 

as satellite imagery band ratios, hillshade shadow removal, and manual editing (Hanshaw & Bookhagen, 2014a). 

2.2 Data Collection 

To automate the SCA detection and ELA calculation, the following data inputs were required: an annual satellite image, a 

DEM, and the 1985 outline of the QIC. Using the Google Earth Engine platform (GEE) we select annual Landsat images as 85 

close as possible to September 1st with clear visibility of the QIC from 1985 to 2023 (Table S1). September 1st marks the end 

of the dry season in the CV, enabling analysis of the ice cap without extraneous snowfall around the perimeter. Imagery from 

each year was manually inspected to ensure no recent snowfall events occurred and were not used if recent snowfall was 

evident. Sentinel-2 imagery was used in 2023, due to a lack of cloudless images from Landsat 8/9. As one of our aims was to 

analyze the 2023 El Niño event, a separate script was adapted for the higher resolution and alternate detail of Sentinel-2 90 

processing. We note that 2023 results are not included in our initial analysis of QIC’s ELA change as it is part of an incomplete 

El Niño event. No imagery was collected for the years 1987, 1994, 2002, and 2012 due to high cloud cover. DEM usage 

accounted for changes in ice elevation over time and any down-wasting of the QIC, and initially the NASADEM, created from 

the Shuttle Radar Topography Missions (SRTM), was implemented from 1985 to 2005. Post 2005, the COP30 DEM, released 

in 2010, was implemented following an assessment of surface difference in both DEMs between 2005 to 2015. Additionally, 95 

throughout the two largest El Niño events (1997-1999 & 2015-2017) 16 and 18 images, respectively, were collected to assess 

short-term change and response of the QIC to El Niño. 

2.3 Satellite Analysis for Snow Cover Area 

To begin, the least cloudy image from the year is clipped to the region of interest (ROI), the delineated QIC boundary (Step 1; 

Fig. S1). Pre-processing of each image includes calculating the illumination condition, which for the detection of the same 100 

features under different sunlight conditions (Step 2; Martín-Ortega et al., 2020). We use the Minnaert Correction (Ge et al., 
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2008), which assumes the reflectance of a surface is proportional to the cosine of the angle of incidence. Both are used to 

topographically correct for variability of observed reflectance and apply such to the selected annual image (Step 3; Ge et al., 

2008). The QIC is an excellent case study for this method as the low-sloping topography does not create as many shadows as 

a steep mountain glacier. To delineate the snow cover area (SCA), the NIR band is assessed with an image segmentation 105 

algorithm, the OTSU method (Gaddam et al., 2022). The NIR band records a bimodal frequency histogram of snow and ice 

and the OTSU method is designed to automatically detect the threshold to separate snow from ice (Step 4; Fig. S2). Once 

calculated, it is applied to the NIR band to create a binary mask of snow and ice (Step 4). The annual image and DEM are 

clipped to the snow mask creating the SCA, and the DEM data is extracted (Step 5) and the SCA and median elevation of the 

SCA are calculated. SCAs are exported to shapefiles and the DEM data is exported as a histogram in 50-meter elevation bins 110 

(Step 6).  

2.3 Calculation of Total Area, AAR, and ELA, and Uncertainty 

As the SLA is a proxy for the ELA, we will use the term ELA from this point forward. In pursuit of the ELA, we calculate the 

Accumulation Area Ratio (AAR). The AAR is defined as: AAR = Ac/(Ac +Ab) where Ac is the accumulation area and Ac + 

Ab is the total area (TA) (Meier, 1962). In this case, Ac is the SCA and Ac+Ab is the TA (both ice & snow). To calculate the 115 

TA, we automate the calculation of the Normalized Difference Snow Index (NDSI), which leverages the reflectance of snow 

and ice in the green and SWIR spectra compared to other land cover types. The NDSI is calculated by the following equation: 

NDSI  = (𝜌ீ  – 𝜌ௌௐூோ)/(𝜌ீ  + 𝜌ௌௐூோ), where 𝜌ீ  and 𝜌ௌௐூோ  are the reflectance of the green and shortwave infrared bands, 

respectively (Dozier, 1989; Hall & Riggs, 2007). We use the same OTSU thresholding method to calculate the NDSI threshold, 

typically set around 0.4 (Dozier, 1989; Hall & Riggs, 2007; Sankey et al., 2015). The number of snow- and ice-covered pixels 120 

is multiplied by the appropriate pixel resolution to obtain the TA. By applying the threshold to each image, we obtain a binary 

image of snow/ice versus neither and use this to calculate the TA (Step 7). The AAR is calculated by dividing the SCA by the 

TA (Step 8). We calculate the ELA using the DEM and the AAR by calculating the 1 – AAR percentile of all elevations in the 

TA (Step 9: Fig. S3). For example, if the AAR is 0.8, we assume the ELA is located at the 20th percentile of elevations in the 

TA. In summary, for each image analyzed, we obtain the SCA, the median elevation, the TA, the AAR, and the ELA. 125 

Calculated results are robust with seven manual digitizations of the ELA resulting in a SCA within ±3% of the automated 

calculation. Other studies have shown manual and automated detection of snowline produces similar and albeit low level of 

error (Hanshaw & Bookhagen, 2014b). 

2.4 Renanalysis Data and ENSO Correlation 

To observe SCA and ELA alongside climatic variables we use daily and monthly averaged data from the ERA5 – Land 130 

Reanalysis Climate Data from the European Centre for Medium Weather Range Weather Forecast (ECMWF) including total 

precipitation and surface temperature. Initially, we divided the data into wet (October to April) and dry (May to September) 

seasons based on precipitation records and past literature (Kaser & Osmaston, 2002; Veettil et al., 2017). To observe change 
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at the QIC over time we calculate the average precipitation and temperature in five-year intervals, and the number of average 

days above and below freezing for each season from 1985 to 2023. To analyze the QIC’s interannual response to climatic 135 

anomalies we paired detrended ELA, SCA, and median elevation with the MEI, SOI, and ONI indices for correlation. As such, 

the variables for each year were correlated with the preceding months’ indices for one year before the annual September 

observation date.  

3 Results 

3.1 Ice Loss and Multi-Decadal Climate Trends 140 

Over the observation period (1985 and 2022), the QIC lost ~34% of its TA and ~46% of its SCA (1985: TA=~59.6 km2, 

SCA=~46.8 km2; 2022: TA=~39.6 km2, SCA=~25.3 km2 (Table S2). This SCA loss is concurrent with a retreat of the TA to 

higher elevations (Fig. 2). We observe a 168 m and 84 m rise of the ELA and median elevation of the SCA, respectively. In 

1985, 90% of the SCA existed above 5,250 m a.s.l., and by 2022, 90% of the SCA shifted to elevations above 5,350 m a.s.l. 

On average, linear regression models suggest a loss of 0.39±0.09 km2 yr-1 (R2=0.36, p<0.001) in the QIC’s SCA; an average 145 

loss of 0.48±0.03 km2 yr-1 (R2=0.89, p<0.001) in the QIC’s TA; and an average rise of 2.96±0.75 m yr-1 (R2=0.32, p<0.001) 

in the QIC’s ELA. However, removal of the three El Niño influenced years (1998, 2016, and 2023) indicate slower average 

losses in QIC’s SCA and TA, and a slower average rise in QIC’s ELA: -0.36±0.07 km2 yr-1 (R2=0.50, p<0.001); -0.47±0.03 

km2 yr-1 (R2=0.89, p<0.001); and +2.72±0.59 m yr-1 (R2=0.42, p<0.001), respectively (Table S3). The QIC’s average AAR 

(minus El Niño years) is 0.74 throughout the study period, with 1998, 2016, and 2023 (0.30, 0.51, & 0.52), as the exceptions. 150 

Our measured variables show significant correlation to each other. For example, we find a strong positive correlation between 

the median elevation and the ELA (0.98), a strong negative correlation between the ELA and the SCA (-0.98) and a strong 

positive correlation between the SCA and AAR (0.84, Table S4).  

 

The QIC’s daily and monthly variations recorded by the QIC summit and bottom margin weather stations from Bradley et al., 155 

(2009) are well correlated with the ERA5 surface temperature dataset, which was analyzed to determine changes in 

meteorological variables through the observation period. Analysis of the ERA5 surface temperature data records ~46% of the 

wet season (October – April) and ~11% of the dry season (May – September) with mean daily temperatures above 0°C. The 

average temperature of the first five and last five years show an increase of 0.59°C in the wet season and 1.24°C in the dry 

season. Similarly, the number of days above 0°C rose from 32% to 50% in the wet season and from 5% to 17% in the dry 160 

season over the first five and last five years. These results are consistent with previous studies discussing a 0.1°C/decade rise 

in the freezing line in the tropics near the QIC (Bradley et al., 2009; Vuille et al., 2008). We observe an unchanging trend in 

precipitation in both the wet and dry seasons with 73% of the precipitation occurring during the wet season.  

 

 165 
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Figure 2: Percentage of snow cover area (SCA) in 50 meter elevation bins, demonstrating the shift to higher elevations.  

3.2 QIC Response to Short-Term Climate Phenomena 

El Niño events coincide with a large decrease in the QIC’s SCA. We observe a 63% loss in SCA from 1997 to 1998 and a 40% 185 

loss from 2015 to 2016. In 1999, a rebound of the SCA is observed back to 1997 conditions however, in 2017 the SCA only 

reaches about 70% of its 2015 value following the 2016 El Niño (Fig. 3). A full rebound in the SCA is not observed until two 

years following the event, in 2018. To better determine the patterns during the El Niño events, high frequency sampling was 

conducted around the complete El Niño events, consisting of 16 and 18 images collected between 1997 – 1999 and 2015 – 

2017, respectively. In both cases, the lowest SCA during the El Niño is observed in the annual September measurement, with 190 

a steady decline occurring from the prior year’s September measurement. The 1997 to 1998 AAR drops from 0.75 to 0.30 and 

2015 to 2016 from 0.78 to 0.51. During these El Niño events noticeable spikes are recorded in ERA5 temperature records 

while precipitation patterns and magnitude remain largely unchanged. If we fit the linear regression model with El Niño years 

as a binary predictor, the coefficients for the ELA and SCA (R2=0.67, p<0.001; & R2=0.67, p<0.001) improve with statistically 

significant values. However, the TA coefficient improves (R2=0.90, p=0.73) but without statistically significant values. 195 

Similarly, an analysis of variance testing (ANOVA) with a post hoc test records a significant difference in the mean SCA and 

ELA from El Niño to neutral conditions and in the AAR El Niño to neutral and El Niño to La Niña (Fig S1). The TA does not 

record any significant different within El Niño, La Niña, to neutral conditions (Table S5). As the 2023 measurements occur 
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during an ongoing El Niño event, we initially complied data from 1985 to 2022 and report the 2023 data as an additional 

insight to the effects of El Niño events on the QIC. The QIC’s SCA observed during the onset of the 2023 El Niño is ~19.0 200 

km2, a 25% loss compared to that of 2022. The 2023 AAR is calculated at 0.52, well below the average. From 2022 to 2023, 

we observe a 31 m and 28 m rise of the ELA and median elevation with 90% of the SCA existing over 5,400 m a.s.l. as opposed 

to 5,350 m a.sl. in 2022. Overall, between 1985 to 2023, we observe a 60% decline in the QIC’s SCA in just under 40 years 

(Fig. 4). We intend to continue to monitor the QIC to determine the continued effects of the El Niño event and any possible 

rebound that could occur in 2024.  205 
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Figure 3: Percentage of snow cover displaying loss and rebound of the SCA during the 1998 El Niño event (top) and incomplete recovery 
following the 2016 El Niño event (bottom). 
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Figure 4: Decrease in the QIC’s SCA (pink) and TA (blue) at the end of the dry season from 1985 (left) to 2023 (right). Base Imagery 
obtained from Planet Labs Dove Satellite with 3-meter resolution. 

ENSO indices were most strongly correlated with the QIC’s ELA, SCA, and median elevation as they best represent the 235 

changing ice distribution and mass. We evaluated all three ENSO indices but have chosen to discuss the ONI index as it 

presented the clearest patterns between index and the assessed QIC variables (Table S6). The ONI index is measured as sea 

surface temperature (SST) anomalies in the Niño 3.4 zone (5˚N - 5˚S & 120˚W – 170˚W) and is most used to define El Niño 

and La Niño events. The ONI index is most strongly correlated to the median elevation (Table 1) with a Pearson coefficient 

from the preceding April back through the previous September ranging from 0.489 to 0.644 (P<0.05).  The ELA and median 240 

elevation follow a similar pattern with the prior wet season (March through September) recording the highest correlations 

(0.517 to 0.644). The SCA shows a similar pattern through a negative correlation from the prior wet season (-0.555 to -0.641).  

 

 

 245 
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Preceding Month ELA SCA Med Elev 

September 0.608 -0.641 0.644 

October 0.555 -0.614 0.616 

November 0.551 -0.609 0.612 

December 0.549 -0.607 0.611 

January 0.547 -0.599 0.602 

February 0.548 -0.593 0.596 

March 0.517 -0.555 0.562 

April 0.441 -0.475 0.489 

May 0.271 -0.288 0.311 

June 0.012 -0.005 0.034 

July -0.148 -0.176 -0.142 

August -0.213 0.245 -0.211 
Table 1: Zero-order correlations (r) for QIC variables (ELA, SCA, and Median Elevation (Med Elev)) and the ONI Index. Coefficient with 
statistically significant p-values (<0.05) are indicated in bold italics.  250 

4 Discussion 

4.1 QIC Response to Short-Term Climate Variability 

During El Niño events, Peru records higher precipitation along the northern coast, the Amazon, and the Andes (Lagos et al., 

2008). To be considered an El Niño event, the SST anomalies must be high for at least four consecutive months (Lagos et al., 

2008), and it is likely that these longer term SST anomalies have a greater influence on the SCA than singular precipitation 255 

events, of which no correlation is observed. We see evidence of these El Niño events in 1998 and 2016 impacting the SCA 

and TA (Fig. 5). These perturbations are outliers from the observed decline and are evident in QIC shallow ice cores which 

display a ‘smoothed’ δ18O signal during the El Niño instead of the usual high resolution variability (Thompson et al., 2017). 

Regression analysis completed with and without El Niño events record differing slope coefficients, indicating these events are 

enhancing the QIC ice loss. As noted in the results, the SCA rebound from the 2016 El Niño did not fully occur until two years 260 

later, unlike in 1999. This suggest the magnitude of La Niña events are an additional factor as 1999 was one of the strongest 

within the observation period, along with 1989 and 2011. As these conditions persist, ELA and ONI index correlation declines 

from 0.65 to 0.34 from the 1998 to 2016 El Niño. The linear regression model with the El Niño binary predictor records a 

strong and significant relationship between TA and year, but variance testing indicates the presence of El Niño years provided 

a stronger impact to the SCA, AAR, and ELA than the TA (Fig. S4, Table S5). Multiple regression analyses between the ELA 265 

and ONI index record an r-squared of 0.43 (p=0.1) from 1997 to 1999 and an r-squared of 0.12 (p<0.05) from 2015 to 2017. 

This suggests that anthropogenic warming is overtaking natural climatic variability as the dominant control on the long-term 

presence of the QIC. The decrease in the percent of days at or below freezing during the wet season, will only exacerbate the 

decline. In addition, a recent study has indicated the expectation of faster onsets and slower decline for future El Niños (Lopez 
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et al., 2022), and considering the current state of the QIC and the ongoing El Niño, a slow decline after the current event will 270 

only delay recovery in the SCA and continue to intensify its decline. 

Figure 5: Decline of QIC’s TA and SCA over the observational period (1985-2023). Timing of El Niño and La Niña events coincide more 
readily with SCA than TA changes. Strongest events are denoted with stars (*). 

4.2 Equilibrium State of the QIC 

Glaciers in other locations such as the New Zealand Alps and the European Alps are considered in steady state with AARs 275 

around 0.6 (Benn & Lehmkuhl, 2000), but tropical glaciers require an AAR of ~0.8 (Kaser & Osmaston, 2002). Discounting 

El Niño years (1998, 2016, & 2023), the QIC average AAR is 0.74, indicating it is out of equilibrium with the pace of ongoing 

changing climate. The ice cap is noticeably out of equilibrium during the observed El Niño events with AARs of 0.30, 0.51, 

and 0.52. These are far lower values than required for even high latitude glacier, and far below the average for the QIC. The 

SCA changes more dramatically on a year-to-year basis than the TA (Fig. 5), but the quick rebound of the AAR indicates rapid 280 

response to short-term climate variability and more recent decadal scale changes (Zekollari et al., 2020). The median elevation 

of the entire QIC was recorded rising 1.59 m per decade from 1975 to 2010 (Taylor et al., 2022), slightly less than this estimate 

although the temporal scale observed was different. The QIC is likely responding to climate drivers within a few decades from 

the present, including the almost immediate response to El Niño events (Thompson, 2017; Veettil et al., 2017). This is evident 

in the regression analysis, when the El Niños are removed, the regression improves noticeably and variance testing to evaluate 285 

the mean of each variable during these different climatic conditions. Considering the likely continuation of the out of 

equilibrium state, projections continuing along the linear decline of the SCA and rise of the ELA indicate the possible 

disappearance of the QIC by 2090 (Fig. S5). Further, with increasing ice loss, there is potential for an uneven ice surface with 

standing water to change the albedo, and thus affect the QIC’s mass balance, enhancing its decline (Naegeli & Huss, 2017; 

Wang et al., 2015). As the ice continues to retreat, an uneven ice surface, future El Niños, and anthropogenic warming will 290 

likely exacerbate the process, pushing its demise closer to the present than expected.  
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5 Conclusion 

We automate the process of satellite-based collection of yearly QIC parameters important for mass balance assessment and 

assess the ice cap’s short-term fluctuations to local climate forcings, including temperature fluctuations and El Nino events. 

We observe and record decadal-scale change and interannual variability with staggering loss over the last four decades. In the 295 

height of the wet season, the ONI index is the determining factor for the SCA’s end of dry season condition, but as 

anthropogenic warming continues to overwhelm natural climatic signals the entire SCA continues to rapidly decline. Continued 

monitoring of the QIC will be vital, as the potential for surface processes and future El Niños to accelerate the ice loss rises 

with continued warming. The implications for the QIC’s future points towards water scarcity for the local population, creating 

uncharted difficulties alongside the lessening of a water source, especially seasonally (Veettil et al., 2017; Vuille et al., 300 

2018).With ongoing warming, we expect to see continued shrinkage of both the SCA and the entire QIC in the coming decades. 

 

Code and Data Availability 

All comprehensive calculated QIC results from this study are provided within the supplementary information, detailed in Table 

S2. Annual SCA shapefile data and DEM bin distribution initially calculated within GEE is available at the following 305 

repository at https://doi.org/10.5281/zenodo.10694300. A sample code for preprocessing and processing Landsat 8 images is 

available at the following url: https://code.earthengine.google.com/72e85af2cc7c2e10482a939f7dd1cfe6?noload=true.  
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