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Abstract. Tropical glaciers in the central Andes are vital water resources and crucial climate indicators, currently undergoing 

rapid retreat. However, understanding their vulnerability to the combined effects of persistent warming, short-term climate 10 

phenomena, and interannual fluctuations remains limited. Here we automate the mapping of key mass balance parameters on 

the Quelccaya Ice Cap (QIC) in Peru, one of the largest tropical ice caps. Using Landsat's near-infrared (NIR) band, we analyze 

snow cover area (SCA) and total area (TA) and calculate the Accumulation Area Ratio (AAR) and eEquilibrium- lLine 

aAltitude (ELA) over nearly 40 years (1985-2023). Between 1985 and 2022, the QIC lost ~58% and ~37% of its SCA and TA, 

respectively. We show that the QIC’s reduction in SCA and rise in ELA are exacerbated by El Niño events, which are strongly 15 

correlated withto the preceding wet season’s Ocean Niño Index (ONI). Further, expansion in the QIC’s SCA is observed during 

all La Niña years, except for the 2021-2022 La Niña. Although a singular event, this could suggest a weakenedn inability for 

SCA recovery and an accelerated decline into the future, driven primarily by anthropogenic warming.  

1 Introduction  

Tropical glaciers are important freshwater resources known to be especially sensitive to climate shifts (Kaser & Osmaston, 20 

2002). and The accelerated decline of these glaciers in response to recent warming has been widely documented over the past 

few decades their accelerated decline has been well-documented in recent decades (Bradley et al., 2006; Braun et al., 2019; 

Hanshaw & Bookhagen, 2014; Hugonnet et al., 2021; Pepin et al., 2015, 2022; Seehaus et al., 2020; Thompson et al., 2011, 

2021; Vuille et al., 2015). In the low latitudes, glaciers are projected to lose ~69 to -98% of their 2015 mass by 2100, depending 

on the emissions scenario (i.e., RCP2.6 and RCP 8.5, respectively; Rounce et al., 2023). The mass balance of tropical glaciers 25 

is strongly affected by the freezing level height (FLH), the lowest altitude in the atmosphere where temperatures reach 0°C 

(Schauwecker et al., 2017). The freezing level height Iin the tropics,  the FLH isis affected on an interannual basis by El Niño 

Southern Oscillation (ENSO) variations and follows the Multivariate ENSO Index (MEI) on a year-to-year basis (Bradley et 

al., 2009; Favier et al., 2004; Thompson, 2000; Vuille et al., 2000). One of the largest tropical ice caps, the Quelccaya Ice Cap 

(QIC) is of particular concern considering these transient climate events combined withand ongoing warming in the Cordillera 30 
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Vilcanota (CV) range in the outer tropical region of the Andes.  Wwith worst case (RCP8.5) projections suggest thating the 

QIC’s ‘point of no return’ (i.e., the rise of the equilibrium-line altitude (ELA) above the summit) could occur as early as 2050 

(Yarleque et al., 2018), leaving the QIC a wasting ice field, similar to Kilimanjaro. Contemporary changes in the QIC’s outlet 

glaciers have been monitored frequently monitored (Brecher & Thompson, 1993) and contextualized within a longer, 

millennial-scale timeframe (e.g., Mark et al., 2002; Lamantia et al., 2023). For example, Mark et al. (2002) combined moraine 35 

chronology with digital topography to model deglaciation rates during the Last Glaciation and Holocene and find found that 

the QIC’s most rapid retreat has occurred over recent centuries. Further, radiocarbon-dated plant remains from the QIC ice 

margin suggest that the ice cap’s retracted present-day extent has not occurred in the last 7,000 years (Lamantia et al., 2023). 

In addition, the QIC’s high-resolution ice-core records have proven invaluable for understanding past climatic and 

environmental variability in the region (Thompson, 2000; Thompson et al., 1985, 2013, 2017, 2021). Thus, the ongoing loss 40 

of tropical glaciers will not only impact local communities that depend on glacial meltwater but also has implications for the 

preservation ofhave implications for preserving long-term climate records, which are essential for assessing the rate and 

magnitude of current changes (Thompson et al., 2021). 
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Figure 1: Aerial view of the Quelccaya Ice Cap (QIC; 13°56’S; 70°50’W) from October 11, 2023. The summit of the QIC reaches 5,670 m 65 
a.s.l with a handful severalof outlet glaciers to the west and a steep-sided eastern portion. Base Imagery was obtained from Planet Labs Dove 
Satellite with 3-meter resolution and inset (top left) was obtained from the OpenStreetMap database (© OpenStreetMap contributors 2023. 
Distributed under the Open Data Commons Open Database License (ODbL) v1.0.) 

In the tropics, there is no seasonal snow cover beyond the glacierized area that would provide an additional buffer to the ice 

cap’s decline (Vuille et al., 2018). Quelccaya’s snowfall is largely controlled by the South American Summer Monsoon 70 

(SAMS), with the the snow accumulation snowfall peak in December, while  and moisture transport from the Amazon lowlands 

to the Andes is influenced modulated by ENSO variations (Hurley et al., 2015).  TThere has been no majorsignificant change 

in precipitation hydroclimate around the QIC over the last fortyifty years in the Andes and Peruvian Amazon basin,, with only 

10% of stations in the AndesCV recording only a slight decrease in rainfall since the 1980s (Casimiro et al., 2013). However, 

ice core records from the QIC core reveal show thatthe net accumulation in the region has been above average for the last 75 

century (Thompson, 2017). In the Andes and Peruvian Amazon and Andes basin, mean annual temperature has increased by 

~0.09°C per decade over the last sixty forty years, while maximum summer temperature records a  n even higher increase in 

magnitude trend,  (~0.15°C per decade (; Casimiro et al., 2013). AdditionallyThis warming trend is also reflected in, δ18O 

recorded in ice core stable isotope (s δ18O) records from multiple locations in Peru document this accelerating enrichment 

(Thompson, 2017; Thompson et al., 2013, 2017). High-resolution ice core records indicate that the QIC is an excellent recorder 80 

of El Niño, characterized by elevated sea surface temperatures (SSTs) in the Eastern Pacific Ocean, with strong events 

recording isotopically enriched δ18O (Thompson et al., 2011, 2017). Nearby mountain ranges such as the Cordillera Blanca 

and Real have experienced an increase in the freezing level height  (FLH) by 160 m over the last five and a half decades 

(Schauwecker et al., 2017). This haswith implications for not only for where snow can survive and accumulate (Bradley et al., 

2009; Schauwecker et al., 2014; Seehaus et al., 2020) but also for the phase of precipitation and rain-snow line, affecting 85 

increased surface albedo in the ablation zone influenced by a rise of the rain/snow line (Rabatel et al., 2013). Although the 

recent and past history of several tropical glaciers has High-resolution ice core records show that the QIC is an excellent 

recorder of El Niño events that create elevated sea surface temperatures (SSTs) in the Eastern Pacific Ocean, recording years 

of strong El Niño events with isotopically enriched δ18O (Thompson et al., 2011, 2017). Alongside these ice core records, the 

QIC’s contemporary and past margins have been monitored and reconstructed (Brecher & Thompson, 1993; Lamantia et al., 90 

2023; Mark et al., 2002; Vuille et al., 2018; Yarleque et al., 2018), their, but its sensitivity and response to multiple the 

combined effects of sustained warming and short-term climate variations, such as ENSO, short-term climate phenomena over 

recent decades have yet to be extensively evaluated over recent decades. Thus, Tthe QIC is located in an ideal setting to assess 

the impact of these collective effects on the combined effects of sustained warming and short-term climate variations, such as 

ENSO , on tropical glacier vulnerability. .  95 

 

Since routine ground-based measurements in a remote locations  such as south-central Peru are difficult to maintain, using 

satellite imagery to estimate the Equilibrium Line Altitude (ELA) has become a viable solution option for long-term glacier 

monitoring. Previous studies have shown that the end of the dry season (September) location of the snowline altitude (SLA) 
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can act as a proxy for the ELA and ultimately be used to infer the mass balance of a glacier or ice cap (Fang et al., 2011; Hu 100 

et al., 2020; Liu et al., 2021; Racoviteanu et al., 2019). Initial studies Iin the  outer tropicsAndes, Rabatel et al. (2012) involved 

acompared manual assessment of SLA on the Artesonraju and Zongo glaciers via Landsat and SPOT imagery compared with 

against field-based ELA  measurements  and found the highest SLA during the dry season provides a good estimate of the 

annual ELA(Rabatel et al., 2012). More recently, Yarleque et al., (2018) most recently used Landsat observations of the highest 

annual SLA to calibrate the ELA-FLH relationship in order to assessanalyzed the future state of the QIC in’s response to 105 

several warming scenarios based on the FLH/ELA relationship and future ELA projections. Here, we employ cloud-based 

analysis of satellite imagery to assess the QIC at the end of the dry season between 1985 and 2023. We automate not only the 

detection of the snow-covered area (SCA) and total area (TA), but also the calculation of the accumulation area ratio (AAR), 

the median elevation of the SCA, and the SLA as a proxy for the ELA. Changes into the ELA, SCA, and AAR are analyzed 

alongside ERA5–Land Reanalysis Climate Data from the European Centre for Medium- Weather Range Weather Forecasts 110 

(ECMWF), including total precipitation and surfa550 hPace temperature,  as well as multiple ENSO Indices: including the 

MEI, the Ocean Niño Index (ONI), and the Southern Oscillation Index (SOI). We focus our analyses on the strongest most 

recent El Niño events (1998, 2016, and 2023) and the QIC’s response to these short-term climate anomalies.  

2 Methods 

2.1 Current Analysis Techniques 115 

Manual snowline tracing is often limited to high- quality imagery to discern between snow and ice. However, recent advances 

in image analysis have allowed for the automation of snowline detection via satellite imagery. Typically, a suite of images, 

often from Landsat satellites, are paired with one or more Digital Elevation Models (DEMs) and a glacier outline within the 

temporal scale of interest (Li et al., 2022). From there, a variety of thresholds are evaluated and set for the area of interest to 

separate snow from ice, and extract the position of the transition (Racoviteanu et al., 2019). There are challenges in this process, 120 

including the adjustment of surface reflectance for varying topographies, the occurrence of patchy snow cover on the glacier 

surface, and highly variable atmospheric conditions that require the algorithm to be customized for the location of interest 

(Racoviteanu et al., 2019). Previous studies on Andean glaciers have used a handful of techniques to extract the location of the 

snowline and to overcome some of the aforementioned challenges, including spectral mixing analysis, simple band ratios and 

filtering, hillshade mask shadow removal, and manual editing (Hanshaw & Bookhagen, 2014; Klein & Isacks, 1999). Here we 125 

implement an automated approach that employs a topographic correction, followed by segmentation of the NIR band via the 

the OTSU Otsu’s method (Otsu, 1975), which we describe in further detail in section 2.3, below.  

2.2 Satellite Data Collection 

To automate the SCA detection and ELA calculation, the following data inputs were required: an annual satellite image, a 

DEM, and the 1985 outline of the QIC. Using the Google Earth Engine platform (GEE) we selected annual Landsat images as 130 
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close as possible to September 15th with clear visibility of the QIC from 1985 to 2023 (Table S1). Mid to lateend September 

marks the end of the dry season in the CV, which enabled analysis of the ice cap without extraneous snowfall around the 

perimeter. Imagery from each year was on average ±23 days within the target date and was manually inspected to ensure no 

recent snowfall events occurred. If September imagery was not available, October and November images were collected, and 

if imagery was still not available August and July images were collected with the intention to captureollect the closest to end 135 

of dry season conditions at the QIC. No images were used if a recent snowfall event was evident. Sentinel-2 imagery was used 

in 2021 and 2023, due to a lack of cloudless images from Landsat 8/9. Separate scripts were adapted for each satellite (i.e., 

Landsat or Sentinel-2). We note that the 2023 results are not included in our initial analysis of QIC’s ELA change as it is part 

of an incomplete El Niño event. No imagery was collected for the years 1987, 1993, 2004, 2012, and 2018 due to high cloud 

cover and/or visible snowfall events. We used two DEMs to account for changes in ice elevation over time and any down 140 

wasting of the QIC. Initially Tthe NASADEM, created from the Shuttle Radar Topography Missions (SRTM), was 

implemented from 1985 to 2005. Post 2005, the COP30 DEM, released in 2010, was implemented following an assessment of 

surface differences in both DEMs between 2005 to 2015. Additionally, multiple images (16 and 18, respectively) were 

collected before, throughout, and after and following the two largest El Niño events (i.e., during the periods 1997-1999 and 

2015-2017), multiple images (16 and 18, respectively) were collected, from June of the first year to November of the last year, 145 

to assess short-term change and response of the QIC to these  El Niño events. 

2.3 Satellite Image Analysis offor Snow Cover Area 

To begin, the least cloudy image from the target year closest to the end of the dry season wais clipped to the region of interest 

(ROI), the delineated QIC boundary (Step 1; Fig. S1). Pre-processing of each image included calculating the slope and aspect 

of the ROI from the DEM (Step 2). We implemented the Ekstrand Correction (Ekstrand, 1996) to account for topographic 150 

effects such as shadowing due to differences in sun elevation and incidence angle (Step 3) rather than a pixel-based Minnaert 

Correction method (Ge et al., 2008) which resulted in the over-correction of the steeper eastern side of the QIC. To delineate 

the snow cover area (SCA), the NIR band was assessed with an image segmentation algorithm, the the OTSU methodOtsu’s 

method (Gaddam et al., 2022; Otsu, 1975). This results in a bimodal frequency histogram where an automatically detected 

threshold separates snow from ice (Step 4; Fig. S2). Once calculated, it wais applied to the NIR band to create a binary mask 155 

of snow and ice (Step 4). The annual image and DEM weare then clipped to the snow mask creating the SCA, and the DEM 

data wais extracted (Step 5). Following this, the SCA wais calculated based on the number of pixels and image resolution, and 

the median elevation of the SCA wais determined. SCAs weare exported to shapefiles and the DEM data wasis exported as a 

histogram in 50-meter elevation bins (Step 6).  

2.43 Calculation of Total Area, AAR, and ELA, and Uncertainty 160 

As the SLA is a proxy for the ELA, we will use the term ELA from this point forward. In pursuit of the ELA, we calculated 

the Accumulation Area Ratio (AAR). The AAR is defined as: AAR = Ac/(Ac +Ab) where Ac is the accumulation area, Ab is 
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the ice covered area, and Ac + Ab is the total area (TA) (Meier, 1962). In this case, Ac is the SCA and Ac+Ab is the TA (both 

ice and snow). To calculate the TA, we automated the calculation of the Normalized Difference Snow Index (NDSI), which 

leverages the reflectance of snow and ice in the green and short-wave infrared (SWIR) spectra compared to other land cover 165 

types. The NDSI is calculated by the following equationas follows: NDSI  = (𝜌𝜌𝐺𝐺 – 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)/(𝜌𝜌𝐺𝐺 + 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆), where 𝜌𝜌𝐺𝐺 and 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

are the reflectance of the green and short-wave infrared bands, respectively (Dozier, 1989; Hall & Riggs, 2007). We again 

used the Otsu’s d the same OTSU thresholding method to calculate the NDSI threshold, typically set around 0.4 (Dozier, 1989; 

Hall & Riggs, 2007; Otsu, 1975; Sankey et al., 2015). The number of snow- and ice-covered pixels is multiplied by the 

appropriate pixel resolution to obtain the TA. By applying the threshold to each image, we obtained a binary image of snow 170 

and ice versus land cover and used this to calculate the TA (i.e., by multiplying tThe number of snow- and ice-covered pixels 

is multiplied by the appropriate pixel resolution to obtain the TA. ;  (Step 7). The AAR wais calculated by dividing the SCA 

by the TA (Step 8). The ELA wais calculated using the DEM and the AAR by identifying the elevation at the taking the 1 – 

AAR percentile of all elevations in the TA (Step 9: Fig. S3). For example, if the AAR is 0.8, we assume the ELA is located at 

the 20th percentile of elevations in the TA. In summary, for each image analyzed, we obtained the SCA, the median elevation 175 

of the SCA, the TA, the AAR, and the ELA. Calculated results for the SCA and TA via our automated methods are in good 

agreement with manual digitizations (within ±3%). Other studies have shown automated detection of snowlines produce 

similar results to manual digitization and a low level of error (Hanshaw & Bookhagen, 2014) with automated detection being 

preferable, to manual as repetition is simpler and any error is likely to be more consistent (Paul et al., 2013).  

2.45 Renanalysis Climate Data and ENSO Correlation 180 

To compare the QIC’s SCA and ELA with climate, we used daily and monthly averaged ERA5–Land Reanalysis Climate Data 

from the European Centre for Medium-Range Weather Forecasts (ECMWF), including total precipitation and 550 hPamb 

temperature. Initially, Wwe divided the data into wet (October to April) and dry (May to September) seasons based on 

precipitation records and past literature (Kaser & Osmaston, 2002; Veettil et al., 2017). To observe assess changes in climate 

at the QIC over time, we calculated the average precipitation and temperature in five-year intervals, as well asnd the average 185 

number of days above and below freezing for each season and year from 1985 to 2023. Finally, to assess the QIC’s interannual 

response to climatic anomalies we paired detrended ELA, SCA, and median elevation of the SCA with the MEI, SOI, and ONI 

indices for correlation, obtained from the National Oceanic and Atmospheric Administrationssociation’s (NOAA;) website  

(https://www.weather.gov/fwd/indices). We defined El Niño and La Niña periods using the ONI Index (i.e., El Niño: ONI ≥1; 

La Niña: ONI ≤-1). The ONI is measured as sea surface temperature (SST) anomalies in the Niño 3.4 zone (5˚N - 5˚S and 190 

120˚W – 170˚W). As the averagetarget month of observation for each year was Septembersuch, the QIC result variables for 

each year  were correlated with ENSO indices over the preceding months ’ indices(i.e., , over the one year before the the annual 

September observation date). For example, (e.g. correlations were tested between QIC variables in 1998 SCASeptember 1998 

and ENSO Indices is correlated with the indices from starting in August 1998 and going backward to September 1997 to 

August 1998.  195 

https://www.weather.gov/fwd/indices
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3 Results 

3.1 Ice LossThe Decline of the QIC and Multi-Decadal Climate Trends 

Over the observation period (1985 to 2022), the QIC lost ~37% of its TA and ~58% of its SCA (1985: TA=~58.7 km2, 

SCA=~46.43 km2; 2022: TA=~36.7 km2, SCA=~19.7 km2; Table S2). Between the first and last five years of observation (i.e., 

1985-89 and 2018-22), the QIC’s TA and SCA and TA declined by ~29% and ~38%, and ~29%, respectively. This TA loss is 200 

concurrent with a retreat of the SCA to higher elevations (Fig. 2). We observed a ~209 m and ~1132 m rise of the ELA and 

median elevation of the SCA, respectively (1985 to 2022). In 1985, 90% of the SCA existed above 5,250 m a.s.l., and in 2021, 

90% of the SCA shifted to elevations above 5,350 m a.s.l. Further, by 2022, 90% of the SCA shifted to even higher, to 

elevations above 5,400 m a.s.l. On average, the SCA and TA decreased by ~0.72 km2 and ~0.59 km2 per year, with an average 

yearly ELA rise of ~5.65 m per year.  Linear regression models suggest a loss of 0.47±0.09 km2 yr-1 (R2=0.44, p<0.001) in the 205 

QIC’s SCA; a loss of 0.49±0.02 km2 yr-1 (R2=0.93, p<0.001) in the QIC’s TA; and an average rise of 3.61±0.79 m yr-1 (R2=0.40, 

p<0.001) in the QIC’s ELA. However, the removal of the three strongest largest El Niño years (1998, 2016, and 2023) resulted 

in slower average losses in QIC’s SCA, and a slower average rise in QIC’s ELA: -0.42±0.07 km2 yr-1 (R2=0.58, p<0.001); and 

+3.25±0.64 m yr-1 (R2=0.47, p<0.001), respectively (Table S3). The QIC’s average AAR (not including El Niño and La Niña 

years) is 0.74 over the study period. ConverselyFor comparison, during the strongest El Niño years (1998, 2016, and 2023) 210 

the QIC’s AAR was lower than average (0.32, 0.40, and 0.52, respectively) while  and during the strongest La Niña years 

(1999 and 2011) the QIC’s AAR was higher than average ( 0.83, and 0.82, respectively). .  

 

Daily and monthly variations recorded at the QIC summit and bottom margin weather stations from Bradley et al. , (2009) are 

well correlated with the ERA5-Land 550 hPamb temperature dataset, which was used to determine changes in temperature 215 

throughout the observation period. Between the first and last five years in our observational period, the reanalysis climate data 

showrecorded a ~0.60°C increase in wet season (October–-April) temperature and a ~1.14°C increase in dry season (May – 

September) temperature. SimilarlyCorrespondingly, the number of days above 0°C rose from 1% to 6% in the wet season and 

from 0.5% to 8% in the dry season between the first five and last five years. These results are consistent with previous studies 

that suggest a ~0.1°C per /decade rise in upper air temperature, and a rise in the height of the freezing level (~45 m between 220 

1977-2007) in the tropics near the QIC (Bradley et al., 2009; Vuille et al., 2008). We observe no significant change in 

precipitation in eitherboth the wet orand dry seasons (wet: R2=0.02, p=0.11; dry: R2=0.03, p=0.09), and on average,  73% of 

the precipitation occursring during the wet season. 
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Figure 2: Percentage of snow cover area (SCA) in 50-meter elevation bins, demonstrating the shift of the SCA to higher elevations. Error 
bars representare ±3% uncertainty calculated from comparisons to manual digitization.  

 

3.2 QIC Response of the QIC to Short-Term Climate Phenomena 

The strongest El Niño events (1998, 2016, and 2023) coincide with a large decrease in the QIC’s SCA. We observed a ~59% 245 

reduction in SCA from 1997 to 1998 and a 498% reduction from 2015 to 2016. Likewise, the QIC’s AAR decreased from 0.71 

to 0.31 from 1997 to 1998, and from 0.76 to 0.41 from 2015 to 2016.  In 1999 (the year following the 1998 El Niño), the QIC’s 

SCA fully rebounded back to 1997 conditions. However, in 2017 (the year following the 2016 El Niño) the SCA only reached 

about 77% of its 2015 value (2015 SCA=~32.4 km2; 2017 SCA: ~24.9 km2; Fig. 3). A modest increase in the SCA is observed 

in 2019 (no imagery was available for 2018), however, to date the SCA has not returned to its pre-El Niño 2015 extent and 250 

has continued to decline through 2022. The 2023 measurements occur during an ongoing El Niño event. However, if we 

consider the additional 2023 El Niño year, between 1985 andto 2023, we observe a ~61% decline in the QIC’s SCA in just 

under 40 years (Fig. 4). While the height of the 2023 El Niño did not occur until December of 2023 (ONI = 2.0), by our 

definition an El Niño was in effect as of July 2023 (ONI = 1.1), and measurements were collected in October 2023 (ONI = 

1.8). The QIC’s SCA in 2023 was ~17.97 km2—a 9% loss compared to that of 2022. The 2023 AAR was 0.53, well below the 255 

average (i.e. 0.74), and from 2022 to 2023, we observed a 16 m and 8 m rise of the ELA and median elevation of the SCA, 
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respectively. In 1999, a rebound of the SCA was observed back to 1997 conditions however, in 2017 the SCA only reached 

about 76% of its 2015 value (~32km2) following the 2016 El Niño (Fig. 3). A small increase in the SCA is observed in 2019 

(no imagery was available for 2018), however, to date the SCA has not returned to its pre-El Niño 2015 extent and has 

continued to decline through 2022.  260 

To better assess the QIC’s response to El Niño events, we utilize our high-frequency (monthly) observations collected around 

the 1998 and 2016 El Niño events (i.e., between 1997–1999 and 2015–2017). To better determine QIC changes during the El 

Niño events, high frequencyhigh-frequency sampling was conducted around the complete El Niño events, consisting of 16 and 

18 images collected between 1997–1999 and 2015–2017, respectively. We found that iIn both the 1997–1999 and 2015–2017 

casesperiods, the lowest SCA occurred during the El Niño is observedyears (i.e., during the in the annual mid-September 265 

observation measurement; and);, however that the decline of the QIC’s SCA with a steady decline began occurring from the 

previousior year’s September measurement over the three consecutive yearsto the El Niño year’s measurement. TIn addition, 

the correlation between the monthly ELA and monthly ONI greater than 1.0index during the two completed El Niño events 

(1997-1999 and 2015-2017) are 0.68 and 0.26, respectively. The ENSO indices are most strongly correlated with the QIC’s 

ELA, SCA, and median elevation as they best represent the changing ice distribution and mass. We evaluated all three 270 

previously mentioned ENSO indices but have chosen to discuss the ONI Index as it presented the clearest patterns between 

ENSO and the assessed QIC variables (Table S5). The ONI Index is most strongly correlated with the median elevation of the 

SCA (Fig. 5), its Pearson coefficient from the preceding April back through the previous September ranging from 0.46 to 0.61 

(p<0.05). The ONI Index and ELA are similarly positively correlated (0.41 to 0.58 April-September), while the ONI Index 

and SCA exhibit a negative correlation of similar strength from April through September (-0.44 to -0.60).  275 

 

In addition, we also findfound that linear regression models for ELA and SCA that include El Niño as a binary predictor (i.e., 

yes or no) improve the R2 values from 0.40 to 0.67 (p<0.001) and 0.44 to 0.72 (p<0.001), respectively, while the R2 value for 

the model predicting TA does not improve with the inclusion binary predictor. Finally, to compare the yearly means of the 

QIC variables over the full observational period, we characterized each year as El Niño, La Niña, or neutral using the ONI 280 

Index (El Niño ≥ 1; La Niña ≤ -1; neutral= -1 < ONI < 1) and conducted an ANOVA with a post hoc test. We found a significant 

difference in the mean SCA and ELA between El Niño and neutral years, in the mean AAR between El Niño and neutral years, 

and El Niño and La Niña years (Fig S4). There is no significant difference in the mean TA between El Niño, La Niña, and 

neutral years (Table S4). Together the improved R2 values and ANOVA results further indicate that El Niño events have a 

substantial effect on QIC’s yearly SCA and related variables, but not the TA. The QIC’s AAR decreased from 0.71 to 0.31 285 

from 1997 to 1998 and from 0.76 to 0.41 from 2015 to 2016. During these El Niño events, ERA5-Land climate data show a 

markeds increase ind air temperatures while precipitation patterns and magnitude remain largely unchanged. For instance, 

during the dry season from 1997 to 1998, there is a ~1.35°C increase in temperature and a change in total precipitation of less 

than ~0.02 meters. This suggests that the reduction in QIC’s SCA is likely primarily driven by increased temperatures during 
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the events, rather than by reduced precipitation.  However, changes in the dominant phase of precipitation (e.g., more rain 290 

versus snow) could also be a contributing factor, but this is beyond the scope of this paper.Additionally, linear regression 

models for ELA and SCA that include El Niño as a binary predictor (i.e., yes or no) improve the R2 values from 0.39 to 0.67 

(p<0.001) and 0.44 to 0.72 (p<0.001), respectively. Conversely, the R2 value for the model predicting TA does not improve 

with the inclusion of the binary predictor. We define El Niño and La Niña events as an ONI index greater than ±1.0 and 

analyzeAn analysis of variance (ANOVA) with a post hoc test, there is shows a significant difference in the mean SCA and 295 

ELA between El Niño and neutral years, in the AAR between El Niño and neutral years, and between El Niño to La Niña years 

(Fig S4). There is no significant difference in the mean TA between El Niño, La Niña, and neutral years (Table S4). As the 

2023 measurements occur during an ongoing El Niño event, we initially compiled data from 1985 to 2022 and report the 2023 

data as an additional insight into the effects of El Niño on the QIC. If we consider the additional onset of the 2023 El Niño, 

between 1985 to 2023, we observed a 61% decline in the QIC’s SCA in just under 40 years (Fig. 4). The QIC’s SCA during 300 

the onset of the 2023 El Niño is ~17.97 km2—a 9% loss compared to that of 2022. The 2023 AAR is 0.53, well below the 

average (i.e. 0.74), and from 2022 to 2023, we observed a 15 m and 8 m rise of the ELA and median elevation. While the 

height of the 2023 El Niño did not occur until December of 2023 (ONI = 2.0), by our definition an El Niño was in effect as of 

July 2023 (ONI = 1.1), with the measurements taking place in October 2023 (ONI = 1.8).  

ENSO indices are most strongly correlated with the QIC’s ELA, SCA, and median elevation as they best represent the changing 305 

ice distribution and mass. We evaluated all three previously mentioned ENSO indices but have chosen to discuss the ONI as 

it presented the clearest patterns between ENSO and the assessed QIC variables (Table S5). The ONI is measured as sea surface 

temperature (SST) anomalies in the Niño 3.4 zone (5˚N - 5˚S and 120˚W – 170˚W) and is used to define El Niño and La Niño 

events. The ONI is most strongly correlated to the median elevation (Fig. 5) with a Pearson coefficient from the preceding 

April back through the previous September ranging from 0.46 to 0.61 (pP<0.05). The ONI and ELA are similarly positively 310 

correlated (0.41 to 0.58 April-September), while the ONI index and SCA exhibit a negative correlation of similar strength 

April through September (-0.44 to -0.60).  
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Figure 3: Percentage of snow coverDistribution of snow cover (km2) displaying showing the reduction and rebound of the SCA during and 345 
following the 1998 El Niño event (top) and reduction and incomplete recovery of the SCA during and following the 2016 El Niño event 
(bottom). Error bars represent ±3% uncertainty calculated from comparisons to manual digitization.Error bars are 3% uncertainty calculated 
from comparison to manual digitization.  
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Figure 4: Decrease in the QIC’s SCA (red) and TA (blue) at the end of the dry season betweenfrom 1985 (left) andto 2023 (right). Base 350 
Imagery obtained from Planet Labs Dove Satellite with 3-meter resolution, October 2023. 
 

Figure 5: Zero-order correlations (r) for QIC variables (ELA, SCA, and mMedian eElevation of the SCA (Med Elev)) and the ONI Index. 
Correlation coefficients with non-statistically significant p-values (>0.05) are denoted as semitransparent bars.  
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4 Discussion 355 

4.1 QIC Response to Short-Term Climate Variability 

During El Niño events the Peruvian Andes are often drier than average (Sulca et al., 2018), with on-site measurements at the 

QIC recording warmer and drier conditions (J. Hurley et al., 2019). To be considered an El Niño event, the SST anomalies 

must be high for at least four consecutive months (Lagos et al., 2008). These events are evident in QIC shallow ice cores which 

display a ‘smoothed’ δ18O signal during El Niño instead of the usual high-resolution variability, indicating dry and warm 360 

conditions leading to a lack of accumulation and increased melt (Thompson et al., 2017). Our results suggest these longer-

term SST multi-month positive temperature anomalies have a greater influence on the QIC’s SCA than precipitation (i.e., no 

significant correlation is observed between wet season precipitation and the SCA, ELA, orand SCA median elevation). We 

demonstrate that the El Niño events in 1998 and 2016 correspond to large reductions in QIC’s SCA (Fig. 6). These SCA 

perturbations are outliers from the mean SCA (z-score= -2.3 and -2.11, respectively; averageg z-score = 0.12). These are 365 

evident in QIC shallow ice cores which display a ‘smoothed’ δ18O signal during the El Niño instead of the usual high-resolution 

variability, indicating warm and dry conditions that lack accumulation and experience melt (Thompson et al., 2017). Linear 

regression analysis with and without El Niño event years show differing slope coefficients, indicating that these events are 

also associated with an enhanced reduction in QIC’s SCA over the full observational period. As noted in the results, the SCA 

rebound in 2017 from the 2016 El Niño minimum,  only reached about 77% of its 2015 valuedid not fully occur until years 370 

later. , unlikeWhereas, in 1999 (following the 1998 El Niño minimum), the SCA fully recovered, above its 1997 value. The 

year 1999which was one of the strongest La Niña events (ONI Index of -1.5) within the observation period (, along with 1989 

and 2011). This suggests that the timing and magnitude of La Niña events are represent an additional important factor 

influencing the year-to-yearinterannual variability of the SCA.  

 375 

We observe a strong and significant decline in the QIC’s TA over the observational period: -0.49±0.02 km2 yr-1 (R2=0.93, 

p<0.001). However, comparisons between If we consider El Niño and La Niña events that correspond to ONI indexes greater 

than ±1.0, the linear regression models for QIC variables with and without the inclusion ofan El Niño as a binary predictor 

suggest  shows a strong and significant relationship between TA and year (R2
 = 0.94, p<0.001). However, variance analysis 

across the entire temporal scale indicates that El Niño years have a stronger impact effect on SCA, AAR, and ELA than on TA 380 

(Fig. S4, Table S4). This indicates that wWhile the the QIC’s SCA is notably briefly impacted reduced, and its decline 

exacerbated over the long term, by these El Niño  El Niño events, decline from anthropogenic warming has is the primary 

resulted driver ofin the long-termmulti-decadal decline of  the SCA and TA of the QIC’s SCA and TA (Bradley et al., 2009; 

Rounce et al., 2023; Thompson et al., 2021; Vuille et al., 2018; Yarleque et al., 2018). Further, as previously noted, during all 

previously noted La Niña events (Fig. 6), the QIC’s SCA experienced some level of temporary expansion during most La Niña 385 

events over the last 40 years (Fig. 6). However, , but duringthroughout the 2021-2022 La Niña, the SCA did not rebound, but 

only declined furtherdeclined. While this represents only a single incident, this behavior may persist with the onset of the 
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predicted 2024/2025 La Niña, as the QIC continues to be increasingly impacted by the combined effects of El Niño events and 

anthropogenic warmingWhile this is only one incidence, we expect this behavior to continue through the onset of the predicted 

upcoming 2024/2025 La Niña. Another consequence of overall warming, . tThe decrease reduction in the percentage of days 390 

at or below freezing during the wet season, along with a rise in the FLH, will only further exacerbate the decline in QIC’s 

SCA. In addition, a recent study has projected a faster onset and slower decline of future El Niños (Lopez et al., 2022). 

Considering the current state of the QIC and the ongoing El Niño,Together these effects will act to further  reduce the QIC’s 

SCA and a slow decline of the current event will only delay recovery of the SCA, and act to enhance mass loss. 

Figure 6: Decline of QIC’s TA and SCA over the observational period (1985-2023). The timing of El Niño and La Niña events (with ONI 395 
indexes greater that exceedthan ±1.0) are noted in pink and gray colored bars, respectively. Shading around the TA and SCA lines 
representsare ±3% uncertainty calculated from comparisons to manual digitization. 

4.2 Steady-Equilibrium State of the QIC and comparison with other studies 

For gGlaciers in other locations, such as the New Zealand Alps and the European Alps, are considered in steady state the 

steady-statewith AAR (associated with zero annual net mass balance) is s of around 0.6 (Benn & Lehmkuhl, 2000), , but for 400 

tropical glaciers, the steady-state require an AAR is higher,  of ~0.8 (Kaser & Osmaston, 2002). Discounting El Niño years 

(1998, 2016, and 2023), the QIC’s average AAR is 0.74, indicating the QIC is out of equilibrium, and likely somewhat lagging 

in response compared with the pace of ongoing climate change. The ice cap is pushed even more noticeably out of equilibrium 

during the observed El Niño events with AARs of 0.31, 0.41, and 0.53. These are far lower values than required for even high 

latitude glaciers, and far below the average for the QIC. Our results indicate the SCA has changed more dramatically on a 405 

year-to-year basis than the TA (Fig. 6), indicating rapid response of the SCA and thus the ELA to short-term climate variability, 

in addition to decadal-scale changes (Zekollari et al., 2020). This is consistent with other studies that indicate the QIC is likely 

to respond to climate drivers within a few decades from the present, including the almost immediate response to El Niño events 

(Thompson, 2017; Veettil et al., 2017). Previous work on the QIC indicatedshowed the median elevation of the entire QIC 

rose ~1.59 m per decade from 1975 to 2010 (Taylor et al., 2022), which is slightly less than our estimate (~1.91 m per /decade), 410 
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although we note the differdifferingent temporal scaleperiods. Similarly, previous studies of the QIC note a mean ELA between 

1992 and 2017 of ~5,436 m a.s.l. (Yarleque et al., 2018) while our automated methods suggest a lower mean ELA of ~5,351 

m a.s.l. for the same temporal  periodscale. A linear projection of the ~40-year trend in SCA and TA Considering the QIC’s 

out of equilibrium state, as well as the continued decline of the SCA and rise of the ELA due to ongoing anthropogenic climate 

change, we suggests  that the QIC couldwill lose its SCA before 2080 (becoming a wasting ice field) and may completely melt 415 

away prior tobefore 2100 if we assume(assuming the rate of loss is constant; (Fig. S5). However, this is rather unlikelywe 

suggest that these simplistic linear projections are conservative., Wwith the increasing ice lossloss of the SCA and further 

warming, there is potential for an uneven ice surfaces with standing water, and increases in rainfall to change alter surfacethe 

albedo (Naegeli & Huss, 2017; Wang et al., 2015). In addition, as ice caps shrink and become thinner, elevation-dependent 

feedbacks and edge effects become increasingly important, resulting in accelerated shrinking over time, especially given the 420 

large flat topography making up most of the QIC’s remaining ice-covered area. , and Tthus affect the QIC’s mass balance, 

enhancingthese combined effects are likely to accelerate its the QIC’s decline. (Naegeli & Huss, 2017; Wang et al., 2015).  

5 Conclusion 

Here wWe automate the process of satellite-based collection of yearly QIC variables important for mass balance assessment 

on the QIC and assessevaluate the ice cap’s response to short-term climate fluctuations in combination with multi-decadal 425 

climate changes to local climate forcings. We observe a decadal-scale change decline in TA, SCA, and a rise in ELA over the 

last ~40 years, as well as and high interannual variability in SCA and ELA, correlated with ENSO events. Specifically, we 

observe staggering change in the QIC over the last four decades including a ~42% loss in TA, a ~61% loss in SCA, and a 

~2254 m rise of the ELA from 1985 to 2023. In the height of the wet season, the ONI index is significantly correlated with 

Tthe QIC’s SCA at the end of dry season, is significantly correlated with the ONI at the height of the previous wet season, 430 

with noticeable marked decreases inof the SCA and AAR  during each El Niño events. While the SCA has responded 

rapidlyrebounded in response to La Niña events in to the ONI changes of the past, the SCA has declined through the most 

recent La Niña and may continue to do so during the next. Continued monitoring of the QIC will be vital, as the potential for 

various surface processes and future El Niño eventss to accelerate QIC’sthe ice loss will risees with continued warming. 

Further, the QIC’s future demise points towards water scarcity for the local population, creating uncharted difficulties, 435 

especially seasonally (Veettil et al., 2017; Vuille et al., 2018).  

 

Code and Data Availability 

All calculated QIC variables from this study are provided within the supplementary information, detailed in Table S2. Annual 

SCA shapefile data and DEM bin distribution initially calculated within GEE areis available at the following repository at 440 

https://doi.org/10.5281/zenodo.11265568. A sample code for preprocessing and processing Landsat 8 images is available at 

the following url: https://code.earthengine.google.com/cfcbd0780ff3f09b0698035cd6dd678a.  

https://doi.org/10.5281/zenodo.11265568
https://code.earthengine.google.com/cfcbd0780ff3f09b0698035cd6dd678a
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