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Abstract. Mediterranean cyclones are essential components of the climate in a densely populated area, providing benecial

rainfall for both the environment and human activities. The most intense of them also lead to natural disasters because of their

strong winds and heavy precipitation. Identifying error sources in the predictability of Mediterranean cyclones is therefore

essential to better anticipate and prevent their impact. The aim of this work is to characterise the cyclone predictability in

this region. Here, it is investigated in a systematic framework using European Centre for Medium range Weather Forecast-5

ing (ECMWF) fth generation reanalysis (ERA5) and ensemble reforecasts in a homogeneous conguration over 20 years

(2001-2021). First, a reference data set of 2853 cyclones is obtained for the period by applying a tracking algorithm to the

ERA5 reanalysis. Then the predictability is systematically evaluated in the ensemble reforecasts. It is quantied using a new

probabilistic score based on the error distribution of cyclone location and intensity (mean sea level pressure). The score is

rstly computed for the complete data set and then for different categories of cyclones based on their intensity, deepening rate,10

velocity and on the geographic area and the season in which they occur. When crossing the location and intensity errors with

the different categories, the conditions leading to a poorer or better predictability are discriminated. The velocity of cyclones

appears to be determinant in the predictability of the location, the slower the cyclone the better the forecast location. Partic-

ularly, the position of stationary lows located in the Gulf of Genoa is remarkably well predicted. The intensity of deep and

rapid-intensication cyclones, occurring mostly during winter, is for its part particularly poorly predicted. This study provides15

the rst systematic evaluation of the cyclone predictability in the Mediterranean and opens the way to identify the key processes

leading to forecast errors in the region.

1 Introduction

Extratropical cyclones are fundamental components of weather patterns in the mid-latitudes. The associated frontal systems

provide the majority of the benecial rainfall (Hawcroft et al., 2012) but can also be at the origin of damaging storms (e.g.20

Roberts et al., 2014). A good representation of extratropical cyclones in numerical weather prediction systems is therefore

essential to prevent their impacts, and identifying sources of forecast error is an important step to understand the processes

leading to a poor predictability and improve forecasts.

In the Mediterranean, cyclones are generally smaller and with shorter life cycle than in other larger basins (Campins et al.,

2011). However, they are at the origin of most of the high-impact weather events in the area, including intense rainfall (e.g.25
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Flaounas et al., 2018), windstorms (e.g. Lfarh et al., 2023) and compound events (e.g. Raveh-Rubin and Wernli, 2016). The

location of the Mediterranean between the tropics and the mid-latitudes, as well as the high mountain chains enclosing the

basin, make it the site of complex interactions. The inuence of Alpine lee-cyclogenesis (Trigo et al., 2002) and Rossby wave

breaking coming from the Atlantic (Raveh-Rubin and Flaounas, 2017) is clearly established in the formation of cyclones in the

western part of the basin. Mediterranean cyclogenesis can also be inuenced by other mountain ranges, the presence of both30

polar and sub-tropical jets or by the entrance of Atlantic cyclones into the basin (see Flaounas et al., 2022, for a review).

Using a piecewise inversion of the potential vorticity equation, Flaounas et al. (2021) showed that intense Mediterranean

cyclones are inuenced by two kinds of processes. On the one hand, the intrusion of a potential vorticity streamer in the

upper-troposphere, related to deviation of the polar jet and to Rossby wave breaking, is identied as a principal dynamical

contribution to cyclogenesis. On the other hand, diabatic processes, and in particular latent heat release, are important in35

the lower troposphere, where they act as a source of potential vorticity, reinforcing the cyclonic circulation. In some cases,

the relatively warm Mediterranean Sea can lead to the formation of tropical-like cyclones, called medicanes, which received

interest of the scientic community in the recent years (e.g. Miglietta et al., 2021). These phenomena, often poorly predicted,

are rather rare with 1 to 2 events per year but can lead to severe rainfall as in the cases of Ianos in September 2020 (Lagouvardos

et al., 2022) or Daniel in September 2023.40

Limitations in the representation of cyclogenesis processes in numerical weather prediction systems can lead to forecast

errors propagating through lead times. Additionally and beyond errors associated with the quality of the numerical model, the

chaotic nature of the atmosphere leads to an intrinsic limit of predictability (Lorenz, 1969). More precisely, slight differences

in the initial conditions can lead to radically different states of the atmosphere at increasing lead times. The forecast error is

therefore due to both limitations in the representation of physical processes in the numerical model and to the chaotic nature45

of the atmosphere (practical and intrinsic preditcability, respectively; see Melhauser and Zhang, 2012). Extending earlier work

by Zhang et al. (2007), Baumgart et al. (2019) identied three phases in forecast error growth. In a rst phase, errors in the

representation of diabatic processes dominate in the rst 12 h lead time. In a second phase, they are projected on the upper

troposphere between 12 h and 2 days by tropospheric divergence. In a third phase, after 2 days lead time, the error growth is

dominated by the upper-troposphere dynamics.50

Ensemble prediction systems have been developed to provide an estimation of the forecast error growth. They offer a mea-

sure of forecast uncertainty and different possible scenarios from perturbed initial conditions and model parametrisations

(Leutbecher and Palmer, 2008). This is crucial for extreme weather events, which are hardly sampled especially at longer lead

times, ensemble prediction providing robuster results than a single deterministic forecast. For these reasons, ensemble predic-

tion systems have long been proved useful for the early detection of extratropical cyclones and their associated hazards (Buizza55

and Hollingsworth, 2002) or to assess the sensitivity of hurricane genesis to the initial conditions (Torn and Cook, 2013). In

the Mediterranean, studies based on ensemble forecasts revealed large uncertainty in the formation of medicane case studies

and pointed its origin in error growth along the Rossby wave guide over the North Atlantic a few days ahead (Pantillon et al.,

2013; Portmann et al., 2020).
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To the best of the authors’ knowledge, there is currently no systematic identication of error sources in the predictability of60

Mediterranean cyclones. For instance, earlier work highlighted the crucial representation of upper-level dynamical precursors

in the western Mediterranean (Argence et al., 2008; Vich et al., 2011) or cloud processes and air-sea interactions for medicanes

(Miglietta et al., 2015; Tous et al., 2013) but these results relied on case studies. Using ensemble forecasts, Di Muzio et al.

(2019) suggested the existence of a predictability barrier for the formation of several medicanes but these rare events may not be

representative of the broad spectrum of Mediterranean cyclones. Noteworthy, Picornell et al. (2011) assessed the deterministic65

forecast quality for more than 1000 cyclones during a whole year and found that the mean error in location increased from

50 km at 12 h to 118 km at 48 h lead time. However, the results were limited to relatively short forecast ranges and were not

linked with the cyclone characteristics.

On a broader scale, Froude et al. (2007a, b) were among the rsts to investigate the predictability of extratropical cyclones in

a systematical framework. They tracked the cyclones as objects in global forecast data for two winter and two summer periods70

and dened errors in both location and intensity based on maximum vorticity compared to analysis data. For the location, they

found out that the error increases almost linearly at a rate of 1.25 geodesic degree per day. For the intensity, they highlighted

differences between summer and winter cyclones. In particular, intense storms occurring during the winter period were more

poorly predicted and this was attributed to an incorrect representation of their vertical structure. More recent studies followed

a similar approach and showed a systematic slow bias in the position of North Atlantic cyclones and a weak bias in intensity75

of the deepest ones (Pirret et al., 2017; Pantillon et al., 2017). They explored links between the predictability and the dynamics

of cyclogenesis but faced a robustness issue due to limited samples.

In this paper, ensemble reforecasts are used to systematically identify errors in the location and intensity of Mediterranean

cyclones. The forecast model covers a 20-year period with a homogeneous conguration, which allows to extract robust statis-

tical signals. The aim of the paper is to characterise the cyclone predictability in the Mediterranean region. Their representation80

in the ensemble prediction system is discussed and the cyclone characteristics leading to a poorer or better predictability are

identied. In particular, errors in the prediction of the cyclone location and intensity are evaluated for several categories of

cyclones, based on their geographical location and seasonality, their intensity, deepening rate and velocity.

The article is structured as follows. In Section 2, the data, tracking methods and tools to evaluate the predictability are

described. The catalogue of Mediterranean cyclones and the associated climatology is presented in Section 3. The predictability85

is then rstly evaluated for the whole data set in Section 4, and secondly for specic categories of cyclones in Section 5. Section

6 contains a summary of the main results and a conclusion of the study.

2 Data and methods

2.1 Data for the reference tracks: ERA5 reanalysis

Reanalyses assimilate historical observation data spanning decades with a xed assimilation scheme and forecast model.90

ERA5 (Hersbach et al., 2020) is the fth reanalysis produced by the European Center for Medium Range Forecasts (here-

after ECMWF). It is based on the Integrated Forecast System (IFS, cycle 41r2), and includes models for atmosphere, land
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surface and ocean waves. The horizontal resolution of the atmospheric model is about 31 km at mid-latitude and it has 137

vertical levels from the surface to 0.01 hPa. The reanalysis products are available globally with hourly resolution, from 1940 to

present. In this study, ERA5 is used from 2001 to 2021 with 0.25° horizontal resolution to produce a reference set of cyclone95

tracks on a domain covering the Mediterranean (25° N - 50° N, 15° W - 45° E; see Fig. 1).

2.2 Tracking method for the reference tracks: the Ayrault algorithm

Before investigating the predictability of Mediterranean cyclones, the rst need is to produce a reference set of tracks. The

tracking method is based on the Ayrault (1998) algorithm, which has been implemented in the open-source TRAJECT software

(Plu and Joly, 2023). Originally designed for Atlantic cyclones in coarser model data, the Ayrault (1998) algorithm required100

a specic tuning for this study. Indeed, Mediterranean cyclones are generally smaller and with shorter life cycles than in the

Atlantic (Campins et al., 2011) and ERA5 has a higher spatiotemporal resolution than any previous reanalysis used with the

algorithm. Therefore, the parameters have been tuned specically for both ERA5 and the Mediterranean region.

The main idea of Ayrault (1998) is to track cyclones in the relative vorticity eld at 850 hPa rst, and then operate a pairing

with the mean sea level pressure (MSLP) eld. In the following, a time step is denoted by t, the relative vorticity eld at105

850 hPa by ζ , and the zonal and meridional wind elds by u and v, respectively. The Ayrault (1998) algorithm can be separated

in ve steps:

(1) Data preparation: a moving average with Gaussian weights is applied to ζ and to u,v at 850 hPa and 700 hPa to remove

noisy features in these elds. The characteristic length in the weight decay is 225 km for ζ and 280 km for the wind

elds.110

(2) Detection of ζ maxima: local maxima are detected in the ζ smoothed eld and a single maximum (the strongest) is

retained within a radius of 300 km.

(3) Loop on successive time steps: for every ζ maximum at time t, a corresponding maximum at time t+1 is searched

for using a three steps method. First, the ζ maximum at time t is advected by the wind at both 850 hPa and 700 hPa,

giving two guess positions. In a second step, a new ζ maximum at time t+1 is searched for in the neighbourhood of the115

two guessed points. Third and last, a quality criterion selects the best new ζ maximum by taking into account both the

distance between the guessed point and the new ζ location and the ζ value variation. A cyclone track is nally dened

by the successive positions of ζ maxima at every time step.

(4) Pairing with MSLP: for every point belonging to the track, if a local minimum of MSLP is located in a 3° square centered

on the ζ maximum, it becomes the new track point. The ζ maximum remains the track point in the opposite case.120

(5) Validation criteria: the tracking process is stopped when the value of the ζ maximum is less than 10−4s−1 or of the

MSLP minimum is greater than 1015 hPa. Among all tracks, only those which last for longer than 24 h and reach at least

1005 hPa along their life cycle are retained. This last criterion avoids most of the artefact cyclones. Indeed, most of the

cases with deepest MSLP over 1005 hPa appear to be secondary local lows caused by strong storms crossing northern
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Europe. Finally, an additional criterion is applied to only retain tracks that enter into the Mediterranean or the Black Sea125

areas.

The Mediterranean-adapted version of the Ayrault (1998) algorithm has been successfully tested with a slight different con-

guration in an intercomparison of 10 tracking methods using ERA5 (Flaounas et al., 2023). The produced data set remained

close to the consensus between all algorithms in the spatial and seasonal distribution of cyclones. In the present study, our data

set is used as a reference instead of the consensus produced by Flaounas et al. (2023) for two principal reasons. First, the latter130

contains only 206 tracks in the highest condence level, which is not enough for a systematic study. Second, Ayrault (1998) is

conceptually similar to the tracking algorithm applied to the reforecasts (see Section 2.4.), which reduces the inuence of the

tracking method on the results to focus on the predictability.

2.3 Data for the predictability study: IFS reforecasts

Reforecasts are forecasts made retrospectively on a historical period spanning typically several decades with a xed model ver-135

sion. While these properties are shared with reanalyses, reforecasts are different in that they do not assimilate any observation

beyond initial conditions, making them comparable to operational forecasts, except that they are in the past. They are therefore

a key tool to investigate the predictability of the Mediterranean cyclones previously tracked in ERA5. The ECMWF ensemble

reforecasts used here are constituted of 10 perturbed + 1 control members based on the IFS model (cycle 47r3) and initialized

from ERA5 (Vitart et al., 2019). Initial perturbations on the reanalysis are constructed from the ERA5 ensemble data assimila-140

tion and singular vectors. Additionally, the model uncertainties are represented using a stochastically perturbed parametrisation

tendency scheme (Buizza et al., 1999). The reforecasts used here cover an historical period of 20 years from October 2001 to

October 2021, during which they are initialised every Monday and Thursday at 0000 UTC, leading to a total of about 2000

base times. The output spatial resolution of 0.25° is identical to the one in the ERA5 reanalysis. For each base time, a forecast

output is available every 6 h (temporal resolution coarser than ERA5). Despite the maximum lead time of 14 days available145

with constant resolution in the reforecasts, the maximum lead time is restricted in this study to 144 h because of the short life

cycle of Mediterranean cyclones, considering that only 0.07% of the cyclones of our reference data set last for longer than 6

days. The small number of ensemble members able to produce cyclone tracks at longer lead times (see Section 4.1) is also

pleading in favour of a limitation of the maximum lead time. Note that the same cyclone can be tracked in several successive

base times. More specically, this is the case of cyclones with lifetimes longer than 144 h or starting at late lead times and150

persisting beyond the next base time. When this happens, the forecast tracks are treated independently.

2.4 Tracking method for the predictability study: the VDG algorithm

In the reforecasts, the tracking of the cyclones is made with another algorithm (van der Grijn (2002); hereafter VDG) developed

at the ECMWF and originally designed for the operational tracking of tropical cyclones. The VDG algorithm, also implemented

in the open-source TRAJECT software (Plu and Joly, 2023), is similar to the previously applied Ayrault (1998), as it also uses155

MSLP, the ζ smoothed eld at 850 hPa and the horizontal wind at 850 hPa and 700 hPa. The main difference between the
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two algorithms is that VDG starts the tracking from a given geographical point or from an existing track. This characteristic is

particularly useful when it comes to track predicted cyclones that were previously identied in the reference data set. Applying

Ayrault (1998) to the reforecasts would have required an additional step for matching the cyclones, bringing more complexity

and subjectivity.160

At initialisation, a ζ maximum is searched for in the reforecast eld in the neighbourhood of the reference track calculated in

ERA5. The tracking method in VDG is then based on a combination of past movement and steering ow vector Vav determined

by a combination of the local wind elds at 850 hPa and 700 hPa. In the following, r and rfg are respectively the position of

the cyclone and of the rst guess. The initial step apart, the VDG algorithm can be divided as follows:

(1) First guest: the steering ow Vav and the past movement r(t)− r(t− 1) vectors are combined to obtain the rst guess165

position of the next tracking point rfg using the equation rfg(t+1) = r(t)+w[r(t)− r(t− 1)]+ (1−w)Vavδt, where

w is a weight parameter ranging from 0 to 1 depending on the temporal resolution and here set at 0.5, and δt is the time

step. N.B. at the rst time step only the steering ow vector is used (there is no past movement).

(2) Detection of ζ maxima: a maximum is searched for in the ζ eld within a square of 3.5° around the rst guess.

(3) Pairing with MSLP: another search is performed for the MSLP minimum using a square of 3.5° centered around the ζ170

maximum. The location of this MSLP point nally becomes the next track point r(t+1).

(4) Stopping criteria: the tracking of the cyclone is stopped when the value of the vorticity maximum ζ is less than the

corresponding threshold of 10−4s−1 or when the value of the MSLP minimum is greater than 1015 hPa, as in the

Ayrault (1998) algorithm. This last criterion also implies that the tracking begins only if a MSLP minimum is found

below the pressure threshold.175

Cyclones detected in the reanalysis are linked with the reforecast by construction of the VDG algorithm, as the position of

the cyclone in the reforecast at the initial time, r(0), is directly dependent on the presence of a reference track at the same time.

2.5 Predictability metrics

In this study, predictability is investigated using error and spread in both location and intensity. The relationship between error

and spread is rst used to verify the ensemble calibration before proceeding with further quantication of the predictability.180

For a well-calibrated ensemble, one should expect error and spread to be comparable in magnitude with each other, whether in

location or in intensity.

In the following, errors are dened for each cyclone track by comparing the location or the intensity of ensemble members

with the corresponding reference track in ERA5, at each time t of the cyclone life cycle. The spread is for its part calculated

from the pairwise difference between the members of the ensemble.185

To assess the predictability of the cyclone location, we use the total track error (TTE) as dened in (Froude et al., 2007b;

Leonardo and Colle, 2017). The TTE is decomposed into an along-track error (ATE) and a cross-track error (CTE). A positive

(respectively negative) ATE stands for a forecast track ahead (respectively behind) of the reference track, while a positive
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(respectively negative) CTE stands for a forecast track on the left hand side (respectively on the right hand side) of the reference

track. Track errors (TTE, ATE and CTE) are dened for each individual member and are presented in Section 4. Additionally,190

an TTE is here dened for each cyclone as the mean of the TTEs over the members at each time t of the cyclone life cycle.

The spread in location (hereafter σloc) is for its part determined by averaging the distance between each pair of members as

follows:

σloc(t) =
1

N(N − 1)/2



1≤i<j≤N

d(ri(t), rj(t)) (1)

where N is the number of members in which the cyclone is detected by the tracking algorithm at time t, ri (respectively rj)195

is the position of the cyclone in the i-th member (respectively in the j-th member) and d is the geodesic distance between the

two positions.

Regarding cyclone intensity, MSLP errors (hereafter MSLPE) are dened as the difference between the MSLP of each

member and theMSLP of the reference track. Unlike errors on the location, errors onMSLP can also be negative. Consequently,

⟨MSLPE⟩ is dened as the root mean square of the MSLPEs over the members, for a specic event at a specic time t of the200

cyclone life cycle. The spread in MSLP (hereafter σint) is for its part determined from the root mean square of the differences

between each pair of members as follows:

σint(t) =



1

N(N − 1)/2



1≤i<j≤N

(pi(t)− pj(t))2 (2)

where pi (resp. pj) is the MSLPE of the i-th member (resp. j-th member).

An additional metric is dened to compare distributions of TTE or MSLPE between different categories of cyclones (see205

Section 5). In a preliminary step, for each category of cyclone, a cumulative density function (CDF) of errors is constructed

by taking into account every member of every cyclone track found at each lead time τ . CDFs of errors are then compared in

a framework close to the continuous ranked probability score (CRPS) described in Candille et al. (2007). The metric denoted

here by CDFE measures the distance between a CDF of errors and a virtual null-error distribution (100 % of the errors equal

to 0):210

CDFE(τ ) =



[Fτ (x)− 1x≥0]
2 dx (3)

where Fτ (x) is the CDF of the errors (either TTEs or MSLPEs) at a specic lead time τ . 1 stands for the Heaviside step

function. Note that the CDFE metric has the same dimension as the variable on which it is applied A higher CDFE (respectively

the smaller) indicates a poorer (respectively a better) predictability. At each lead time, the statistical signicance is evaluated

using the Kolmogorov-Smirnov test, which in our case determines if two CDF of errors are similar (respectively different) at a215

condence level of 95%. This will ensure the robustness of the difference in the predictability of several category of cyclones

presented with the CDFE metric.
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3 Climatology of the reference data set

This section provides the climatology of our reference data set, based on the Mediterranean cyclones tracked with the Ayrault

(1998) algorithm in ERA5 data. In particular the spatial distribution, the seasonal cycle, the intensity and the velocity of220

cyclones are presented. Figure 1a shows the ground elevation over the Mediterranean and toponyms that will be used in this

manuscript.

3.1 Spatial distribution

For the whole 2001-2021 period a total of 2853 cyclones are detected in the Mediterranean region, i.e. about 140 cyclones

per year on average. The color shading in Figure 1b accounts for the number of tracks having at least one track point within a225

radius of 100 km divided by the total number of tracks. The gure can thus be seen as the spatial distribution of the cyclones

of our reference data set regardless of their stage of development. This spatial distribution is not homogeneous, as the majority

of cyclones are concentrated in preferred regions. In particular, six regions of interests designed to cover equal areas are here

identied by visual examination of the spatial distribution.

The six preferred regions concentrate 63 % of the cyclones of the data set. The most active of them is the West Mediterranean230

(21 %). It includes the Gulf of Genoa, in the lee of the Alps, which is recognized as the most cyclogenetic area. Then come

the regions of the East Mediterranean (11 %), the Adriatic (10 %), the Black Sea (8 %), the Sahara (7 %) and the Middle

East (6 %). The importance of the Alps in the formation of the West Mediterranean cyclones is clearly established (Trigo

et al., 2002). Horvath et al. (2008) show that lee cyclogenesis is also the dominant formation process for Adriatic cyclones,

whether they form in the Gulf of Genoa or in the Adriatic itself. The same orographic processes are known to play a role in the235

formation of Saharan cyclones in the lee of Atlas mountains (Winstanley, 1972; Alpert and Ziv, 1989), while Thorncroft and

Flocas (1997) and Prezerakos et al. (2006) mostly highlighted the importance of interactions between the polar and the sub-

tropical jets in cyclogenesis in this particular region. For the Black Sea, and generally in the eastern parts of the Mediterranean,

Trigo et al. (2002) argued that cyclones are formed by different processes. In particular, they stated that surface cyclones in the

Black Sea seem to be associated with an upper trough in the west of the region, advecting vorticity toward a relatively warm240

sea. Similar processes are found in the Aegean. The same authors argued that cyclones in the Middle East are the manifestation

of the extensions of the Asian trough in late spring.

The overall spatial distribution of our data set is in agreement with previous studies (Alpert et al., 1990; Trigo et al., 1999;

Maheras et al., 2001; Campins et al., 2011; Lionello et al., 2016; Aragão and Porcù, 2022; Flaounas et al., 2023). However, two

minor differences remain. First, the hotspot in the western Atlas mountains and the high density of cyclones over the Iberian245

Peninsula described in the literature do not appear here. This is mainly due to the criteria used to construct our data set by

removing weak thermal lows with a pressure threshold at 1005 hPa on the one hand, and removing cyclones that do not enter

over the sea on the other hand. Second, the high density of cyclones found here in the Adriatic is not highlighted in the majority

of previous studies.
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Figure 1. (a) Elevation map over the Mediterranean domain with toponyms mentioned in the text. (b) Spatial distribution of Mediterranean

cyclones based on ERA5 over the 2001-2021 period, dened as the percentage of cyclones having a track point within a radius of 100 km.

Regions of interest are framed by the black boxes.

3.2 Seasonal cycle250

Figure 2 shows the number of cyclones striking any of the six regions of interest during each month of the year, averaged over

the 20 years of our data set. One can see that the number of cyclones in the Mediterranean is highly dependent on the season.

The peak activity spans from November to May, while the period from June to October experiences less occurrences. However,

this general trend is also dependent on the region considered.
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Figure 2. Monthly number of cyclones in their mature phase in the six regions dened in Fig. 1b (averaged on the 20-year period).

In the West Mediterranean and in the Adriatic, the cold season generally experiences more cyclones. Horvath et al. (2008)255

came to the same conclusion for the majority of Adriatic cyclones, while highlighting the importance of a subcategory of

summer cyclones for their association with high-impact weather. In the East Mediterranean, more cyclones are also found

during the cold part of the year. Saharan cyclones clearly exhibit a peak of occurrence in April and May, in agreement with

previous studies (Winstanley, 1972; Alpert et al., 1990; Trigo et al., 2002). The Black Sea has a unique seasonal cycle, with

higher activity during a long period spanning from December to July with a peak in March. The presence of those cyclones260

during a large part of the year was already observed in Trigo et al. (1999). For the case of Middle East cyclones, higher

occurrences are found here from March to June, with a at peak activity in May, while Trigo et al. (2002) found the peak of

activity in August.

3.3 Intensity and deepening rate

Figure 3a shows the spatial distribution of the 10% deepest cyclones of the reference data set. They are concentrated in the265

West Mediterranean, in the Adriatic and in the north-western parts of the Black Sea. The West Mediterranean and the Adriatic

are also two hotspots for rapid intensication when looking at the deepening rate (not shown). While cyclones in these two

areas are strongly inuenced by the Atlantic, the origin of deep cyclones in the western Black Sea remains unclear. In this last

region, cyclones do not experience rapid intensication, suggesting other processes of cyclogenesis. The shallowest cyclones

are for their part concentrated in the Gulf of Genoa and in the eastern parts of the Black Sea (not shown). The other shallow270

cyclones are found mainly in the West Mediterranean, highlighting the wide spectrum of intensities and deepening rates in this

particular region.
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Figure 3b presents the typical seasonal cycle for three intensity-based categories of Mediterranean cyclones. Shallow and

medium-intensity cases are more present during early spring and exhibit a at minimum from July to November. Deepest

cyclones show a much more pronounced seasonal cycle, with very few cyclones during the warm part of the year, and a275

peak of activity from November to March. Similar characteristics are observed in terms of deepening rate, where slow and

medium-intensication categories are more present from December to May and rapid-intensication cyclones are found almost

exclusively during the cold part of the year (not shown).
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Figure 3. (a) Spatial distribution (as dened in Fig. 1b) of the 10 % deepest cyclones of the reference data set. (b) Monthly mean number of

cyclones in the 3 categories of intensity. Each category contains 10 % of the tracks data set, i.e., the 10 % deepest (green curve), the 10 %

around the median intensity (orange curve) and the 10 % shallowest cyclones (blue curve).

3.4 Velocity of Mediterranean cyclones

The velocity of a cyclone is dened here by the median speed along its whole life cycle. According to our calculations on280

the reference data set, Mediterranean cyclones generally move from the west to the east at a median velocity of 27 km h−1.
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However, the variability is large and the fastest 5 % are moving at velocities greater than the twice the median. Figure 4 shows

the spatial distribution of cyclones in each of the three velocity categories: the 10 % fastest (Fig. 4a), the 10 % around the

median speed (Fig. 4b) and the 10 % slowest (Fig. 4c). The strong change in spatial patterns from one velocity-based category

to another highlights the close relationship between the velocity of Mediterranean cyclones and their spatial distribution.285

The fastest cyclones (Fig. 4a) can be found in several particular areas. First, cyclones originating from the Sahara are clearly

marked along an axis from the south of the Atlas mountains to the Ionian Sea. Cyclones in this region are also the fastest

with a median speed of 30 km h−1. This result is in agreement with previous studies, which often highlight the high velocities

of Saharan cyclones compared to other Mediterranean lows (Alpert and Ziv, 1989; Kouroutzoglou et al., 2011). Second, fast

Atlantic cyclones enter into the West Mediterranean, mainly from the Bay of Biscay and to a lesser extent through the straight290

of Gibraltar. Third, another group of fast cyclones crosses the western Black Sea. Fourth and last, two other favourable regions

for fast cyclones are found in the northern Adriatic and in western Greece. Medium speed cyclones (Fig. 4b) are for their part

mainly located over sea, in the West Mediterranean, in the southern Adriatic and in the Ionian Sea. Finally, the slowest cyclones

(Fig. 4c) are clearly concentrated in the Gulf of Genoa, with median velocity around 18 km h−1. Some quasi-stationary lows

can also be found around the island of Rhodes and in the eastern parts of the Black Sea. The location of these last quasi-295

stationary lows is contrasting with the fast cyclones observed over the western Black Sea (Fig. 4a), suggesting two different

processes of cyclogenesis in the Black Sea region.
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Figure 4. Spatial distribution (as dened in Fig. 1b) of three velocity-based categories. Each category contains 10 % of the cyclone tracks

data set, i.e., the 10 % fastest (a), the 10 % around the median speed (b) and the 10 % slowest (c). The black boxes are the regions of interests

dened in Fig. 1b

.
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4 Evaluation of the ensemble reforecasts

This section is dedicated to the evaluation of the Mediterranean cyclones representation in the reforecasts. Errors in the location

and intensity, as dened in Section 2, are rstly evaluated by taking the tracks detected in ERA5 as reference, while the300

reliability of the ensemble reforecasts is assessed in a second step.

4.1 Errors on tracks: location and intensity

To evaluate the reforecasts, both errors in location and in intensity are considered. In Fig. 5, distributions of errors are computed

at each lead time by taking into account the individual error of each member of the ensemble reforecasts, for the all data set.

The very large number of 2853 cyclone tracks ensures these results to be statistically signicant. The mean number of members305

in which a cyclone is found decreases linearly with lead time (orange curve on Fig. 5). While more than 9 members out of 11

detect a cyclone at the initial time, less than 4 members are remaining on average after 144 h lead time.

The TTEs distribution is presented for each lead time until 144 h (Fig. 5a). Both median error and interquartile range are

increasing with lead time, with 50 % of the TTEs spanning from 80 km to 220 km after 3 day lead time. It is noticeable that the

error growth is not fully linear and seems to exhibit two phases: in the rst 78 h, the median TTE growth rate is about 40 km per310

day, while from 84 h lead time and beyond it increases at a smaller rate of about 18 km per day. This behavior can be explained

by two different processes. Firstly, the construction of the VDG algorithm constrains the tracking to begin in the neighbourhood

of the reference track. Consequently, the error in location is generally smaller at the beginning of a cyclone track than at its

end. When the lead time increases, the proportion of cyclones followed from early lead times (i.e with higher errors) decreases

in comparison of the ones followed from a few hours (i.e. with smaller errors). It results that the error growth tends to decline315

with increasing lead time. The second process deals with the error saturation. At very long lead times, a forecast is comparable

to a random climatological state of the atmosphere. Consequently, the mean and median errors are expected to increase at a

smaller rate at long lead times and saturate ultimately at a constant value.

Overall, the maximal growth rate of 40 km per day in the rst 78 h lead time is remarkably close to the 43 km per day

found by Picornell et al. (2011) in the Mediterranean. The authors used for their part the ECMWF operational deterministic320

model during the 2006-2007 period and evaluated errors only during the rst 48 h, which may explain the comparable error

growth despite the older model version used in their study. In the whole Northern Hemisphere, and using the operational

ensemble prediction system of the ECMWF from January to July 2005, Froude et al. (2007b) found a much higher mean error

growth rate of 1.25° (about 137 km) per day and almost constant until 7 days lead time. The coarser resolution of the ensemble

prediction system used in their study (about 80 km) or the particular characteristics of Mediterranean cyclones could explain325

this difference in the mean error growth rate.

As presented in Section 2, the TTE can be decomposed into ATE and CTE. In our case, the ATE exhibits a weak and constant

bias of -20 km from 60 h lead time and beyond, indicating that forecast tracks are slightly late compared to the reference (not

shown). It is in agreement with Froude et al. (2007a), who highlighted that forecast cyclones are in average getting too slow by

about 1 km per hour compared to the analysis. For their part, Pirret et al. (2017) and Pantillon et al. (2017) found a systematic330

15

https://doi.org/10.5194/egusphere-2024-675
Preprint. Discussion started: 14 March 2024
c© Author(s) 2024. CC BY 4.0 License.



slow bias in the prediction of 60 and 25 severe European storms, respectively. The little bias found here in the ATE, however, is

much smaller than in the previous mentioned studies. Regarding the CTE a weak positive systematic bias is observed, growing

at a constant rate of 5 km per day, indicating a weak shift to the left of the track (not shown). When looking into absolute values

of ATE and CTE, it appears that the TTE is the result of an equivalent contribution of both components.

Errors in intensity (MSLPE) are presented in Fig. 5b. A very weak bias of -0.2 hPa per day is observed when looking at335

the mean, pleading in favour of a well-centered distribution of the ensemble reforecasts around the reference with a slight

overestimation of the cyclone intensity, as in Froude et al. (2007b). After 3 days of forecast, 50 % of the MSLPEs are between

-2.5 hPa and 1.5 hPa and the interquartile range grows linearly until the last lead time of 144 h. When looking at absolute

MSLPE (not shown), a little positive linear bias of 0.5 hPa per day is observed. Froude et al. (2007b) highlighted an even

smaller bias around 0.2 hPa per day for the whole Northern Hemisphere. It could indicates a better prediction of the intensity340

of cyclones in other basins compared to the Mediterranean, however, the small magnitude of these biases should be considered.

Figure 5. Distributions of (a) total track errors (TTEs) and (b) MSLP errors (MSLPEs) compared to ERA5 in function of the lead time.

Means are depicted by the blue circles, medians by the red lines, the rst and third quartiles by grey boxes, and the minima and maxima by

black lines. The orange curve is the mean number of members in which a cyclone is detected.

4.2 Reliability of the ensemble reforecasts

The reliability of the ensemble reforecasts is evaluated for both cyclone intensity and location by comparing for each event and

at a specic lead time the spread and the mean error of the members, as dened in Section 2. One expects the mean error to be

close to the spread for a well-calibrated ensemble, while a mean error greater (respectively smaller) than the spread indicates345

an under-dispersive (respectively over-dispersive) ensemble prediction system.

Figure 6 presents a comparison between the spread and the mean error of the ensemble at 72 h lead time, for the location

in Fig. 6a and for the intensity in Fig. 6b. Similar observations can be made in both cases: rstly, the ensemble is reasonably
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Figure 6. For each cyclone at 72 h lead time, the blue shading represents the number of events per bin. (a) Mean of the TTEs of the ensemble

members, denoted TTE, compared to the spread in location, denoted σloc. The bin length is equal to 8 km. (b) Root mean square of the

MSLPEs of the ensemble members, denoted by ⟨MSLPE⟩, compared to the spread in intensity, denoted σint. The bin length is equal to

0.2 hPa. The red curve represents an idealised, perfectly-calibrated set of ensemble reforecasts with a mean error equivalent to the spread.

Percentages indicate the proportion of events in each half part.

reliable with an identiable linear trend between spread and mean error (correlation coefcient around 0.65). Secondly, there

is a slight but noticeable over-dispersion with 60 % of events presenting a spread greater than the mean error. Finally, when350

looking at the mean and median error-over-spread ratios, it appears that the mean is greater than 1 in both cases, equal to 1.14

for the location and 1.24 for the intensity, while the median ratio is equal to 0.91 in both cases. This indicates that while the

ensemble is slightly over-dispersive for most of the cyclone cases, some of them remain very poorly predicted with a mean

error much greater than the spread. It is noticeable that the opposite case with a spread much greater than the mean error is not

observed. These three conclusions remain valid for the different lead times (not shown).355

5 Predictability of different types of Mediterranean cyclones

In the previous section the predictability was evaluated considering the complete data set. In this section, cyclones are cate-

gorised following different features in order to determine the factors leading to a systematically better or poorer predictability.

In particular, differences in the predictability are identied in the spatial distribution, the seasonality, the intensity and the

velocity of cyclones.360

For each cyclone categorisation, CDFs of errors in both location and intensity are used to compute the CDFE metric pre-

sented in Section 2 at a specic lead time. Note that the CDFE having the same unit as the variable considered, the greater

the CDFE (respectively the smaller), the poorer (respectively the better) the predictability of the cyclone category. To illustrate
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Figure 7. CDFs of the errors in location (a) and in the intensity (b) for the six regions dened in Fig. 1b at 72 h lead time.

the approach, Fig. 7 presents CDFs of errors for the six regional categories presented in Section 3. On this representation, a

category of cyclone is better predicted than another when its CDF is closer to the Heaviside step function. At 72 h lead time365

and for the TTE (Fig. 7a), the East Mediterranean is the region in which cyclones are the most poorly predicted (orange curve),

while the Middle East and West Mediterranean cyclones have the smallest errors (brown and blue curves). This is highlighted

by the CDFE metric, with scores ranging from 57.1 km for the Middle East and 56.3 km for the West Mediterranean to 93.5 km

for the East Mediterranean. In terms of MSLPE (Fig. 7b), Middle East cyclones are once again the best predicted with a CDFE

of 0.44 hPa, while the Black Sea is the region in which the intensity of cyclones is the most poorly predicted at this particular370

lead time, with a CDFE equal to 0.84 hPa. In the next sections, the CDFE score is computed at each lead time in order to

compare the predictability between several categories of cyclones along the complete forecast duration.

5.1 Regional differences

As shown in Fig. 1b, the spatial distribution of Mediterranean cyclones is not homogeneous, and six regions have been dened

according to their cyclone density. Figure 8a presents the differences in the predictability of cyclone location using the CDFE375

metric applied at each lead time on the TTEs distributions of the six regions (color curves). It immediately appears that cyclones

in the West Mediterranean are the best predicted at lead times beyond 42 h. The statistical signicance of differences between

this region against any other is veried, except with the Middle East at 66 -90 h and 126 -138 h lead time. Another interesting

feature is the apparent diurnal cycle for Saharan and Middle East cyclones (purple and brown curves) between 72 h and 120 h

lead time. Peaks of errors are visible at 84 h and 108 h for the Sahara and 90 h, 108 h and 132 h for the Middle East. Forecasts380

being always initialised at 00 UTC, these peaks of errors in the location of cyclones are happening during the warm part of the

day for the both regions. Finally, the best and worst categories are shown for illustration on Fig. 8c. The apparently poorest

predicted categories, namely the Adriatic and East Mediterranean cyclones, are in fact following the general behavior of the
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Figure 8. Differences in the predictability between the regions dened in Fig. 1b, for (a) and (c) the total track error (TTE), for (b) and (d)

the MSLP error (MSLPE). Results appear in thick lines when they are signicantly different from every other categories. The CDFE score

computed from the complete data set is represented by the black circles.

complete data set (black circles). West Mediterranean cyclones are for their part signicantly better predicted from 18 h lead

time and beyond, the difference with the worst categories reaching more than 50 km at 144 h.385

In Fig. 8b, the differences in the predictability considering the MSLPE are presented for the complete set of six regions. The

signicance of the results is less pronounced than for the location, but regional differences can still be observed, in particular

between the best and the poorest predicted categories (Fig. 8d). The Middle East is the region in which the intensity of cyclones

is the best predicted at each lead time. A clear diurnal cycle is observed in this region, with local CDFE maxima at 42 h, 66 h,

90 h, 108 h and 132 h lead time, corresponding to local times of 3 p.m. to 9 p.m. While the coarse temporal resolution of 6 h390

does not allow a precise timing of this behaviour, it seems that cyclones in this region are experiencing greater errors during

the warm part of the day. The cyclones in the Black Sea are for their part the poorest predicted in the rsts 72 h, and once again

a diurnal cycle is observed with two pronounced maxima at 36 h and 42 h, corresponding to the beginning of the afternoon

in this region. Trigo et al. (2002) already identied diurnal cycles in summer cyclones developing over northern Africa, the

Iberian Peninsula, the Black Sea, or over the Middle East. The maximum intensity was reached during the afternoon and395
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cyclolysis generally occurred in the early morning. The reason for the diurnal cycle of errors shown here could be linked with

the representation of the convective processes, often occurring during the afternoons of summer days.

5.2 Seasonal differences

Figure 9. Differences in the predictability between the seasons (e.g. DJF stands for December January February), for (a) the total track error

(TTE) and (b) the MSLP error (MSLPE). Results appear in thick lines when they are signicantly different from every other categories. The

CDFE score computed from the complete data set is represented by the black circles.

Another possible categorisation of Mediterranean cyclone is based on the seasonality. As previously, Fig. 9a presents the

CDFE score for the TTE and Fig. 9b for the MSLPE. Only the categories signicantly different from the others are represented.400

In terms of errors of location, winter cyclones (December-January-February) are generally less well predicted than summer

ones (June-July-August). The results are statistically signicant for these two extreme seasons, but the difference remains under

25 km before 132 h lead time. Consequently, the season in which the cyclone occurs does not appear to be determinant in the

predictability of its location.

Differences are more pronounced in the intensity, and results are statistically signicant from 48 h to 102 h lead time for405

every seasons. Two major observations can be made. Firstly, the CDFE score in the autumn and spring follows the general

MSLPE of all Mediterranean cyclones (black circles). Errors are greater than average in winter and smaller than average in

summer. Secondly, it is noticeable that winter and summer cyclones are signicantly different from each other at every lead

time (not shown), with an increasing difference between the two categories from 0.1 hPa at 24 h to more than 1 hPa at 144 h

lead time.410
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Figure 10. (a) and (b): Differences in the predictability between 3 intensity-based categories of Mediterranean cyclones following their

minimum MSLP, namely the 10 % shallowest, the 10 % around median intensity and the 10 % deepest. (c) and (d): Same as (a) and (b) but

based on the deepening rate, dened as the pressure difference between the MSLP at the time of maximum intensity and 12 hours before. (a)

and (c): Results for the total track error (TTE). (b) and (d): Results for the MSLP error (MSLPE). Results appear in thick lines when they are

different signicantly from every other categories. The CDFE score computed from the complete data set is represented by the black circles.

5.3 Intensity classes

Differences in the predictability for different intensity-based categories are shown in Fig. 10a. They are weakly signicant for

the TTE, even if it seems that the deeper the cyclone, the poorer the predictability in location for lead times greater than 72 h.

The predictability of the cyclone location is also independent of the deepening rate (Fig. 10.c).

In terms of MSLPE, the deep cyclones are clearly the poorest predicted after 72 h lead time (Fig. 10b). In contrast, shallow415

cyclones are not necessarily better predicted than the medium category, and the difference is not always signicant between

these two categories. Same conclusions can be drawn from the deepening rate (Fig. 10d), where rapid intensication cyclones

strike out with intensity errors signicantly greater than in the other categories after 72 h lead time. It is in agreement with

Pantillon et al. (2017) and Pirret et al. (2017), who both showed a poor prediction of the intensity of the severe European
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storms they investigated. However, it should be noted that on average, the intensity of deep storms in our data set is slightly420

over-predicted from day 4.5 onward, while it is slightly under-predicted in these two previous studies. This difference could nd

an explanation in the samples of studied cases, as Pantillon et al. (2017) and Pirret et al. (2017) nd a slight under-prediction

in a data set of 25 and 60 extreme North Atlantic storms, respectively, while 280 less extreme Mediterranean cyclones are

represented here in the deep cyclones category.

To summarise, the predictability is signicantly poorer in terms of MSLPE for deep and rapid-intensication cyclones, from425

72 h lead time and beyond. As seen in Section 3.3, these poorly predicted cyclones tend to form during the cold part of the

year (Fig. 3b), in agreement with the poorest predictability of winter cyclones shown in the previous part. They are also mainly

located in the West Mediterranean and in the Adriatic, with a direct inuence of the Atlantic (see Fig. 3a).

5.4 Difference between velocity classes

Figure 11. Differences in the predictability between 3 velocity-based categories, namely the 10 % slowest, the 10 % around median velocity

and the 10 % fastest. (a) for the total track error (TTE) and (b) for the MSLP error (MSLPE). Results appear in thick lines when they are

different signicantly from every other category. The CDFE score computed from the complete data set is represented by the black circles.

It has been demonstrated based on Fig. 4 that different velocity-based categories of Mediterranean cyclones have different430

spatial distributions. It is consequently expected that differences will also appear in the predictability, which varies between

regions (Fig. 8). Figure 11a presents the CDFEmetric for the velocity-based categorisation of cyclones examined in Section 3.4.

The link between the velocity of the cyclone and the predictability of its location is remarkable, and differences are statistically

signicant from the beginning of the forecast until 66 h lead time: the faster the cyclone, the poorer the predictability. The slow

cyclones are clearly better predicted than any other category, especially for lead times longer than 36 h. The difference with435

the two other classes is statically signicant and increases with lead time, reaching almost 100 km after 6 days of forecast.

The particularly good predictability of these slow cyclones has to be linked with the unique spatial distribution highlighted in
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Fig. 4c. Indeed, these quasi-stationary lows are in a vast majority concentrated in the Gulf of Genoa in the West Mediterranean,

which is the region where the cyclone location is the best predicted (see Fig. 8).

Unlike for the location, the velocity of the cyclones does not play an important role in the predictability of the intensity440

(Fig. 11b). At lead times longer than 114 h, the fastest cyclones are the worst predicted, but the difference with the other

categories is too small to build any robust conclusion.

6 Summary and conclusions

The predictability of extratropical cyclones can be highly variable from a case to another. Here, an approach based on the use

of both reanalysis and ensemble reforecasts with a constant model conguration over 20 years makes it possible to investigate445

the predictability of Mediterranean cyclones in a systematic framework.

Cyclones are rst tracked in the ERA5 reanalysis, providing a large reference data set of 2853 cyclones over the 2000-2021

period. Their spatial distribution is in agreement with most of the previous climatological studies, conrming the inhomogene-

ity in the distribution of cyclones in the Mediterranean. Six preferred regions concentrating 63 % of the data set are identied,

the Gulf of Genoa being the main hotspot in the region. Comparatively to previous studies, a high density of cyclones is found450

in the Adriatic. A clear seasonal cycle is highlighted, with a higher occurrence during the cold part of the year. The cold season

is also more favourable to the development of intense cyclones, which mainly occur in the West Mediterranean, in the Adriatic,

and in the north-western parts of the Black Sea.

Reference cyclones are then tracked in the homogeneous set of ensemble reforecasts for the same period. The predictability

is evaluated in terms of errors in both cyclone location and intensity. Comparable magnitudes between mean error and spread455

indicate a reasonably good reliability of the IFS ensemble reforecasts for Mediterranean cyclones. A slight over-dispersion of

the ensemble can however be observed at every lead time, whether in the location or in the intensity. It should also be noted

that while the ensemble spread is slightly greater than errors for most of the cases, some cyclones remain very poorly predicted

with a mean error that can be more than 4 times greater than the ensemble spread.

The errors are summarized for the large number of cases by generalizing the CRPS probabilistic score to the newly-dened460

CDFE score based on the error distribution. Considering the entire set of cyclones, it is shown that the median location error

grows at two different rates with increasing lead time. In the rst 78 h, the error grows at a constant rate of 40 km per day,

comparable to the one found in (Picornell et al., 2011) for Mediterranean cyclones. The growth rate is however two times

smaller from 84 h lead time and beyond. This behavior is attributed to the saturation of errors and to limitation inherent to the

verication of tracks against the reference. In terms of intensity error, a very weak and almost constant bias of -0.2 hPa per day465

is detected, indicating a slight overestimation of the intensity in forecast cyclones, in agreement with Froude et al. (2007b) for

North Atlantic cyclones. This result should be regarded with some caution, as reforecasts are not compared with observational

data but with reanalysis data, which may underestimate the actual cyclone intensity.

Looking at different categories of Mediterranean cyclones allows to determine several factors contributing to a better or

poorer predictability. In terms of cyclone location, the velocity appears to be the key factor. In particular, the slowest Mediter-470
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ranean cyclones, which are mainly located in the Gulf of Genoa, are much better predicted than any other category, at every lead

time. The impact of such quasi-stationary cyclones can be important by causing large amounts of accumulated precipitation in

a same area. The predictive skill in their location is therefore important. For their part, the location of the fastest cyclones is

relatively poorly predicted in the rst 66 h lead time. To the authors’ best knowledge, it is the rst time that a link between the

cyclone’s velocity and predictability is highlighted.475

Two factors leading to differences in the predictability of the cyclone intensity are clearly established. First, errors in the

intensity of deep cyclones are greater than in any other category after 3 days of forecast. This is also observed for the deepening

rate, where the prediction of rapid-intensication cyclones is the poorest. It is in agreement with Froude et al. (2007a), who

have shown a relatively poorer predictability for intense cyclones in the Northern Hemisphere. A second important factor in

the prediction of the intensity is the season in which the cyclone occurs. Winter cyclogeneses are indeed more poorly predicted480

than summer ones, and the difference between these two seasonal categories increases with lead time. In fact, the two factors

are strongly related, as the deepest Mediterranean cyclones occur almost exclusively during the cold part of the year. The

forecast skill for the intensity of those strong winter cyclones is important, as some of them account for the most destructive

windstorms in the Mediterranean (e.g. storm Klaus: Liberato et al., 2011). Froude et al. (2007a, b) suggested that errors in

the intensity of deep cyclones could originate from an incorrect representation in their vertical structure, as the vertical tilt is485

known to play a major role in storm development. This hypothesis has to be veried in a systematic way for the Mediterranean.

In this study, the predictability has been quantied in a systematic framework for several categories of Mediterranean cy-

clones. The cyclone velocity, its intensity, the season and the region in which the cyclone occurs are all playing a role. Further

investigations could focus on physical processes responsible for the loss of predictability. In particular, the quantitative im-

portance of baroclinic and diabatic processes in the poor predictability of deep Mediterranean cyclones should be addressed.490

Indeed, both the representation of latent heat release in the rsts forecast hours and the location of Rossby wave breaking at high

lead times (several days) may be responsible to the loss of predictability of Mediterranean cyclones. It could also be interesting

to nd a physical explanation to the remarkable good predictability of the shallow cyclones in the West Mediterranean.
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