
Systematic evaluation of the predictability of different

Mediterranean cyclone categories

Benjamin Doiteau1,2, Florian Pantillon1, Matthieu Plu2, Laurent Descamps2, and Thomas Rieutord2,3

1Laboratoire d’Aérologie, Université de Toulouse, CNRS, UPS, IRD, Toulouse, France
2CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
3Met Éireann, Dublin, Ireland

Correspondence: Benjamin Doiteau (benjamin.doiteau@aero.obs-mip.fr)

Abstract.

Cyclones are essential components of the weather patterns in the densely populated Mediterranean region, providing neces-

sary rainfall for both the environment and human activities. The most intense of them also lead to natural disasters because of

their strong winds and heavy precipitation. Identifying sources of errors in the predictability of Mediterranean cyclones is there-

fore essential to better anticipate and prevent their impact. The aim of this work is to characterise the medium-range cyclone5

predictability in the Mediterranean. Here, it is investigated in a systematic framework using the European Centre for Medium-

Range Weather Forecasts fth generation reanalysis (ERA5), and ensemble reforecasts in a homogeneous conguration over

the 2001-2021 period. First, a reference dataset of 1960 cyclones is obtained for the period by applying a tracking algorithm

to the ERA5 reanalysis. Then the predictability is systematically evaluated in the ensemble reforecasts. It is quantied using a

new probabilistic score based on the error distribution of cyclone location and intensity (mean sea level pressure). The score10

is rstly computed for the complete dataset and then for different categories of cyclones based on their intensity, deepening

rate, motion speed and on the geographic area and the season in which they occur. When crossing the location and intensity

errors with the different categories, the conditions leading to a poorer or better predictability are discriminated. The motion

speed of cyclones appears to be determinant in the predictability of the location, the slower the cyclone, the better the forecast

location. Particularly, the position of stationary lows located in the Gulf of Genoa is remarkably well predicted. The intensity15

of deep and rapid-intensication cyclones, occurring mostly during winter, is for its part particularly poorly predicted. This

study provides the rst systematic evaluation of the cyclone predictability in the Mediterranean and opens the way to identify

the key processes leading to forecast errors in the region.

1 Introduction

Extratropical cyclones are fundamental components of weather patterns in the mid-latitudes. The associated frontal systems20

provide the majority of the necessary rainfall (Hawcroft et al., 2012) but can also be at the origin of damaging storms (e.g.

Roberts et al., 2014). A good representation of extratropical cyclones in numerical weather prediction systems is therefore

essential to prevent their negative impacts, and identifying sources of forecast error is an important step to understand the

processes leading to a poor predictability and improve forecasts.
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In the Mediterranean, extratropical cyclones are generally smaller and with shorter lifetime than in other larger basins25

(Campins et al., 2011). However, they are at the origin of most of the high-impact weather events in the area, including intense

rainfall (e.g. Flaounas et al., 2018), windstorms (e.g. Lfarh et al., 2023) and compound events (e.g. Raveh-Rubin and Wernli,

2016). The location of the Mediterranean between the tropics and the mid-latitudes, as well as the high mountain chains

enclosing the basin, make it the site of complex interactions. The inuence of Alpine lee-cyclogenesis (Trigo et al., 2002) and

Rossby wave breaking coming from the Atlantic (Raveh-Rubin and Flaounas, 2017) is clearly established in the formation30

of cyclones in the western part of the basin. Mediterranean cyclogenesis can also be inuenced by other mountain ranges,

the presence of both polar and subtropical jets, the entrance of Atlantic cyclones into the basin, or heat lows over land (see

Flaounas et al., 2022, for a review).

Using a piecewise inversion of the potential vorticity equation, Flaounas et al. (2021) showed that intense Mediterranean

cyclones are inuenced by two kinds of processes. On the one hand, the intrusion of a potential vorticity streamer in the35

upper-troposphere, related to deviation of the polar jet and to Rossby wave breaking, is identied as a principal dynamical

contribution to cyclogenesis. On the other hand, diabatic processes, and in particular latent heat release, are important in the

lower troposphere, where they act as a source of potential vorticity, reinforcing the cyclonic circulation. The relatively warm

Mediterranean Sea can also lead to the formation of tropical-like cyclones, called medicanes, which received interest of the

scientic community in recent years (e.g. Miglietta et al., 2021). These phenomena can produce severe winds and rainfall, as40

in the cases of Ianos in September 2020 (Lagouvardos et al., 2022) or Daniel in September 2023. However, they are very rare

with 1 to 2 events per year (Cavicchia et al., 2014). Thus, the statistical signal of medicanes can be considered as negligible.

Therefore, the present study mainly focuses on the predictability of extratropical cyclones in the Mediterranean.

Limitations in the representation of cyclogenesis processes in numerical weather prediction systems can lead to forecast

errors propagating through lead times. Additionally, and beyond errors associated with the quality of the numerical model, the45

chaotic nature of the atmosphere leads to an intrinsic limit of predictability (Lorenz, 1969). More precisely, slight differences

in the initial conditions can lead to radically different states of the atmosphere at increasing lead times. The forecast error is

therefore due to both limitations in the representation of physical processes in the numerical model and to the chaotic nature of

the atmosphere (practical and intrinsic preditcability, respectively; see Melhauser and Zhang, 2012). In the following study, the

’practical predictability’ will be denoted by ‘predictability’ for simplicity. Earlier work by Zhang et al. (2007) in an idealized50

baroclinic wave simulation, and by Baumgart et al. (2019) in hemispheric-wide simulations of PV structures, identied three

phases in forecast error growth. In a rst phase, errors in the representation of diabatic processes dominate in the rst 12 h lead

time. In a second phase, they are projected to the upper troposphere between 12 h and 2 days by tropospheric divergence. In a

third phase, after 2 days lead time, the error growth is dominated by the upper-troposphere dynamics.

Ensemble prediction systems have been developed to provide an estimation of the forecast error growth. They offer a mea-55

sure of forecast uncertainty and different possible scenarios from perturbed initial conditions and model parametrisations

(Leutbecher and Palmer, 2008). This is crucial for extreme weather events, which are hardly sampled especially at longer

lead times, ensemble prediction providing more robust results than a single deterministic forecast. For these reasons, ensemble

prediction systems have long been proved useful for the early detection of extratropical cyclones and their associated hazards
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(Buizza and Hollingsworth, 2002) or to assess the sensitivity of tropical cyclone genesis to the initial conditions (Torn and60

Cook, 2013). In the Mediterranean, studies based on ensemble forecasts revealed large uncertainty in the formation of medi-

cane case studies and pointed its origin in error growth along the Rossby wave guide over the North Atlantic a few days ahead

(Pantillon et al., 2013; Portmann et al., 2020).

To the best of the authors’ knowledge, there is currently no systematic identication of error sources in the predictability of

Mediterranean cyclones. For instance, earlier work highlighted the crucial representation of upper-level dynamical precursors65

in the western Mediterranean (Argence et al., 2008; Vich et al., 2011) or cloud processes and air-sea interactions for medicanes

(Miglietta et al., 2015; Tous et al., 2013) but these results relied on case studies. Using ensemble forecasts, Di Muzio et al.

(2019) suggested the existence of a predictability barrier for the formation of several medicanes, but these rare events may not

be representative of the broad spectrum of Mediterranean cyclones. Noteworthy, Picornell et al. (2011) assessed the determin-

istic forecast quality for more than 1000 extratropical cyclones during a whole year and found that the mean error in location70

increased from 50 km at 12 h to 118 km at 48 h lead time. However, the results were limited to relatively short forecast ranges

and were not linked with the cyclone characteristics.

On a broader scale, Froude et al. (2007a, b) were among the rst to investigate the predictability of extratropical cyclones in

a systematic framework. They tracked the cyclones in global forecast data for two winter and two summer periods and dened

errors in both location and intensity based on maximum relative vorticity compared to analysis data. For the location, they75

found out that the error increases almost linearly at a rate of 1.25 geodesic degrees per day. For the intensity, they highlighted

differences between summer and winter cyclones. In particular, intense storms occurring during the winter period were less

accurately predicted, which was attributed to an incorrect representation of their vertical structure. More recent studies followed

a similar approach and showed a systematic slow bias in the position of North Atlantic cyclones and a weak bias in intensity

of the deepest ones (Pirret et al., 2017; Pantillon et al., 2017). They explored links between the predictability and the dynamics80

of cyclogenesis but faced a robustness issue due to limited samples.

In this paper, ensemble reforecasts are used to systematically identify errors in the location and intensity of Mediterranean

cyclones. The forecast model covers a 20-year period with the same conguration, which allows extracting statistically robust

signals. The aim of the paper is to characterise the cyclone predictability in the Mediterranean region. Their representation

in an ensemble prediction system is discussed and the cyclone characteristics leading to a poorer or better predictability are85

identied. In particular, errors in the prediction of the cyclone location and intensity are evaluated for several categories of

cyclones, based on their geographical location and seasonality, their intensity, deepening rate and motion speed.

The article is structured as follows. In Section 2, the data, cyclone tracking methods and tools to evaluate the predictability are

described. The catalogue of Mediterranean cyclones and the associated climatology is presented in Section 3. The predictability

is then rstly evaluated for the whole dataset in Section 4, and secondly for specic categories of cyclones in Section 5.90

Section 6 contains a summary of the main results and the conclusion of the study.
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2 Data and methods

2.1 Data for the reference tracks: ERA5 reanalysis

Reanalyses assimilate historical observation data spanning decades with a xed assimilation scheme and forecast model. ERA5

(Hersbach et al., 2020) is the fth reanalysis produced by the European Center for Medium-Range Forecasts (ECMWF). It is95

based on the Integrated Forecast System (IFS, cycle 41r2), and includes models for atmosphere, land surface and ocean waves.

The horizontal resolution of the atmospheric model is about 31 km at mid-latitude, and it has 137 vertical levels from the

surface to 0.01 hPa. The reanalysis products are available globally with hourly resolution, from 1940 to present. In this study,

ERA5 is used from 2001 to 2021 with 0.25°× 0.25° horizontal grid to produce a reference set of cyclone tracks on a domain

covering the Mediterranean (25° N - 50° N, 15° W - 45° E; see Fig. 1).100

2.2 Tracking method for the reference tracks: the AYRAULT algorithm

Before investigating the predictability of Mediterranean cyclones, the rst step is to produce a reference set of tracks. The

tracking method is based on the Ayrault (1998) algorithm (later AYRAULT), which has been implemented in the open-source

TRAJECT software (Plu and Joly, 2023). Originally designed for Atlantic cyclones in coarse model data, AYRAULT had to be

adapted for this study. As stated before, Mediterranean cyclones are generally smaller and have shorter lifetimes than those in105

the Atlantic (Campins et al., 2011), and ERA5 has a higher spatio-temporal resolution than any previous reanalysis used with

the algorithm. Therefore, the parameters have been retuned specically for both ERA5 and the Mediterranean region, starting

from the values used in Sanchez-Gomez and Somot (2018).

The main idea of AYRAULT is to track cyclones rstly in the relative vorticity eld at 850 hPa. The horizontal wind is

then used at both 700 hPa and 850 hPa to choose the best following tracking point in the direction of cyclone propagation.110

Finally, the track points are paired with the mean sea level pressure (MSLP) eld. In the following, a time step is denoted by

t, the relative vorticity eld at 850 hPa by ζ , the zonal and meridional wind elds by u and v, respectively. AYRAULT can be

separated into ve steps:

(1) Data preparation: a moving average with Gaussian weights is applied to ζ at 850 hPa and to u,v at 850 hPa and 700 hPa

to remove noisy features into these elds. The characteristic length in the weight decay is 225 km for ζ (to keep a115

sufcient number of relevant vorticity cores), and 280 km for the wind elds (to keep the environmental wind and avoid

the vortex wind anomaly).

(2) Detection of ζ-maxima: local maxima are detected in the ζ smoothed eld. A single maximum (the strongest one) is

retained within a radius of 300 km.

(3) Loop over successive time steps: for every ζ-maximum at time t, a corresponding maximum at time t+1 is searched for120

using a three-steps method. First, the ζ-maximum at time t is advected by the wind at both 850 hPa and 700 hPa, giving

two guess positions for time t+1. In a second step, a new ζ-maximum at time t+1 is searched in the neighbourhood
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of the two guessed points, within a radius of 300 km. Third and last, two quality criteria, based on the distance between

the guessed point and the new ζ location and on the ζ value variation, must be fullled in order to keep a vortex core at

t+1. A cyclone track is nally dened by the successive positions of ζ maxima at every time step.125

(4) Pairing with MSLP: for every point belonging to the track, the local minimum of MSLP located within a 3°-square

centred on the ζ-maximum becomes the new track point.

(5) Validation criteria: the tracking process is stopped if the value of the ζ-maximum is less than 10−4 s−1 or if the MSLP

minimum is greater than 1015 hPa. Among all tracks, only those which last for longer than 24 h and reach at least

1005 hPa along their lifetime are retained. This last criterion avoids most of the artefact cyclones. Indeed, some of the130

cases with their deepest MSLP over 1005 hPa appear to be local secondary lows caused by stronger storms crossing

Northern Europe. Finally, an additional criterion is applied to only retain tracks entering into either the Mediterranean

Sea or the Black Sea.

The Mediterranean-adapted version of AYRAULT previously described has been successfully tested with a slightly different

conguration in an intercomparison of 10 tracking methods applied on ERA5 (Flaounas et al., 2023). The produced dataset135

remained close to the consensus between all algorithms in the spatial and seasonal distributions of cyclones. In the present

study, our dataset is used as a reference instead of the consensus produced by Flaounas et al. (2023) for two principal reasons.

First, the latter contains only 206 tracks in the highest condence level (i.e. consensus of the 10 algorithms), which is not

enough for a systematic study. At the mean condence level (i.e. consensus of 5 over 10 algorithms), on the 2001-2021 period

and with the same thresholds used here on the pressure and on the location of cyclones, 1231 tracks are detected in Flaounas140

et al. (2023), against 2853 with AYRAULT. Second, AYRAULT is conceptually similar to the tracking algorithm applied to the

reforecasts (see Section 2.4), which reduces the inuence of the tracking method on the results to focus on the predictability.

2.3 Data for the reforecast tracks: the IFS ensemble

Reforecasts are forecasts made retrospectively starting from historical initial conditions with a xed model version. They are

a key tool to investigate the predictability of the Mediterranean cyclones previously tracked in ERA5. The ECMWF ensemble145

reforecasts used here are constituted of 10 perturbed + 1 control members based on the IFS model (cycle 47r3) and initialized

from ERA5 (Vitart et al., 2019). Initial perturbations on the reanalysis are constructed from the ERA5 ensemble data assimila-

tion and singular vectors. Additionally, the model uncertainties are represented using a stochastically perturbed parametrisation

tendency scheme (Buizza et al., 1999). The reforecasts used here cover an historical period of 20 years from October 2001 to

October 2021, during which they are initialised every Monday and Thursday at 0000 UTC, leading to a total of about 2000150

base times. The output spatial resolution of 0.25° is identical to the one in the ERA5 reanalysis. For each base time, a forecast

output is available every 6 h (temporal resolution coarser than ERA5). Despite the maximum lead time of 14 days available

with constant resolution in the reforecasts, the maximum lead time is restricted in this study to 144 h (6 days) because of the

short lifetime of Mediterranean cyclones, considering that only less than 1 % of the cyclones of our reference dataset last longer

than 6 days. The small number of ensemble members able to produce cyclone tracks at longer lead times (see Section 4.1) is155
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also pleading in favour of a limitation on the maximum lead time. Note that the same cyclone can be tracked in two successive

forecast initialisations. When this happens, the two forecasts are treated independently.

2.4 Tracking method for the reforecast tracks: the VDG algorithm

In the reforecasts, the tracking of the cyclones is made with another algorithm (van der Grijn (2002); hereafter VDG), developed

at the ECMWF and originally designed for the operational tracking of tropical cyclones. The VDG algorithm, also implemented160

in the open-source TRAJECT software (Plu and Joly, 2023), is similar to the previously applied (AYRAULT), as it also uses

MSLP, the ζ smoothed eld at 850 hPa and the horizontal wind at 850 hPa and 700 hPa. The main difference between the two

algorithms is that VDG starts the tracking from a given geographical point or from an existing track. Cyclones detected in ERA5

are consequently directly linked with the reforecast by construction of VDG, as the position of the cyclone in the reforecast at

the initial time r(0), is directly dependent on the presence of a reference track at the same time. Applying AYRAULT to the165

reforecasts would have required an additional step for matching forecasted and observed cyclones, bringing more complexity.

At initialisation time, a ζ-maximum is searched for in the reforecast eld, in the neighbourhood of the reference track

calculated in ERA5. The tracking in VDG is then independent of the reference track, and is based on a combination of past

movement and steering ow vector Vav dened as the layer average of the local wind elds at 850 hPa and 700 hPa. In the

following, r and rfg are respectively the positions of the cyclone and of the rst guess. The initial step apart, the VDG algorithm170

can be divided as follows:

(1) First guest: the steering ow Vav and the past movement r(t)− r(t− 1) vectors are combined to obtain the rst guess

position of the next tracking point rfg using the equation rfg(t+1) = r(t)+w[r(t)− r(t− 1)]+ (1−w)Vav δt, where

w is a weight parameter ranging from 0 to 1 depending on the temporal resolution of the forecast δt, and here set to 0.4.

N.B. at the rst time step, only the steering ow vector is used (there is no past movement).175

(2) Detection of the ζ-maximum: a maximum is searched for in the ζ eld within a square of 5° centred around the rst

guess.

(3) Pairing with MSLP: another search is performed for the MSLP minimum within a same square of 5°, centred this time

on the ζ-maximum. The location of this MSLP point nally becomes the next track point r(t+1).

(4) Stopping criteria: the tracking of the cyclone is stopped when the value of the vorticity maximum ζ is less than the180

corresponding threshold of 10−4 s−1 or when the value of theMSLPminimum is greater than 1015 hPa, as in AYRAULT.

This last criterion also implies that the tracking begins only if a MSLP minimum is found below the pressure threshold.

The validation criteria assuring that cyclones last longer than 24 h and reach at least 1005 hPa along their lifetime, which

were applied with AYRAULT to construct the reference dataset, are not applied here in the reforecasts.
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2.5 Tracking algorithms comparison and nal reference dataset185

As demonstrated by Flaounas et al. (2023), using different cyclone tracking methods often leads to different results in the

Mediterranean. In this study, 2853 cyclones are detected with AYRAULT in ERA5 on the 2001-2021 period, while cyclones

are detected in the reforecasts using VDG starting from the reference tracks previously built. Using non-identical tracking

methods for the reference and the reforecast tracks can introduce biases into the analysis. To assess the robustness of the

results, VDG is also applied to the ERA5 data, using the tracks detected by AYRAULT as a reference. Note that VDG is190

applied to 6 h ERA5 data for consistency with the temporal resolution of the reforecasts for which it is tuned for. For each track

detected by both algorithms, the difference in terms of location and intensity are calculated for all simultaneous track points.

For 85 % of the tracks, no difference is found between the two algorithms. However, for 10 % of the dataset, the distance

between AYRAULT and VDG tracks reaches almost 200 km at the time of minimum MSLP. To avoid this discrepancy, tracks

are removed from the reference dataset if they are detected in ERA5 by AYRAULT but not by VDG (206 tracks), or if the195

maximal distance between them reaches more than 40 km (687 tracks). With these two criteria, the two algorithms provide

identical tracks in 99 % of the dataset for both location and intensity. The following results are based on the remaining 1960

cyclones tracks that satisfy these two criteria.

2.6 Predictability metrics

The predictability is investigated using errors and spread in both location and intensity. The relationship between mean error200

and spread is used to verify the ensemble reliability before proceeding with further quantication of the predictability. For a

reliable ensemble, one should expect mean error and spread to be comparable in magnitude.

In the following, errors are calculated by comparing the location and the intensity of each ensemble member with the

corresponding reference track in ERA5, at each time t of the cyclone lifetime. The spread is for its part calculated from the

pairwise difference between the members of the ensemble.205

To assess the predictability of the cyclone location, we use the total track error (TTE) as dened in Froude et al. (2007b);

Leonardo and Colle (2017). The TTE is also decomposed into an along-track error (ATE) and a cross-track error (CTE). A

positive (negative) ATE stands for a forecast track ahead (behind) of the reference track, while a positive (negative) CTE stands

for a forecast track on the left-hand side (on the right-hand side) of the reference track. Track errors (TTE, ATE and CTE) are

calculated for each member individually and are presented in Section 4. Additionally, TTE is here dened for each forecast210

cyclone as the mean of the TTEs of the members at each time t of the cyclone lifetime. The spread in location (hereafter σloc)

is determined by averaging the distance between each pair of members as follows:

σloc(t) =
1

N(N − 1)/2



1≤i<j≤N

d(ri(t), rj(t)) (1)

where N is the number of members in which the cyclone is detected by the tracking algorithm at time t, ri (rj) is the position

of the cyclone in the i-th member (in the j-th member) and d is the geodesic distance between the two positions.215
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Regarding the cyclone intensity, the MSLP error (hereafter MSLPE) is dened for each member as the difference between

the MSLP of the member and the MSLP of the reference track at the same time. Unlike errors on the location, MSLPEs can

also be negative. Consequently, ⟨MSLPE⟩ is dened as the root-mean-square of the MSLPEs over the members, for a specic

track and at a specic time t of the cyclone lifetime. The spread in MSLP (hereafter σint) is for its part determined from the

root-mean-square of the differences between each pair of members as follows:220

σint(t) =



1

N(N − 1)/2



1≤i<j≤N

(pi(t)− pj(t))2 (2)

where pi (pj) is the MSLPE of the i-th member (j-th member).

An additional metric is dened to compare distributions of TTE or MSLPE between different categories of cyclones (see

Section 5). In a preliminary step, for each category of cyclone, a cumulative density function (CDF) of errors is constructed

by taking into account every member of every cyclone track found at each lead time τ . CDFs of errors are then compared in a225

framework close to the continuous ranked probability score (CRPS) described in Candille et al. (2007). The metric denoted here

by Cumulative Density Function Error (later CDFE) measures the distance between a CDF of errors and a virtual null-error

distribution (100 % of the errors equal to 0):

CDFE(Fτ ) =



[Fτ (x)− 1x≥0]
2 dx (3)

where Fτ (x) is the CDF of the errors (either TTEs or MSLPEs) at a specic lead time τ and 1x≥0 stands for the Heav-230

iside step function. Note that the CDFE metric has the same dimension as the variable on which it is applied. A higher

(smaller) CDFE indicates a poorer (better) predictability. At each lead time, the statistical signicance is evaluated using the

Kolmogorov-Smirnov test, which in our case determines if two CDFs of errors are similar or not at a condence level of 95%.

This will ensure the robustness of the difference in the predictability of several categories of cyclones presented with the CDFE

metric.235

3 Climatology of the reference dataset

This section provides the climatology of our reference dataset, based on the Mediterranean cyclones tracked with AYRAULT in

ERA5 data and satisfying the two criteria of Section 2.5. In particular, the spatial distribution, the seasonal cycle, the intensity

and the motion speed of cyclones are presented. Figure 1a shows the ground elevation over the Mediterranean and toponyms

that will be used in this manuscript.240

3.1 Spatial distribution

For the whole 2001-2021 period, a total of 1960 cyclones are detected in the Mediterranean region, i.e. about 100 cyclones

per year on average. The colour shading in Figure 1b accounts for the number of tracks having at least one track point within
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a radius of 100 km divided by the total number of tracks. The gure can thus be seen as the relative frequency of cyclone

occurrence in our reference dataset, regardless of their stage of development. This spatial distribution is not homogeneous, as245

the majority of cyclones are concentrated in preferred regions. In particular, six regions of interests, designed to cover equal

areas, are here identied by visual examination of the spatial distribution.

The six preferred regions concentrate 63 % of the cyclones of the dataset. The most active of them is the West Mediterranean

(22 %). It includes the Gulf of Genoa, in the lee of the Alps, which is recognized as the most cyclogenetic area (Trigo et al.,

2002). Then come the regions of the Adriatic (11 %), the East Mediterranean (10 %), the Black Sea (7 %) and the Sahara (7 %),250

and nally the Middle East (6 %). The importance of the Alps in the formation of the West Mediterranean cyclones is clearly

established (Trigo et al., 2002). Horvath et al. (2008) show that lee cyclogenesis is also the dominant formation process for

Adriatic cyclones, whether they form in the Gulf of Genoa or in the Adriatic itself. The same orographic processes are known

to play a role in the formation of Saharan cyclones in the lee of Atlas mountains (Winstanley, 1972; Alpert and Ziv, 1989),

while Thorncroft and Flocas (1997) and Prezerakos et al. (2006) mostly highlighted the importance of interactions between255

the polar and the subtropical jets in cyclogenesis in this particular region. For the Black Sea, and generally in the eastern parts

of the Mediterranean, Trigo et al. (2002) argued that cyclones are formed by different processes. In particular, they stated that

surface cyclones in the Black Sea seem to be associated with an upper trough in the west of the region, advecting vorticity

toward a relatively warm sea. Similar processes are found in the Aegean. The same authors argued that cyclones in the Middle

East are the manifestation of the extensions of the Asian trough in late spring.260

The overall spatial distribution of our dataset is in agreement with previous studies (Alpert et al., 1990; Trigo et al., 1999;

Maheras et al., 2001; Campins et al., 2011; Lionello et al., 2016; Aragão and Porcù, 2022; Flaounas et al., 2023). However, two

minor differences remain. First, the hotspot in the western Atlas mountains and the high density of cyclones over the Iberian

Peninsula described in the literature do not appear here. This is mainly due to the criteria used to construct our dataset by

removing weak thermal lows with a pressure threshold of 1005 hPa on the one hand, and removing cyclones that do not enter265

into either the Mediterranean Sea or the Black Sea on the other hand. Second, the high density of cyclones found here in the

Adriatic is not highlighted in the majority of previous studies.
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Figure 1. (a) Elevation map over the Mediterranean domain with the toponyms mentioned in the text. (b) Relative frequency of Mediterranean

cyclones, based on ERA5 over the 2001-2021 period, dened as the percentage of cyclones having a track point within a radius of 100 km.

Regions of interest are framed by black boxes. Note that the shading scale is not linear.
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3.2 Seasonal cycle

Figure 2 shows the number of cyclones striking any of the six regions of interest during each month of the year, averaged

over the 20 years of our dataset. One can see that the number of cyclones in the Mediterranean is highly dependent on the270

season. The peak activity spans from November to May, while the period from June to October experiences fewer occurrences.

However, this general trend is also dependent on the region considered.

Figure 2.Monthly number of cyclones in the six regions dened in Fig. 1b. Cyclones are counted at their minimumMSLP point and averaged

over the 20-year period.

In the West Mediterranean and in the Adriatic, the cold season generally experiences more cyclones. Horvath et al. (2008)

came to the same conclusion for the majority of Adriatic cyclones, while highlighting the importance of a subcategory of

summer cyclones for their association with high-impact weather. In the East Mediterranean, more cyclones are also found275

during the cold part of the year. Saharan cyclones clearly exhibit a peak of occurrence in April and May, in agreement with

previous studies (Winstanley, 1972; Alpert et al., 1990; Trigo et al., 2002). The Black Sea has a unique seasonal cycle, with

higher activity during a long period spanning from December to July, with a peak in March. The presence of those cyclones

during a large part of the year was already observed in Trigo et al. (1999). For the case of Middle East cyclones, higher

occurrences are found here from March to May, while Trigo et al. (2002) found the peak of activity in August.280

3.3 Intensity and deepening rate

Figure 3a shows the spatial distribution of the 10 % deepest cyclones of the reference dataset. They are mainly concentrated

in the West Mediterranean and in the Adriatic, while some deep cyclones are found in the north-western parts of the Black

Sea. The West Mediterranean and the Adriatic are also two hotspots for rapid intensication when looking at the deepening
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rates (not shown). While cyclones in these two areas are inuenced by the Atlantic (Raveh-Rubin and Flaounas, 2017), the285

origin of deep cyclones in the north-western Black Sea remains unclear. In this last region, cyclones do not experience rapid

intensication, suggesting other processes of cyclogenesis. The shallowest cyclones are for their part concentrated in the Gulf

of Genoa, highlighting the wide spectrum of intensities in this particular region. The other shallow cyclones are found mainly

in the East Mediterranean and in the eastern parts of the Black Sea (not shown).

Figure 3b presents the typical seasonal cycle for three intensity-based categories of Mediterranean cyclones. Shallow and290

medium-intensity cases are more present during spring and exhibit a at minimum from July to November. The 10 % deepest

cyclones (green curve) show a more pronounced seasonal cycle, with very few cyclones during the warm part of the year, and

a peak of activity from November to March. The similar pattern is observed for rapid-intensication cyclones, which are found

almost exclusively during the cold part of the year (not shown).
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Figure 3. (a) Relative frequency of Mediterranean cyclones, dened as the percentage of the 10 % deepest cyclones having a track point

within a radius of 100 km. Note that the shading scale is not linear. (b) Monthly mean number of cyclones in the 3 categories of intensity.

Each category contains 10 % of the dataset, i.e., the 10 % deepest (green curve), the 10 % around median intensity (orange curve) and the

10 % shallowest cyclones (blue curve).
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3.4 Motion speed295

The motion speed of a cyclone is dened here by the median speed along its whole lifetime. According to our calculations on

the reference dataset, Mediterranean cyclones move on average eastward at a median motion speed of 25 km h−1. However,

the variability is large and the fastest 5 % are moving at speeds greater than twice the median. Figure 4 shows the spatial

distribution of the cyclones in each of the three motion speed categories: the 10 % fastest (Fig. 4a), the 10 % around the median

speed (Fig. 4b) and the 10 % slowest (Fig. 4c). The strong changes in spatial patterns between the different motion speed-based300

categories highlight the close relationship between the region in which the Mediterranean cyclone evolves and its motion speed.

The fastest cyclones (Fig. 4a) can be found in several particular areas. First, cyclones originating from the Sahara are clearly

marked along an axis from the south of the Atlas mountains to the Ionian Sea. Cyclones in this region are also the fastest,

with a median speed of 30 km h−1. This result is in agreement with previous studies, which often highlight the high velocities

of Saharan cyclones compared to other Mediterranean lows (Alpert and Ziv, 1989; Kouroutzoglou et al., 2011). Second, fast305

Atlantic cyclones enter into the West Mediterranean, mainly from the Bay of Biscay and through the straight of Gibraltar.

Third, another group of fast cyclones crosses the western Black Sea. Fourth and last, two other favourable regions for fast

cyclones are found in the northern Adriatic and in western Greece. Medium speed cyclones (Fig. 4b) are for their part mainly

located over sea, in the West Mediterranean, in the Adriatic and in the Ionian Sea. Finally, the slowest cyclones (Fig. 4c) are

clearly concentrated in the Gulf of Genoa, with median motion speed around 17 km h−1. Some quasi-stationary lows can also310

be found in the eastern parts of the Black Sea. The location of these last quasi-stationary lows is contrasting with the fast

cyclones observed over the western Black Sea (Fig. 4a), suggesting two different processes of cyclogenesis in the Black Sea

region.
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Figure 4. Relative frequency of occurrences (as dened in Fig. 3a) for the three motion speed-based categories. Each category contains 10 %

of the dataset, i.e., the 10 % fastest (a), the 10 % around the median speed (b) and the 10 % slowest cyclones (c). The black boxes are the

regions of interests dened in Fig. 1b. Note that the shading scale is not linear.

.
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4 Evaluation of the ensemble reforecasts

This section is dedicated to the evaluation of the Mediterranean cyclones representation in the reforecasts. Errors in the location315

and intensity, as dened in Section 2, are rstly evaluated by taking the tracks detected in ERA5 as reference, while the

reliability of the ensemble reforecasts is assessed in a second step.

4.1 Location and intensity errors

To evaluate the reforecasts, both errors in location and intensity are considered. In Figure 5, distributions of errors are computed

at each lead time by taking into account the individual error of each member of the ensemble, for the entire dataset. The large320

number of 1960 cyclone tracks ensures the results to be robust. The mean number of members in which a cyclone is found by

VDG decreases approximately linearly with lead time (orange curve in Fig. 5). While more than 9 members out of 11 detect a

cyclone at the initial time, less than 4 members are remaining on average after 144 h lead time.

The TTEs distribution is presented for each lead time up to 144 h (Fig. 5a). Both median error and interquartile range are

increasing with lead time, with 50 % of the TTEs spanning from 80 km to 220 km after 72 h lead time. It is noticeable that325

the error growth is slower than linear at high lead times and seems to exhibit two phases: in the rst 78 h, the median TTE

increases of about 40 km per day, while from 84 h lead time and beyond it increases at a smaller rate of about 20 km per

day. This behaviour can be explained by two different reasons. Firstly, the construction of VDG constrains the tracking to

begin in the neighbourhood of the reference track. Consequently, when the lead time increases, the proportion of cyclones

followed since early lead times (i.e., which forecast track may have diverged from the reference track) decreases in comparison330

to the ones followed since long lead times (i.e., which forecast track is still in the neighbourhood of the reference track, by

construction). It results that the error growth tends to decline with increasing lead time. The second process has to do with the

error saturation. For long enough lead times, an ensemble forecast should ultimately converge to the climatological distribution.

Consequently, the mean and median errors are expected to increase at a smaller rate at long lead times and saturate ultimately

at constant values.335

Overall, the growth rate of 40 km per day in the rst 78 h lead time is remarkably close to the 43 km per day found by Picor-

nell et al. (2011) in the Mediterranean. The authors used for their part the ECMWF operational deterministic model during the

2006-2007 period and evaluated errors only during the rst 48 h, which may explain the comparable error growth despite the

older model version used in their study. In the extratropical Northern Hemisphere, and using the operational ensemble predic-

tion system of the ECMWF from January to July 2005, Froude et al. (2007b) found a much higher mean error growth rate of340

1.25° (about 137 km) per day, almost constant until 7 days lead time. The coarser resolution of the ensemble prediction system

used in their study (about 80 km) and the particular characteristics of Mediterranean cyclones could explain this difference in

the mean error growth rate.

As presented in Section 2.6, the TTE can be decomposed into ATE and CTE. The ATE exhibits a weak and constant bias

of -15 km at 72 h lead time and beyond, indicating that forecast tracks have slow propagation speed bias compared to the345

reference (not shown). It is in agreement with Froude et al. (2007a), who highlighted that forecast cyclones in the IFS model
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are on average getting too slow by about 1 km per hour compared to the analysis. Pirret et al. (2017) and Pantillon et al. (2017)

found a systematic slow bias in the prediction of 60 and 25 severe European storms, respectively. The little bias found here in

the ATE, however, is much smaller than in the previously mentioned studies. Regarding the CTE, a weak positive systematic

shift is observed, growing at a constant rate of 4 km per day, indicating a weak shift to the left of the track (not shown).350

When looking into absolute values of ATE and CTE, it appears that the TTE is the result of an equivalent contribution of both

components.

Errors in intensity (MSLPE) are presented in Fig. 5b. The bias reaches quickly -0.5 hPa in the rst 12 h lead time, and

forecasts continue to deviate at a very slow rate of -0.1 hPa per day until 144 h. This is pleading in favour of a well-centred

error distribution of the ensemble reforecasts with a slight overestimation of the cyclone intensity, as in Froude et al. (2007b).355

After 72 h of forecast, 50 % of the MSLPEs are between -2.5 hPa and 1.5 hPa, and the interquartile range grows linearly of

0.9 hPa until the last lead time. When looking at absolute MSLPE (not shown), a little linear bias of 0.6 hPa per day is observed.

Froude et al. (2007b) highlighted an even smaller bias around 0.2 hPa per day for the extratropical Northern Hemisphere. It

could indicate a better prediction of the intensity of cyclones in other basins compared to the Mediterranean, however, the small

magnitude of these biases should be considered.360

Figure 5. Distributions of (a) total track errors (TTEs) and (b) MSLP errors (MSLPEs) relative to ERA5 as a function of lead time. Means

are depicted by the blue circles, medians by the red lines, the rst to third quartiles by grey boxes, and the minima and maxima by black

whiskers. The orange curve is the mean number of members in which a cyclone is detected.

4.2 Reliability of the ensemble reforecasts

The reliability of the ensemble reforecasts is evaluated for both intensity and location by comparing for each cyclone and at a

specic lead time the spread and the mean error of the ensemble, as dened in Section 2.6. One expects the mean error to be
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close to the spread for a reliable ensemble, while a mean error greater (smaller) than the spread indicates an under-dispersive

(over-dispersive) ensemble prediction system.365

Figure 6. Spread-skill relationship at 72h lead time. The blue shading represents the number of cyclones populating each bin. (a) Mean of

the TTEs of the members, denoted TTE, compared to the spread in location, denoted σloc. The bin length is equal to 8 km. (b) Root mean

square of the MSLPEs of the members, denoted by ⟨MSLPE⟩, compared to the spread in intensity, denoted σint. The bin length is equal

to 0.2 hPa. The red curve represents an idealised, perfectly reliable set of ensemble reforecasts with a mean error equivalent to the spread.

Percentages indicate the proportion of cyclones above and below the diagonal, respectively.

Figure 6 presents a comparison between the spread and the mean error of the ensemble at 72 h lead time, for the location

(Fig. 6a) and for the intensity (Fig. 6b). Similar observations can be made for both aspects: rstly, the ensemble is reasonably

reliable, with an identiable linear relationship between spread and mean error (correlation coefcient equal to 0.65). Secondly,

there is a slight but noticeable over-dispersion, with about 60 % of cyclone forecasts presenting a spread greater than the mean

error. Finally, the mean error-over-spread ratio is equal to 1.12 for the location and 1.21 for the intensity, while the median370

ratio is equal to 0.90 in both cases. This indicates that while the ensemble tends to be over-dispersive in most forecasts, some

of them are totally off, with a mean error much greater than the spread. It is noticeable that the opposite case with a spread

much greater than the mean error is not really observed. Note that these three conclusions remain valid for all lead times (not

shown).

5 Predictability of different categories of Mediterranean cyclones375

In the previous section, the predictability was evaluated considering the complete dataset. In this section, cyclones are cate-

gorised following different features in order to determine the factors leading to a systematically better or poorer predictability.

In particular, differences in the predictability are identied depending on the region, the season, the seasonality, the intensity

and the motion speed of the cyclones.
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5.1 Differences in the mean number of members380

The mean number of ensemble members in which a cyclone is detected (later denoted by number of members) is a key measure

to investigate, as a high (low) number of members indicates a high (low) predictability. In Figure 7, the results are presented

for different categories and are compared to the general behaviour of Mediterranean cyclones (shown by the black circles).

Figure 7. Difference in the mean number of ensemble members in which a cyclone is detected in the reforecasts: (a) for the six regions

dened in Fig. 1b, (b) for seasonal categories (e.g. DJF stands for December January February), (c) for the intensity-based categories dened

in Fig. 3b and (d) for the motion speed categories dened in Fig. 4. The mean number of members computed from the complete dataset is

recalled by the black circles.

In Figure 7a., the number of members is presented as functions of the lead time for the regional categories of Fig. 1b. Most

of the categories follow the general behaviour, except for the Sahara and the Middle East. In these two regions, the number385

of members quickly falls in the rst 12 h lead time (particularly in the Middle East), and then decreases at a smaller rate until

144 h. An apparent diurnal cycle is visible with a lower number of members every 24 h, around 1200 UTC, corresponding

to the warmest part of the day in these regions. The season in which the cyclone occurs has also an impact on the number of
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members. In summer in particular (green curve on Fig. 7b.), the number of members decreases quickly in the rst 18 h and then

at a smaller rate until the maximum lead time. This is not the case for the other seasons, during which the decrease in number390

of members follows the general behaviour. Differences are also visible for different categories of intensity in Fig. 7c. The

number of members detecting a cyclone is greater for deep cyclones, lower for shallow ones, and follows the general behaviour

for medium-intensity cyclones. Finally, in Fig. 7d, the number of members is presented for three motion speed categories.

Although differences are small, the slow and fast categories almost always lie below the general behaviour of the complete

dataset, which is more closely followed by the medium-speed category.395

Overall, the number of members falls down relatively strongly in the rst 12 h for Saharan and Middle East cyclones (in

warm regions) and in the rst 18 h lead time for summer cyclones. The number of members in which a cyclone is detected is

also lower for the shallowest cyclones between 18 h and 108 h lead time. The predictability in terms of number of members

therefore seems to be linked with the intensity of the cyclones, which are often shallow during summer. Deep winter cyclones

are for their part better predicted using this metric.400

5.2 From CDFs of errors to CDFE scores

For each cyclone categorisation, CDFs of errors in both location (TTE) and intensity (MSLPE) are used to compute the CDFE

metric presented in Section 2 at a specic lead time. It should be noted that the CDFE has the same unit as the variable

considered. The greater (smaller) the CDFE, the poorer (better) the predictability of the cyclone category.

Figure 8. CDFs of the errors in location (a) and in the intensity (b) at 72 h lead time for the six regions dened in Fig. 1b.

To illustrate the approach, Fig. 8 presents CDFs of errors for the six regional categories presented in Section 3. In this405

representation, a category of cyclone is better predicted than another when the shape of its CDF of errors better resembles the

Heaviside step function. At 72 h lead time and for the TTE (Fig. 8a), the East Mediterranean is the region in which cyclones

are the least accurately predicted (orange curve), while the West Mediterranean cyclones have the smallest errors (blue curve).

This is highlighted by the CDFE metric, with scores ranging from 51.8 km for the West Mediterranean to 94.2 km for the East
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Mediterranean. In terms of MSLPE (Fig. 8b), Middle East cyclones are the best predicted with a CDFE of 0.42 hPa, while410

the Black Sea is the region in which the intensity of cyclones is the least accurately predicted at this particular lead time, with

a CDFE equal to 0.61 hPa. In the next subsections, CDFE scores are computed at each lead time in order to compare the

predictability between several categories of cyclones along the complete forecast duration considered.

5.3 Differences between regional categories

As shown in Fig. 1b, the spatial distribution of Mediterranean cyclones is not homogeneous, and six regions have been dened415

according to their cyclone density. Figure 9a presents the differences in the predictability of the cyclone location, using the

CDFE metric applied at each lead time on the TTEs distributions of the six regions (colour curves). It immediately appears that

the location of cyclones is the best predicted in the West Mediterranean at lead times beyond 42 h. The statistical signicance

of the difference between this region and any other is veried between 42 h and 120 h, except with the Middle East at 78–90 h

lead time. The poorest predicted categories, namely the Adriatic and East Mediterranean cyclones, are in fact following the420

mean behaviour of the complete dataset (black circles) in the rst 78 h. The difference between the best and the worst category

is also noticeable and reaches more than 50 km at 144 h.

Figure 9. Differences in the predictability between the regions dened in Fig. 1b, for (a) and (c) the total track error (TTE), for (b) and

(d) the MSLP error (MSLPE). The statistical signicance is tested between each pair of categories, and results appear in thick lines when

the considered category is signicantly different from every other. CDFE scores computed from the complete dataset are represented by the

black circles.

In Fig. 9b, the differences in the predictability considering the MSLPE are presented for the complete set of six regions.

Regional differences are observed, in particular between the best and the poorest predicted categories. The Middle East is the

region in which the intensity of cyclones is the best predicted at each lead time, probably linked with the absence of deep425

cyclones in this region (see Fig. 3a). A clear diurnal cycle is also observed, with local CDFE maxima at 66 h, 90 h, 108 h

and 132 h lead time, corresponding to local times of 3 p.m. to 9 p.m. While the coarse temporal resolution of 6 h does not

allow a precise timing of this behaviour, it seems that cyclones in this region are experiencing greater errors during the warm
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part of the day. The cyclones in the Black Sea are the poorest predicted in the rst 72 h, and a diurnal cycle is observed with

two pronounced maxima at 36 h and 60 h, corresponding to the afternoon in this region. Trigo et al. (2002) already identied430

diurnal cycles in summer cyclones developing over northern Africa, the Iberian Peninsula, the Black Sea, and over the Middle

East. The maximum intensity was reached during the afternoon, while cyclolysis generally occurred in the early morning. The

reason for the diurnal cycle of errors shown here could be linked with the representation of the convective processes, often

occurring during the afternoons of summer days.

5.4 Differences between seasonal categories435

Another possible categorisation of Mediterranean cyclones is based on the seasonality. As previously visualised, Fig. 10a

presents the CDFE score for the TTE and Fig. 10b for the MSLPE. In terms of errors of location, winter cyclones (December-

January-February) are generally less well predicted than summer ones (June-July-August), except at 24–42 h. The results are

statistically signicant for these two extreme seasons in the rst 84 h (not shown), but differences remain under 25 km before

120 h lead time. Consequently, the season in which the cyclone occurs does not appear to be determinant in the predictability440

of its location.

Figure 10. Differences in the predictability between the seasons (e.g. DJF stands for December January February), for (a) the total track

error (TTE) and (b) the MSLP error (MSLPE). The statistical signicance is tested between each pair of categories, and results appear in

thick lines when the considered category is signicantly different from every other. CDFE scores computed from the complete dataset are

represented by the black circles.

Differences are more pronounced for the intensity, and they are statistically signicant between winter and summer cyclones

from 42 h until maximum lead time (not shown). CDFE scores in the autumn and spring follow the general behaviour of all

Mediterranean cyclones (black circles), while errors are greater than average in winter and smaller than average in summer.
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5.5 Differences between intensity categories445

Differences in the predictability for different intensity-based categories are shown in Fig. 11. Considering the location, the

predictability is the poorest for deep cyclones between 66 h and beyond (green curve in Fig. 11a). Meanwhile, location errors

are independent of the deepening rate (Fig. 11c).

Figure 11. (a) and (b): Differences in the predictability between 3 intensity-based categories of Mediterranean cyclones following their

minimum MSLP, namely the 10 % shallowest, the 10 % around median intensity and the 10 % deepest. (c) and (d): Same as (a) and (b) but

based on the deepening rate, dened as the difference between the MSLP at the time of maximum intensity and 12 hours before. (a) and (c):

Results for the total track error (TTE). (b) and (d): Results for the MSLP error (MSLPE). The statistical signicance is tested between each

pair of categories, and results appear in thick lines when the considered category is signicantly different from every other. CDFE scores

computed from the complete dataset are represented by the black circles.

In terms of MSLPE, deep cyclones are clearly poorer predicted than average after 66 h lead time (green curve in Fig. 11b).

It is in agreement with Pantillon et al. (2017) and Pirret et al. (2017), who both showed a poor prediction of the intensity of450

the severe European storms they investigated. However, it should be noted that on average, the intensity of deep storms in our

dataset is slightly over-predicted from 108 h onward (not shown), while it is slightly under-predicted in these two previous
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studies. This difference could nd an explanation in the region considered but also in the samples of studied cases, as Pantillon

et al. (2017) and Pirret et al. (2017) nd a slight under-prediction in a dataset of 25 and 60 extreme North Atlantic storms,

respectively, while 280 less extreme Mediterranean cyclones are represented here in the deep cyclones’ category. Regarding455

the two other categories, shallow cyclones are not necessarily better predicted than the medium category, and the difference

is not always signicant. The same conclusions can be drawn from the deepening rate (Fig. 11d), where rapid intensication

cyclones strike out with intensity errors greater than in the other categories after 66 h lead time.

To summarise, the predictability is signicantly poorer in terms of MSLPE for deep cyclones, at 66 h lead time and be-

yond. The same conclusions can be drawn from the deepening rate, but differences are not statistically signicant. As seen460

in Section 3.3, these poorly predicted cyclones tend to form during the cold part of the year (Fig. 3b), in agreement with the

poorest predictability of winter cyclones shown in section 5.4. They are also mainly located in the West Mediterranean and in

the Adriatic, with a direct inuence of the Atlantic (see Fig. 3a).

5.6 Differences between motion speed categories

It has been demonstrated in Fig. 4 that different motion speed-based categories of Mediterranean cyclones have different spatial465

distributions. It is consequently expected that differences will also appear in the predictability, which varies between regions

(Fig. 9). Figure 12a presents the CDFE metric for a motion speed-based categorisation of cyclones.

Figure 12. Differences in the predictability between 3 motion speed-based categories, namely the 10 % slowest, the 10 % around median

motion speed and the 10 % fastest moving cyclones, respectively. (a) for the total track error (TTE) and (b) for the MSLP error (MSLPE). The

statistical signicance is tested between each pair of categories, and results appear in thick lines when the considered category is signicantly

different from every other. CDFE scores computed from the complete dataset are represented by the black circles.

The link between the motion speed of the cyclone and the predictability of its location is remarkable, and differences are

statistically signicant from 12 h to 54 h lead time: the faster the cyclone, the poorer the predictability. The slow cyclones

(blue curve) are clearly better predicted than any others. The difference with the two other categories is statistically signicant470
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and increases with lead time, reaching almost 100 km after 120 h of forecast. The particularly good predictability of these

slow cyclones has to be linked with the spatial distribution highlighted in Fig. 4c. Indeed, these quasi-stationary lows are in

a vast majority concentrated in the Gulf of Genoa in the West Mediterranean, which is where the cyclone location is the best

predicted (see Fig. 9). This result has to be compared with the predictability of the West Mediterranean cyclones’ intensity,

which is not particularly well predicted. It suggests the existence of at least two different types of cyclones in this particular475

region. The rst is made of slow cyclones (Fig.4c) with a good predictability in terms of location and a fair predictability in

terms of intensity. The second one is made of fast moving cyclones (Fig.4a) with a poor predictability in terms of intensity and

a fair predictability in terms of location.

Unlike for the location, the motion speed of the cyclones does not play an important role in the predictability of the intensity

(Fig. 12b) in the rst 78 h. At lead times longer than 78 h, the fastest cyclones are the worst predicted, but the difference with480

the other categories is not statistically signicant beyond 96 h, and does not allow building any robust conclusion.

6 Summary and conclusions

The predictability of extratropical cyclones can be highly variable from a case to another. Here, an approach based on the use

of both reanalysis and ensemble reforecasts with a xed model conguration over 20 years makes it possible to investigate the

predictability of Mediterranean cyclones in a systematic framework.485

Cyclones are rst tracked in the ERA5 reanalysis, providing a large reference dataset of 1960 cyclones over the 2001-2021

period. Their spatial distribution is in agreement with most of the previous climatological studies, conrming the inhomogene-

ity in the distribution of Mediterranean cyclones. Six preferred regions concentrating 63 % of the dataset are identied, the

Gulf of Genoa being the main hotspot in the region. In comparison to previous studies, a higher density of cyclones is found in

the Adriatic. A clear seasonal cycle is highlighted, with a higher occurrence during the cold part of the year. The cold season is490

also more favourable to the development of intense cyclones, which mainly occur in the West Mediterranean, in the Adriatic,

and in the north-western parts of the Black Sea.

Reference cyclones are then tracked in the homogeneous set of ensemble reforecasts for the same period. The predictability

is evaluated in terms of errors in both cyclone location and intensity. Comparable magnitudes between mean error and spread

indicate a reasonably good reliability of the IFS ensemble reforecasts for Mediterranean cyclones. A slight over-dispersion of495

the ensemble can however be observed at every lead time, whether in the location or in the intensity. It should also be noted

that while the ensemble spread is slightly greater than the mean error in most forecasts, some cyclones remain very poorly

predicted with median and mean errors that can be more than 4 times greater than the ensemble spread.

Considering the entire set of cyclones, it is shown that the median location error seems to grow at two different rates with

increasing lead time. In the rst about 3 days, the error grows at a nearly constant rate of 40 km per day, comparable to the500

one found in Picornell et al. (2011) for Mediterranean cyclones. The growth rate is however two times smaller for longer

lead times. This behaviour is attributed to the progressive saturation of errors with lead time and to the limitation inherent

to the verication of tracks against the reference. In terms of intensity error, the bias reaches quickly -0.5 hPa at 12 h lead
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time, and forecasts continue to deviate at a slow rate of -0.1 hPa per day until the maximum lead time. This indicates a slight

overestimation of the intensity of forecast cyclones, in agreement with Froude et al. (2007b) for North Atlantic cyclones. This505

result should be regarded with some caution, as reforecasts are not compared with observational data but with reanalysis data,

which may underestimate the actual cyclone intensity.

Looking at different categories of Mediterranean cyclones allows determining several factors contributing to a better or

poorer predictability. It is shown that the mean number of members in which the cyclone is detected is dependent on the

cyclone intensity. In particular, deep winter cyclones are detected in more members than shallower summer cyclones. In a510

further step, the errors are summarized for the large number of cyclone forecasts by introducing a newly-dened CDFE score,

which is the CRPS applied to the error distributions of location (TTEs) and intensity (MSLPEs).

In terms of cyclone location, the motion speed appears to be a key factor. In particular, the slowest Mediterranean cyclones,

which are mainly located in the Gulf of Genoa are much better predicted than any other category, at every lead time. The

impact of such quasi-stationary cyclones can be considerable, as they can cause large amounts of accumulated precipitation in515

the same area. The predictive skill in their location is therefore important. For their part, the location of the fastest cyclones is

relatively poorly predicted in the rst 54 h lead time. To the authors’ best knowledge, it is the rst time that a link between the

cyclone motion speed and predictability is highlighted. The intensity of the cyclone also plays a role, and the location of deep

cyclones is less accurately predicted than in shallower categories, for lead times greater than 66 h.

Two factors leading to differences in the predictability of the cyclone intensity are clearly established. First, errors in the520

intensity of deep cyclones are signicantly greater than in any other category between 66 h and 108 h lead time. It is in

agreement with Froude et al. (2007a), who have shown a relatively poorer predictability for intense cyclones in the extratropical

Northern Hemisphere. This result is also observed here for the deepening rate, where the prediction of rapid-intensication

cyclones is the poorest, however, this result is not always statistically robust. A second important factor in the prediction of the

intensity is the season in which the cyclone occurs. Winter cyclones are indeed less accurately predicted than summer ones.525

The difference between these two seasonal categories increases with lead time and is signicant from 42 h until 144 h lead

time. In fact, the two factors are strongly related, as the deepest Mediterranean cyclones occur almost exclusively during the

cold part of the year. The forecast skill for the intensity of those strong winter cyclones is important, as some of them account

for the most destructive windstorms in the Mediterranean (e.g., storm Klaus: Liberato et al., 2011). Froude et al. (2007a, b)

suggested that errors in the intensity of deep cyclones could originate from an incorrect representation of their vertical structure,530

as the vertical tilt is known to play a major role in storm development. This hypothesis has to be veried systematically for the

Mediterranean.

In this study, the predictability has been quantied in a systematic framework for several categories of Mediterranean cy-

clones. The motion speed of the cyclone, its intensity, the season and the region in which it occurs are all playing a role. Further

investigations could focus on the physical processes responsible for the loss of predictability. In particular, the quantitative im-535

portance of baroclinic and diabatic processes in the poor predictability of deep Mediterranean cyclones should be addressed.

Indeed, both the representation of latent heat release in the rst forecast hours, and the location of Rossby wave breaking at

high lead times (several days), may be responsible for part of the loss of predictability of Mediterranean cyclones. It could
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also be interesting to nd a physical explanation to the remarkable good predictability of the shallow cyclones in the West

Mediterranean.540
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