We thank both George Craig and Theresa Mieslinger for their helpful comments.

In this document, italics denote reviewer comments and the grey boxes contain excerpts of the manuscript
where changes were made. Blue indicates added text and ‘ ——in keeping with the
changes file.

Response to George Craig’s comments (Reviewer 1)

“1. Appendiz A shows that the argument of Clauset et al. that applying linear regression in log-log
space was inappropriate because of the implicit assumption about the error distribution does not apply
if there is a sufficient amount of data. The central limit theorem implies that the error distributions
will converge to Gaussian in either space. So there is no reason to expect MLE to give better results
than LR. The paper also arques that the assumptions underlying MLE are violated for cloud fields
(1.116ff). This seems reasonable but also holds for LR; in particular the heteroscedasticity associated
with finite domain size described here is also a violation of the assumptions for least square fitting. As
far as I can see, the only argument that actually prefers LR to MLE is in Appendiz A (1.885). This
is the suggestion by Lovejoy et al. that perhaps errors in cloud sizes are lognormally distributed and
therefore normal in log space. But the Appendiz goes on to conclude, correctly, that we don’t really
know what the error distributions are, so without examples of one method producing better results that
the other, it seems inappropriate to draw conclusions about one method being more appropriate than
another. ”

The point about the heteroscedasticity in particular is good and one we had not considered. Because
the effect of the domain size on the bin count increases with cloud size, bin count errors may be larger for
larger cloud sizes. This could be problematic for either LR, or MLE. Presumably, removing the largest bins
as recommended for domain size effects would also help with problems with heteroscedasticity; however, it is
unclear whether heteroscedasticity could still be problematic. We added discussion of this point in Appendix
A, shown below.

As for preferring LR to MLE, it is conceivable that LR is more appropriate because it would apply for
either normal or lognormal errors, whereas MLE would only be suitable for normal errors. The appendix
section mentioned in the comment also hypothesizes that variability in cloud sizes could be lognormal. We
believe the best argument in favor of LR is not statistical, but practical: LR is familiar and straightforward
to implement. MLE, for a bounded power law, is comparatively computationally expensive and difficult in
implement. This is because the likelihood function must be numerically maximized. However, we know of
no rigorous arguments that cloud sizes have lognormal errors, and agree that the conclusions were stated
too strongly. Overall, the main point is intendended not to be that LR is statistically superior to MLE, but
that the effect of a finite domain is more important.

We made the following changes. First, in several places we removed claims of the superiority of LR:

Abstract:

linear regression is both simpler and e uall accurate rov1ded the Sim le recautlon is followed that
bins containing less than ~ 24 counts be-are omitted from the regression.

Line 64:

ﬂ&fﬁe}y—chome of ﬁttm method is less im ortant than whether past studies properly accounted for
the finite size of the study domain. A finite domain size is a general problem for measuring scale-free

quantities. ReeentlyFor example, Serafino et al. (2021) argued that scaling properties of networks can
be obscured by such finite-size effects, causing a truly scale-free network to appear non-scaling.



Line 320:

The present study shows that the choice of fitting method cannot explain the disagreement among

The paragraph at line 116, mentioned in the above comment, was modified and moved to appendix A
which discusses the issue of preferring LR more thoroughly. Appendix A was divided into two sections, the
second aimed at this question and shown below. A discussion of heteroscedacticity was also added to this
section.

A.1 Are cloud sizes statistically independent?

The above argument applies for measurements that are statistically independent because statistical
independence implies the bin count n; has Gaussian error. The Maximum Likelihood Estimation method
presented by Clauset et al. (2009) also requires statistically independent errors. Unfortunately, statistical
independence is often not satisfied in physical systems such as naturally occurring networks (Serafino
et al., 2021) and clouds (Garrett et al., 2018). Because cloud formation is constrained by the total
available moisture, energy, and space, individual cloud areas are not physically independent and this
appears in the statistics. For example, a large but rare cloud that covers over half of a given measurement
domain makes it impossible to observe another similarly-sized cloud because a second large cloud could
not fit inside of the domain. Thus, the first observation (i.e. the large cloud) alters the probability
of the next observation, which violates statistical independence. Similarly, a finite amount of total
available energy or moisture makes future cloud formation contingent on what has occurred in the past.
Thus, statistical errors of n; may not be Gaussian, in which case Maximum Likelihood Estimation-based
methods would be inappropriate.

A priori, one might expect statistical errors for cloud sizes to be log-normal instead (implying log n;
is Gaussian), because scale-by-scale conservation of a relevant variable ¢ implies ¢n; is constant (because
the total amount ® within a bin is ¢n;). As an example, Garrett et al. (2018) identified cloud perimeters
p as controlling cloud formation in thin quasi-horizontal layers. By assuming pn; = const., they derived
a power law distribution for cloud perimeters. Similarly, in their Sect. 3.3 Lovejoy and Schertzer (2018)
argue for a “multiplicative central limit theorem” for energy flux, which implies the logarithm of the
energy flux is Gaussian distributed.

Regardless, lognormality in statistical errors of n; is a convenient assumption when using linear
regression-based methods for estimating a power law exponent, because in this case logn; is Gaussian as
software packages assume. However, it is conceivable that statistical errors of cloud area measurements
might follow a different distribution, in which case neither Maximum Likelihood Estimation nor linear
regression would be strictly appropriate. Another problem with either method could be heteroscedas-
ticity: that is, the variance of m; could depend on cloud size. This could be due to either physical
differences in spatial scale or the effect of the finite domain size. Further work is needed to determine
both the shape of the distribution of n; as well as its dependence on spatial scale.

“2. The paper cites the work Savre and Craig (2023) (hereafter SC) as a motivation, but focuses
exclusively on the use of MLE, ignoring other key aspects of the recommended methodology, namely
the use of a goodness of fit test to identify the appropriate region to fit. In practice, I suspect that
removing bins that do not contain a minimum number of points from the fit, as recommended here,
and restricting the range of fitting using a goodness of fit test, as recommended by SC, will confine
both methods to the regime where there is “enough” data, and the LR and MLE methods will give the
same exponents. This seems to be the case for the examples presented here. ”

The main discussion of restricting the fitting region to where the bin counts are sufficiently large is in
Sect. 2. For LR and MLE to both produce similar estimates, it is required that the fitting range for LR be



restricted to those bins with sufficient counts. For the data in that section, MLE would already accurately
estimate the power-law exponent even if the fitting range was not restricted. This was shown by Clauset
et al. (2009), although in that case the distribution was an unbounded power law. The result would hold,
however, for a bounded power law, though the MLE estimator would be different.

As far as LR and MLE giving the same exponents, our original claim that LR is superior to MLE was
inappropriate because we do not know what the distribution of errors for cloud sizes is, as pointed out by
your other comments. The modifications we made in response to those comments alters one major claim in
the paper: instead of LR producing more accurate estimates, LR and MLE both produce similar estimates.
This is supported by Mieslinger et al. (2019) who tested both methods as well as our Table 2, which shows
that both methods produce similar estimates once finite domain effects are accounted for. We made one
further change to emphasize this point:

Other studies that estimated a over a range of scales that exclusively included large bin counts (e.g
Benner and Curry, 1998; Cahalan and Joseph, 1989; Wood and Field, 2011; DeWitt et al., 2024) may
have obtained estimates of a that were reliableas reliable as Maximum Likelihood-derived estimates.

The broader point made in the paper is that, even if the most statistically accurate methods were used
including a goodness-of-fit test, truncation effects could result in an incorrect reported distribution. For the
hypothetical scenario depicted in Fig. 7, a power-law with an exponential tail or a pure exponential would
likely be the best fit with high confidence. The problem in this scenario would not be the statistical methods,
but the interpretation of the reason for the exponential: it would be tempting to assume a physical limit on
cloud sizes, whereas the truth is that the exponential is caused by a measurement artifact.

Thus, though they are an important tool, goodness-of-fit tests are not the subject of this paper. For
the synthetic data in Sect. 2, MLE is already accurate without restricting the fitting range. In Sect. 3,
goodness-of-fit tests would not be able to identify truncation effects. Truncation effects modify the data
prior to any fit calculation.

“3. The paper apparently argues that fitting is not main cause of variation in estimated exponents,
but that finite domain effects could be. It is shown that the use of MLE vs LR is not relevant, but
there is still a potential sensitivity to the fitting methodology in that bins with insufficient data must
be rejected to obtain robust results. Both issues could contribute to the diversity of exponents found
in the literature, but it seems difficult to say much about their relative importance without reanalyzing
previous data sets. It may not even be possible to separate the two effects cleanly, since as noted in
text (1.257), bins with truncated clouds can coincide with bins that have few clouds, and both will be
eliminated together. And of course different studies examine different meteorological situations and a
diversity of distributions may be the correct answer. Given that some authors (e.g. Heus and Seifert
2013) have claimed to have checked for domain size effects, statements like ”Finite domain effects are
sufficient to account for previously observed discrepancies among reported cloud size distributions”
(1.9) don’t seem justified. ”

Thank you for the comment. We do not intend to claim that finite domain effects are the only reason for
differences, but that they could be a main contributor. We updated the sentence mentioned to reflect this
point:

icant and under— reaated sourc

We—p%ev&ée—a—s&mp}%s how to treat clouds that are truncated b the edges of unavmdabl ﬁmte

measurement, domains, _

While fitting methodology could also contribute to differences in reported exponents, it is more difficult
to see how fitting methodology could explain differences in reported scale break locations. This is discussed



in the text at line 168 (175 in the old version). However, the scale break introduced by removing truncated
clouds bears strong resemblance to many previous reported distributions, and it is entirely possible that
some of these scale breaks were caused by truncation effects. We added “particularly the range of scales over
which a power law applies” to this statement in the conclusions to address this point. (The sentence was
also modified in response to the first comment).

The present study shows that the ch01ce of ﬁttlng method cannot explaln the dlsagreement among

for the range of scales over Wthh a power law applies. We

Minor Comments

“l.6 See major comment. Also the phrase ”physical objects like clouds” is odd - like clouds in what
respect? ”

This line was updated as discussed above. The phrase ”physical objects like clouds” was removed.

“.57 Would it be possible to come up with another erample where assumptions of the fitting
algorithm are not met. It was a bit confusing to have finite size effects introduced at this point in the
paper. ”

Thank you for the comment, but unfortunately there may have been a typo because line 57 does not
mention finite size effects or fitting algorithms. We are unsure of what location the comment refers to.

“.60 SC do not simply argue that “the lack of consensus among prior measurements of cloud sizes
owes to the use of inaccurate statistical methods to fit power law distributions.” They also show that
there can be real physical differences in the distributions, for example associated with the diurnal cycle.

”

This is a good point. We rephrased the text as follows:

The lack of consensus among studies on the value of @ may owe to differences in the dominant cloud
type that was considered, or to how diurnal variability affects amax (van Laar et al., 2019). But even
if temporal and spatial variability of the size distribution exists, there remains a necessary prerequisite
to measuring such variability, which is to first ensure the size distribution is being accurately measured
in the first place. To this end, Savre and Craig (2023) recently argued thatthetack-of-consensus-among
priormeastrements-of-cloud sizes-owes—to-the-,_while size distributions do show some variability, the
use of inaccurate statistical methods to fit power law distributions could also partially explain the lack
of consensus among prior measurements of cloud sizes. In particular, they showed that the common
method of fitting a least-squares linear regression to a logarithmically-transformed histogram of cloud
areas can lead to biased measurements of a.

We also rephrased Line 317 in the conclusions to better represent Savre and Craig (2023)’s findings:

. A recent study proposed that, while differences in local climatological characteristics ;-a+ecent-study
proepesed-contribute to variability, some of the disagreement owes to the use of inferior linear regression-

based fitting methodsand-argued-, arguing that Maximum Likelihood-based methods are superior (Savre
and Craig, 2023).

“l.124 It seems unlikely that any fitting procedure on real cloud data can be proven to be statistically
optimal - see major comment 1. ”



Thank you. This sentence has been moved and reworded as described above.
“Fig. 2 typo in x-axis label ”307 7

Thank you for pointing this out. This and similar typos in other figs (3,4,5,6) occured when the PDF was
uploaded. We will make sure this issue is handled before publication.

“L.175ff The formulation of the problem in this paragraph seems to assume that there is a universal
distribution of cloud sizes that would be seen in all the studies if it were not for methodological problems
with fitting and domain size. One might argue that the hypothesis of a universal distribution has not yet
been conclusively disproved by the diversity of observed distributions due to the potential methodological
problems. ”

Thank you for pointing this out, because we do not necessarily want to claim that such a universal
distribution exists. For example, some modeling studies have clearly demonstrated changes to the size
distribution under different conditions (e.g. van Laar et al. (2019); Savre and Craig (2023)). Even if they
did not completely account for the finite size of the domain, if the domain size is fixed while meteorological
conditions vary, changes to the size distribution could not be explained by the domain size effect. We made
the following change:

Differences in the choice of fitting method used, whether Maximum Likelihood Estimation or regres-
sions to hnearly or logarlthmlcally spaced bins, cannot explaln these differences in measured Gy ax. Next;

~—Wohile differences in meteorological

conditions may contribute, meteorological influences may still be obscured by methodological problems.
We next explore how the improper treatment of clouds that are truncated by the edge of the measurement

domain could influence measured size distributions.

“1.230 "as being a real characteristic of clouds” change to ”as also being a real characteristic of
clouds under certain conditions” ”

Thank you, we made the suggested change.

“1.285 It’s interesting that periodic BCs produce a peak in the size distribution near the domain
size, similar to fits that include truncated clouds. Is there a reason for this? ”

The peak in the periodic percolation size distributions is certainly interesting. Intuitively, we think that
the peak could be caused by a similar mechanism to the peak in the truncated case. Very large clusters
“want” to form, but they cannot grow without intersecting themselves. However, as percolation clusters do
not actually “grow”, we feel this is a bit too squishy to mention in the text.

Response to Theresa Mieslinger’s comments (Reviewer 2)

Major comments

“The truncation effect is quite obvious in Figures 4, 5, 6 and absolutely reasonable. However,
cloud size distributions in previous literature rather show functional forms close to the ones present
in this paper when truncated clouds are excluded. Could you please add a few words discussing this
thought? ”

We agree that removing truncated clouds produces a distribution that bears a strong resemblance to many
that have been previously reported in the literature. Given that few studies state whether truncated clouds
are included or removed, we suspect many studies remove them without much consideration. We have added
some citations in the text:



We also updated a portion of the conclusions in light of this comment:

“For the 4000km z 4000km GOES domain considered, truncation effects seem small and the au-
thors use this case as a reference, while truncation effects increase for smaller (sub-)domains. Also,
the authors mention that not only domain size, but also the data resolution is an important factor
(e.g. line 262-264). Is there a suggestion from the authors for a domain size - resolution combination
or a minimal number of pixels needed to minimise truncation effects? This would make it easier to
set previous literature into context where the authors argue that truncation is handled in a suboptimal

way. 7

Thank you for the suggestion. Because the truncation effects occur at a scale controlled by the domain
size, but the small end of the distribution is controlled by the pixel size, there is an effective minimum number
of pixels required to accurately measure the power-law exponent. We have added the following paragraph:

We do not want to imply, however, that truncation effects only occur for small L/¢. Any finite domain
will show truncation effects, but the scale at which truncation effects occur changes with domain size. We
updated the following paragraph to reflect this:




We also updated a sentence in the conclusion:

“Only if less than 50% of all clouds in a given size bin touch the domain boundaries, the respective
bin is taken into account for deriving a power law exponent. I was wondering how sensitive the results
are to the 50% threshold and whether the authors tested lower/higher values. Could you add a sentence
explaining this choice? ”

Thank you for the suggestion. We did indeed test other values, and added a sentence explaining why we
settled on 50%.

“The under- and overestimations stated in the Conclusion in line 333 seem to be strongly related to
the size of the subdomain which seem to be chosen rather arbitrarily. Could you explain why those are
reasonable limits? Surely the over-/underestimation could be higher for even smaller domain sizes. ”

Thank you, this is correct. The size of the error certainly depends on the domain size and the fit range,
and the particular case presented is merely meant to illustrate that large errors are possible and even when
reported distributions appear to follow a power-law. We added some discussion of this point in the paragraph
at line 245, which was also rephrased to address a minor comment:

Additionally, the conclusions were rephrased to indicate the calculated errors are not generally applicable
but merely from an example intended to show how bias could occur:

7



Minor comments:

“Line 145-147: could you justify the relaxzation from two orders of magnitude to only one? I
suppose you’d have fewer samples to base your statistics on and going for only one oder of magnitude
is a compromise? ”

The one order of magnitude threshold was chosen as an overly conservative threshold. For example,
if a future study did only fit a power law to data spanning a single order of magnitude, the study could
still be confident that our recommended methodology would result in an accurate estimate of the power-law
exponent. Best practice, however, would be to use a larger span to fit real-world data, especially if power-law
behavior itself is in question. We clarified these points as shown below:

A fit to each sample is then performed only if the remaining bins span at least one order of mag-
nitude in a. This requirement is necessary for any fitting method because power law distributions
fundamentally describe systems spanning many scales (Newman, 2005), but is less stringent than the
two orders of magnitude span recommended by Stumpf and Porter (2012). Because the fitting accuracy

is increased for datasets spanning a larger range of values, the one order of magnitude requirement used
here represents a conservative threshold for the purpose of evaluating fitting methods using a known
ower law distribution. If power law behavior itself is in question, a larger span is required.

“Line 223-228: could you add the reason for simulating a 10000 x 10000 percolation lattice instead
of resampling the GOES lattice, i.e. 2000x2000 pixzels? Intuitively I would have assumed that you
would want to simulate the same pizel number. Also, how do the g-values for the percolation lattice and
also the grid cells stated in line 227 fit to the pizel numbers stated in Figure 59 It seems unnecessarily
complicated to not go for the same pizel numbers in theory and observations, but maybe there is a
good reason for it. 7

Thank you for raising this point, the ¢ values listed at line 227 were incorrect. At a late stage, Fig 5 was
modified so that the subdomains in the GOES and percolation lattices each covered the same area in units
of km? and pixels, respectively. However, we agree that it makes more sense to have each subdomain contain
the same number of pixels, so we have updated the figures and text accordingly.

We have retained the 10000x 10000 percolation lattice and created four sizes of subdomains. The new
subdomains contain the same number of pixels as the GOES domain and subdomains. The 10000x 10000
percolation lattice is useful because it illustrates that truncation effects can even occur in very large lattices
such as the 2000x2000 lattice. In fact, truncation effects would occur in any finite lattice.

We use values of ¢-<{26:186;2004—¢ € {5,50,200,500} for the percolation lattices and values of
q € {10,40,100} for GOES images. Thus the percolation sub-arrays have side lengths of 500;166ex
2000, 200, 50, or 20 grid cells, and-the- GOES-which match the dimensions of the original GOES arra
and its sub-arrayshave-side-lengths-of-200:-50-o0r20-pixels.

“Line 247: what is meant by “hypothetical scenario for GOES cloud areas”? Is it simply one
subset of the image or do ALL subdomains go into the curves? Related to that, are the numbers
stated in the following lines 250-251 only for this example or representative error estimates? The
authors use them later in the conclusion and it reads as they are upper/lower bounds for over- and
underestimations due to truncation effects. If it’s indeed only one image it could also easily happen
that you sample two very different cloud regimes as your 4000km x 4000km domain includes large
clusters as part of the ITCZ as well as small trade cumulus clouds. Related, the z-tick labels to Figure
7 seem odd as there are counts for megative cloud areas. Also the Figure caption together with the
paragraph discussing that Figure (line 247ff) leaves it unclear to me how the subset is designed and
whether it is representative. Please clarify. ”



Thank you for raising this point, it was not clear in the text and especially in the figure caption which was
misleading. What was intended in the figure caption was not a subset of subdomains but rather a subset
of the histogram. All subdomains were used. The improved figure caption is below, and the edits to the
paragraph at line 245 are above under the related general comment. We also discuss the conclusions under
the general comment.

Example of how a measurement & of the power law exponent could be biased by whether or not
truncated clouds are included in the analysis. The histograms shown are a-subset-of-the-created using
all 100 x 100 km subdomains from GOES. The same histograms are shown in Fig. 4 but spanning a wider

range of scales. This region—particular range of scales is heavily influenced by the choice of including
truncated clouds. Fits for a are shown in Table 1.

There appears to have been an issue during the file upload which caused some elements of the PDF to
disappear. There are no negative areas and the tick labels should be 30, 100, and 300.

“The title of the subchapter 3.4 seems a bit broad and could be sharpened to set the reader’s
expectations. It seemed to me that you rather test your suggested truncation fix in an exponential
distribution and show that it works there, too. ”

As suggested we changed the heading to “Finite domain effects for exponential distributions”

“In line 262-262 the authors state that errors could be further reduced. To what extent did you
test other domain sizes / resolutions and could you add further info or include “(not shown)” such
that it becomes clear that this statement is based on an analysis rather than gut feeling? ”

This line has been removed in response to another comment. Still, the claim is based on the results for
the percolation lattices (table 2), where the larger lattices produce measured exponents closer to the known
value. This was however not explicitely stated.

“Comment to Appendizx B: domain truncation effects is a magjor focus of this paper. I would suggest
to move the first part of Appendiz B (maybe the content of lines 400-406) to the main part of the
paper, but I leave it up to the authors to decide whether that is appropriate. Also, it would make the
paper even stronger if the suggested correction for truncation were applied. But I can also accept if
that goes beyond the scope of the present paper. ”

A correction function is certainly desireable, and we spent considerable time trying to formulate an acceptable
corrective formula, but ultimately decided that any such formula would include implicit assumptions about
clouds that we would not wish to make. The central issue is relating cloud area to length. Because clouds
are fractal, this is not as simple as one would expect, and one would need to make assumptions about their
shape. Since the upper end of the size distribution is near scales where Coriolis forces become important,
and the cloud spans very different climate regimes, it seems inappropriate to assume large clouds would be
the same shape as smaller clouds, just larger.

It could even be dangerous to implement a correction algorithm without considering these subtle and
implict assumptions, so we chose to not emphasize the possibility. For example, the simplistic algorithm
used in Wood and Field (2011) assumed clouds were square-shaped. Possibly, this could significantly modify
the distribution at scales where cloud shapes may change, for example where the Coriolis force becomes
important.

We made one small change to emphasize the difficulty:

If cloud lengths can be related to meastred—elond—areas——a—cloud areas — which is a nontrivial
problem due to fractal cloud geometries — a correction for the removal of clouds touching the edge is
straightforward to implement since n(a)obs. = (1 — Piruncated(@)) n(a) where n(a) is the true cloud area
distribution.



Formal comments / typos:

“Figure 2 seems to have a typo in the z-tick labels at the minimum bin count threshold 30 7

Thank you. As mentioned some elements of the PDF file appear to have disappeared during upload, which
is something we will ensure does not make it into the final version.

“Please add in the caption to Figure 3 some reference to the “left” and “right” plot for clarity ”
We have updated the caption to read:
Statistical error in measured counts n; (left) or log n; (right) within a bin bounded by 10 and 100 for

a collection of 1000 samples, each containing 5000 randomly-generated power law distributed random
variables z; with exponent & =1 (Eqn. 1).

“Figure 4, 5, 6, and 7 have several missing superscript numbers in the x- and y-tick labels. Please
correct. ”

This is also due to the dropping of some PDF elements during upload.

“Fig 6 is mentioned before Fig 5 in the text. Please switch to make it easier to follow and jump
back and forth. ”

We made this change.

“Caption Tablel: is there a word missing in the last sentence? “...between the two domain sizes
and [methods?] is expressed in units...” ”

We are not sure if there is a word missing, but the sentence is not easy to read. It has been rephrased:

For comparison, fits to clouds measured in the full domain are included as “truth”. “Differences” is
the difference between-in & between the two domain sizesand-. The difference is expressed in units of
standard errors as calculated in-from the subdomains.

113 » »

“Typo in line 260: “. .. for a series of of subdomains created. ..
Thank you, it has been corrected.
“Typo in caption to Table D1 in second last sentence: “coorespond” instead of “correspond” ”

Thank you, it has been corrected.
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