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Abstract. This study introduced and evaluated the calibration schemes of a newly developed upper-air radiosonde instrument, 

“Storm Tracker” (ST), with data collected in field observations during 2016–2022. The ST is a radiosonde instrument 

developed and tested in 2016 (Hwang et al., 2020). In a series of field campaigns in the Taiwan area, more than one thousand 10 

co-launches of ST and Vaisala RS41-SGP (VS) are conducted. Using the VS measurements as the reference, we developed 

data correction methods and examined the characteristics of the ST sounding. The corrected ST soundings have 1-K 

temperature and 7% relative humidity root mean square difference to the VS soundings. These error differences can be reduced 

to 0.66-K and 4.61% below the 700-hPa height. The GPS estimated ST wind error difference is about 0.05 ms-1. The results 

suggested that the ST can perform similarly to the reference sounding and has reached the level required for environmental 15 

sampling and scientific research. The geostrophic adjustment dynamics indicate that the spatial temperature variation in the 

free atmosphere may not be large. However, the lower atmosphere may have large wind, temperature, and moisture variations. 

Due to the relatively low cost and accuracy after correction, ST can complement regular upper-air observations for high spatial 

and temporal resolution. 

1 Introduction 20 

With over a hundred years of history, upper-air radiosondes are one of the crucial meteorological instruments and the most 

reliable one to gather atmospheric data at various altitudes. The measured pressure, temperature, and relative humidity (so-

called “PTU”) data aids in weather forecasting, climate research, and the study of atmospheric dynamics. However, upper-air 

radiosondes are subject to certain biases due to instrument calibration, ascent rates, and environmental conditions. Collins 

(2001) distinguished the radiosonde observational errors into three types: random, rough, and systematic. According to Collins 25 

(2001), random error is caused by small-scale turbulence or unsystematic observational errors, and it is impossible to correct. 

The rough error can be introduced from observational protocol, computational error for data processing, or communication-

related error. A properly defined operational procedure and automatic quality control process can minimize such errors. The 

third type of error, systematic error, is caused by insufficiencies in measurement devices or data processing procedures and 

persists in all observational data. This type of error can be detected and calibrated with statistical methods. 30 
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Nowadays, commercial radiosondes are often tested and corrected regarding these biases. However, they are typically 

characterized by their higher weight and cost, which limit the deployment of scientific field campaigns. The independently 

developed mini-radiosonde system – the “Storm Tracker (referred to as the ST, Figure 1b)” was developed and first tested in 

2016 (Hwang et al., 2020). The ST was then put into intensive field observation operations for the first time during the Taipei 

Summer Storm Experiment (TASSE) in 2018–2020. The main goal of the field campaign is to investigate the thermal 35 

characteristics of the boundary layer in the Taipei Basin and local wind field variations to improve the forecasting ability of 

afternoon convection in the metropolitan area. Three advantages of using the ST for atmospheric field research were learned. 

First, the weight with the battery of only 20g for ST helps with helium/hydrogen usage. Second, the commercial sensors, chips, 

and signal transmission components in the ST significantly reduce the cost and provide flexibility for multiple deployments 

and high spatial and temporal resolution observations. Lastly, the ST is easy to set up and can be quickly deployed or even 40 

mobile, which provides adaptability for different research needs and broadens the possibility for field campaign design. 

 

 

Figure 1. (a) The Vaisala RS41-SGP radiosonde (weighted 84g, body dimension: 155 x 63 x 46 mm), (b) the storm tracker mini-

radiosonde (weighted 20 g with battery, body dimension: 70 x 29 x 18 mm), and (c) an example of the co-launched soundings via the 45 
TASSE experiment. More ST hardware details are described in Hwang et al. (2020). 

During TASSE, the ST measurements showed an overall warm and dry bias in the troposphere compared to the VS. Figure 2 

shows an example of such a bias pattern. These biases result from a well-recognized issue, as Vömel et al. (2007) suggested, 

that solar radiation can induce warm and dry bias for radiosonde measurements. Similar daytime warm and dry biases have 

been reported in previous field experiments around the world that used relatively mature radiosonde systems (e.g., Wang et 50 
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al., 2002; Ciesielski et al., 2009; Yu et al., 2015). Earlier studies indicated that radiosonde temperature biases are primarily 

contributed by radiative effects, with a minor proportion caused by the sensor response lag of the changing of temperatures as 

the radiosonde rises (e.g., McMillin et al., 1992; Sun et al., 2013). 

 

 55 

 

Figure 2. The sounding of 2018-06-26 11:00 LST by VS (solid lines) and ST (dashed lines). The ST profile showed warm and dry 

bias near the surface. 

 

The daytime temperature bias induced by solar heating was identified with various radiosonde systems (e.g., Luers, 1989, 60 

1997; Luers and Eskridge, 1998; Sun et al., 2013). Their findings resulted in special surface coating over temperature sensors 

in most commercial radiosondes. Even though environmental parameters can still affect the observed temperature, all factors 

influencing radiative or sensible heat flux around the sensor, such as the sensor surface temperature, solar angle, cloud fraction, 

and ventilation velocity, can cause the sensor temperature bias (e.g., McMillin et al., 1992; Luers and Eskridge, 1995; Mattioli 

et al., 2007). Luers and Eskridge (1998) evaluated the impact of the environmental parameters on the radiosonde in detail. 65 
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Their results suggested that the temperature bias is most sensitive to solar angle, while the cloud cover has a slight impact. 

Also, the ventilation effect may cause bias when the sensor is in the balloon wake zone. 

In addition to temperature bias, the humidity bias has been discussed in many studies (e.g., Vömel et al., 2007; Yoneyama et 

al., 2008; Nuret et al., 2008). Vömel et al. (2007) found that the solar-heating-induced dry bias increased with altitude in the 

troposphere, which means the humidity bias also depended on the temperature. This resulted in the relative humidity (RH) 70 

measured in the low-temperature environment being less accurate (Miloshevich et al., 2001). Miloshevich et al. (2004) also 

pointed out that the response delay in humidity sensors could cause measurement errors at low temperatures. The influence of 

these biases could be huge. For example, in the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response 

Experiment (TOGA COARE,1992-1993), scientists have reported the observational error induced an unrealistically dry 

boundary layer and caused an underestimate of convective available potential energy (CAPE) (Miller et al., 1999; Lucas and 75 

Zipser, 2000). Although the primary observation targets of ST are the lower troposphere environmental conditions, we still 

noticed significant warm and dry deviations in the near-surface boundary layer in TASSE (Figure 2). 

Many studies have attempted to remedy the systematic error in radiosonde data with statistical methods. Lesht and Richardson 

(2002) mentioned that Vaisala accounts for the sensitivity of the RH sensor to temperature by using a high-order polynomial 

function with empirical coefficients. Yoneyama et al. (2008) applied a polynomial fitting function of pressure for the relative 80 

difference of RH and used the solar zenith angle as a factor for bias corrections. Other studies leveraged the thermodynamic 

equation and provided the temperature correction table with empirical correction factors (Wang et al., 2013; Dzambo et al., 

2016).  

In past field campaigns, scientists have also developed the statistical model of humidity correction based on probability 

matching. For example, Ciesielski et al. (2009) used the cumulative distribution function (CDF) matching method to correct 85 

the humidity bias for nearby soundings. The advantage of the CDF-based calibration method is that the calibration procedure 

is fast and straightforward. Building the correction table requires sufficient data to represent the statistical characteristics and 

questionable data can be adjusted to match the same distribution. The basic concept of the CDF matching calibration method 

is assuming the ambient atmospheric conditions are similar for all observation sites. In most field campaigns, the spatial 

distribution of upper-air radiosonde sites mostly satisfied such requirements, and hence, this method can efficiently adjust the 90 

data bias for most atmospheric conditions. However, such assumptions limit the generalizability of the CDF calibration models. 

Thus, the CDF models may not be directly applied to the data collected from different weather conditions, seasons, or climate 

regions with smaller sample sizes. 

Although wind speed and direction are crucial information in radiosonde observation, we found from the co-launched data that 

the GPS-estimated ST wind differs from that of VS in insignificant magnitude.  In this study, we focused on the calibration 95 

process of systematic error for ST temperature and moisture observations using the co-launch VS data. We use the co-launch 

data collected across several field campaigns in Taiwan to develop calibration methods for ST.  Here, we proposed and 

evaluated two different calibration approaches. First, we followed the widely used CDF-matching approach and proposed a 

two-step CDF-based calibration scheme. Secondly, we incorporated the CDF-matching approach with modeling multivariate 
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distributions, the central concept of machine learning, to introduce a novel correction method based on the generalized linear 100 

model (GLM). While the CDF approach discretized continuous variables, e.g., pressure and temperature, into bins to establish 

look-up tables, the machine-learning approach modeled a high-dimensional joint probability distribution with the same 

variables in their original forms. The latter approach allowed us to compress complicated look-up tables into a unified 

mathematical representation. Hence, we can adjust the models more easily for better performance, robustness, and 

generalizability. 105 

The co-launched radiosonde data, algorithms of bias correction methods, and data calibration processing flow are described in 

Section 2. In section 3, the results of the ST calibration are summarized and compared to the benchmark. Finally, the feature 

importance analysis and other calibration issues are discussed in Section 4, and conclusions are drawn in Section 5. 

2. Data and Preprocessing 

2.1 Data Collection 110 

In the previous years since 2018, we have co-launched the ST with the Central Weather Bureau (CWB) operational Vaisala 

RS41-SGP radiosonde (Figure 1c). The co-launch was conducted during field campaigns in the Taiwan area, including the 

Taipei Summer Storm Experiment (TASSE), the Yilan Experiment of Severe Rainfall (YESR2020), the Taiwan-Area Heavy 

Rain Observation and Prediction Experiment (TAHOPE), the Northern Coast Observation, Verification, and Investigation of 

Dynamics (NoCOVID21), and the Mountain Cloud Climatology (MCC) project,  We collected 1,029 co-launches of ST and 115 

VS from these field campaigns during 2018–2022. These co-launches provided more than 1,000,000 comparable independent 

observations of wind, pressure, temperature, and humidity (PTU) data. The numbers of co-launches of each campaign are 

summarized in Table 1 

 

Table 1. The summary of the field experiments conducting ST-VS co-launches. 120 

Experiment Time Location Total Numbers of ST-

VS Co-launch 

Taipei Summer Storm Experiment (TASSE) 2018-2020 Taipei (Banqiao) 478 

Yilan Experiment of Severe Rainfall 

(YESR2020) 

2020. Nov Yilan, Suaou, Luodong, 

Dafu 

46 

Taiwan-Area Heavy rain Observation and 

Prediction Experiment (TAHOPE) 

2019-2022 Taipei (Banqiao), 

Pengjiayu 

382 

Northern Coast Observation, Verification, and 

Investigation of Dynamics (NoCOVID21) 

2021. May-Jun Taipei (Banqiao) 49 

Mountain Cloud Climatology (MCC) 2022. Oct-Nov  Suaou 23 

Other  Tainan, Xinwu 51 
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In 2018 and 2019, based on the scientific goals of TASSE, we established a standardized procedure for the co-launches, and 

the observations were primarily conducted in the daytime. Once the observational procedure matured, we performed the day 

and night co-launches evenly in 2020, 2021, and 2022. (Table 2). Eventually, we collected 625 daytime cases and 404 nighttime 125 

cases. Also, the pilot experiments were conducted in the summer, and in the latter field experiments, we performed the co-

launches in other months. Though there were more cases in July and August, we still conducted at least 21 co-launches in May. 

As for the location, most co-launches were conducted at the Taipei weather station, while about 150 cases were in other cities 

in Taiwan. 

 130 

Table 2. The summary of the 1,029 co-launches. 

Month 
2018 2019 2020 2021 2022 Total 

Day Night Day Night Day Night Day Night Day Night Day Night 

1 0 0 0 0 21 24 0 0 25 26 46 50 

2 0 0 0 0 29 29 0 0 0 0 29 29 

3 0 0 0 0 27 31 0 0 0 0 27 31 

4 0 0 0 0 30 30 15 13 0 0 45 43 

5 0 0 0 0 6 5 6 4 0 0 12 9 

6 14 0 20 0 0 0 30 32 0 0 64 32 

7 14 0 60 12 0 0 22 23 0 0 96 35 

8 41 0 85 0 0 0 23 22 0 0 149 22 

9 0 0 0 0 0 0 25 26 0 0 25 26 

10 0 0 0 0 0 0 29 28 7 3 36 31 

11 0 0 0 0 20 17 40 41 6 7 66 65 

12 0 0 0 0 0 0 30 31 0 0 30 31 

Total 69 0 165 12 133 136 220 220 38 36 625 404 

 

2.2 Pre-processing of the co-launch data  

The ST is with the wind estimated from GPS. We analyzed the difference in wind variables with the paired data of VS and ST. 

The mean deviation in zonal and meridional wind components, u and v, are 0.04 and 0.03 ms-1, respectively. The difference 135 

may come from the time lag of GPS signals between two sensors, which is small enough to ignore. We emphasize the correction 

of temperature and humidity calibration in this paper. 

The co-launch's primary purpose is to understand ST's performance further and develop a data correction scheme to 

approximate the VS’s observations. The raw data collected often contains inconsistencies, inaccuracies, and outliers that can 
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significantly distort analytical results and impede the accuracy of predictive modeling. Therefore, we need a proper procedure 140 

to process the raw data.  

In the work of Ciesielski et al. (2012), the authors suggested four stages for developing research-quality radiosonde data (their 

figure 1). The first level requires a single unified data format. The second stage uses automated tools to remove unreliable data 

based on prior knowledge of quality control (QC) checks. Then, data biases are detected and corrected in the third level based 

on analysis or statistical methods. Finally, the fourth level dataset aims to be user-friendly, usually in uniform vertical 145 

resolution with QC flags. 

Following the framework proposed by Ciesielski et al. (2012), our data correction method is applied in the third stage. Hence, 

we need a pre-processing scheme to derive a level 2 dataset from the raw co-launch data. 

Figure 3 illustrates the preprocessing used in this study. In the first stage. First, we paired each ST and VS observation by 

nominal observation time and stored them in the same plain-text format, L1_ST and L1_VS. Then, in the second stage, we 150 

corrected known errors for both sensors, including missing values and outliers. After this stage, we derived the level 2 dataset, 

L2_ST and L2_VS. Finally, given the fact that both ST and VS radiosondes are attached during co-launch (as Figure 1c), we 

used “time after launch” (every second) in both profiles to pair the values of two sensors, and resulted in L2_ST-VS. 

Based on the prior studies of ST (Hwang et al., 2020), we performed a “ground check” procedure to correct the pressure values 

of ST. This procedure adjusts the P_ST by a constant bias dP_0, which is the difference between the surface pressure of the 155 

standard instrument and the sensor of ST. Furthermore, we filtered out profiles with inconsistent timestamps and records less 

than 250. Finally, we derived a dataset of 663 merged profiles and 1,219,710 paired entries (up to every second) for further 

analysis. 

 

 160 
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Figure 3. The preprocessing for ST and VS data from raw to level 2. 

 

3. Data Correction Methods 165 

To develop a data correction scheme for ST, we first investigated the conventional CDF-based probability matching method 

(Ciesielski et al., 2009). Then, we extended this approach with direct modeling of multivariate distributions, which is the 

central concept of modern machine learning. We implemented the scheme with the basic generalized linear model (GLM) and 

compared the differences between the two approaches. 

Before diving into the specific correction methods, we define the notations and symbols used in this study. While ST and VS 170 

represent the storm tracker and the Vaisala RS41-SGP radiosonde device, respectively, they are used as subscripts to denote 

the sensor of measurements. For example, PST means the pressure measured by ST, and TVS is the temperature recorded by 

VS. The ∆(delta) symbol is used to denote the difference of the same variable between two sensors. Finally, the ’ (prime) 

represents the corrected measure. 

3.1 CDF-based Probability Matching 175 

CDF-based Probability matching, also known as histogram matching or quantile mapping, is a statistical technique used to 

adjust the distribution of a dataset (e.g., a forecast distribution) to match that of another dataset (e.g., an observed distribution). 

The primary objective of this method is not to directly correct individual data points but to ensure that the overall statistical 

properties, such as the frequency of occurrence of specific values, match between the two datasets. In radiosonde observation, 

CDF-based probability matching is commonly used as a quality control tool to ensure data quality consistency for field 180 

campaigns (Nuret et al., 2008; Ciesielski et al., 2009).  

Based on the paired entries collected in co-launches, the two-step correction scheme starts with correcting temperature (∆T) 

based on the ground-checked pressure (P’ST) and the measured temperature (TST). Then, the adjusted temperature (T’ST) is used 

together with the measured relative humidity (RHST) to estimate the correction (∆RH). 

We first discretize the pressure and temperature variables in temperature correction into bins. Pressure is divided into 50 hPa 185 

intervals from 975–1025 hPa to 175–225 hPa, denoted by their centers, 1000 hPa to 200 hPa. Temperature is rounded to 

integers and forms 1-degree intervals from -80 to 40 degrees Celsius. For each pressure bin, we calculate the cumulative 

distribution function of temperature measured by ST and VS. Based on the assumption that two sensors have the same CDF 

within this specific range, we derived the correction values, ∆T, as a function of measured temperature, TST. Figure 4 

demonstrates the CDF-based temperature correction of the pressure bin 475–525 hPa. The upper panel shows the CDF of TVS 190 

and TST, and the lower panel illustrates the correction (∆T) as a function of the observed temperature (TST). We grouped the 

co-launches into daytime and night-time and performed the above procedure for each pressure bin. The results are shown in 

Figure 5, the complete temperature correction table used in this study. 
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 195 

Figure 4. The CDF-based temperature correction of the pressure bin 475 ~ 525 hPa. The upper panel shows the CDF of the 

temperature of two sensors, and the lower panel shows their difference as a function of temperature. 

 

As shown in Figure 5, the temperature sensor of ST consistently shows warm bias in all pressure bins, and the bias is stronger 

at high altitudes. The night-time warm bias exhibits similar patterns to the daytime but with a lower quantity.  200 

The correction of relative humidity (RH) is derived in the same way as the temperature, except for the independent variables, 

which are the corrected temperature (T’ST) and the measured relative humidity (RHST). The corrected temperature is discretized 

into 10-degree intervals from -65 to 35 degrees Celsius. The relative humidity values are then rounded to integers and form 

1% intervals from 0 to 100. Like the temperature correction procedure, the correction value is derived based on the CDF 

probability matching as a function of RH within each temperature bin. Figure 6 illustrates the complete RH correction table 205 

used in this study. Figure 6 indicates that the ST shows dry-bias in lower altitudes and wet-bias in higher altitudes. ST is 

generally dryer during the daytime. 

Using the correction tables shown in Figures 5 and 6, the temperature and relative humidity measured by ST are corrected and 

evaluated. Mathematically, this procedure can be expressed as: 

𝛥𝑇 =  𝑇𝑉𝑆 − 𝑇𝑆𝑇 = 𝑓(𝑃′𝑆𝑇 , 𝑇𝑆𝑇 , 𝐷𝑎𝑦)                                                                                                                                  (1) 210 

𝛥𝑅𝐻 =  𝑅𝐻𝑉𝑆 − 𝑅𝐻𝑆𝑇 = 𝑓(𝑇′𝑆𝑇  , 𝑅𝐻𝑆𝑇 , 𝐷𝑎𝑦)                                                                                                                 (2) 
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, where Day is a binary variable represents the daytime or night-time, and f is the CDF-based probability matching. 

 

 215 

Figure 5. The CDF-based temperature correction tables for daytime (00z-12z, left panel) and night-time (12z-00z, right panel).  

 

 

Figure 6. The CDF-based RH correction tables for daytime (00z-12z, left panel) and night-time (12z-00z, right panel). 
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3.2 Generalized Linear Model 220 

Despite the robustness and ease of implementation of CDF-based probability matching, the discretization steps and the form 

of the look-up table limit its application. For example, the discretization of pressure and temperature is empirical. Though the 

resulting CDFs and correction tables look reasonable, it is hard to justify that this is the only way to split a continuous variable 

into bins. In other words, by focusing on matching the overall distribution, probability matching may overlook or alter some 

of the finer-scale details in the dataset. Furthermore, the look-up table makes adding extra independent variables more 225 

complicated. For example, we used daytime and night-time tables to simplify the influence of solar radiation so that we could 

use two tables for each correction. Another example is when we consider adding the effect of pressure in the correction of RH. 

In that case, we need to establish tree-dimensional bins and justify whether the cut-off points are adequately selected. Therefore, 

we want to introduce the modeling of the multivariate probability distribution to our correction scheme. 

In essence, modeling the joint probability distributions of multiple variables is fundamental in machine learning for capturing 230 

relationships and dependencies among numerous predictors. It forms the backbone for various algorithms and techniques to 

predict, generate, and understand multi-dimensional data. In equations (1) and (2), the mapping function, f, can be seen as a 

model of the joint probability distribution of the independent variables. While the CDF-based probability matching algorithm 

models this distribution by discretizing the independent variables, it can be replaced by different algorithms that keep the 

predictors in their continuous form. 235 

The Generalized Linear Model (GLM, Nelder and Wedderburn, 1972) is a versatile statistical framework used for modeling 

the relationship between a dependent variable (response) and one or more independent variables (predictors) in a wide range 

of applications. GLMs extend the concept of linear regression to handle a broader array of data types and distributions. They 

are particularly valuable for offering interpretable coefficients for understanding the impact of predictors on the response. 

GLMs have become a fundamental tool in statistics and data analysis due to their flexibility and applicability across various 240 

fields. In this study, we used GLMs in three different settings: the same scheme as CDF-based probability matching (as 

specified in equations (1) and (2)), using the same set of predictors for T and RH corrections, and relacing daytime with Julian-

day and hour-of-day. 

To develop the GLM-based corrections, we simply used the paired entry dataset and the least squared algorithm to fit linear 

regression models for the response variables (ΔT and ΔRH) and the predictors (P'ST, TST, RHST, and Day). This study used the 245 

Python algorithm implementation from scikit-learn (Pedregosa et al., 2011). The resulting regression equations are used to 

correct the storm tracker data. 

In our second GLM configuration, we used the same independent variables, i.e., P'ST, TST, RHST, and Day, to predict the 

corrections of temperature (ΔT) and relative humidity (ΔRH). The resulting models can be mathematically denoted as: 

𝛥𝑇 = 𝑓(𝑃′𝑆𝑇  , 𝑇𝑆𝑇  , 𝑅𝐻𝑆𝑇  , 𝐷𝑎𝑦)                                                                                               (3) 250 

𝛥𝑅𝐻 = 𝑓(𝑃′𝑆𝑇 , 𝑇𝑆𝑇 , 𝑅𝐻𝑆𝑇  , 𝐷𝑎𝑦)                                                                                            (4) 
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As mentioned, many studies have suggested that solar radiation could be the leading cause of the warm bias in the radiosonde 

data. This is why we established correction tables for daytime and night-time separately. To simplify the correction process 

and limit the number of tables created, the solar radiation is represented by the binary variable, Day. However, with GLMs, 

we can easily use continuous variables in their original form. Hence, we used the “Julian day from the summer solstice” (Jday) 255 

and the “hour-of-day from noon” (Hour) to replace the Day variable. The resulting models are: 

𝛥𝑇 = 𝑓(𝑃′𝑆𝑇  , 𝑇𝑆𝑇  , 𝑅𝐻𝑆𝑇  , 𝐽𝑑𝑎𝑦, 𝐻𝑜𝑢𝑟)                                                                                             (5) 

𝛥𝑅𝐻 = 𝑓(𝑃′𝑆𝑇 , 𝑇𝑆𝑇 , 𝑅𝐻𝑆𝑇  , 𝐽𝑑𝑎𝑦, 𝐻𝑜𝑢𝑟)                                                                                          (6) 

These three settings are noted as GLM1, GLM2, and GLM3 in the later text. 

4. Experiment Results 260 

Figure 7 illustrates the patterns and deviations between ST and VS at various pressure levels. The panels (a), (b), and (c) 

demonstrate the temperature of VS and ST, and the differences between the two sensors. The relative humidity is shown in 

panels (d), (e), and (f). As shown in Figure 7, the ST exhibits warm and dry biases in general, and the biases increase as the 

altitude rises. 
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 265 

Figure 7. The boxplot of temperatures (upper) and RH (lower) of ST (left), VS (center), and their difference (right).  

 

We applied the four correction methods described in the previous section, i.e., CDF, GLM1, GLM2, and GLM3, to the 663 

sounding profiles. Using the VS as the reference observations, we calculated the root-mean-squared errors (RMSEs) as the 

evaluation metrics. We did not use the correlation coefficients for evaluation because two sensors have correlation coefficients 270 

higher than 0.99, even without corrections. The reason for this lies in the co-launching strategy, which ensures that both 

instruments endure the same environmental conditions. The means and standard deviations of RMSEs for all correction 

methods are shown in Table 3 and Figure 8. As shown in Figure 8, we can see a significant bias reduction for all correction 

methods. We performed t-tests on the raw and corrected values, and the improvement of all four methods is statistically 

significant (for p-values little than 10e-29). We also compared the CDF and GLM, and the results show that CDF correction 275 

is slightly better than GLMs for both temperature and relative humidity. The difference between CDF and GLMs is significant 

in the t-test, though the significant level is much lower than their bias reduction. 

https://doi.org/10.5194/egusphere-2024-661
Preprint. Discussion started: 8 April 2024
c© Author(s) 2024. CC BY 4.0 License.



14 

 

We also conducted t-tests on different GLM settings. The GLM1 and GLM2 did not show significant differences in temperature 

and relative humidity correction results. However, the GLM3 showed significant improvement compared to GLM1 and GLM2. 

This suggested that solar radiation parameters can influence the correction more than a simple day/night indicator. 280 

Table 3 and Figure 8 also show the evaluations for all records below 500- and 700-hPa heights. As shown in the results, ST 

can proximate the VS measurements with a temperature error of less than 1 degree Kelvin and a relative humidity error of less 

than 10%. Suppose we focus on the observations below 700 hPa. In that case, the average error can be as low as 0.66-degree 

Kelvin for temperature and 4.61% for relative humidity, comparable to the uncertainties of VS temperature and relative 

humidity measurements (Vaisala, 2017). 285 

 

Table 3. The RMSE of ST and VS with different correction methods for temperature and RH. 

Variable Correction Method 
mean RMSE stdev of RMSE 

full 500hPa 700hPa full 500hPa 700hPa 

Temperature Uncorrected 2.9969 2.0753 1.6446 1.8399 1.2291 0.8894 

 CDF 0.8778 0.7568 0.6560 0.5579 0.4166 0.3367 

 GLM1 1.2714 1.1126 1.0732 0.6612 0.4549 0.3682 

 GLM2 1.2745 1.1128 1.0533 0.6625 0.4633 0.3693 

 GLM3 1.1991 1.0105 0.9483 0.6284 0.4566 0.3579 

Relative Humidity Uncorrected 8.5265 6.0721 4.9336 3.8236 2.9284 2.3624 

 CDF 6.8946 5.4707 4.6098 2.8107 2.7488 2.4442 

 GLM1 7.4604 5.8673 4.9267 2.9158 2.6489 2.3084 

 GLM2 7.4152 5.7997 4.8478 2.7785 2.4307 2.0590 

 GLM3 7.2683 5.6355 4.7043 2.6668 2.3372 1.9878 
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Figure 8. The mean RMSE of ST and VS with different correction methods for temperature (left) and RH (right). For each 290 

correction method, the mean RMSE is derived with all available records (blue), records below 500 hPa (orange), and records 

below 700hPa (green). 

5. Discussion 

5.1 General performance of ST 

Figure 9 illustrates the paired entries of VS and ST before and after corrections. As described in the previous section, the ST 295 

exhibits correlation coefficients higher than 0.99 for temperature and RH even before any correction. Hence, the effect of 

corrections is represented by the narrower diagonals in the right panels in Figure 9. 
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Figure 9. The scatter plots of temperature (upper) and RH (lower) before and after correction. 300 

 

Though the statistical tests showed the significance of the correction results, they are not easily perceived. Hence, we selected 

a few sounding profiles to demonstrate the effectiveness of our correction methods. Figure 10 shows the T and RH profile of 

the sounding launched at 2021-08-03 12Z. This sounding was selected because of the overall low RH bias before and after 

correction. In Figure 10, the corrected temperature is adequately aligned to the reference (TVS), and the corrected relative 305 

humidity (RH) is entirely satisfactory, particularly below 350hPa, covering most tropospheric levels with water vapor and 

clouds. Consistent findings are prevalent within our dataset, indicating that the adjusted ST measurements are reliable across 

various observational scenarios. 
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  310 

 

Figure 10. The temperature (left) and RH (right) of the co-launch on 2021-0803 12Z. The reference (VS) is illustrated in blue, the 

ST in range, CDF-corrected in green, and GLM-corrected in red. 

 

However, the corrected results may perform less when encountering extreme wet cases. Figure 11 is the sounding profile on 315 

2018-08-27 06Z when the reference RH of VS is about 90% from ~850 to ~350-hPa heights. As shown in Figure 11, the 

temperature correction still works properly. However, the RH measured by ST shows a dry bias of magnitude of 20% from 

~850 to ~350-hPa heights while the patterns stay similar. The RH correction mechanisms adjust the RH toward the reference, 

but the deviations are still significant. Note that this observation occurred during a severe rainfall event caused by the 

convergence of the tropical depression and the southwest monsoon from August 23 to August 30, 2018. All fifteen co-launches 320 

conducted in this event exhibited high bias in RH, ranging from 10% to 24%, and five showed bias greater than 10% even 

after correction. This particularly biased case has RMSE ranked 99.93% in our dataset. 

 

https://doi.org/10.5194/egusphere-2024-661
Preprint. Discussion started: 8 April 2024
c© Author(s) 2024. CC BY 4.0 License.



18 

 

 

 325 

Figure 11. The temperature (left) and RH (right) of the co-launch on 2018-08-27 06Z. The reference (VS) is illustrated in blue, the 

ST in range, CDF-corrected in green, and GLM-corrected in red. 

 

From the cases shown above, we also notice the characteristics of different correction methods. The CDF-corrected 

temperatures show a wavy pattern along the pressure levels due to the bin-based correction. The GLM adjustments look like 330 

horizontal shifts of the original values due to the linearity of the model. 

Despite the simplicity of our correction methods, the temperature bias between ST and VS can be reduced from 3.0 K to 0.9 

K and the RH bias from 8.5% to 6.9%. Note that our correction methods also reduce the standard deviations from 1.8 K to 0.6 

K and 3.8% to 2.8%, respectively. Hence, we can expect 80% of ST observations to exhibit less than 1K bias in temperature 

and 8.8% bias in RH. 335 

The corrected ST measurements aligned well with the VS data, especially when the sounding successfully reached an altitude 

higher than 300hPa.  For those co-launches that ended early, though their bias is still low in statistics, their profiles usually 

looked problematic when visualized. We recommend further looking into the reasons that cause the sounding to end early. 
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5.2 A use case of ST 

The low cost of the ST can facilitate high spatial-temporal frequency of upper-air observations. While the ST provides 340 

reasonable measures after correction, its reliability in higher altitudes is still incompatible with the VS used in standard 

operation. Therefore, here, we demonstrate a use case to illustrate the strength of the ST. Figure 12 illustrates a set of continuous 

ST profiles on 2018-08-17 with one-hour intervals. Figure 12 shows the evolution of a local convective system, which is not 

feasible in regular 12-hour interval radiosonde operation -the increase of atmospheric moisture at 1300 local time before the 

heavy rain occurrence is observed. Using the flexibility in deploying the ST during field campaigns allows us to capture vertical 345 

profiles in the troposphere at an hourly, or even shorter, time interval. This is notably advantageous for understanding the 

development of deep convection, which typically has a lifetime of 1 to 3 hours, and the surrounding environment, especially 

the lower boundary layer. A similar ST profile has been used in the study of the afternoon thunderstorm in Taipei compared 

to the results from CRESS cloud-resolving modeling (Tsujino et al. 2022). Note that the ST data here was corrected with the 

CDF-based method; better performance can be achieved with GLM-based methods. 350 

 

 

Figure 12. The continuous ST observations of one-hour intervals on 2018-08-17 at Shezi. The soundings were corrected with CDF, 

and the derived specific humidity, q, is shown in panel (a) together with the wind field. The derived equivalent potential 

temperature, ϴe, is shown in panel (b). 355 

 

6. Concluding Remarks 

In this study, we explored upper-air observations by assessing the capabilities and potential of the Storm Tracker (ST) as an 

alternative to traditional instruments like the Vaisala RS41-SGP (VS). The GPS estimated ST wind error difference is about 

0.05 ms-1. To ensure the reliability of ST measurements in temperature and moisture, we conducted over a thousand co-360 

launches of the ST and the VS, evaluating and refining the performance of the ST through developed correction methods for 

temperature and humidity measurements. The corrected ST soundings have 1-K temperature and 7% relative humidity root 
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mean square difference to the VS soundings. These error differences can be reduced to 0.66-K and 4.61% below the 700-hPa 

height.  

Derived from the co-launch dataset, two correction methods based on CDF and GLM algorithms were implemented to enhance 365 

the quality of temperature and humidity observations in the ST. Both methods work comparably well to reduce the biases of 

the ST. While the CDF-based correction is robust and reliable, the GLMs easily model and change the predictors. And despite 

being lightweight and cost-effective, the ST exhibited observations closely aligned with the VS after corrections, particularly 

in the lower atmospheric layers below 500hPa. The geostrophic adjustment dynamics indicate that the spatial temperature 

variation in the free atmosphere may not be large. However, the lower atmosphere may have large variations in temperature 370 

and moisture. This positions the ST as a promising candidate for supplementing regular upper-air observations for high spatial 

and temporal resolution in the lower atmosphere. 

Although we used the linear regression version of GLMs in this study, the concept of modeling the joint probability distribution 

can be extended to various statistical models such as decision trees, support vector machines (SVM), and artificial neural 

networks (ANN). The simple GLMs in this study assume the response is a Gaussian distribution of the linear combination of 375 

predictors. Other machine learning models can establish nonlinear mappings between the predictors and response without 

assuming any distributions. However, investigating more machine learning models is beyond the scope of this study. 

In addition, while the VS remains the standard for upper-air observation, the cost-effectiveness and demonstrated efficacy of 

the ST post-correction mark a significant benefit for atmospheric research. The ST's adaptability and potential for integration 

into scientific field campaigns or standard operational practices showcase its value. As hardware enhancements and more 380 

sophisticated correction methodologies for the ST are anticipated, its capacity to contribute significantly to atmospheric studies 

is poised for growth. 

In closing, the ST represents a beacon of innovation in observational technology and reflects the evolving landscape of 

meteorological research. Its adaptability, affordability, and close approximation to the VS make it a suitable alternative for 

high spatial and temporal profiles of lower atmospheric observations. Ongoing advancements in hardware and correction 385 

methods solidify the ST's role as an asset for scientific field observations. 

Code Availability 

Code for data cleaning and analysis is provided as part of the replication package. It is available at 

https://www.dropbox.com/scl/fo/ah7i6z4f7u2yzijfh7ua3/h?rlkey=ar4g2hq7hwkop2eyzw83el8ih&dl=0 for review. It will be 

uploaded to GitHub once the paper has been conditionally accepted. 390 

Data Availability 

The data for this project are confidential but may be obtained with Data Use Agreements with the National Taiwan University. 

Researchers interested in access to the data may contact Ting-Shuo Yo at tsyo@ntu.edu.tw. It can take some months to 
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negotiate data use agreements and gain access to the data. The author will assist with any reasonable replication attempts for 

two years following publication. 395 
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