
Authors’ response to reviewers report

Response to Reviewer 1

Clayton et al. derived analytical equations and conducted LEFM analysis to study the influence of firn-
layer material properties (depth-varying density and modulus) on surface crevasse propagation in glacier
and ice shelves. They found that the firn layer has a stabilizing effect on grounded glaciers (free slip
boundary condition), whereas a destabilizing effect on ice shelves, with regard to fracturing and calving.
The study has important implications for assessing the stability of ice sheets or ice shelves.

We thank the reviewer for their comments and positive assessment of the manuscript.

However, there are two major limitations in the assumptions of the models: i) Poisson ratio is assumed to
be depth-invariant; ii) firn is assumed to be impermeable when evaluating the depth of meltwater-driven
hydrofracture, neglecting the fact that meltwater will penetrate the porous firn layer instead of fracturing
it. I suggest the authors reconsider the model assumption, or at least highlight the limitations, before it
can receive further consideration.

Please see the responses below addressing these individual points. Paragraphs that have been added to
the manuscript as a result of reviewer comments are indicated with italics in this response. Additionally,
a new section and additional appendix have been added to the manuscript following reviewer feedback
to showcase that the model remains appropriate for viscous/incompressible ice rheologies, and we have
attached these new sections as appendix to this response.

Comment # 1
1) Why do the authors neglect depth-variations in Poisson ratio? Shouldn’t Poisson ratio and Young’s
modulus both strongly depend on the density? Will a depth-varying Poisson ratio (which is more realistic)
significantly affect the results? Below attach some references on the depth variations in Poisson ratio [1, 2,
3]. One possible way to represent the depth varying mechanical properties could be developing empirical
relationships between Poisson ratio/Young’s modulus, and the firn density.

[1] Schlegel, R., Diez, A., Löwe, H., Mayer, C., Lambrecht, A., Freitag, J., ... & Eisen, O. (2019).
Comparison of elastic moduli from seismic diving-wave and ice-core microstructure analysis in Antarctic
polar firn. Annals of Glaciology, 60(79), 220-230.

[2] Smith, J. L. (1965). The elastic constants, strength and density of Greenland snow as determined
from measurements of sonic wave velocity (Vol. 167). US Army Cold Regions Research & Engineering
Laboratory.

[3] King, E. C., & Jarvis, E. P. (2007). Use of shear waves to measure Poisson’s ratio in polar firn.
Journal of Environmental and Engineering Geophysics, 12(1), 15-21.

The reviewer raises an interesting point regarding the use of a depth invariant Poisson ratio ν. In response
to this, we conducted a study using the LEFM model for a dry surface crevasse subject to various ocean-
water heights in a grounded glacier, considering a depth dependent Poisson’s ratio and a homogeneous
Poisson’s ratio of ν = 0.35 to determine its effect on crevasse propagation. As no analytic expressions
could be derived for the depth-dependent Poisson ratio case, stress profiles used within the LEFM study
were obtained through numerical finite element simulations. Results for the subsequent LEFM study are
presented in Fig. 1. An exponential distribution with depth z is assumed - similar to that of the density
and Young’s modulus distributions - with the tuned constant D = 32.5 and a surface Poisson’s ratio
νf = 0.07 based on the data from Schlegel et al. (2019), giving the Poisson ratio as:

ν(z) = νi − (νi − νf)exp(−(H − z)/D). (1)
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Figure 1: Normalised crevasse depth predictions versus oceanwater height ratio for a single isolated dry
crevasse in a linear elastic ice sheet, considering homogeneous and depth-dependent Poisson Ratio.

Using this depth-dependent Poisson ratio, the largest difference in crevasse depth was observed for in-
termediate ocean-water levels, with an increase of 6% in crevasse depth with respect to the homogeneous
case for an oceanwater height of hw = 0.5H (see Fig. 1 in this response/Figure E1 in the updated paper).
This is in stark contrast with the findings for depth-dependent density and depth-dependent Young’s
modulus which predict a reduction in crevasse penetration depth. The effect of Poisson ratio is less influ-
ential compared to depth dependent density and Young’s modulus, as depth dependent density resulted
in a reduction of 20% of the crevasse depth and depth dependent Young’s modulus resulted in a reduction
of 45% of the crevasse depth.
The results discussing a depth-dependent Poisson ratio have been added to Appendix E. While the influ-
ence is comparatively minor, we conclude that indicating that small variations in Poisson ratio observed
within ice/firn do not play a significant role, but it nevertheless an interesting finding. The full text added
as appendix E reads:
“For the crevasse propagation studies previously presented, a depth invariant Poisson ratio of ν = 0.35
was assumed. However, it has been suggested that Poisson ratio also exhibits a linear dependency on
ice density and therefore leads to a depth-dependent profile (Smith, 1965). Furthermore, Schlegel et al.
(2019) and King and Jarvis (2007) provides a depth-dependent Poisson ratio profile based on seismic
velocity measurements on ice cores. To study the effect of this depth-dependent Poisson ratio, a linear
elastic fracture mechanics study is performed. We assume an exponential distribution of Poisson’s ratio
with depth, similar to the density and Young’s modulus distributions.

ν(z) = νi − (νi − νf)e
−(H−z)/D (2)

where νf = 0.07 is the Poisson ratio of firn in the upper surface, νi = 0.35 is the Poisson ratio of fully
consolidated ice and D = 32.5 is the tuned constant. This profile approximates the observations from
Schlegel et al. (2019), where we have scaled the length parameter D to match our density and Young’s
modulus profiles as this profile was obtained at a different location (with significantly different ice-sheet
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and firn thickness). As it is not possible to derive a fully analytic expression for the stress profiles with
this depth-dependent Poisson ratio, the longitudinal stress profiles are obtained numerically through the
finite element model. Once obtained, the stresses are used to drive the propagation of the surface crevasse
in the linear elastic fracture mechanics study.
We consider a dry (air-filled) crevasse, with different values of oceanwater height hw and plot the nor-
malised crevasse penetration depth versus oceanwater height hw in Fig. 1. This figure shows that the
effect of including variations in Poisson ratio have a more limited effect compared to density and Young’s
modulus variations. The largest percentage difference in crevasse depth was observed for intermediate
ocean-water levels, with an increase of 6% in crevasse depth with respect to the homogeneous case when
considering a depth dependent Poisson ratio, for an oceanwater height of hw = 0.5H. This is in contrast
to the inclusion of firn density and Young’s modulus, which predict a reduction in stabilised crevasse depth
for surface crevasses in grounded glaciers. The effect of a including a depth-dependent Poisson ratio is less
influential compared to density and Young’s modulus, as depth-dependent density resulted in a reduction
of 20% of the crevasse depth and depth-dependent Young’s modulus resulted in a reduction of 45% of the
crevasse depth. We therefore conclude that the inclusion of variations in Poisson ratio does not play a
significant role in crevasse propagation. ”

Comment # 2
2) The longitudinal stress was derived for compressible linear elasticity (Eqn.1 in the manuscript), why
not viscous model? I think that a common approach, when looking at calving for example (e.g. Benn et
al 2007, Ann [4]), is to calculate the background stresses from a viscous model (associated with long- term
creep of the ice, and estimated perhaps from satellite-derived estimates of strain rate) instead of using
an elastic model to calculate that background state. The authors might need some explanation justifying
why they use linear elasticity to calculate the longitudinal stress.

[4] Benn, D. I., Cowton, T., Todd, J., & Luckman, A. (2017). Glacier calving in Greenland. Current
Climate Change Reports, 3, 282-290.

The model presented is also capable of capturing this incompressible stress state by setting the Poisson
ratio to ν ≈ 0.5. For example, for constant Young’s modulus and Poisson’s ratio case with ν ≈ 0.5, the
derived analytical solution in Eq. 1 exactly matches with that of the Weertman (1957) solution [1]. As
discussed in Lipovsky (2020) [2], “This initial volumetric contraction does not occur in real ice shelves
because at timescales longer than the Maxwell time ice is well approximated as being incompressible.”
We have added a remark to the paper clarifying this:
“The Poisson ratio ν used within our results represents ice as a linear-elastic compressible solid, which is
a common assumption for rapidly propagating cracks. If the crevassing process occurs on a time-scale well
below the Maxwell time-scale, ranging from hours to days depending on the strain-rate due to nonlinear
viscous nature, the assumption of compressibility would be valid. Instead, if the crevassing process occurs
slowly, over the span of weeks, the assumption of incompressibility would be valid; so a Poisson ratio of
ν = 0.5 will allow for the model derived here to be applicable over longer time-scales. ”

If we use a Poisson ratio of ν = 0.5, the crevasse depths obtained for a dry crevasse subject to different
values of oceanwater height hw are presented in Fig. 2/Figure 9. in the updated paper. This can be
compared directly to the results presented in the paper for ν = 0.35 (included in Fig. 2/ Figure 9. in the
updated paper as dashed lines). For surface crevasses in glaciers subject to low levels of oceanwater, the
penetration depth is unaffected by firn density due to crevasses stabilising in fully consolidated strata.
This is the case for both linear elastic and non-linear viscous rheologies. For intermediate oceanwater
heights (0.3H < hw < 0.6H), crevasses propagate deeper when considering a non-linear viscous rheology,
since stresses are more extensional. Thus, significant reductions in crevasse depths are only observed for
oceanwater heights hw > 0.6H. The largest reductions in crevasse depth are observed at hw > 0.8H for
the non-linear viscous rheology, with a maximum percentage difference of 64% between depth dependent
and homogeneous results. These findings complement the results found in our paper, and follow similar
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trends to the compressible stress state results. A new section has been added to the main text of the pa-
per, including the results for crevasse propagation considering a non-linear rheology. This section provides
the stress profiles resulting from our analytic expressions, compared with stress profiles from numerical
finite element simulations using a visco-elastic rheology, and shows that setting ν = 0.5 indeed obtains
the incompressible/viscous stress state.
In addition, we also conduct linear elastic fracture mechanics studies for water-filled surface crevasses in
ice shelves of height H = 125m and length L = 5000m, considering a non-linear viscous ice rheology.
Similarly to the linear elastic compressible case, we consider surface crevasses at the horizontal position
x = 4750m (250 m from the ice shelf terminus) and extract the numerical longitudinal stress profile from
the finite element analysis. We plot the stabilised crevasse depth versus meltwater depth ratio for the
non-linear viscous (NLV) rheology in Fig. 5 / Figure 10. of the updated paper, along with the results for
linear elastic compressiblity (LE).
When comparing the stabilised crevasse depths close to the front, we note that the penetration depth is
independent of ice rheology, which is in contrast to the grounded glacier. For the homogeneous density,
minimal crevasse propagation is observed for meltwater depth ratios below hs/ds < 0.6, with full thickness
propagation only occurring when fractures are close to saturation. The inclusion of the depth-dependent
density results in deeper crevasse penetration depths, with minimal differences in penetration depth be-
tween the linear elastic and non-linear viscous rheology. This likely indicates that for crevasses close to the
front, fracture is driven by the flotation height. For depth-dependent density, the reduction in flotation
height leads to an increase in tensile stress in the upper surface, due to reductions in Rxx and increased
bending stress. In addition, the lithostatic component of longitudinal stress is reduced, leading to deeper
crevasse propagation when including firn density.
We also consider the propagation of an isolated surface crevasse located in the far field region of a floating
ice shelf, with results presented in Fig. 4 / Figure 11. of the updated paper. As stated previously, for the
linear elastic compressible rheology the stress state is fully compressive for both the homogeneous and
the depth-dependent density case, thus no crevasse propagation is observed regardless of meltwater depth
ratio. By contrast, when considering the non-linear viscous rheology of ice, surface crevasses may prop-
agate in the far field region if there is sufficient meltwater pressure present. Large increases in crevasse
penetration depth are observed for meltwater depth ratios greater than hs/ds = 0.50, with full thickness
propagation being observed close to crevasse saturation at hs/ds = 0.95. Similar to crevasses near the
front, the inclusion of depth dependent density results in increased crevasse penetration depths compared
to the homogeneous density scenario. These results have been added as Section 5 in the paper.
[1] J. Weertman, ‘Deformation of Floating Ice Shelves’, Journal of Glaciology, vol. 3, no. 21, pp. 38–42,
Jan. 1957, https://doi.org/10.3189/S0022143000024710.
[2] B. P. Lipovsky, ‘Ice shelf rift propagation: stability, three-dimensional effects, and the role of marginal
weakening’, The Cryosphere, vol. 14, no. 5, pp. 1673–1683, May 2020, https://doi.org/10.5194/
tc-14-1673-2020.

Comment # 3
3) Once the authors start to consider meltwater within the crevasse, it confuses me that the porous
nature of firn is completely ignored. LEFM no longer holds for porous material and poromechanics [5]
should be considered. Could the authors at least highlight the limitations of current results (Figure 5&7
in the main text)?

[5] Coussy, O. (2004). Poromechanics. John Wiley & Sons.

The reviewer raises an intriguing point regarding the porous nature of firn with regards to meltwater
pressure. In this study we have assumed that meltwater pressure is restricted solely to the fractured
region. For crevasses in colder ice this is a realistic assumption. During crevasse propagation, water will
seep into the firn surrounding the crevasse and start freezing, forming a thin ice layer. This thin ice layer
then prevents further water from leaking into the surrounding firn. A similar effect happens near the
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Figure 2: Normalised crevasse depth predictions versus oceanwater height ratio for a single isolated dry
crevasse in a linear elastic ice sheet, considering homogeneous and depth-dependent mechanical properties
for linear elastic incompressible ice (ν = 0.5)
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Figure 3: Normalised crevasse depth predictions versus meltwater depth ratio for a single isolated crevasse
in a linear elastic ice sheet for an oceanwater height of hw = 0.8H, considering homogeneous and depth-
dependent density for linear elastic incompressible ice (ν ≈ 0.5)
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Figure 4: Normalised crevasse depth predictions versus meltwater depth ratio for a single isolated surface
crevasse located in the far field region (x = 2500m) considering a linear elastic (LE) and non-linear viscous
(NLV) rheology.
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Figure 5: Normalised crevasse depth predictions versus meltwater depth ratio for a single isolated surface
crevasse located close to the ice shelf front (x = 4750m) considering a linear elastic (LE) and non-linear
viscous (NLV) rheology.
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surface, while water is able to permeate through the top layer of firn (which is typically around 0◦C), ice
layers (referred to as ice lenses) that prevent further water inflow form as soon as the water permeates
deeper and reaches sub-zero temperatures [1,2]. We have added the following text to the paper, clarifying
the implications of not including a poromechanics formulation for the firn:

“ One final limitation of our analytic models is related to water-filled crevasses. While we investigate
the effects of considering depth-varying firn layer density and Young’s modulus, we acknowledge that both
these effects may be arising from the porosity of the firn. It is possible that water leaking from the crevasse
into the surrounding porous firn. For colder ice-sheets and deeper crevasses, such that the water column
is surrounded by ice of sub-zero temperatures, this assumption is reasonable, because any water that seeps
into the surrounding ice/firn will freeze, creating an impermeable ice layer (i.e. ice lenses) surrounding
the crevasse, which will prevent water from permeating further into the firn (Buzzard et al.,2018; Amory et
al., 2024). As these ice lenses are typically very thin, these do not alter the stress state at the glacier scale.
However, if temperate glaciers are considered, or conditions where water-filled crevasses do not penetrate
to considerable depth, the firn/ice surrounding the crevasse might not be sufficiently cold to cause the ice
lens to form. In such circumstances, the presented model will overestimate the crevasse depths obtained,
as the saturated firn will reduce the effects of the water pressure within the crevasse by re-distributing this
pressure over a larger region surrounding the crevasse. In future studies, we will consider the application
of poro-damage phase field models (Sun et al., 2021; Clayton et al., 2022) to study fracture of saturated
and unsaturated porous ice materials, and compared them with LEFM models. ”
[1] S. C. Buzzard, D. L. Feltham, and D. Flocco, ‘A Mathematical Model of Melt Lake Development on
an Ice Shelf’, Journal of Advances in Modeling Earth Systems, vol. 10, no. 2, pp. 262–283, Feb. 2018,
https://doi.org/10.1002/2017MS001155.
[2] C. Amory et al., ‘Firn on ice sheets’, Nat Rev Earth Environ, vol. 5, no. 2, Art. no. 2, Feb. 2024,
https://doi.org/10.1038/s43017-023-00507-9.
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