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Response to Reviewer 2

The idea that it is worth considering how the properties of firn layers could affect the stresses that control
surface crevasse opening is very compelling.

We thank the reviewer for their comments, and hope to address their concerns below. For the concerns
raised by using a compressible linear-elastic model, we have added extra sections to the paper showing
that an incompressible viscous rheology follows similar trends, which we have attached as appendix to
this peer review. Please also see the responses to peer reviewer 1 regarding these additional sections.

Comment # 1
1) However, this analysis makes the radical assumption that the stresses in an ice sheet or shelf are
controlled solely by the elastic deformation of compressible ice. This is fine if one simply wants to go
through a mathematical exercise, but the title, abstract and body of the paper imply that the results
of this analysis applies to real ice sheets and shelves. I was particularly disturbed by the fact that the
abstract does not make clear that this is an exercise based on ignoring viscous flow of ice. The fact that
the Maxwell time of ice is on the order of days means that an ice sheet or shelf would have to have formed
in less than a day for this analysis to be applicable.

The major conclusion of the paper is that inclusion of low-density firn produces opposite effects for
idealized ice sheets versus floating ice shelves. The abstract and a cursory reading of the paper makes
this seem like a general conclusion. Upon closer reading it is clear that the ice shelf result is only for a
particular region close to the edge of the shelf. The authors correctly note that assumption of perfect
elasticity results in compression everywhere far from the shelf edge so that no surface crevasses should
result for any assumed firn densities or Young’s Moduli! This is confusing because the paper only discusses
analytic solutions for the stress field far from a shelf edge. To get surface crevassing on a compressible
ice shelf with infinite viscosity requires bending stresses close to the edge of the shelf. The authors then
use a finite element model to compute those stresses at a fixed position (250 m) from the shelf edge. At
that position the predicted crevasse depth is increased by a decreasing firn density and Young’s Modulus.
I assume that this is a robust result but it is hard to evaluate given the information in this paper. More
importantly, the paper makes it seem that this is general result based on the analytical results derived in
the paper, as is clear from the opening of the “Conclusions” section:

“In this paper, we derived analytical equations for the far field longitudinal stress including the effects
of surface firn layers, described by depth-varying density and Young’s modulus profiles based on field data.
These analytic expressions were used to perform fracture propagation studies on isolated air/water-filled
surface crevasses in grounded glaciers and ice shelves . . . ”

This certainly gave me the wrong idea when I first read the paper.
...
It is incumbent on these authors to make a case that the assumption of perfect elasticity gives insight

into the opening of surface crevasses on real ice sheets and shelves.

The reviewer raises a valid point regarding the use of linear elastic compressibility instead of a non-linear
viscous rheology. The assumption of ice behaving as a linear elastic compressive material was taken, due
to crevasses developing in a rapid manner below the Maxwell time-scale. The model presented is also
capable of capturing this incompressible stress state by setting the Poisson ratio to ν ≈ 0.5. This will
emulate the slow development of crevasses through ice, during which the ice has sufficient time to attain
an incompressible stress state.

We note that if a Poisson’s ratio of ν = 0.5 is considered, the far-field stress σxx in Eq. 1 (giving the
longitudinal stresses for a compressible case without any depth-dependent material parameters) obtains
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the original expression for stress derived byWeertman (1957) assuming a non-linear viscous rheology. Thus
when assuming incompressiblity, the far-field stress state is independent of rheology. To address this, a
new section has been added, Section 5 in the manuscript, which shows stress profiles assuming a non-
linear viscous rheology and a linear elastic incompressible rheology, as well as crevasse penetration depths
versus oceanwater depth ratio for a dry crevasse, considering a compressibility and incompressibility.
These results show that the analytic expressions presented in our manuscript are valid the viscous stress
state.

For a more in-depth discussion regarding this point, and the changes made to the manuscript to in-
clude this discussion, see the responses to Reviewer 1, comments #1 and #2.

Comment # 2
2) The other major result of the paper is that low-density firn results in smaller crevasse depths for
a grounded glacier compared to a uniform ice case. The authors note that this result contradicts the
previous Linear Elastic Fracture Mechanics analysis of van der Veen (1998). I suspect that the difference
with the previous study is caused by the assumption of purely elastic horizontal stresses which are less
extensional at the ice sheet surface than the stresses assumed by van der Veen (1998). Thus, again I am
not convinced that the results of the new analysis apply to the real world.

It is correct that the inclusion of a non-linear viscous rheology results in more extensional stresses in the
upper surface of the ice sheet, leading to deeper crevasses in comparison to linear elastic compressible ice.
However, the inclusion of the depth-dependent density leads to reductions in both resistive stress Rxx and
lithostatic stress σzz for both material rheologies, a point which was neglected by van der Veen (1998)
who considered Rxx to be independent of depth-varying density, which is a limitation of their work. From
van der Veen (1998, page 36): “In the present model, the tensile resistive stress, Rxx, is taken constant
with depth. A similar assumption is made by Rist et al. (1996) who write the full stress at depth as the
sum of an arbitrary tensile surface stress and the lithostatic stress at that depth. In the notation of Eq.
4, their surface stress independent of depth corresponds to Rxx. However, if low-density firn is present,
the tensile stress in this firn is probably less than that in the fully densified stronger ice at depth. In
the limiting case of freshly fallen snow, it is highly unlikely that there is an appreciable surface stress. It
would therefore be more appropriate to relate Rxx somehow to the firn density assumed a proxy for the
firn strength, but also accounting for the generally lower surface temperatures which may increase the
strength, with the tensile stress near zero at the surface. The implication of this approach would be that
surface crevasses must be initiated below the firn layer, at a depth where the ice can support a tensile
stress sufficiently large to initiate fracture.”

For a non-linear viscous incompressible rheology (ν ≈ 0.5), the resistive stress Rxx when considering
depth dependent density is given by Eq. (13), substituting ν = 0.5:

Rxx =
ρigH
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which is invariant with depth z but still dependent on firn density ρf , unlike what van der Veen assumed.
For example, when considering a grounded glacier of height H = 125m and oceanwater height of hw =

0.5H, the homogeneous density case gives a value of Rxx = ρigH
2 −ρsg

h2
w

2H = 404.9 kPa, whilst the inclusion
of firn density reduces the resisitive stress to Rxx = 280.6 kPa, showing that assuming this resistive stress
to be independent of density depth-variations is incorrect.

For crevasses that stabilise in deeper strata, there are minimal reductions in surface crevasse depth
when considering a depth-dependent density in comparison to the homogeneous case. However, as the
oceanwater height increases, crevasses become shallower, and as a result, the inclusion of firn density
becomes more prevalent. For example, the percentage difference in penetration depth for a dry crevasse
of oceanwater height hw = 0.5H reduces to 4%, however increasing the oceanwater height to hw = 0.8H
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results in a percentage difference of 64% compared to the homogeneous case.
[1] C. J. van der Veen , ‘Fracture mechanics approach to penetration of surface crevasses on glaciers’,
Cold Regions Science and Technology, vol. 27, pp. 31–47, Oct. 1998, https://doi.org/10.1016/

S0165-232X(97)00022-0.

3

https://doi.org/10.1016/S0165-232X(97)00022-0
https://doi.org/10.1016/S0165-232X(97)00022-0















