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Abstract. The Global Navigation Satellite System (GNSS) is a key asset for tropospheric monitoring. Currently, GNSS me-
teorology relies primarily on geodetic-grade stations. However, such stations are too costly to be densely deployed, which
limits the contribution of GNSS to tropospheric monitoring. In 2016, Google released the raw GNSS measurement applica-
tion programming interface for smartphones running on Android version 7.0 and higher. Sinee-Given that nowadays there
are billions of Android smartphones worldwide, utilizing those devices for atmospheric monitoring represents a remarkable
scientific opportunity. In this study, smartphone GNSS data collected in Germany as part of the Application of Machine Learn-
ing Technology for GNSS IoT Data Fusion (CAMALIOT) crowdsourcing campaign in 2022 were utilized to investigate this
idea. Approximately twenty thousand raw GNSS observation files were collected there during the campaign. First, a dedi-
cated data processing pipeline was established that consists of two major parts: machine learning (ML)-based data selection
and ionosphere-free Precise Point Positioning (PPP)-based Zenith Total Delay (ZTD) estimation. The proposed method was
validated with a dedicated smartphone data collection experiment conducted on the rooftop of the ETH campus. The results
confirmed that ZTD estimates of mm-level precision could be achieved with smartphone data collected in an open-sky en-
vironment. The impacts of observation time span and utilization of multi-GNSS observations on ZTD estimation were also
investigated. Subsequently, the crowdsourced data from Germany were processed by PPP with the ionospheric delays interpo-
lated using observations from surrounding SAPOS(Satellite Positioning Service of the German State Survey (SAPOS) GNSS
stations. The ZTDs derived from ERAS and an ML-based ZTD product served as benchmarks. The results revealed that an
accuracy of better than 10 mm can be achieved by utilizing selected high-quality crowdsourced smartphone data. This study
marks-the-first-sucecesstul-demonstration-of-demonstrates high-precision ZTD determination with crowdsourced smartphone

GNSS data and reveals success factors and current limitations.
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1 Introduction

The Global Navigation Satellite System (GNSS) provides the capability to continuously monitor the troposphere with high
precision, regardless of weather conditions (Hofmann-Wellenhof et al., 2012). One of the primary meteorological parameters
derived from GNSS observations is Zenith Total Delay (ZTD), which can be further converted to Precipitable Water Vapor
(PWYV). Since water vapor is a highly dynamic meteorological variable, exhibiting significant spatial and temporal variations,
it necessitates regular measurement with dedicated sensors. However, the current meteorological observing system lacks suffi-
ciently dense measurements. Hence, the increased utilization of GNSS observations can make substantial contributions to both
meteorology and climatology studies (Bevis et al., 1992).

Currently, GNSS meteorology mainly relies on the data obtained from geodetic-grade receivers of global or regional net-
works, such as the widely recognized International GNSS Service (IGS) network and the European E-GVAP(EUMETNET
EIG GNSS Water Vapour Programme (E-GVAP) network (Guerova et al., 2016). Typically, ZTDs derived from those geodetic-
grade stations exhibit an accuracy of several millimeters (Li et al., 2015). These precise ZTD estimates can be further assimi-
lated into Numerical Weather Models (NWM), thereby enhancing the accuracy of weather forecasting (Guerova et al., 2016).
However, geodetic-grade GNSS receivers are costly and cannot be densely deployed, especially in less developed regions,
which limits their contribution to meteorology research.

The potential of utilizing cost-effective GNSS devices for tropospheric monitoring has been discussed in many publications.
Single-frequency GNSS receivers offer an alternative solution in this regard. Wang et al. (2019) examined the performance of
single-frequency GNSS stations for relative ZTD estimation and found that they could achieve a precision comparable to that
derived from dual-frequency stations. Krietemeyer et al. (2018) adopted the Satellite-specific Epoch-differenced Ionospheric
Delay (SEID) method (Deng et al., 2009) to recover the second-frequency observations for single-frequency receivers, and
achieved a ZTD estimation accuracy of 4 mm using Precise Point Positioning (PPP). Stepniak and Paziewski (2022) evaluated
ZTDs derived from u-blox receivers and reported mm-level agreement with those derived from geodetic-grade GNSS receivers.
They also highlighted the crucial role of GNSS antennas in achieving high-precision ZTD retrieval and suggested that the
utilization of a geodetic-grade antenna could further improve the results.

Given that there are around 3 billion Android smartphones being used worldwide (Cranz, 2021), they represent a source
of ubiquitous low-cost GNSS devices. Raw GNSS data from smartphones have become accessible from 2016 onward after
Google released the corresponding Application Programming Interface (API) for the Android 7.0 operating system (Banville
and Van Diggelen, 2016). Subsequently, more advanced positioning algorithms have been developed to exploit the raw GNSS
data. However, studies have also revealed several issues with these smartphone GNSS data, including weak resistance to
multipath interference, the frequent occurrences of cycle slips, and the unreliability of second-frequency observations (Zhang
etal., 2018; Li and Geng, 2019). These issues are attributed to the passive patch antennas and low-cost GNSS chips commonly
employed in smartphones, and thus make it challenging to use smartphone data for tropospheric monitoring.

Currently, research in relation to smartphone-based GNSS observations focuses mainly on the analysis of data quality and

the development of advanced positioning algorithms (Paziewski, 2020; Zangenehnejad and Gao, 2021). However, the subject of
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smartphone-based tropospheric monitoring remains relatively scarce. Tagliaferro et al. (2019) presented initial results of ZTD
estimation using a Nexus 9 tablet and a Xiaomi 8 smartphone. They employed the SEID method to recover dual-frequency

observations and achieved an accuracy of about 5 mm for ZTD estimation compared to those derived from a nearby geodetic-

grade receiver. Benvenuto et al. (2021) also explored ZTD estimation with smartphenes-and-original dual-frequency GNSS

data of a Xiaomi 8 smartphone and publicly available software. They reported an accuracy of several centimeters. In another
study, Stauffer et al. (2023) tested relative ZTD estimation using two weeks of data collected by a Google Pixel 4XL device and

demonstrated that an accuracy of better than 10 mm could be achieved. However, it is worth noting that these studies only used
a few dedicated smartphone GNSS data sets, and the potential of harnessing massive smartphone GNSS observations remains
largely uncharted. One of the main challenges has been how to collect the data at scale, apart from developing dedicated
methods to select GNSS data of sufficient quality and utilizing a suitable approach to process such diverse observations.

Crowdsourcing has proven to be a valuable tool for data collection in scientific research (Clery, 2011; See et al., 2022). Its
effectiveness is well demonstrated in applications such as earthquake early warning using crowdsourced smartphone accel-
eration measurements (Kong et al., 2016; Allen et al., 2020). However, the use of crowdsourced smartphone GNSS data for
tropospheric monitoring has remained unexplored until now. Prior research by Marques et al. (2021) and Lehtola et al. (2022)
introduced a method for jointly estimating station positions and tropospheric delays using a crowdsourced smartphone network,
yet their studies were limited to simulated GNSS data. To take advantage of the raw GNSS data API for Android smartphones
and explore the potential of crowdsourced smartphone data for atmospheric monitoring, the Chair of Space Geodesy at ETH
Zurich, in collaboration with the International Institute for Applied Systems Analysis (IIASA), launched the Application of Ma-
chine Learning Technology for GNSS IoT Data Fusion (CAMALIOT) crowdsourcing campaign in March 2022. A dedicated
Android smartphone application, hereafter referred to as CAMALIOT app, has been developed and can be freely downloaded
from the Google Play store. This app allows users to collect raw GNSS data for their own purposes and additionally lets them
voluntarily upload the data to the CAMALIOT server. As a result of the conducted crowdsourcing campaign, around 12 thou-
sand volunteers worldwide contributed over 5 TB of raw GNSS observations (See et al., 2023; Soja et al., 2023). An overview
of the software architecture deployed on the CAMALIOT server, designed and implemented to handle collection and retention
of the GNSS community data at scale, is given by Ktopotek et al. (2024) .

In this study, we focus on the determination of high-precision tropospheric delays using the smartphone GNSS data collected
during the CAMALIOT crowdsourcing campaign. The method concerning selection of suitable crowdsourced data as well as
PPP-based ZTD estimation is given in Section 2. A dedicated smartphone data collection experiment conducted on the rooftop
of the ETH campus and an overview of the crowdsourced data from Germany are described in Section 3. Subsequently,
a detailed analysis of the data quality and an evaluation of smartphone-based ZTD estimation are provided in Section 4.

Conclusions and outlook are given in Section 5.
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2 Methodology

This section is dedicated to the established processing pipeline for crowdsourced smartphone GNSS data. An overview of the
described approach is depicted in Figure 1. At a high level, the developed pipeline consists of two steps, where the first step is
to select high-quality smartphone data in an automatic manner, whereas the second step concerns the estimation of tropospheric

delays using the data selected in step one.
2.1 Data selection

While the crowdsourcing of data offers researchers the opportunity to access numerous and widespread observations at a rela-
tively low cost, it has some limitations, with data quality being the primary concern. A substantial portion of the smartphone
GNSS data collected during the CAMALIOT crowdsourcing campaign was low quality and could not be utilized for atmo-
spheric monitoring (See et al., 2023), even though the CAMALIOT app provides guidance for GNSS data collection. For
example, users were advised to place their smartphones in a stationary position with an open-sky view. However, it should be
acknowledged-emphasized that there is a clear trade-off between simplifying data collection efforts and the desire to collect
high-quality data. It means that users generally collected data regardless of observation environments, and instances where
smartphones were placed outdoors with an unobstructed view were rare. Consequently, data selection and quality control are
essential for preprocessing the extensive volume of crowdsourced data. By excluding low-quality data, a considerable amount
of computational resources can be saved during the subsequent data analysis.

To enable automatic data selection, a set of data quality indicators, e.g., Carrier-to-Noise Density ratio (C/Np), Position
Dilution of Precision (PDOP), and observation noise, were initially extracted from the raw GNSS observations stored in the
Receiver Independent Exchange format (RINEX) files. Then, a machine learning (ML)-based classifier was trained using a
subset of the data that had already been manually labeled. During the crowdsourcing campaign, the developed ML-based
classifier could automatically label incoming data as either ’Good’ or *Bad’. Therefore, smartphone data characterized by low
quality were excluded from further processing. The developed ML-based classifier was characterized by precision and recall
scores of 0.96 and 0.97, respectively. Finally, around 0.7% of the data were classified as ’Good’. Detailed information on the

training procedures and the performance evaluation of the ML-based classifier is described in Appendix A.
2.2 [Estimation of zenith total delays

In this study, PPP is employed to estimate zenith total delays from raw GNSS data. PPP is a technique for determining
the coordinates and other parameters of interest for a single receiver using high-precision satellite orbit and clock products
(Zumberge et al., 1997; Kouba and Héroux, 2001). It is preferred over relative positioning because it does not require a reference
station, especially considering that the crowdsourced data can be distributed across wide geographical areas and a suitable
reference station cannot be-always-always be available. The fundamental observation equations for the GNSS pseudorange and

carrier phase measurements are presented below:
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Figure 1. Flowchart of the data processing pipeline for crowdsourced smartphone GNSS data.

P=p+c-(d.—ds)+mfn-Zpn+mfy-Zy—+0
L:p+c'(dr*ds)+mfh’Zh+mfw’Zw+)\’N+€ (1)

where P and L are the ionosphere-free (IF) combinations of pseudorange and carrier phase measurements, expressed in units
of meters; the geometric distance between the satellite and the station antenna phase center is denoted by p; the receiver and
satellite clock biases are denoted by d,. and d, respectively; the Zenith Hydrostatic Delay (ZHD) and Zenith Wet Delay (ZWD)
are represented by Z;, and Z,,, and their sum is the so-called ZTD; the mapping functions for ZHD and ZWD are denoted by
mfr, and mf,,, respectively; the unknown ambiguity is N and its corresponding wavelength is \; the observation noises of the
ionosphere-free combinations of pseudorange and carrier phase measurements are denoted by 6 and e, respectively.
Commonly, dual-frequency observations are needed to form ionosphere-free combinations and thus eliminate ionospheric
delays. However, this remains a challenge for smartphone GNSS data. On the one hand, there are a limited number of smart-
phone models capable of recording dual-frequency observations. On the other hand, both the quantity and quality of observa-
tions on the second frequency cannot be-always-always be ensured for smartphones (Wang et al., 2020; Stauffer et al., 2023).
Consequently, smartphone GNSS data usually cannot support IF-PPP, especially when data are crowdsourced from less favor-
able environments. To address this issue, we employed the SEID method to interpolate ionospheric delays at the smartphone
locations using the surrounding geodetic GNSS stations. This allows to recover the second-frequency observations and use
them in the GNSS analysis. The accuracy of this ionospheric delay interpolation method is typically accurate at the level of
a few millimeters (Deng et al., 2009), especially during the inactive periods of the ionosphere. The Global Ionosphere Maps

(GIM) (Schaer, 1999) were not used due to their limited precision.
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The GNSS data were processed in static mode using our in-house software PPPx to derive ZTD estimates. The details of
the PPP processing strategy is-are outlined in Table 1. Note that the receiver Phase Center Variation (PCV) corrections were
not applied for smartphone GNSS observations due to the absence of smartphone GNSS antenna models. While GNSS data
collected by smartphones are typically sampled at a 1-Hz rate, we decided to down-sample the data to 30-s intervals in order to
enhance computational efficiency as such a sampling rate is still adequate for tropospheric monitoring purposes. Note that we
utilized an elevation-dependent weighting scheme for the smartphone data processing. Although C/Ny-dependent weighting
has proven to be advantageous in improving kinematic positioning precision (Zhang et al., 2018), our investigations revealed
that C/Ny-dependent weighting tends to introduce artifacts in ZTD estimates, and thus elevation-dependent weighting was used

in this study.

Table 1. Summary of the GNSS data processing strategy for PPP.

Item Description

Observations Ionosphere-free pseudorange and carrier phase measurements: GPS L1/L2, GLONASS L1/L2, Galileo
E1/E5a and BeiDou B11/B3I

Elevation mask 7°

Weighting Elevation-dependent: 4 sin(e)? for elevations lower than 30°; otherwise unit

Station position Static

Receiver clock Individual clock parameters for each GNSS constellation

Troposphere

Phase ambiguities

Products

Antenna model
Phase wind-up

Tides

Saastamoinen and GPT/GMF as a priori model (Saastamoinen, 1972; Bohm et al., 2006, 2007); remaining
zenith wet delays are estimated as random walk parameters with a process noise of 10~ m?/s

Float

Precise satellite orbit and clock products from Center for Orbit Determination in Europe (Schaer et al.,
2021)

IGS atx files (Rothacher and Schmid, 2010) for satellites; no correction applied for smartphones
Corrected (Wu et al., 1992)

Solid Earth tides, ocean tidal loading and pole tide (Petit et al., 2010)

3 Data

In this study, two data sets were utilized to investigate PPP-based ZTD estimation using smartphones: (i) GNSS observations
collected with a Google Pixel 4XL smartphone during a dedicated experiment located on the ETH campus rooftop and (ii)
high-quality smartphone data crowdsourced from Germany. The subsequent subsections are dedicated to the characteristics
of the acquired data sets and the description of the external data used for validation of the acquired smartphone-based ZTD

estimates.
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3.1 ETH rooftop experiment

Crowdsourced data are often not collected in favorable observation environments, and the availability of nearby geodetic-grade
stations for ZTD evaluation cannot always be guaranteed. To explore the potential of smartphone GNSS data collected in
open-sky environments for tropospheric monitoring, a Google Pixel 4XL smartphone was employed to collect 24 h of data on
May 18" 2023. The smartphone was placed on the rooftop of the HPV building at the ETH Honggerberg campus (Figure 2). It
was capable of tracking GPS, Galileo, GLONASS and Beidou signals (Stauffer et al., 2023). The CAMALIOT app (See et al.,
2023) was used to record raw GNSS data outputted by the embedded GNSS chip and antenna. The data were then converted to
RINEX files within the app so that they could be used for further analysis. It is worth mentioning that the CAMALIOT app was
optimized for RINEX conversion, with a focus on ensuring receiver clock consistency between the pseudorange and carrier
phase measurements (Wang et al., 2021; Zangenehnejad et al., 2023). In addition, a patch antenna (ANN-MB-00), connected
to a u-blox ZED-F9P receiver, was placed approximately 2 m away from the smartphone. This antenna-receiver combination
represents a typical low-cost GNSS device (Hohensinn et al., 2022) and is suitable for performance comparison. The u-blox
ZED-F9P receiver can track dual-frequency data from the GPS, Galileo and GLONASS constellations. For ZTD determination,
the geodetic-grade station ETH2, located on the same rooftop (as shown in Figure 2), served as the benchmark.

Although the Pixel 4XL can record L5/E5a measurements for GPS and Galileo, respectively, the quality of these measure-
ments is lower compared to those on the L1/E1 frequency (Stauffer et al., 2023). To enable high-precision PPP processing for
the Pixel 4XL, the original L5/E5a measurements were not used. Instead, seven stations from the Automated GNSS Network
for Switzerland (AGNES) network, situated at a distance of around 50 km from the smartphone, were employed to interpolate

ionospheric delays and recover the measurements on the second frequency (Deng et al., 2009).

Figure 2. Configuration of the GNSS data collection experiment carried out on the rooftop of the ETH campus. The Pixel 4XL smartphone
was shielded by a weather-resistant radome. A u-blox device was employed for performance comparison, while the geodetic-grade station

ETH2 served as the benchmark for ZTD estimation. The insert in the upper-right corner displays the Pixel 4XL under the radome.
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Figure 3. Distribution of AGNES stations utilized for the computation of ionospheric delays. The seven AGNES stations are indicated by

red circles, while the red star denotes the location of the Pixel 4XL smartphone.

3.2 Crowdsourced smartphone GNSS data

The smartphone GNSS data from Germany were used in this study to demonstrate the feasibility of ZTD determination based
on the crowdsourced observations. From March 2022 to mid-May 2022, more than twenty thousand RINEX files were collected
from Germany, comprising 21.0% of the total observation files collected worldwide. Most of the data were collected during the
daytime or in the late evening. Figure 4 provides an overview of the data quality, focusing on three important quality indicators:
C/Ny, observation duration and the presence of dual-frequency data. Generally, higher C/N values correspond to better data
quality, and longer observation duration favors the ZTD estimation. The mean C/Ny value is 27.1 dB-Hz, indicating that a
significant fraction of the data were collected indoors. On average, the observation duration amounts to 3.5 h. Interestingly,
C/Nj tends to be lower for longer observation sessions, suggesting that longer data collection sessions are more likely to
be conducted indoors. If we establish a eriteria—criterion where C/Nj is greater than 35 dB-Hz and the observation duration
exceeds 0.5 hours, only 2.8% of the data meet the requirements and hold the potential for ZTD estimation. Note that this
eriterta-criterion is empirically determined to show the data quality distribution and was not applied for practical data selection.
Although more than 94.6% of the data included multi-GNSS observations, only 12.7% of the data contained dual-frequency
measurements. Moreover, there were typically only 2-5-2 to 5 measurements available per epoch on the L5/E5a frequency,
which is insufficient for PPP processing.

As previously mentioned, to select high-quality data for tropospheric monitoring, the crowdsourced smartphone data initially
went through a classification process utilizing the established ML-based model (Figure 1). In this stage, the ML model identi-
fied 80 observation sessions from 20 users as ’Good’. Those 80 sessions were then processed with PPP for a positioning test,
with ionospheric delays being interpolated using the surrounding SAPOS—Satellite Positioning Service of the German State
Surveying (SAPOS) stations. Only data collected in static scenarios, exhibiting reasonable positioning precision, were further

analyzed for ZTD estimation. Finally, 20 sessions from 10 smartphone users showed high-precision positioning results and
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denotes the observation duration threshold of 0.5 h.

therefore were employed for ZTD estimation. Figure 5 shows the distribution of these 10 smartphones in Germany and the cor-
responding SAPOS stations utilized for ionospheric delay interpolation. To distinguish between these 20 observation sessions,
each smartphone was designated a unique character (A-J), and individual data collection sessions for the same smartphone
were identified by assigned numbers.

Given the arbitrary distribution of the crowdsourced data, nearby geodetic-grade stations that could serve as ZTD references
were not always available. To address this issue, we employed ERAS products, publicly available from the European Centre
for Medium-Range Weather Forecasts (ECMWF), to compute ZTDs at the smartphone locations. We acquired ERAS5 hourly
data on 37 pressure levels for Germany, with a spatial resolution of 0.25° by 0.25°. In addition, we leveraged an ML-based
tropospheric delay product, provided by the Chair of Space Geodesy at ETH Zurich via its Geodetic Prediction Center (Soja
et al., 2022), as an additional reference. It is worth noting that this ML-based product has been reported to achieve a global

accuracy of around 8 mm when compared to the ZTDs derived from GNSS observations (Crocetti et al., 2024).

4 Results and discussion

The results of the ETH rooftop experiment are first presented in this section, focusing on data quality analysis and ZTD
estimation. The ZTDs derived from the crowdsourced data in Germany are then introduced, complemented with their validation

based on external reference ZTD products.
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4.1 ETH rooftop experiment analysis

In this subsection, the GNSS data quality for the Pixel 4XL smartphone, u-blox and ETH?2 are first presented. Then, the ZTD
estimates derived from the Pixel 4XL and u-blox are evaluated, using ZTDs from ETH2 as references. Note that the Pixel 4XL
and u-blox are abbreviated as PIXL and UBLX, respectively, in the following text.

4.1.1 Data quality analysis

High-quality GNSS observations as well as the number of available measurements per epoch are essential factors for deriving
accurate ZTD estimates. The observation environment on the rooftop of the ETH campus can be considered favorable, and
therefore, one anticipates high-quality data from PIXL. As indicated in Table 2, the mean C/N for PIXL is 41.9 dB-Hz, signif-
icantly exceeding the values characterizing most of the crowdsourced smartphone data. Nevertheless, it remains approximately
3 dB-Hz lower than the values recorded by ETH2 and UBLX, which can be explained by the polarization mismatch between
the linearly-polarized smartphone GNSS antenna and the right-hand circular polarization of the GNSS signals (Zhang et al.,
2013). Importantly, no significant differences are observed in satellite tracking performance among the three different devices,
with roughly 9 GPS, 7 Galileo and 7 GLONASS satellites usable at each epoch. It is worth noting that the UBLX cannot track
Beidou signals, and only three Beidou satellites were observed by PIXL. Consequently, observations from Beidou satellites
were excluded from the ZTD estimation for this data set. With observations from GPS, Galileo and GLONASS, the mean
PDOP values are 1.02, 1.11, and 1.07 for ETH2, UBLX and PIXL, respectively.

10
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Observation noise serves as a straightforward metric of data quality. We calculated observation noises using time-differenced
pseudorange and carrier phase measurements (Colosimo et al., 2011). ETH2 and UBLX exhibited similar pseudorange noises
amounting to 0.17 m and 0.24 m, respectively. In contrast, PIXL exhibited a considerably higher pseudorange noise of 3.52 m.
However, the noise level of carrier phase measurements was consistent among these three devices, with 0.003 m, 0.004 m
and 0.004 m for ETH2, UBLX and PIXL, respectively. This observation aligns with findings from other studies, suggesting
that smartphones can provide precise carrier phase measurements but tend to deliver less accurate pseudorange measurements
(Zhang et al., 2018; Li and Geng, 2019). This is a promising feature for smartphone-based ZTD estimation, as carrier phase

measurements are crucial for high-precision demanding applications.

Table 2. Data quality statistics for the GNSS observations collected by ETH2, u-blox and Pixel 4XL.

Device C/Np (dB-Hz) PDOP Pseudorange noise (m) Carrier phase noise (m)

ETH2 442 1.02 0.17 0.003
UBLX 44.6 1.11 0.24 0.004
PIXL 41.9 1.07 3.52 0.004

4.1.2 Evaluation of zenith total delays

We processed multi-GNSS data from PIXL, UBLX and ETH2 using PPP in static mode, as detailed in Table 1. Note that only
GPS, Galileo and GLONASS observations were utilized, as UBLX lacked the capability to track Beidou signals. The ZTDs
derived from ETH2 were used as benchmark. Typically, ZTDs derived from geodetic-grade receivers can achieve a high level
of accuracy, often within a few millimeters (Li et al., 2015; Wilgan et al., 2022). As shown in Figure 6, the ZTDs derived from
UBLX exhibit a good agreement with those from ETH2, with an RMS value of 1.9 mm. This is noteworthy, given that UBLX
is a low-cost device. Although antenna PCV errors were not corrected for UBLX, the ZTD bias is only -1.4 mm. In contrast,
the ZTDs derived from PIXL show a much larger bias, approximately 6.0 mm. This bias is most likely attributed to the inferior
data quality from the smartphones and the uncorrected PCV errors, considering the similar elevation-dependent patterns of
PCV and ZTD. Currently, there is no available antenna PCV information for smartphones. However, there is a potential for
smartphone manufacturers to publish such information for each smartphone model using the GnssAntennalnfo API provided
by the Android 11 system (Google). Based on the ZTD estimates for the entire 24-h period, the resulting RMS value is 6.5 mm,
which can be considered sufficiently accurate for tropospheric monitoring. The largest deviation from the reference time series
(ETH2) is observed around 12e’eloek-:00 (GPST), which can be explained by the increased interpolation error of ionospheric
delays near local noon.

In contrast to Continuously Operating Reference Stations (CORS), crowdsourced smartphone GNSS data are typically
characterized by a short observation period, often spanning only a few hours or even minutes. A certain observing time span is
necessary to accurately separate ZTDs from other solve-for parameters, particularly the up component of station coordinates

and receiver clock bias, during the parameter estimation process. To assess the impact of observation time span on ZTD

11
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Figure 6. ZTD estimation using GNSS data collected on the rooftop of ETH campus. ZTDs derived from ETH2, UBLX and PIXL are
represented by black, blue and red lines, respectively. The bias and RMS of the ZTD estimates with respect to ETH2 are provided in the
bottom-right corner for UBLX and PIXL. Time is expressed as GPS Time (GPST).

estimation precision, we divided the 24-h data collected with PIXL into various time spans, including 5 min, 10 min, 15 min,
20 min, 30 min, 45 min, 1 hour, 1.5 hours, 2 hours and 3 hours. For each time span, we corrected the ZTD estimates for
the 6.0 mm bias, and then computed the mean accuracy in comparison to the reference ZTD estimates acquired with ETH2.
The results are shown in Figure 7. It is evident that the mean ZTD estimation accuracy improves with longer observation
duration. Interestingly, the benefits of extending the observation time span become less pronounced as the duration increases.
This suggests that more GNSS observations have the greatest impact on ZTD estimation when the overall observation session
is short. Notably, the mean accuracy is better than 10 mm when the time span is longer than 30 min. This is a promising
finding, as collecting 30-min-30 min of GNSS data in an open-sky environment is very feasible within the common smartphone
battery life. Thus, a 30-min observation duration represents a reasonable trade-off between ZTD estimation accuracy and data
collection efforts if the smartphone employed can track multi-GNSS signals.

To further investigate the influence of multi-GNSS observations on smartphone-based ZTD estimation with short obser-
vation time spans, we conducted an analysis in relation to three scenarios: GPS-only solutions, GPS+Galileo solutions and
GPS+Galileo+GLONASS solutions. The results are summarized in Figure 8. Incorporating Galileo observations tends to im-
prove the accuracy of the ZTD estimates, especially for short observation sessions. For instance, when the observation session
spans 30 min, the accuracy improves from 13.4 mm to 9.5 mm compared to the case where only GPS observations are uti-
lized. On the other hand, the impact of GLONASS observations on ZTD estimation is less evident. Adding GLONASS does
not always improve the ZTD estimation accuracy. This variability may be attributed to the inferior quality of the GLONASS
observations collected by smartphones, as suggested in previous studies (Wang et al., 2023; Tao et al., 2023). Overall, the
results indicate the advantages of smartphones capable of tracking multi-GNSS data for ZTD determination, especially when

observation sessions are short. Encouragingly, 94.6% of crowdsourced smartphone data contain multi-GNSS observations. It
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on multi-GNSS observations (GPS+Galileo+GLONASS) and the bias with respect to ETH2 was corrected.

is also worth noting that, when using 24 h of the PIXL data, there is no obvious difference (approximately 0.1 mm) between

the ZTDs derived from GPS-only and multi-GNSS data (cf. Wilgan et al., 2022).
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Figure 8. ZTD estimation error using the PIXL data with different GNSS constellation combinations and varying observation time spans.
The bars depict the mean error of the ZTD estimates with respect to ETH2. The one-sigma uncertainty is represented by the error bar edges.

Note that the bias with respect to ETH2 was corrected.

4.2 Crowdsourced data analysis

In this section, the data quality and the ZTD estimation performance of the crowdsourced smartphone data from Germany are

270 presented.
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4.2.1 Data quality analysis

Analyzing the quality of the crowdsourced smartphone data is beneficial for discovering the relationship between quality indi-
cators and the accuracy of ZTD estimation. Figure 9 exhibits three important quality indicators, namely observation duration,
C/Ny and PDOP, for each of the selected observation sessions (Figure 5). As discussed in Section 4.1.2, longer observation
sessions are statistically linked to more accurate ZTD estimates. Notably, a 30-min duration represents a reasonable trade-off
between the observation time span and the ZTD estimation accuracy. The average observation duration among the 20 selected
sessions is 1.4 h, with 85% of them exceeding 30 min. It is intriguing to observe that the observation duration exhibits a user-
dependent pattern, meaning that the same user tends to collect data ef-for similar periods of time. For example, the three longest
observation sessions (H2, H3 and H4) were recorded by the same user and spanned between 4 and 5 h. In contrast, the shortest
session, G1, spans a mere 16 min but records GNSS observations with a high mean C/Nj value of 43.6 dB-Hz. The mean C/N,
across all sessions is 40.0 dB-Hz. However, it is important to note that C/Ng values are device-specific (Bilich et al., 2007),
making direct comparisons between different smartphones rather difficult. In general, higher C/Nj values indicate favorable
data collection conditions, and data with C/Ng values exceeding 35 dB-Hz are likely to be collected in open-sky environments.
The PDOP value, on the other hand, is a direct metric concerning the quantity of available satellites and their relative locations
in the local sky. A lower PDOP value is associated with more visible GNSS satellites and a better geometric distribution. In our
case, the mean PDOP across all sessions is 1.3, indicating good observation conditions overall. There is no noticeable correla-
tion among observation duration, PDOP and C/Ng, reflecting the high variability and complexity of crowdsourced smartphone
data. It is worth mentioning that across the selected data sets, the noise level of carrier phase measurements is around 4 mm,

which is a promising factor for obtaining accurate ZTD estimates.
4.2.2 Evaluation of zenith total delays

Figure 10 presents the ZTD estimation errors for the 20 selected high-quality data sets (Figure 5) in comparison with ERAS
and the aforementioned ML-based ZTD products. The mean RMS values, calculated based upenr-on all considered sessions,
are 26.9 mm and 26.4 mm when ERAS- and ML-based ZTDs are used as benchmarks, respectively. Notably, there is no
discernible distinction in the error patterns between the top and bottom panels of Figure 10, indicating a good agreement
between the ERAS-based ZTDs and those derived from the ML-based products. Despite the data being crowdsourced, seven
data sets achieve an accuracy of better than 10 mm regarding ZTD estimation. These high-performing observation sessions are
D1, D2, G1, H2, H3, I1 and J1, with mean RMS values of 6.3 mm and 3.9 mm when compared with ERAS and ML-based
products, respectively. It is also interesting to note that ZTD estimation accuracy tends to be user-dependent, with data from
certain users consistently yielding more accurate results, as exemplified by user H. This could have been useful feedback for
CAMALIOT app users, potentially motivating them to contribute more high-quality data during the crowdsourcing campaign.
When analyzing the ZTD estimation error (Figure 10) and the data quality (Figure 9) together, data with lower PDOP values are
more promising to yield more accurate ZTD estimates. This trend is especially noticeable in the data from users D-J, where the

mean PDOP value for all the sessions that they uploaded is 1.11, and the mean RMS values for the ZTD estimates are 13.5 mm
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Figure 9. Data quality indicators for selected crowdsourced smartphone GNSS data from Germany. The characters are used to indicate

different users and the numbers represent the different observation sessions from the same user.

and 12.3 mm when compared to ERAS and ML, respectively. Furthermore, longer observation duration and higher C/N, tend
to contribute to improved accuracy of ZTD estimates. For example, observation sessions H2, H3, H4 span over 4 hours each,
resulting in a mean RMS of around 6 mm. Another interesting example is session G1, which lasted only 16 minutes but had a
mean C/Nj value of 43.6 dB-Hz, leading to a ZTD estimation accuracy of 5.8 mm and 0.3 mm in comparison with the ERAS
and ML-based products, respectively. This highlights the potential of smartphone data collected in open-sky environments,
even with a short observation duration, to make a contribution to tropospheric monitoring. It does not conflict with the finding
summarized in Figure 7. Smartphone GNSS data characterized by a short time span could still yield accurate ZTD estimates,
albeit with a smaller probability.

Figure 11 shows the ZTD estimates derived from session H2, alongside the ZTD time series derived from the ERAS and
ML-based products. This observation session is characterized with-by a duration of 5.2 h and observations to 27.5 GNSS
satellites on average, including 8.9 GPS, 4.8 Galileo, 6.0 GLONASS and 7.8 Beidou satellites. The mean C/Nj is 39.3 dB-Hz,
indicating that these measurements were likely collected in open-sky conditions. It is worth noting that the original smartphone
observations are limited to single-frequency. A noticeable ascending trend, approximately 10 mm over 5 h, can be observed in
all three ZTD time series. The ZTDs derived from smartphone data exhibit a closer agreement with those from ERAS, with an

RMS of 2.7 mm. A slightly larger bias is observed between the smartphone-based ZTDs and the ML-based ZTD product, with
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of ZTD samples used for statistics.

a bias of 6.4 mm. However, it cannot be concluded that the ML-based ZTDs are inferior to the other two. This is primarily
320 because the bias between the smartphone-based ZTDs and the ERA5- or ML-based ZTDs could be offset or magnified by the
bias resulting from uncorrected PCV errors for the smartphone during PPP processing. Nevertheless, it demonstrates that ZTD
estimation with an accuracy better than 10 mm can be achieved with crowdsourced smartphone GNSS data, underlining their

potential for accurate tropospheric monitoring.

5 Conclusions

325 Crowdsourced smartphone GNSS data have the potential to densify existing geodetic-grade GNSS networks, providing valu-
able observation sources for GNSS meteorology. This study represents-the-firstsuecessful-demonstration-ef-achieving-demonstrates
high-precision ZTD estimation using crowdsourced smartphone GNSS data. We harnessed GNSS data collected in Germany
during the CAMALIOT crowdsourcing campaign to demonstrate the feasibility of smartphone-based ZTD estimation and in-
vestigate the quality of the ZTD estimates that such type of GNSS data can provide. The dedicated data processing pipeline was

330 introduced, including data selection and ZTD estimation using PPP. Ionospheric delays at smartphone locations were interpo-
lated using data from surrounding geodetic-grade GNSS stations and then the second-frequency observations were recovered
using the SEID method for ionosphere-free PPP. This approach overcomes the issue concerning the limited availability and

poor quality of usable dual-frequency data from most smartphones.
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To validate our data processing method and to gain insights into smartphone-based ZTD estimation, a dedicated 24-h data
collection experiment was conducted on the rooftop of the ETH campus. The performance of a Google Pixel 4XL smartphone
was evaluated alongside a u-blox GNSS receiver in terms of ZTD estimation. Compared to the ZTDs derived from a geodetic-
grade receiver located at-on the same rooftop, a ZTD estimation accuracy of 6.5 mm was achieved for the smartphone data when
incorporating external ionospheric information. The u-blox receiver, with its own dual-frequency observations, reached an
accuracy of 1.9 mm. Based on the performed analysis, it was observed that multi-GNSS observations, especially from Galileo,
improved the ZTD estimation accuracy for data sets characterized by short time spans. Our investigation also demonstrated
that a 30-min observation duration served as a reasonable trade-off between the data collection effort and the ZTD estimation
accuracy. With 30 min of multi-GNSS observations from the Pixel 4XL smartphone, we can achieve a mean ZTD estimation
error of less than 10 mm. This finding can serve as a valuable insight concerning future smartphone GNSS data crowdsourcing
campaigns.

Twenty high-quality data sets crowdsourced from volunteers in Germany were selected and processed with the same method
to obtain ZTD estimates. Compared to the ZTD benchmarks derived from ERAS data and an ML-based ZTD product, it was
shown that a mean accuracy of about 26 mm could be achieved. A comprehensive analysis of data quality indicators and ZTD
estimation accuracy indicates that data sets with smaller PDOP values tend to yield more accurate ZTD estimates. Moreover,
longer observation durations and higher C/N values can be also helpful to identify data sets that can result in accurate ZTD
estimates.

While we have demonstrated that high-precision ZTD determination can be achieved with crowdsourced smartphone GNSS
data, certain limitations remain. Our current method relies on the interpolation of ionospheric delays from surrounding geodetic-

grade stations, and we have primarily explored smartphone data collected in static scenarios. Future research could explore the
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use of original dual-frequency observations from capable smartphones and data collected on kinematic platforms, such as
vehicles. Additionally, antenna PCV corrections were not applied for smartphone GNSS data processing in this study. The
potential benefit of antenna calibration for ZTD estimation could also be investigated in future studies. The latest version of
the CAMALIOT app allows users to record environmental sensor measurements, such as air pressure, which could further
contribute to meteorological applications. In conclusion, this study demonstrates that, with careful selection and processing,
crowdsourced smartphone GNSS data can produce high-precision ZTD estimates and potentially benefit tropospheric moni-

toring and weather forecasting, especially as embedded GNSS antennas and chips continue to improve in the future.

Data availability. The GNSS data collected on a rooftop of the ETH campus is available from the corresponding author upon reasonable
request. The crowdsourced smartphone data currently cannot be shared due to privacy concerns. The ERAS grids and the ML-based tropo-

spheric delay products can be accessed from https://cds.climate.copernicus.eu and https://gpc.ethz.ch/Troposphere/, respectively.

Appendix A: ML-based smartphone data selection

We employed the Random Forest model to develop a classifier for smartphone data from the CAMALIOT crowdsourcing
campaign. A subset of the crowdsourced data served for training and testing the model. Given the potential fluctuation in data
quality during an observation session, we segmented the original GNSS measurements into hourly RINEX files. Only segments
labeled as *Good’ were spliced to produce a consolidated RINEX file. If any hourly segments were labeled *’Good’, the entire
original file was regarded as ’Good’ and the consolidated file would be used for further processing. We then extracted a set
of epoch-wise quality indicators from each hourly segment and their time series were visualized for manual labeling (e.g.,
Figure Al). The corresponding mean and standard deviation (STD) values were calculated and utilized as input features
for the ML-based classifier (Table Al). Note that a threshold-based classifier would be overly intricate considering the high
complexity among different quality indicators. Nonetheless, we initiated the labeling process by applying threshold criteria to
flag blatant low-quality segments. Specifically, segments with a mean C/Nj below 30 dB-Hz or carrier phase noise exceeding
0.1 m were labeled *Bad’. The remaining data underwent manual labeling based on our expertise with high-quality smartphone
data collected in open-sky environments. Finally, the training data set comprised 1,700 *Good’ segments and 3,400 randomly
sampled 'Bad’ segments. We evaluated the developed ML-based classifier on a test data set, consisting of 425 *Good’ segments
and 1,792 ’Bad’ segments. The classifier exhibited precision and recall scores of 0.96 and 0.97, respectively (Table A2),

meeting the requirements for the CAMALIOT campaign’s operational data classification task.

Author contributions. YP analyzed the data, visualized the results and wrote the manuscript. GK, RW, TS, LS, IM, VN and BS contributed to
the implementation and organization of the CAMALIOT crowdsourcing campaign. LC provided the ML-based tropospheric delay products.
GD provided the GNSS data from the SAPOS network. GM helped to compute zenith total delays from the ERAS grids. BS, LS, GK, MR,

IM acquired the funding. BS supervised the study. All authors reviewed the manuscript and approved it for publication.
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Figure A1. Visualization of several epoch-wise quality indicators for manual labeling of crowdsourced smartphone data.

Table Al. Input features for training and testing the ML-based smartphone data classifier.

Features

Number of epochs

Mean number of visible satellites

Mean PDOP and its STD

Mean C/Ng and its STD

Percentage of available carrier phase observations
Mean carrier phase noise and its STD

SPP precisions in the east, north and up components

Table A2. Evaluation of the developed ML model for crowdsourced smartphone data classification on a test data set. (TP: true positive, TN:

ot H . 141 . : L _ TP _ TP __ o9 . precision-recall
true negnativenegative, FP: false positive, FN: false negative, precision = 75155, recall = 7555, F1 =2 7prmsion+reca”)

TP N FP FN Precision Recall F1

410 1775 17 15 0.96 097  0.96
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