
1 

 

Investigating the responses of sun-induced chlorophyll 

fluorescence, gross primary production and their inter-

relationship to abiotic factors changes in a temperate deciduous 

forest 

Hamadou Balde1,2,3,4, Gabriel Hmimina1, Yves Goulas1, Gwendal Latouche2, Abderrahmane 5 

Ounis1, Daniel Berveiller2, Kamel Soudani2 

1Laboratoire de Météorologie Dynamique, Sorbonne Université, IPSL, CNRS/L’École polytechnique, 91128, 

Palaiseau Cedex, France  

2Ecologie Systématique et Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91190, Gif-sur-Yvette, 

France 10 

3Centre national d’études spatiales (CNES), 18 av. Edouard Belin, 31400 Toulouse 

4ACRI-ST, 260 Route du Pin Montard, BP 234, 06904 Sophia-Antipolis, France 

Correspondence to: Hamadou Balde (hamadousalimatou@gmail.com) 

Abstract. Far-red Sun-Induced chlorophyll Fluorescence (SIF) is increasingly used as a proxy of vegetation Gross 

Primary Production (GPP) across different ecosystems and at spatiotemporal resolutions going from proximal to 15 

satellite-based remote sensing measurements. However, the use of SIF to probe variations in GPP in forests is 

challenged by (1) confounding factors such as canopy structure and sun-canopy geometry, and by (2) leaf 

physiological and biochemical properties along with abiotic factors (light intensity, temperature, soil water content, 

atmospheric vapour pressure deficit, etc.) that can influence SIF and GPP in a different way. To provide insights 

into understanding the complex drivers of GPP and SIF variations and of their relationships, we examined how 20 

SIF and GPP changed at daily and seasonal scales and how canopy structure and environmental conditions affected 

SIF and GPP relationships in a deciduous oak forest. To do so, we combined canopy scale SIF measurements, 

spectral vegetation indices, environmental variables measurements, including diffuse and direct radiations in the 

spectral range of the Photosynthetically Active Radiation (PAR), air and canopy temperature, soil water content 

(SWC), atmospheric Vapour Pressure Deficit (VPD), and GPP estimated from eddy covariance measurements. 25 

Canopy chlorophyll fluorescence was also measured using an active system with an artificial light source, referred 

to as LIF (LED Induced chlorophyll Fluorescence) hereafter. Further, Random Forest (RF) models were used to 

predict SIF and GPP and to analyse the responses of SIF and GPP to environmental drivers. The results show that 

both SIF and GPP variations and their relationships were dependent on the temporal scale considered. At the 

seasonal scale, The data show that leaf and canopy properties variations, seasonal cycle of PAR, and other abiotic 30 

factors such as VPD and SWC control not only SIF and GPP variations, but also their relationships. Further, during 

extreme weather conditions (heatwaves observed in 2022 in: mid-June (DOY: 166-169), mid-July (DOY: 196-

199), and early August (DOY: 218-224)), we observed that SIF and reflectance-based Vegetation Indices (VIs), 

such as Normalized Difference Vegetation Index (NDVI) and Near-Infrared Reflectance of vegetation index 

(NIRv), and also SIF and PAR are uncorrelated, while GPP, SIF, passive SIF yield (SIFy) and active chlorophyll 35 

fluorescence yield (FyieldLIF) strongly decreased. This indicates that during these severe abiotic conditions SIF 

stayed a usable proxy of GPP, while VIs cannot be used to track changes in vegetation physiology. This specific 

response of SIF compared to VIs underlined the interest of SIF to monitor GPP under severe abiotic conditions. 
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At the diurnal timescale, the results also revealed that the saturation of the relationship between GPP and SIF was 

not only dependent on PAR, but also on the fraction of diffuse to total PAR, as well as on VPD, SWC, and air and 40 

canopy temperature. The other key finding was that sun geometry angles had strong effects on GPP and SIF 

variations. This result highlights that using ground-based SIF measurements to validate satellite measurements at 

coarse spatial and temporal resolutions can therefore be very difficult, due to confounding factors whose effects 

are significant and may vary from one site to another, especially in forest canopies.  

1. Introduction 45 

Uncertainties related to future climate forecasts are highly dependent on the terrestrial ecosystem feedback on the 

global carbon cycle. Vegetation carbon sequestration through photosynthesis is a main contributor to terrestrial 

ecosystem feedbacks (IPCC, 2022) and hence its monitoring can play a key role in global climate changes 

estimations. Gross Primary Production (GPP) is an indicator of vegetation carbon sequestration. GPP can be 

determined locally from measurements or from models (Xiao et al. 2019). However, Remote Sensing (RS) has 50 

been widely and successfully used as an unprecedented tool for upscaling, monitoring, and understanding 

vegetation carbon exchange across space and time (Xiao et al., 2021; Pierrat et al. 2022a).  

The main success of RS observations can be attributed to their capacity in capturing valuable information on 

vegetation characteristics (leaf area index, chlorophyll content, fraction of absorbed radiation, surface temperature, 

etc.) that significantly affect or are linked to GPP. However, the relationships between RS observations and GPP 55 

are often site, and vegetation type-specific and can considerably be affected by local abiotic factors, thereby 

hindering the potential of this technique. Improvements in how we associate RS observations to GPP are warranted 

to better understand and monitor global carbon dynamics, specifically in forest ecosystems. 

GPP can be described using the light-use efficiency model at canopy scale (Monteith, 1972) within Eq. (1): 

𝐺𝑃𝑃 = 𝑃𝐴𝑅 × 𝑓𝐴𝑃𝐴𝑅 × 𝐿𝑈𝐸                                                                                                                                (1) 60 

where PAR is the flux of photosynthetically active radiation (400-700 nm), fAPAR is the fraction of PAR absorbed 

by the canopy, and LUE is the efficiency of the absorbed light used for photosynthesis (the fraction of absorbed 

light energy converted into chemical energy).  

Sun-Induced chlorophyll Fluorescence (SIF) is a remotely sensed optical signal which is tightly related to 

photosynthesis and vegetation carbon assimilations. SIF has emerged as an unprecedented tool for monitoring GPP 65 

over a wide variety of terrestrial ecosystems (Frankenberg et al., 2011; Balde et al. 2023; Wang et al. 2020) and 

across diverse spatial and temporal scales (Goulas et al. 2017; Zhang et al. 2022;  Pierrat et al. 2022b; Xu et al. 

2021; Sun et al. 2023a) because of its links with both the canopy structure related components (mainly fAPAR) 

and the physiological components of GPP (i.e. LUE). Indeed, SIF can analogously be written as Eq. (2): 

𝑆𝐼𝐹 = 𝑃𝐴𝑅 × 𝑓𝐴𝑃𝐴𝑅 × 𝛷𝐹 × 𝑓𝑒𝑠𝑐                                                                                                                          (2) 70 

where ΦF is the fluorescence quantum yield (ratio of emitted photons to absorbed photons) and fesc is the fraction 

of emitted SIF photons which escape the canopy to the total SIF emission. Eq. (1) and (2) showed that GPP and 

SIF share the same driver (i.e. Absorbed Photosynthetically Active Radiation, APAR = incident PAR x fAPAR) 

which have been found to explain the relationship between GPP and SIF in  maize (Miao et al. 2020) and in an 

evergreen needleleaf forest (Kim et al. 2021). From the combination of Eq. (1) and (2), we obtain Eq. (3): 75 

𝐺𝑃𝑃 = 𝑆𝐼𝐹 ×
𝐿𝑈𝐸

𝛷𝐹×𝑓𝑒𝑠𝑐
                                                                                                                                               (3) 
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This is the main evidence of using SIF as a proxy of GPP, notably when observations are averaged over large 

spatial and temporal scales (Sun et al. 2023b). However,  the link between SIF and GPP is not always maintained 

(Damm et al. 2015; Marrs et al. 2020; Kim et al. 2021), typically when studying high temporal resolutions (diurnal 

level: half-hourly, hourly, etc.) or the effect of water and light limited conditions (heatwaves, drought, etc.) (Berger 80 

et al. 2022; Martini et al. 2022; Pierrat et al. 2022a). Therefore, considering a more complex relationship between 

SIF and GPP by taking into account temporal and spatial variations and abiotic variables could be useful to better 

understand GPP-SIF links.  

Both SIF and GPP are affected by canopy structure (i.e. vertical distribution of LAI, clumping, canopy roughness, 

leaf angle distribution, etc.) and radiation conditions that mediate fAPAR and fesc in time and space. At a given 85 

constant LAI, both GPP and SIF can increase under cloudy conditions as a result of increasing fAPAR because 

diffuse light can penetrate deeper into the canopy (Durand et al., 2021).  

Besides, reflectance-based remotely sensed metrics (i.e. vegetation indices) such as the Normalized Difference 

Vegetation Index (NDVI, (Tucker, 1979)), the Near-Infrared Reflectance of vegetation index (NIRv, (Badgley et 

al., 2017)), modified red-edge Normalized Difference Index (mNDI, (Datt, 1999)) and the Photochemical 90 

Reflectance Index (PRI, (Gamon et al., 1992)) can provide information on both structural, biochemical and 

functional processes that affect GPP. Indeed, VIs are also good proxies of fAPAR and hence they have been 

successfully used to describe canopy structure. For instance, NDVI and NIRv provide crucial information on the 

structural determinants of GPP and SIF (Zeng et al. 2022). However, how these VIs are connected to changes in 

SIF and GPP, which are in turn heavily affected by PAR, fAPAR, changes in LUE and ΦF, and abiotic conditions, 95 

is still unclear and need to be investigated. 

The non-photochemical quenching (NPQ), a photoprotection mechanism that plants activate to avoid damage from 

excess light, regulates the efficiency with which APAR is used by fluorescence and photosynthesis. The extent to 

which plants can avoid photodamage from excess light depends heavily on the abiotic conditions and on plant 

photosynthetic capacity and types (Cannière et al. 2022). This is particularly important in respect to vegetation 100 

sensitivity to extreme weather conditions such as heatwaves and drought. For instance, heatwaves can create stress 

conditions which will affect photosynthesis and fluorescence efficiencies (Wang et al. 2022; Zanotelli et al. 2023). 

Thus, determining and monitoring NPQ can be crucial to provide insight into photosynthesis efficiency, and 

presumably also into fluorescence efficiency, even though such a relation has not been established yet. The 

reversible heat dissipation is the most common NPQ. It happens under short-term extreme light stress conditions 105 

and can be detected using PRI, which was found to be a good indicator of changes in photosynthesis efficiency 

over diurnal scales (Sukhova et al. 2022). 

For instance, including information on SIF and PRI, which was used as a proxy of heat dissipation, was shown to 

improve GPP predictions across different vegetation types  at daily scale (Wang et al. 2020). Further, Lu et al. 

(2020) have revealed that correcting SIF for canopy structural effects using fesc derived from NIRv and fAPAR 110 

can also improve the relationship between SIF and GPP, underlining the relevance of disentangling structural and 

physiological components of SIF. It is well documented and mechanistically explained why spectral reflectance 

and VIs are related to changes in canopy structure at broad timescales (Zeng et al., 2022), but there is no clear 

evidence that there are robust relationships among them at high temporal resolutions. To establish such 

relationships, the canopy architecture, leaf physiology, sun-canopy geometry, and sky conditions (i.e. cloudy and 115 

sunny) have to be accounted for. Thus, the ability for VIs or reflectance-based metrics to be used as proxy of SIF 
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and GPP will be limited to quantitative correlations at site-specific and vegetation type-specific, unless we are able 

to accurately incorporate the aforementioned effects in mechanistic models.  

Recent advances in machine learning have provided opportunities for predictive modelling, data analysis, 

and foremostly for model output interpretation. In this context, Random Forest (RF) models are of particular 120 

interest. RF models are non-parametric and are well adapted for predicting nonlinear and multi-parameters 

relationships in complex situations (Breiman, 2001). RF models have already been successfully used to understand 

how canopy structure and functions affect the dynamics of GPP and SIF either with satellite (Balde et al. 2023) or 

ground-based observations (Pierrat et al. 2022a). We hypothesized that using RF models can help to understand 

SIF and GPP dynamics and improve their predictions based on a combination of RS metrics, radiation 125 

measurements, sun-canopy geometry and abiotic variables. 

Therefore, the main concerns of this study are: 1) to understand the dynamics of GPP and SIF during a 

growing season and their responses to abiotic factors at diurnal and seasonal scales and 2) to predict GPP and SIF 

by using RF models as a quantitative and interpretative tool that can associate structural and physiological 

information provided by VIs, SIF (for GPP models) and abiotic variables. In this study, we used one full growing 130 

season of ground-based remote sensing data acquired in a temperate deciduous oak forest. We firstly assessed the 

seasonal dynamics of abiotic variables, VIs, chlorophyll fluorescence (SIF and LIF) and GPP. Secondly, we 

examined how abiotic factors affect the relations between GPP and SIF considering different temporal resolutions. 

Thirdly, we combined RS metrics and abiotic variables to predict GPP and SIF, and to quantify and interpret their 

contributions to GPP and SIF estimates. 135 

2. Materials and Methods 

2.1. Study site description 

We collected data at the Fontainebleau-Barbeau forest site, an Eddy Covariance (EC) observation site belonging 

to the Integrated Carbon Observation System (ICOS) Ecosystem network (FR-Fon) (Delpierre et al. 2016). The 

site is located 53 km southeast of Paris, France. It is a mixed temperate deciduous broadleaf forest stand with stem 140 

density predominantly (79%)  of mature sessile oak trees (Quercus petraea (Matt.) Liebl) (Maysonnave et al., 2022) 

and an understory of hornbeam (Carpinus betulus L.) (for more details see: http://www.barbeau.universite-paris-

saclay.fr/). The climate is temperate and characterized by an annual average rainfall of approximately 680 mm and 

an average air temperature of approximately 11°C (Soudani et al., 2014). The LAI is approximately 5.8 m2.m-2 

using the litter collection method (Soudani et al., 2021). At the Fontainebleau-Barbeau site, carbon and water 145 

fluxes have been continuously monitored at 35 m height using the EC method. 

2.2. Data collection: ground-based remote sensing, GPP, and environmental variables 

Ground-based remotely sensed observations (far-red SIF, NDVI, NIRv, PRI, mNDI, and spectral reflectance) were 

collected using an automated instrument (named SIF3) and developed thanks to a collaboration between the 

“Laboratoire de Météorologie Dynamique (LMD), École Polytechnique, France and Laboratoire Écologie, 150 

Systématique et Évolution, Université Paris-Saclay, France”. The automated instrument SIF3 was installed above 

the canopy at the top of a 35 m height tower of the Fontainebleau-Barbeau site. To avoid additional shading from 

the tower on the measured area, the SIF instrument was set to the southern part of the tower. It has a 25° field of 
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view (FOV) and measures alternatively the sun irradiance and the vegetation radiance at a high spectral resolution 

(0.3 nm) to deduce SIF, spectral reflectance, and VIs (Balde et al., 2023a). In this study, observations run from 155 

April 2022 to mid-September 2022. Remotely sensed observations were averaged over a 30 min window 

synchronized with GPP and abiotic variables that are also recorded every 30 min. Far-red SIF (i.e. at 760 nm) was 

retrieved using a Fraunhofer-line based retrieval method (Daumard et al. 2012). This method has been widely used 

for SIF retrieval because of its lower sensitivity to atmospheric scattering and its reliability even under cloudy sky 

conditions (Mohammed et al. 2019; Cendrero-Mateo et al. 2019). Low quality retrieval and retrieval with unstable 160 

illumination conditions were filtered out from SIF observations.  

Active chlorophyll fluorescence (FyieldLIF) measurements, which allowed to assess directly variations in vegetation 

physiology, were acquired with a fluorometer, named LIF, developed at the LMD laboratory, which was also 

installed above the canopy at the top of the 35 m height tower next to SIF3. This instrument is similar to the one 

described by Moya et al. (2019). It uses a powerful blue LED array (ENFIS Ltd, Swansea, UK; peak wavelength 165 

455 nm, FWHM 25 nm, radiant power 6 W) as an excitation source. The optical head consisted of two main parts: 

(i) the excitation source module that includes the blue LED array driven by a laboratory-made (LMD, Ecole 

Polytechnique) electronic system stabilizing the pulse peak power (electrically and optically), a heat dissipation 

module and a Fresnel lens (diameter 180 mm) to collimate the excitation light, and (ii) a detection module that 

includes a second Fresnel lens  with the same diameter, a set of optical filters, a large area PIN photodiode (10x10 170 

mm2, S3590, Hamamatsu Photonic, Japan) and a laboratory-made (LMD) amplifier that selects the LED induced 

fluorescence signal (FyieldLIF) from the reflected sunlight in the same wavelengths band (LNIR The FOV can be 

controlled thanks to an onboard camera (RLC-520A, Reolink, Hong-Kong). We selected a top of the canopy area 

in the FOV of the SIF instrument, resulting in a 9 m measuring distance with a viewing zenith angle of 30°. 

However, as the FOV of the instrument is about 100 mrad, the measured area was about 0.4 m2, which is much 175 

smaller than the FOV of SIF3 (approximately 6 m2). For more details on the instrument principale, we referred the 

reader to (Balde et al., 2023a). Note that LIF measurements were also averaged at 30 min. 

The VIs, namely NDVI and NIRv as indicators of vegetation structure, mNDI as an indicator of leaf chlorophyll 

content, and PRI as an indicator of extreme heat dissipation, were calculated as follow: 

𝑁𝐷𝑉𝐼 =
𝑅[780−800]−𝑅[670−680]

𝑅[780−800]+𝑅[670−680]
                                                                                                                                     (4) 180 

𝑁𝐼𝑅𝑣 = 𝑅[780−800] × 𝑁𝐷𝑉𝐼                                                                                                                                     (5) 

𝑚𝑁𝐷𝐼705 =
𝑅750−𝑅705

𝑅750+𝑅705−2×𝑅445
                                                                                                                                   (6) 

𝑃𝑅𝐼 =
𝑅[569−571]−𝑅[520−532]

𝑅[569−571]+𝑅[520−532]
                                                                                                                                      (7) 

with R being the reflectance at a given wavelength or the average across a wavelength range in nm. 

To consider the physiological component of SIF, an apparent fluorescence yield (SIFy) was calculated by 185 

normalizing SIF by PAR. We used half-hourly GPP data estimated from net ecosystem EC gas exchanges 

measurements. GPP and SIF data were also aggregated at daily timescale to study the seasonal dynamics. The 

main micrometeorological variables, including incident, direct, and diffuse radiations in the PAR spectral range, 

were measured at a high frequency (1 min) and were aggregated at the half-hourly and the daily temporal 

resolutions. Atmospheric Vapor Pressure Deficit (VPD), precipitation (P), air (Ta) and canopy (Tcanopy) 190 

temperatures, and Soil Water Content (SWC) were recorded half-hourly and were averaged at daily scale. Note 

that the SWC are averaged values in cm3 water per cm3 soil, calculated between 0 and 150 cm depth. 
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To consider the effects of the sky, the fraction of diffuse radiation over the total incoming radiation was determined. 

This fraction varies with respect to variations in sun zenith angle and with sky conditions. It is worth noting that 

values of the fraction < 0.3 are considered as sunny days and values of the fraction > 0.70 as cloudy days. 195 

3. Data analysis: seasonal dynamics, GPP vs SIF relationships, and random forest models 

The influence of environmental variables on the links between GPP and SIF was examined at daily and seasonal 

timescales using a non-linear curve fitting of GPP vs SIF (Kim et al. 2021) and a linear model of GPP vs SIF. The 

coefficient of determination (R2) was used to assess the strength of the correlations.  

We examined the significance of remote sensing metrics (reflectance and VIs), sun-canopy geometry, and abiotic 200 

variables as predictors for SIF and GPP at diurnal scale using RF regression models. Various types of RF models 

were established for estimating SIF and GP (Table 1). All RF models were created using 200 trees and sampled 

with replacement based on bag fraction of 80% (80% of the data for training and 20% for testing). All RF models 

were run with only sunny days data at a half-hourly temporal resolution. The out-of-bag (OOB) predictor 

importance estimates were determined to evaluate the contribution of each predictor to the predicted output. 205 

Conversely to predictor importance estimates, partial dependence plots allow to examine the relationship between 

inputs (predictors) and predicted variables (i.e. GPP or/and SIF) within the predictor’s range of variability. 

Therefore, the partial dependence plots were used to study the relationship between inputs and GPP or/and SIF. 

Model performance was evaluated using the OOB R2 score and the adjusted R2 between the testing dataset and the 

predictions, as well as the Root Mean Squared Error (RMSE). The closest the OOB R2 and adjusted R2 are, the 210 

better the model is able to be generalized. 

Table 1. Random forest models set up for SIF and GPP predictions using environmental and remote sensing variables as inputs 

with only sunny days data: Photosynthetically Active Radiation (PAR), atmospheric Vapor Pressure Deficit (VPD), volumetric 

Soil Water Content (SWC), Sun Azimuth Angle (SAA), far-red Sun-Induced chlorophyll Fluorescence (SIF) at 760 nm, 

Photochemical Reflectance Index (PRI), Near-Infrared Reflectance of vegetation index (NIRv), Normalized Difference 215 
Vegetation Index (NDVI), and modified red-edge Normalized Difference Index (mNDI). 

 

Model 

 name Inputs Outputs Purpose 

GPP-ENV-SA VPD, SWC, PAR, SAA GPP 

To test the synergy between environmental variables and sun 

angles to predict GPP. 

GPP-ENV-RS 

SIF, PRI, NIRv, NDVI, mNDI, 

VPD, SWC, PAR, SAA GPP 

To test the synergy between remote sensing, environmental 

variables and sun angles to predict GPP. 

SIF-ENV-SA VPD, SWC, PAR, SAA SIF 

To test the synergy between environmental variables and sun 

angles to predict far-red SIF. 

SIF-ENV-RS 

PRI, NIRv, NDVI, mNDI, VPD, 

SWC, PAR, SAA SIF 

To test the synergy between remote sensing, environmental 

variables and sun angles to predict far-red SIF. 

4. Results 

4.1. Seasonal variations in GPP, SIF, VIs and environmental variables 

The variations in GPP, SIF, FyieldLIF, SIFy, VIs, and abiotic variables at the Fontainebleau-Barbeau forest site during 220 

the period of measurements (growing season 2022) are illustrated in Figure 1.  

The GPP of the Fontainebleau-Barbeau forest started to raise gradually in April after the budburst and until almost 

the end of May following the development of the leaves and the increase in solar radiation (Figure 1A). Seasonal 

variations in GPP were characterized by sharp fluctuations across the season reflecting PAR, Ta, and VPD changes. 
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The dynamics in Ta and VPD (Figure 1J and 1K) showed contrasted and marked weather conditions (i.e. in 2022 225 

summer in Barbeau, heatwaves in: mid-June (DOY: 166-169), mid-July (DOY: 196-199), and early August (DOY: 

218-224)), coinciding to the peak values of Ta and VPD. Note that during these heatwaves’ periods, GPP 

substantially decreased and the values of Ta and VPD showed obvious air drought conditions. The seasonal 

variations in SWC (Figure 1L) revealed an overall steady decline, meaning that the soil was constantly drying from 

an SWC > 0.4 cm3 cm-3 at the beginning of the season to an SWC < 0.27 cm3 cm-3 in the end. 230 

The seasonal variations in NDVI an indicator of leaf area index, and mNDI an indicator of leaf chlorophyll 

pigments, exhibited similar patterns, which represent the seasonality changes of canopy attributes in deciduous 

forests (Figure 1E and 1G). PRI values showed a rapid increase during the budburst and the leaf expansion phases 

until it reached its maximum in late May (Figure 1H). Afterwards, PRI is stable and slightly decreased during the 

leaf maturation phase. This PRI temporal pattern was consistent with the temporal pattern of NDVI and mNDI 235 

throughout the season. The within-day PRI changes are attributable to the activity of the xanthophyll cycle and to 

fluctuations in the PAR intensity, while the seasonal dynamic of NIRv (Figure 1F) was due to day-to-day changes 

in light intensity and sun-canopy geometry, and also to changes in canopy attributes throughout the season.   

Far-red SIF followed the same temporal pattern as the other variables (Figure 1B), reflecting the phenological 

dynamics of the canopy. Like GPP, far-red SIF reached its maximal values soon after the new leaves were fully 240 

developed.  The SIF curve showed a plateau until mid-July and then gradually declined following the decrease in 

GPP. FyieldLIF showed a steady decrease over the season (Figure 1C), while variations in SIFy (Figure 1D) were 

driven by the changes in light intensity and indicated the onset of the growing season. The dynamics in SIFy also 

showed a similar trend of decrease across the season like GPP and SIF. Note that both FyieldLIF and SIFy significantly 

declined during the heat waves periods, as it has been observed in GPP and SIF dynamics. But, vegetation attributes 245 

such as NDVI and mNDI were not significantly affected during these summer heatwaves. This underlines the 

growing interest of using SIF as a proxy of GPP under severe abiotic conditions at the ecosystem scale. 

 

Figure 1. Variations in Gross Primary Production (GPP) (Figure 1A), far-red Sun-Induced chlorophyll Fluorescence (SIF) of 

the canopy (Figure 1B), active chlorophyll fluorescence yield (FyieldLIF) (Figure 1C), apparent SIF yield (SIFy) (Figure1D), 250 
Normalized Difference Vegetation Index (NDVI) (Figure 1E), Near-Infrared Reflectance of vegetation index (NIRv) (Figure 
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1F), modified red-edge Normalized Vegetation Index (mNDI) (Figure 1G), Photochemical Reflectance Vegetation Index (PRI) 

(Figure 1H), Photosynthetically Active Radiation (PAR) (Figure 1I), air temperature (Ta) (Figure 1J), Vapor Pressure Deficit 

(VPD) (Figure 1K), and  volumetric Soil Water Content (SWC) (Figure 1L) under all sky conditions during the 2022 growing 

season. Gray points indicate the data at half-hourly timescale and the black line represents daily mean values. 255 

4.2. Influence of abiotic variables on the daily and seasonal variations of the relationship between GPP 

and SIF  

Considering all the data acquired, the relationship between GPP and SIF was non-linear (Figure 2). The 

relationship between GPP and SIF is hyperbolic. The hyperbolic regression yields a significantly higher R2 = 0.53 

than a linear regression at half-hourly time resolution (Figure 2A). The results also reveal that the relation between 260 

GPP and SIF is significantly stronger for cloudy days than for sunny days, with R2 of 0.66 and 0.59, respectively 

(data not shown).  

The relationship between SIF and GPP exhibits gradual changes with the day of year (DOY), the PAR (Figure 

2B), the fraction of diffuse to total PAR (Figure 2C), the VPD (Figure 2D), the Tcanopy (Figure 2E), and the SWC 

(Figure 2F). It can be seen that the saturation of GPP with increasing SIF was determined by high PAR, VPD and 265 

Tcanopy. In other words, the ratio GPP over SIF decreases with increasing PAR, VPD, and Tcanopy. Time (DOY), 

reflecting the seasonal dynamic, has a strong impact on the relationship between SIF and GPP: both GPP and SIF 

increased linearly from the start of the season until around DOY 140, afterward GPP started saturating until around 

DOY 215, and then both GPP and SIF linearly decreased. This underlines the fact that seasonal variations in leaf 

and canopy characteristics have a large influence on the relationship between SIF and GPP (Figure 2B). The 270 

changes in the fraction of diffuse to total PAR also reveals that The R2 between SIF and GPP increased on 

contrasting days of clear and overcast skies (Figure 2C and Figure 3B). However, on sunny days, GPP showed 

saturation, when SIF continued to increase. Finally, the SWC has also an influence on the relationship between 

GPP and SIF, with drier conditions corresponding to the lowest GPP and SIF values and the highest GPP and SIF 

values observed when water availability was not a limiting factor (Figure 2F). 275 
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Figure 2. The hyperbolic relationship between Gross Primary Production (GPP) and far-red Sun-Induced chlorophyll 

Fluorescence (SIF) at half-hourly timescale seen with color scaled dots for: day of year (DOY, Figure 2A), Photosynthetically 

Active Radiation (PAR, Figure 2B), ratio of diffuse to total PAR (Figure 2C), Vapor Pressure Deficit (VPD, Figure 2D), leaf 

canopy temperature (Tcanopy, Figure 2E), and mean Soil Water Content at 150 cm depth (SWC, Figure 2F), except data 280 
represented in triangles and stars points.  

 
In Figure 3 the coefficient of determination (R2) of the relation between daily GPP and daily SIF shows strong 

inter-daily variability. R2 generally decreases when VPD (Figure 3C) and PAR (Figure 3A) are high. The highest 

correlations were obtained for relatively low VPD and moderate PAR, and during cloudy days (Figure 3B). this 285 

decline was markedly during the summer heatwaves in 2022. This suggests that inter-daily variations in GPP and 

SIF relations were significantly affected by the abiotic conditions, as well as by the intermittence between cloudy 

and sunny periods. 
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Figure 3. Inter-daily variations of the coefficient of determination (R2) of the linear relation between GPP vs far-red SIF seen 290 
with color scaled dots for: Photosynthetically Active Radiation (PAR, Figure 3A), ratio of diffuse to total PAR (Figure 3B), 

Vapour Pressure Deficit (VPD, Figure 3C), and Soil Water Content (SWC, Figure 3D). The number of data points per day 

varied between 20 and 23, representing more than 87% of the total data points. 

How GPP is related to SIF at satellite overpass times is a crucial question. Hence, we investigated the relationship 

between GPP and SIF at satellite overpass times using only data acquired at 10H30 am and 13H30 pm on sunny 295 

days (Figure 4). A substantial hyperbolic relation was found between GPP and far-red SIF at satellite overpass 

times. The results presented in Figure 4 showed that the non-linear correlation was stronger in the afternoon (13h30 

pm) than in the morning (10h30 am) with R2 of 0.79 and 0.57, respectively. This suggests that the GPP-SIF relation 

depends strongly on the vegetation physiological state and on the conditions of illumination. 
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 300 

Figure 4. Relationship between daily GPP and daily far-red SIF (SIF-760) at satellite overpass times on sunny days. R2 

represents the coefficient of determination and the hyperbolic regression line is the black dotted line. 

4.3. Main drivers of SIF and GPP variations and predictions on sunny days 

To predict GPP and SIF using environmental and remote sensing variables and assess the contribution of these 

variables to their variations, several RF regression analyses (Table 1) were performed and the main results are 305 

presented in Figures 5, 6, and 7 (the other model results are given in Supplementary materials Figures S1, S2 and 

S3). The predictor importance estimates for SIF-ENV-RS model is exhibited in Figure 5B. This model explains 

approximately 94% of the total variance of far-red SIF (Figure 5A). SWC appears to be the most important variable, 

followed by PAR and SAA, and the contribution of mNDI, PRI, and VPD play lesser roles for SIF prediction 

(Figure 5B). For GPP, the RF model represented in Figure 5D captures between 69% and 72% of the variability 310 

in GPP (Figure 5C). VPD and SAA appear to be the most determinant variables, followed by SWC, far-red SIF, 

PAR and NDVI, and the contribution of all other variables was relatively minor for GPP prediction. 
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Figure 5. Figure 5A presents SIF-ENV-RS model performance between observed and predicted SIF (SIF-760), Figure 5B 

shows predictor importance estimates for SIF-ENV-RS model, Figure 5C presents GPP-ENV-RS model performance between 315 
observed and predicted GPP, Figure 5D shows predictor importance estimates for GPP-ENV-RS model. N denotes the number 

of observations used for the RF model evaluation, adj. R2 represents the adjusted coefficient of determination of the relationship 

between observed and predicted SIF or GPP (validation data), OOB R2 is the model accuracy on the validation data, and the 

RMSE is the root mean square error between observed and predicted SIF or GPP. The dashed diagonal line depicts the 1:1 line. 

Data at half-hourly timescale on only sunny days were used. 320 

The partial dependence in a machine learning model plot is a visual representation that allows to understand the 

relationship between a specific feature or variable (inputs) and the predicted outcome (target variable) while 

holding all other features constant over the whole range of predictor’s variability, oppositely to the variable 

importance estimates showing only the contribution or importance of the inputs to the prediction. The results in 

Figures 6 and 7 show how the predicted SIF and GPP changes as the SWC or VPD or PAR varies, while keeping 325 

other features constant. In these figures (6 and 7), we can observe that SIF and GPP demonstrated similar responses 

to the three abiotic factors (SWC, VPD and PAR) variations. Both SIF (Figure 6) and GPP (Figure 7) respond 

positively when SWC increases to a SWC level of around 30%, then the GPP responds more slowly and SIF 

saturates at high SWC values. It can also be seen that overall the relationships between SIF and VPD (Figure 6) 

and GPP and VPD (Figure 7) are negative, but an average the magnitude of SIF (average SIF) and GPP (average 330 

GPP) showed less variations, due to likely to the observed few days of heatwaves in the summer of 2022. Last but 
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not least, the relations between SIF and PAR are strictly positive and present overall less variabilities (color code 

in green), while the relationships between GPP and PAR saturate at high PAR values (PAR > 1500 µmol m-2 s-1) 

and show high variations or uncertainties (color code in blue).  However, it is worth mentioning that an average 

the magnitude of SIF and GP is comparable for SWC and PAR variables, underlining the link between the seasonal 335 

patterns in SIF or/and GPP and SWC or/and PAR variations. 

 

Figure 6. Partial dependence describing the effect of each variable on far-red SIF variations for clear sky days at half-hourly 

timescale. 

 340 

Figure 7. Partial dependence describing the effect of each variable on GPP variations for clear sky days at half-hourly timescale. 
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4.4. Discussion 

The results highlight that the seasonal patterns of SIF and GPP are similar (Figure 1), indicating that the temporal 

changes of both SIF and GPP are primarily driven by the seasonal changes in canopy structure and solar radiation 

conditions. Variations in vertical distribution of LAI, leaf angle distribution and clumping, and light intensity 345 

strongly determine the amount of APAR. The seasonal changes also affect leaf biochemical properties and the 

distribution of sunlit and shaded leaves on which SIF and GPP depend (Lu et al., 2020; Zhang et al., 2023). Besides, 

leaf physiology and abiotic factors (mainly leaf canopy temperature, VPD, and SWC) considerably affected the 

seasonal dynamics in FyieldLIF and SIFy, and consequently the dynamics of SIF and GPP. These results are consistent 

with previous studies at both leaf and canopy scales (Lu et al. 2020; Kováč et al. 2022; Hu et al. 2023).  The data 350 

in Figure 1 also demonstrated that seasonal changes in PRI and NIRv were consistent with the dynamics of NDVI 

and mNDI throughout the season, indicating their dependence on the seasonal cycle of canopy. Note that short-

terms variations in PRI and NIRv were greater than those in NDVI and mNDI, suggesting that these indices are 

relatively independent at short timescale (intra-daily). In fact, short timescale variations in PRI may be related to 

the activity of xanthophyll cycle and fluctuations in light intensity as it has been shown in previous studies 355 

(Hmimina et al. 2014; Soudani et al. 2014; Sukhova et al. 2022). However, the seasonal dynamic in NIRv is 

substantially affected by canopy structure (LAI) and sun-canopy geometry changes that determine the fraction of 

sunlit and shaded leaves (Zhang et al. 2022; Zeng et al. 2022). Finally, during the heatwaves mid-June (DOY: 166-

169), mid-July (DOY: 196-199), and early August (DOY: 218-224), we observed that SIF and VIs (NDVI, NIRv, 

mNDI, and PRI) and SIF and PAR are uncorrelated, while both GPP and SIF strongly decreased. This indicates 360 

that SIF can capture, at least partially, the vegetation functioning activity and that VIs cannot be used to monitor 

changes in vegetation physiology during severe abiotic conditions. This specific response of SIF compared to VIs 

underlined the interest of SIF as a proxy of GPP under severe abiotic conditions. Note that FyieldLIF and SIFy also 

significantly dropped during the heatwaves periods, underlining the ability of FyieldLIF and SIF to reflect variations 

in vegetation physiology functioning under extreme weather conditions. 365 

At the half-hourly temporal resolution, when SIF and GPP were considerably affected by variations in PAR (Figure 

2), the relationship between GPP and SIF was strongly non-linear. This result suggests that the chlorophyll 

fluorescence does not linearly co-vary with photosynthesis because GPP saturates at a high PAR, while 

fluorescence continues to increase with PAR as demonstrated by the partial dependence correlations in Figures 6 

and 7. This finding is consistent with several previous studies (Helm et al. 2020; Cheng et al. 2022; Sun et al. 370 

2023b). This study also underlines that the hyperbolic relations between GPP and SIF was better on cloudy days 

(R2 = 0.66) than on sunny days (R2 = 0.59), indicating that light intermittence within and over the canopy and sun-

canopy geometry significantly affected the link between GPP and SIF. These findings are in good agreement with 

previous studies in cork oak forest (Cheng et al. 2022). Clouds reduce the total sun radiation received over the 

canopy and increase the diffuse radiation. Canopy SIF is mainly affected by direct radiation and is less impacted 375 

by diffuse radiation than GPP (Sun et al., 2023b).  Further, diffuse radiation can penetrate deeper in the canopy, 

presumably inducing more SIF emission due to shaded leaves emission’s and greatly reducing sun-canopy 

geometry effects. However, under high light intensity, which is clearly more frequent on sunny days, the excess 

absorbed light is dissipated as heat inducing both a decrease in the photosynthetic activity and the SIF emission. 

This is because when light intensity increases, the carbon assimilation and the electron transport chain gradually 380 

become light saturated (Porcar-Castell et al. 2014). This explains why the link between GPP and SIF at satellite 
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overpass times evidenced that GPP and SIF were hyperbolically more related in the afternoon (13H30 pm) than in 

the morning (10H30 am) (Figure 4). Further, under high and changing light conditions, GPP is sensitive to 

circadian rhythms, meaning that photosynthesis light saturation is more important in the afternoon than in the 

morning (Li et al., 2023).  385 

If the light saturation of GPP is the primary widely known driver in the discrepancy between GPP and SIF, there 

are abiotic variables that vary intra-daily, daily and seasonally. These variables may have significant effects on the 

fluorescence efficiency and the photosynthetic activity and consequently they can affect the relationship between 

GPP and SIF. Thus, the results presented here (in Figures 2, 3 and 5) evidenced that Tcanopy, SWC and VPD are all 

influencing GPP and SIF. Therefore, they may be responsible for intra-daily and seasonal divergence in the GPP-390 

SIF relationship. More specifically, strong discrepancies between GPP and SIF were associated with high PAR, 

Tcanopy, and VPD (Figures 2 and 3). Previous studies have also identified PAR and VPD as potential causes for the 

non-linearity between GPP and SIF (Kim et al. 2021; Hu et al. 2023). In addition, abiotic variables can impact SIF 

and GPP at several levels. The abiotic variables can affect the light energy partitioning in the photosynthetic 

apparatus, leading to NPQ activation. VPD is an indicator of atmospheric water demand and in this study VPD 395 

reached values that corresponded to severe air drought during the heatwaves that occurred in the summer in 2022. 

Air drought can also affect stomatal closure. Stomatal closure can lead to decrease in plant water use efficiency 

and can prevent carbon assimilation and can inhibit the electron transport chain activity (Jonard et al. 2020; 

Magney et al., 2020), hence, affecting photosynthesis and fluorescence emission and consequently the relationship 

between GPP and SIF (Figures 3 and 5). This behavior might be observed in our results (Figures 2, 3 and 5). 400 

Previous studies has also demonstrated that the influence of the VPD on the SIF-GPP relationship had a critical 

effect (Cheng et al. 2022). More specifically, we observed that a high VPD had a negative effect on both GPP and 

SIF (Figures 6 and 7). We also observed that both GPP and SIF saturate at high SWC (Figures 6 and 7). The SWC 

is an indicator of plant water stress which affects stomatal closure and hence the light reaction of photosynthesis 

and the fluorescence. The SWC was shown to have different responses to SIF and GPP in cork oak and poplar 405 

trees (Cheng et al. 2022), suggesting the relation of GPP and SIF with SWC may be also vegetation type-specific. 

The positive relationships between SIF and PAR indicate that the seasonal changes in PAR control variations in 

SIF at the canopy scale. Whereas, the saturation of GPP with increasing PAR is associated with the saturation of 

carbon assimilation in leaves under high light intensity. Therefore, this study supports that field measurements of 

remote sensing metrics, ecosystems and abiotic variables are needed to better understand the dynamics of GPP and 410 

SIF and their relationship. 

4.5. Conclusion 

In this study, the concomitant and continuous measurements of Sun-Induced chlorophyll Fluorescence, Gross 

Primary Production, reflectance-based vegetation indices and abiotic variables of a sessile oak canopy allowed to 

analyse the main drivers of SIF and GPP variations. On one hand, the seasonal variations in SIF, GPP, VIs, and 415 

abiotic variables (including PAR, air and canopy temperatures, Soil Water Content and Vapor Pressure Deficit) 

were examined, and on the other hand, the relationships between GPP and SIF was evaluated considering different 

temporal resolutions.  Further, Random Forest models were also used to not only predict SIF and GPP, but also to 

analyse the responses of SIF and GPP to abiotic drivers. 
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The results showed that both SIF and GPP had similar seasonal patterns, which were primarily controlled by the 420 

vegetation phenology (canopy structure and leaf biochemical and physiological attributes) and diurnal and seasonal 

changes in incoming solar radiation. The analyses also demonstrated that the saturation of the relationship between 

GPP and SIF was not only dependent on PAR, but also on the fraction of diffuse to total PAR and on other abiotic 

variables such as VPD, SWC, and canopy temperature. The other key finding was that sun geometry angles had 

strong effects on GPP and SIF, suggesting that sun-canopy geometry effects impact the relationship between GPP 425 

and SIF. This last result may be specific to our study site consisting of a mature forest which has a complex 

structure, but it clearly highlights that the use of passive SIF measurements acquired at the canopy scale with a 

narrow field of view must be conducted with great care, as the measurements are strongly impacted by the 

distribution of sunlit and shaded leaves at the top of the canopy. Using in-situ ground SIF measurements to validate 

satellite measurements at coarse spatial and temporal resolutions can therefore be difficult, since obtained results 430 

will not be the same from one site to another, particularly in forest canopies where the structure is highly 

heterogeneous. Alternative solutions based on active chlorophyll fluorescence measurements at canopy scale, or 

airborne measurements that take account of canopy heterogeneity, need to be considered.  
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