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Abstract.

Prior information is essential to most inverse problems and the surface flux estimation problem is no exception. The uncer-

tainties of the prior fields, and their inter-correlations, should ideally be reflected in the a-priori error covariance matrix, often

called B. The B-matrix, is however, difficult to quantify partly because it is typically a large matrix and partly because its

numerical values are unknown.5

We present a highly efficient method of representing the B-matrix to represent prior errors in the initial concentration and

in the time sequence of surface fluxes for the 4DVar-based inverse modelling system (INVICAT) used to estimate the surface

fluxes of methane. Our formulation is based on a spectral formulation of the square-root of B, which we believe has not been

used in any such inverse modelling system before. It allows horizontal and vertical error correlations of the initial concentration,

and horizontal and temporal error correlations of the flux to be represented. We provide full mathematical details. Our scheme10

allows the various correlation components to be switched on/off and for the respective length and timescales to be set in a way

that is much more computationally efficient than representing such a B-matrix explicitly.

We test 14 configurations of the B-matrix (including the diagonal configuration) in a 100 day test assimilation of surface

flask measurements of methane. We measure the performance of each by comparing the analysis to unassimilated observations

held back for evaluation purposes. We find that the diagonal configuration is amongst the poorest performing choices of B.15

The best performing choice uses the spectral method. It does not include correlations for the initial concentration field, but

does account for spatio-temporal correlations for the fluxes. These have the form of a SOAR (second order auto-regressive)

function with a correlation length-scale of 600km and a timescale of 3 months. Our results demonstrate the effectiveness of

our method, which is applicable to very high resolution inverse modelling systems. We propose that potential biases in the

prior initial condition field may be the reason for the poor performance when correlations in the prior initial concentration field20

are used.
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1 Introduction

Top-down methods to estimate regional fluxes of atmospheric trace gases at the Earth’s surface have been in use since the 1990s

(Houweling et al., 1999). Such methods combine measurements of a trace gas from in-situ and/or remote sensing instruments

with information from chemical transport models to infer the surface fluxes. Trace gases that have been studied in this way25

include carbon dioxide (Feng et al., 2009; Chandra et al., 2022), carbon monoxide (Jiang et al., 2013; Zheng et al., 2019),

methane (CH4) (Fraser et al., 2013; Maasakkers et al., 2021; Qu et al., 2021; Wilson et al., 2021), nitrous oxide (Hirsch et al.,

2006; Thompson et al., 2019), chlorofluorocarbons (An et al., 2012; Rigby et al., 2008), carbonyl sulfide (Ma et al., 2021),

and volatile organic compounds like isoprene (Palmer et al., 2006), and formaldehyde (Gonzi et al., 2011). Knowledge of the

geographical distribution and magnitude of the fluxes of these gases is essential to understand the origin of pollutants that are30

damaging to the environment and/or health, and the natural cycle of compounds within the Earth system such as in the carbon

cycle.

There is a range of methods used to make inroads into this problem, some of which are Bayesian inverse methods. The

variational method (4DVar) (Chevallier et al., 2005) finds the mode of an assumed posterior distribution, which represents the

least squares fitting of a surface flux field to a-priori information and to observations of the trace gas. 4DVar assumes that prior35

statistics are Gaussian, with covariances that have been prescribed, but is otherwise an efficient and practical method. Other

commonly used methods include the ensemble Kalman filter (EnKF) (Feng et al., 2009), which avoids the need to prescribe

prior error covariances, but relies on a large enough and well constructed ensemble to produce reasonable results; and direct

inversions (Gurney et al., 2002; McNorton et al., 2018; Chandra et al., 2022), which use an explicit formula to calculate directly

the posterior fluxes, but are restricted on computation grounds to a relatively small number of large-area surface regions. Other40

methods include the flixed-lag Kalman smoother (Zhuravlev et al., 2013), Markov chain Monte-Carlo (Lunt et al., 2019),

regressions (Palmer et al., 2003), and back-trajectories (An et al., 2012).

It is possible to categorise these methods into those that (i) represent the fluxes on a grid that is at the same resolution as

the underlying chemical transport model (Wilson et al., 2021), and (ii) represent only the aggregated fluxes over a relatively

small number of large-area regions on the globe (Locatelli et al., 2013). Contemporary 4DVar and EnKF methods tend to fall45

into category (i). These methods can infer surface fluxes with a high signal-to-noise ratio when the results are aggregated to

large scales, but this ratio degrades when the scale is reduced to continental scale and smaller (for instance to over 150% of the

prior at grid level (Locatelli et al., 2013; Chandra et al., 2022)). That said, there can still be significant variations in flux over

continents. We therefore have a preference to study methods that are capable of resolving the fluxes at the model grid level.

This paper concerns developments to a leading 4DVar inversion method, namely INVICAT (Wilson et al., 2014), which is the50

4DVar framework for the TOMCAT chemical transport model (Chipperfield, 2006).

One of the difficulties associated with using 4DVar is that the prior error covariances of the surface flux and initial condition

fields need to be specified. This information is encapsulated in the B-matrix (see Sects. 2.2 and 3). The specification can

include grid level variances, horizontal length-scales (potentially separately for land and sea, and dependent on location and

source type), vertical length-scales (for the initial conditions only), and temporal timescales (for the fluxes only). A first55
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challenge, given the large size of the B-matrix, is to just represent the correlation-related parts of B (related to the off-diagonal

elements) in a practical way, and a second problem is to determine realistic values of the above quantities. With respect to the

first problem, many studies revert to either a diagonal prior error covariance matrix (Mendoza-Dominguez and Russell, 2001;

Wilson et al., 2014; Jiang et al., 2013), which requires the specification of the variances only, or to a partial representation of

the correlations (e.g. omitting temporal correlations in the flux, Locatelli et al. (2013)). Off-diagonal elements in B (see e.g.60

Bannister (2008a)) are important in an inverse problem given that the prior fields for the flux and the initial condition field are

each likely to have correlated errors (spatially and temporally), and so omitting the correlations would lead to a sub-optimal

posterior (Houweling et al., 1999).

Given the large size of the B-matrix (∼O(state size2)), the task of representing the correlations explicitly (e.g. to form the

B-matrix and then compute B1/2 as a preconditioner) requires a large computational burden, which becomes infeasible with65

increasing model resolution. An alternative approach is the use of a more efficient method, which avoids explicitly representing

the B-matrix. In this paper we describe and test a spectral method of efficiently modelling the B-matrix, largely adapted from

operational data assimilation systems used for weather forecasting.

The structure of this paper is as follows. In Sect. 2 the INVICAT system is described and the basic problem of modelling B

is outlined. In Sect. 3 INVICAT’s original (diagonal) B-matrix is described and the spectral method is outlined. In Sect. 4 the70

specific prior error covariances are shown. In Sect. 5 the experiments that test the spectral method are detailed and in Sect. 6

the results are shown. Section 7 concludes the paper. Appendices A, B, and C give full mathematical details, and Appendix D

compares the cost of the spectral scheme to that of representing the B-matrix explicitly.

2 The INVICAT 4DVar system and the prior error covariance matrix (B)

2.1 The INVICAT state and cost function75

The state vector for the INVICAT system (Wilson et al., 2014), x, is an augmentation of two kinds of trace gas field: (i) initial

conditions, c0, which is a flattened form of the 3D field (a function of longitude, λ, latitude, ϕ, and height, z) valid at the start

of a 4DVar window, and (ii) the surface fluxes, ρ0,ρ1, . . .ρT , which are flattened forms of the 2D fluxes, each a function of λ

and ϕ, at a set of time steps within the window. In our case the time steps are separated by one month. The state vector may

therefore be written as80

x =




c0

ρ0

ρ1

...

ρT




. (1)

There are special values of x, namely the prior xb (formally the mean of the prior distribution, also called the background

state) and the posterior xa (formally the mode of the posterior distribution, also called the analysis state). The INVICAT cost
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function is

Jx(x) =
1
2

(
x−xb

)⊺
B−1

(
x−xb

)
+

1
2

(y−Hx)⊺ R−1 (y−Hx) , (2)85

where B is the background error covariance matrix (see below), y is vector of observation values spread throughout an as-

similation window, H is the observation operator, and R is the observation error covariance matrix. H is a matrix operator

that acts on a given x and outputs the model equivalents of the observations. Part of H represents the action of the TOMCAT

model from t = 0 to each observation time within the window (0≤ t≤ T ) accounting for the c0 and ρt influences on the

trajectory, and part of H represents the interpolation of the fields at each observation time to the locations of the observations.90

H is therefore a complicated operator, given in a simplified form here for brevity.

2.2 Framework to representing the prior error covariance matrix

Minimising a problem of the form of Eq. (2) with respect to x is normally numerically badly conditioned. The condition

number (see e.g. Sect. 11.4 of Lewis et al. (2006)), quantified as the ratio of the maximum-to-minimum eigenvalues of the

Hessian matrix, B−1 +H⊺R−1H, is often large, owing partly to the typically high condition number of B (e.g. Gauthier et al.95

(1999)). Instead, minimisation is done with a control variable, denoted χ. Let

δx = x−xb = B1/2χ, (3)

where B1/2 is the control variable transform (CVT) and δx is an increment with respect to xb. Equation (3) transforms (2) into

a function of χ:

Jχ(χ) =
1
2
χ⊺χ +

1
2

(
y−H

[
xb +B1/2χ

])⊺
R−1

(
y−H

[
xb +B1/2χ

])
. (4)100

The cost function Jχ(χ) is typically better conditioned than Jx(x) because the background error covariance matrix in χ-space

is the identity matrix. The gradient of Jχ with respect to χ is required for the descent algorithm:

∇χJχ = χ−B⊺/2H⊺R−1
(
y−H

[
xb +B1/2χ

])
. (5)

Minimising Jχ(χ) in (4) is equivalent to minimising Jx(x) in (2) with B = B1/2B⊺/2 (where B⊺/2 =
(
B1/2

)⊺
). The minimum

of Jχ is at χa and corresponds to the analysis state, i.e. xa = xb +B1/2χa.105

There are two categories of CVT discussed in this paper.

1. The first is when B1/2 is set to a diagonal operator (called B
1/2

d ) where the diagonal elements are background error

standard deviations. More information is given in Sect. 3.1.

2. The second gives an implied B-matrix. It is sometimes possible to find B1/2 by first forming B and then decomposing

using an eigen- or Choslesky decomposition (see e.g. Sect. 9.1 of Lewis et al. (2006)). This is the procedure used in110

many 4DVar-based systems such as Chevallier et al. (2007) (Chevallier, personal communication). Here though it is

assumed it is difficult or impossible to know B explicitly, so instead a plausible form of B1/2 (we call B
1/2
sp ) is proposed
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without forming B first. In high-dimensional systems, B can be too large to store explicitly, so B
1/2
sp is coded as a

set of computationally feasible steps that are designed to produce sensible background errors, x−xb, via (3) using

control variables χ which are uncorrelated and have unit background error covariance. There are numerous examples115

of B
1/2
sp in the numerical weather prediction literature. For reviews of different applications and methods, see Bannister

(2008b, 2017) and Bannister et al. (2020). Such an implied B-matrix, B
1/2
sp B

⊺/2
sp can be orders or magnitude more efficient

to use than an explicit matrix, but is approximate. More information is given in Sect. 3.2.

Both categories use the same cost function form (4) and only the form of B1/2 differs between the two.

3 Specific approaches used to model B120

In this work we consider different configurations of B1/2 which includes (or not) spatial and temporal correlations with different

correlation scales, in categories 1 or 2 above. These are described in this section, together with their expected advantages and

disadvantages. The INVICAT system is described on a global grid with nx longitudes, ny latitudes, nz levels, and T + 1 flux

times. The model grid is spaced regularly in the longitudinal direction and has irregular Gaussian latitudes. The vertical grid

is based on a combination of terrain-following and pressure coordinates (σ-p) up to 0.1 hPa (see Wilson et al. (2014) and125

Chipperfield (2006) for more details). The experiments done in the paper have nx = 64, ny = 32, nz = 60, and T = 3. This

produces a grid cell size of approximately 5.6◦ × 5.6◦. This is a relatively low resolution, chosen for illustration.

3.1 Diagonal B-matrix (Bd)

A diagonal B-matrix (labelled Bd) is the simplest representation of the prior error distribution. It assumes that background

errors are uncorrelated in space and time on the model grid. This is sub-optimal because true prior errors are likely to be130

correlated and also because the grid box sizes change with latitude. With Bd, though, only the variances need to be specified.

The control space for the for this choice (the space that B
1/2

d acts on), is denoted χd, and has the same structure as (1) so there

is a one-to-one correspondence between elements in δx and in δχd.

Despite this simplicity, it can still be difficult to determine the variances well (to reflect the ‘true’ variances), since these are

likely to depend on location and time. In this work, it is assumed that the background error standard deviations (σb
c (λ,ϕ,z)135

and σb
ρt(λ,ϕ), the square-roots of the variances of the initial conditions and fluxes respectively) are set to be a fraction of the

a-priori field. Namely, σb
c (λ,ϕ,z) = fcc

0b(λ,ϕ,z), where fc = 0.1 and c0b(λ,ϕ,z) is the background initial condition field;

and σb
ρt(λ,ϕ) = fρ

∣∣ρtb(λ,ϕ)
∣∣, where fρ = 0.4 and ρtb(λ,ϕ) is the background flux field1. Let the square-root of Bd have the

1Values of σb
ρt (λ,ϕ) smaller than 1010 molecules cm−2 s−1 are replaced by 1010 molecules cm−2 s−1, providing a minimum flux error value.
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following block form:

B
1/2

d =




Σb
c

∣∣∣∣ 0 0 0 0

0
∣∣∣∣ Σb

ρ0 0 0 0

0
∣∣∣∣ 0 Σb

ρ1 0 0

0
∣∣∣∣ 0 0

. . . 0

0
∣∣∣∣ 0 0 0 Σb

ρT




, (6)140

where Σb
c is the diagonal matrix of background error standard deviations in concentration, σb

c (λ,ϕ,z) (with nxnynz diagonal

elements) and Σb
ρt is the diagonal matrix of background error standard deviations in flux at time t, σb

ρt(λ,ϕ) (with nxny

diagonal elements at each time).

The particular values of fc and fρ mentioned above have been chosen by trial-and-error (not shown) in order to yield reason-

ably small mean deviations and root-mean-square deviations between the resulting analyses (using a trial period of 100-days)145

and some unassimilated observations of surface methane (see Sect. 5). The fact that fc < fρ means that the analysed surface

fluxes are allowed to deviate more from the background than the initial conditions are (relative to the size their background

values). The problem with setting the error standard deviations to be proportional to the background is that assimilated obser-

vations will struggle to update elements of the state vector with small background values. The procedure noted in footnote 1

will partially mitigate this effect, but the use of fc and fρ remains a potential drawback of this approach. This option falls into150

category 1 in Sect. 2.2.

3.2 Spectrally modelled B-matrix (Bsp)

The main focus of this paper is the development of an efficient way to model a non-diagonal B-matrix using the spectral

method, here called Bsp. This is an example of category 2 in Sect. 2.2, where the B-matrix is implied by the form of the CVT.

The proposed square-root is as follows:155

B1/2
sp =




Σb
cΞ

−1FvcΛ
1/2
vc F⊺

vcRhShΛ
1/2

hc

∣∣∣∣ 0
∣∣∣∣

0
∣∣∣∣ Σb

ρFtρΛ
1/2

tρ F⊺
tρRhShΛ

1/2

hρ∣∣∣∣




, (7)

which acts on a control variable of the form χsp =
(

χc0

∣∣∣∣ χρ

)⊺
. Evidently, this form CVT is more complicated than the

previous form, so it deserves a step-by-step explanation. The definitions of the symbols that appear in (7) are described below,

but we first make two remarks on the form of the control space. Firstly, like for B
1/2

d , the c and ρ parts in B
1/2
sp are separate.
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This means that Bsp still assumes that errors between these two parts of the state vector are uncorrelated. Including these160

correlations is beyond the scope of this work. Secondly, the part of B
1/2
sp that concerns ρ couples different temporal components

of the flux field, and so the ρ part of the CVT cannot be written in a block form similar to (6). In other words, the parts of

the CVT associated with ρ include operators for all times together, and are no longer separate for each time. The parts of B
1/2
sp

associated with c and ρ are now explained in turn.

The first part of B
1/2
sp is that associated with the initial conditions, c0 (upper left in (7)).165

1. In the order of operation, the first stage, ShΛ
1/2

hc , models horizontal correlations. This has a similar form to the square-

root of an eigenvalue decomposition, where Λhc is the matrix of eigenvalues, and Sh is the matrix of eigenvectors. Sh

here is actually a spherical spectral transform (from a spectral space representation of the control vector to grid space),

so the eigenvectors have the form of spherical harmonics. The form of the transform is symbolic only, as practically the

horizontal transform is applied separately for each vertical level. The diagonals of Λhc form prescribed functions of total170

wavenumber (0 to L, where L is the maximum total wavenumber) and there is one function (called a horizontal variance

spectrum) for each vertical level. For simplicity, we use the same function for each vertical level, which is equivalent

to using a constant horizontal correlation length-scale for prior errors in c. Sh uses the SHTools software Wieczorek

et al. (2018). Notes on this part of the transform are given in Appendices A and B1, how Λhc is found is described in

Appendix C1, and an example spectrum is shown in Sect. 4.2.175

2. The next stage is the horizontal reconfiguration operator, Rh (do not confuse with R in the cost function), which linearly

interpolates from the horizontal grid used by SHTools (a set of longitudes and Gaussian co-latitudes) to that used by

INVICAT (a different set of longitudes and Gaussian latitudes).

3. The next stage, Ξ−1FvcΛ
1/2
vc F⊺

vc, models vertical correlations. The eigenvector and eigenvalue-like matrices (Fvc and

Λvc respectively, each nz ×nz matrices) are derived from proposed vertical correlation matrices. Again, this transform180

is symbolic only, as practically the vertical matrices are applied separately for each horizontal position. We derive Fvc as

the eigenvectors of a globally-averaged vertical correlation matrix for CH4 but we allow Λvc to vary with latitude only.

Practical notes are given in Appendix B2, how Fvc and Λvc are found is described in Appendix C2, and the resulting

vertical covariance matrix is shown in Sect. 4.3.

4. The matrix Ξ is an adjustment matrix. Because Fvc and Λvc are not exact eigenvectors and eigenvalues of the local185

vertical covariance (see Appendix C2 for details), FvcΛ
1/2
vc F⊺

vc is not the square-root of a strict correlation matrix. Ξ

ensures that the diagonal elements of
(
Ξ−1FvcΛ

1/2
vc F⊺

vc

)(
Ξ−1FvcΛ

1/2
vc F⊺

vc

)⊺
are all unity (see Appendix C2).

5. The last matrix, Σb
c , is the same as in Bd, and specifies the standard errors in c, see Sect. 4.1.

The second part of B
1/2
spec is that associated with the surface fluxes, ρ (bottom right in Eq. (7)).

6. The first stage is ShΛ
1/2

hρ . This is similar to point 1 above and again the form is symbolic only, as practically the transform190

is applied separately to each of the T + 1 times. The diagonals of Λhρ form prescribed functions of total wavenumber
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components and time (components 0 to L). For simplicity though, we use the same function for each time, which is

equivalent to using a constant correlation length-scale for surface flux errors. See Appendices A, B1, and C1, and Sect.

4.2.

7. The reconfiguration operator, Rh, is the same as in point 2 above.195

8. The next stage is FtρΛ
1/2

tρ F⊺
tρ, which models temporal correlations for the surface flux. The temporal eigenvectors, Ftρ,

and eigenvalues, Λtρ, are derived from a prescribed (T + 1)× (T + 1) temporal correlation matrix with a specified

correlation timescale. See Appendices B3 and C3, and Sect. 4.4.

9. The last matrix, Σb
ρ , is the same as in Bd. Σb

ρ is related to the individual Σb
ρt (0≤ t≤ T , as used in (6)) in the following

(T + 1)× (T + 1) block matrix:200

Σb
ρ =




Σb
ρ0

. . .

Σb
ρT


 . (8)

The horizontal, vertical, and temporal transforms can be individually ‘switched off’ (meaning individually replaced with the

identity), to investigate their impact.

Appendix D shows how efficient the spectral scheme is by comparing the computational cost with that of an explicit repre-

sentation of B.205

4 Prior error statistics

In this section we show example settings used in this work for representation of the B-matrices.

4.1 Prior standard deviations

Figure 1 (right panels) are selected fields of background error standard deviations for the initial concentration (σb
c (λ,ϕ,z =

4.8km), panel b) and flux (σb
ρt=1month(λ,ϕ), panel d). These standard deviations are a fraction of the corresponding prior fields,210

σb
c (λ,ϕ,z) = fcc

0b(λ,ϕ,z) and σb
ρt(λ,ϕ) = fρ

∣∣ρtb(λ,ϕ)
∣∣ (panels a and c respectively). As described in Sect. 3.1, fc = 0.1 and

fρ = 0.4 were chosen (but see footnote 1, concerning adjustments to the standard deviations for the flux, which explains why

the spatial patterns in panels (c) and (d) are not identical, unlike panels (a) and (b)). The prior for the initial concentration

varies over 200ppm with larger values in the northern hemisphere (NH) than in the southern hemisphere (SH), since the

majority of CH4 sources are in the NH. The prior for the flux has source ‘hot spots’ over S America, north east United States of215

America, S and E Europe, equatorial Africa, India, China, and Indonesia. Methane is emitted to the atmosphere from a range

of anthropogenic and natural sources, and these hot spots are likely to be from a combination of fossil fuel-related activity,

agriculture, waste, wetlands, fires and others. The fluxes over the oceans are small, and there is a weak sink over Antarctica.

The same standard deviations are used in the diagonal (Sect. 3.1) and spectrally-modelled (Sect. 3.2) B-matrices.
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Figure 1. Panel (a) shows the prior initial concentration at altitude 4.8km and panel (b) shows the prior initial concentration error standard

deviation, both in parts-per-billion (ppb). Panel (c) shows the prior flux at t = 1month and panel (d) shows the prior flux error standard

deviation, both in molecules cm−2 s−1.

4.2 Horizontal correlations of initial concentration and flux errors220

The non-diagonal B-matrix Bsp uses correlation functions between any pair of points on the same horizontal level. These are

specified in this paper as SOAR (second order auto-regressive) functions with specified length-scales. To illustrate, Fig. 2(a)

shows two such SOAR functions, one with a length-scale of 400km and another with 600km. These are example horizon-

tal correlation functions for the initial concentration and flux respectively. For Bsp, these functions are used to produce the

horizontal spectra Λhc and Λhρ in Eq. (7) according to the procedure in Appendix C1. Although the formulation for Bsp is225

constrained to produce only homogeneous and isotropic correlations, it results in a highly efficient CVT, which can be applied

to high-resolution systems. The so-called ‘variance spectra’ for the two SOAR functions in Fig. 2(a) are shown in panel (b).

Note that the spectrum for ρ errors is narrower than that for c0 errors, which is the opposite of the correlation functions in real

space. This is because the correlation function and spectra are related via the spectral transform (see Appendix C1), which, like

the Fourier transform, treats distance and wavenumber as conjugate variable pairs.230
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Figure 2. Panel (a) shows an example of two horizontal correlation functions of SOAR form with length-scales 400km and 600km (nom-

inally applied to the initial concentration, c0, and flux fields, ρt, respectively). Panel (b) shows their variance spectra (diagonal elements of

Λhc and Λhρ respectively). The procedure to compute the variance spectra is in Appendix C1.

4.3 Vertical correlations of initial concentration errors

Bsp has the ability to include vertical covariances in c0 errors, which are described by the operators Fvc, Λvc, and Ξ−1. Fvc

contains the eigenvectors of the vertical correlation matrix, which is derived from a set of one-year methane forecasts made by

INVICAT, valid between 1995 and 2004 (as described in Wilson et al. (2021)). This provides a time sequence of 10 January

CH4 forecast fields, which are detrended and used to produce an estimate of the vertical covariance matrix mentioned above.235

This is shown in Fig. 3(a). The derived global eigenfunctions are used for vertical columns at every horizontal position, but the

eigenvalue-like object, Λvc, is allowed to be latitude dependent. The remaining panels of Fig. 3 plot the vertical correlations(
Ξ−1FvcΛ

1/2
vc F⊺

vc

)(
Ξ−1FvcΛ

1/2
vc F⊺

vc

)⊺
for the model latitudes nearest ∼ 50◦ (b), ∼ 0◦ (c), and ∼−50◦ (d), to show the

range of vertical correlations that this is capable of representing. More details are given in Sect. 3.2 above and in Appendix C2.

4.4 Temporal correlations of flux errors240

Bsp has the ability to include temporal correlations in ρ errors, which are described by the operators Ftρ and Λtρ. Figure 4(a)

is an example correlation function of SOAR form with a timescale of one month. The corresponding correlation matrix has

eigenfunctions Ftρ and eigenvalues Λtρ, the latter are shown in panel (b) (there called a variance spectrum). The eigenvalues

increase with eigenmode because of the way the eigensolver has ordered the modes.
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Figure 3. Selection of vertical background error correlation matrices for the initial concentration field, c0. Panel (a) is the global average

correlation matrix, which is used to compute the global eigenvectors, Fvc, and panels (b)-(d) are for implied correlation matrices for indi-

vidual latitudes. Panel (b) ∼ 50◦, (Ξ50)−1FvcΛ
50
vcF

⊺
vc(Ξ

50)−1; (c) around the equator, (ΞEq)−1FvcΛ
Eq
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(Ξ−50)−1FvcΛ
−50
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−50)−1. The eigenvectors are computed from the global mean vertical correlation matrix in (a), and the latitudinal

dependent Λϕ
vc and Ξϕ matrices are computed according to the procedure in Appendix C2.
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Figure 4. Panel (a) shows an example temporal correlation function for the flux fields, ρt (a SOAR function with a timescale of one month),

and panel (b) shows its variance spectrum (diagonal elements of Λtρ). Note that the time axis in panel (a) refers to the time difference,

so the temporal correlations apply forward and backward in time. The eigenvalue and eigenvector matrices (Λtρ and Ftρ respectively) are

computed according to the procedure in Appendix C3.
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4.5 Implied correlations of the combined horizontal–vertical (for c) and horizontal–temporal (for ρ)245

Finally in this section, we put the above components together (apart from the standard deviations) to reveal the correlation

structures implied by Bsp. The left column of Fig. 5 shows spatial error correlations for c0 associated with three impulse

functions placed at the 11.4km level (indicated by the three blue arrows in panel (c), see the caption for their locations).

Panel (c) itself demonstrates the horizontal spreading, which has a homogeneous and isotropic SOAR length-scale of 400km.

The vertical spreading of the impulse functions upwards and downwards are shown in (a-b) and (d-e) respectively. The right250

column of Fig. 5 shows spatio-temporal correlations for ρ associated with three impulse functions placed at 3, 4, and 5 months

(indicated by the three blue arrows in panels (g-i) respectively). The horizontal length-scale for ρ in this example is longer than

that of c0 (600km), which is reflected in the broader horizontal functions. Each function is further spread in time, with the

same timescale for each point (one month). A feature of these correlation structures is the series of small amplitude oscillations,

which are evident where the correlation values are small (oscillations between the light yellow/green in all panels). These255

artifacts are a consequence of the spectral representation, and are thought to be related to the Gibbs phenomenon associated

with Fourier transforms. They become more prominent when the correlations are narrow, and so are more evident in the left

column. Since these are only of a small amplitude (maximum amplitude 0.001 in correlation), we assume that they will not

affect the quality of the results (we shall see in Sect. 6.2 that they are negligible in typical analysis increment fields).

5 Experimental setup for assimilations260

As explained in the introduction, the background error covariances have been implemented in the INVICAT system Wilson

et al. (2014). For this paper, flux inversions are performed for observations over the first 100 days in 2018. This relatively

short period of time allows the influence of the CH4 initial conditions (as well as the surface fluxes) to be studied, and allows

the problem to be studied without prohibitive cost. The observations assimilated are from 60 surface stations provided by

the National Oceanic and Atmospheric Administration’s Global Monitoring Laboratory (NOAA GML), making weekly or265

bi-weekly flask observations of methane (Fig. 6). CH4 from the whole air samples inside the flasks is measured using gas

chromatography with a flame ionisation detection method (Dlugokencky et al., 2018). The prior initial concentration is taken

from a previously-run configuration INVICAT inversion with diagonal background error covariances, which was first initialised

for 2009 and assimilated surface flask data, described in Wilson et al. (2021). The prior fluxes are taken from a range of bottom-

up, satellite-based and model-based estimates, also described in Wilson et al. (2021). Emissions for the largest emission sectors,270

namely anthropogenic emissions, wetlands and biomass burning, are taken from the EDGAR v4.2 FT 2010 inventory (Olivier

et al., 2012), the JULES land surface model (Clark et al., 2011), and the GFED v4.1 inventory (Van Der Werf et al., 2017)

respectively. Other emissions, including the sink of CH4 through methanotrophy in soils, are described in Wilson et al. (2021).

The model takes meteorological data from the European Centre for Medium-Range Weather Forecasts’ (ECMWF) ERA5

reanalyses (Hersbach et al., 2020).275

This study assimilates real data, and as such there is no objective truth to evaluate against. Consequently, the observations

are partitioned: 75% of the observations (∼ 500) are used for assimilation and the remaining 25% are used for evaluation.
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(e) Initial field, alt 4.8 km (j) Flux field, time 6 months
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(d) Initial field, alt 7.7 km (i) Flux field, time 5 months
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(c) Initial field, alt 11.4 km (h) Flux field, time 4 months

80°S
60°S

40°S

20°S

0°

20°N

40°N
60°N

80°N

80°S
60°S

40°S

20°S

0°

20°N

40°N
60°N

80°N

Total implied (tracer) 26
min=-0.16, max=1.04

min=-3.349108e-04, max=5.574732e-01,
mean=2.039682e-02, rms=7.122916e-02

−0.15
0.00
0.15
0.30
0.45
0.60
0.75
0.90
1.05

80°S
60°S

40°S

20°S

0°

20°N

40°N
60°N

80°N

80°S
60°S

40°S

20°S

0°

20°N

40°N
60°N

80°N

Total implied (flux) 3
min=-0.00, max=1.03

min=-2.833831e-04, max=1.026249e+00,
mean=5.314689e-02, rms=1.412562e-01

−0.15
0.00
0.15
0.30
0.45
0.60
0.75
0.90
1.05

(b) Initial field, alt 15.0 km (g) Flux field, time 3 months
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(a) Initial field, alt 18.3 km (f) Flux field, time 2 months

Figure 5. Implied correlations of the spectrally modelled B-matrix associated with a range of points (blue arrows). Panels (a-e) are long/lat

structures at a range of heights for the initial concentration found from
(
Ξ−1FvcΛ

1/2
vc F⊺

vcRhShΛ
1/2
hc

)(
Ξ−1FvcΛ

1/2
vc F⊺

vcRhShΛ
1/2
hc

)⊺
act-

ing on a zero field apart from unit impulses at three points (lon,lat,alt): (56◦,58◦,11.4km), (174◦,3◦,11.4km), and (293◦,−47◦,11.4km).

Panels (f-j) are long/lat structures at a range of times for the flux field found from
(
FtρΛ

1/2
tρ F⊺

tρRhShΛ
1/2
hρ

)(
FtρΛ

1/2
tρ F⊺

tρRhShΛ
1/2
hρ

)⊺

acting on a zero field apart from unit impulses at three points (lon,lat,time): (56◦,58◦,3months), (174◦,3◦,4months), and

(293◦,−47◦,5months). The correlation matrices shown are based on Eq. (7). The standard deviations Σb
c and Σb

ρ are omitted to show

the implied correlations, rather than the covariances. The initial concentration has vertical correlations as Fig. 3 and a horizontal correlation

length-scale of 400km as Fig. 2 (continuous line). The flux has temporal correlations of one month as Fig. 4 and a horizontal correlation

length-scale of 600km as Fig. 2 (dotted line). 13
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Locations and alt (max alt 4469.0m)

Figure 6. Map showing the locations of the 60 surface stations monitoring methane used in this study. These stations contribute to NOAA’s

global flask monitoring network. The size of each dot represents the altitude above sea level of the station, with the largest dot being∼ 4.5km

in altitude. To avoid dots being too small to see, stations with an altitude < 100m are shown with a size corresponding to 100m altitude.

Which observations are used for which purpose are decided at random but the same partition is used for tests with 14 different

B-matrix configurations (see below). In order to test statistical significance of the results, we run this procedure a total of

five times, each with the same proportion of assimilation and evaluation observations, but using five sets of different random280

numbers to partition between assimilation or evaluation.

There are many parameters to control the specification of the B-matrix. Firstly, fc and fρ control the background error

standard deviations of the initial concentration and flux fields respectively. We assume that the values fc = 0.1 and fρ = 0.4

are reasonable choices (Sect. 3.1), and so variations in these quantities are not explored. Of the eight variables that control

the correlations in B, there are five ‘switch’ variables. One is the choice of approach to modelling B: no correlations (Bd,285

Sect. 3.1) and the non-diagonal spectral approach (Bsp, Sect. 3.2). The other four are used to set whether or not to use vertical

correlations and horizontal correlations for background errors in c0, and whether or not to use temporal correlations and

horizontal correlations for background errors in ρ. The remaining three variables concern the spatio-temporal correlation

scales: the horizontal correlation length-scale for c0, the horizontal correlation length-scale for ρ, and the temporal correlation

timescale for ρ. A zero value in any of these latter three parameters is executed by switching off that particular correlation290

model. Running INVICAT is quite costly and so it is not possible to run with different settings as systematically as might be

desired, but as mentioned above, we test with 14 configurations. These are listed in Table 1.
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6 INVICAT performance with the B-matrices tested

6.1 Fit to evaluation observations

Table 1 lists the different configurations of the B-matrix tested. We evaluate the performance of each configuration by the295

reduction in the variance of the “observation-minus-model” statistic, κ, that is

κ =
〈
(yeval−Heval [xa])2

〉
−

〈(
yeval−Heval

[
xb

])2
〉

, (9)

where yeval is the vector of unassimilated evaluation observations, Heval [x] is the model equivalent (with x = xa or xb), and

⟨•⟩ is the average over the evaluation observations. There are thus five different values of κ for each B-matrix configuration –

one for each of the different sets of randomly chosen observation partitions.300

The means and standard deviations of κ (computed over the five values) are shown in Table 1 for each B-matrix. The

configurations are ordered in descending order of the mean of κ, so the best results are towards the bottom of the table. The

standard deviations of κ give an indication of the significance that the means are different between experiments, but a more

formal test is given in the last column. Considering the diagonal B-matrix as the control experiment, the level of significance

that the results with the alternative configurations are truly different from the control (rather than being by chance) are found305

from the Kolmogorov–Smirnov test (e.g. Press et al. (2007)). The higher the significance, the higher the chance that there is a

meaningful impact in the configuration.

In the following, the configurations are referred to by their labels (A-N), given in brackets. It is evident from Table 1

that much improvement can be made on the diagonal configuration (B) as all but one of the configurations produce better

analyses when measured with the κ statistic (bold column). The only configuration that is worse is (A), which uses vertical and310

horizontal correlations in c0, and horizontal and temporal correlations in ρ. By looking at other rows in the table it becomes

evident that this degradation is due to the correlations introduced in c0. When the horizontal correlations in c0 are removed

the performance improves (C), which becomes better than (B), but with low significance. Additionally turning off the vertical

correlations gives further improvements (I) with high significance. This and the remainder of the tests do not use vertical

correlations. Configurations (D, E, F, I) test different (decreasing) values of correlation length-scales of errors in c0, and315

produce progressively better results with shorter length-scales, culminating in the best results for this group being when these

correlations are switched off, as mentioned above (I). The remaining tests in the table therefore do not use spatial correlations

in c0 at all. Configurations (G,H,I,L,N) test different correlation timescales for ρ with better results for increasing timescales

tested up to three months. Configurations (J,K,L,M) test different horizontal correlation length-scales in ρ and show there there

is little sensitivity to the specific value between 200 and 800 km.320

6.2 Selection of analysis increments

Figure 7 plots a selection of analysis increments from configurations (A), (B), and (N), as described in Table 1 (the worst,

control (diagonal B), and best respectively). The initial concentration increments (left column) are each added to the prior

concentration given in Fig. 1(a), and the flux increments (right) are added to the prior flux given in Fig. 1(c) to give the

15
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Config. B Vert (c0) Horiz (c0),

km

Horiz (ρ),

km

Temp (ρ),

months

mean of κ stddev of κ Level of significance

(%) difference from

diagonal config

A spectral Y 400. 600. 1.0 -68.77 48.30 30.26

B diagonal N 0. 0. 0.0 -82.29 12.82 00.00

C spectral Y 0. 600. 1.0 -86.38 37.94 30.26

D spectral N 600. 600. 1.0 -99.35 36.82 30.26

E spectral N 400. 600. 1.0 -100.41 31.91 30.26

F spectral N 200. 600. 1.0 -104.54 29.07 79.10

G spectral N 0. 600. 0.0 -104.57 11.40 96.39

H spectral N 0. 600. 0.5 -109.57 14.79 96.39

I spectral N 0. 600. 1.0 -114.25 18.68 99.62

J spectral N 0. 200. 2.0 -117.07 24.19 99.62

K spectral N 0. 800. 2.0 -118.22 22.28 99.62

L spectral N 0. 600. 2.0 -118.73 23.32 99.62

M spectral N 0. 400. 2.0 -118.98 24.39 99.62

N spectral N 0. 600. 3.0 -120.71 25.75 99.62

Table 1. Configurations of the 14 B-matrices tested and their performances with respect to unassimilated evaluation data. Column 2 is the

model used: diagonal (Sect. 3.1) and spectral (Sect. 3.2); column 3 states whether vertical correlations are included in the B-matrix for the

c0 field; column 4 gives the horizontal correlation length-scale for c0; column 5 gives the horizontal correlation length-scale for ρ; and

column 6 gives the temporal timescale for ρ. Column 7 gives the means of κ (Eq. (9)) over the five observation networks; and column 8

gives the standard deviations. All experiments give negative κ meaning that the analyses are closer to the evaluation observations than the

backgrounds are. The more negative the result, the better the fit to the evaluation data. The table is ordered in descending value of mean κ

(bold column), so the best results are listed at the bottom of the table. Column 9 gives the percentage level of statistical significance that the

distribution of κ values (over the five differing network experiments) differs from the distribution of κ values over the control experiment

(the diagonal configuration, the bold row). The closer the value of the significance to 100%, the smaller the chance that the results would

have happened by chance.
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respective posterior fields. Showing the increments allows us to study the experiments’ differences more clearly than showing325

the analyses themselves.

Looking at the increments to the initial concentration, Fig. 1(a,c,e), (A) unsurprisingly has the largest values. This is because

it is the only configuration shown that includes vertical correlations in B, allowing surface innovations in the concentration

to be spread directly to elevated levels. Configurations (B) and (N) do not include such direct correlations, and rely on effects

associated with the propagation of covariances like BM⊺
t (where Mt is the model propagation from 0 to the time t of an330

observation). Initial condition increments for (B) and (N), Fig. 1(c,e) are not dissimilar in magnitude and pattern because these

two share the same configuration for the part of the B-matrix concerning initial concentrations.

It is interesting to compare the locations of the surface stations in Fig. 6 with the initial concentration increments in the

left panels of Fig. 7. Some of the peaks in Fig. 7(a) are directly above a measuring station, such as the one over the Northern

Atlantic Ocean just East of North America (specifically Tudor Hill, Bermuda, station code BMW). Other increments are335

shifted, such as the negative one over Kazakhstan, which is a region with no local surface observations assimilated. This peak

must therefore be a consequence of observation(s) made downstream via the BM⊺
t effect mentioned above. Interestingly, this

and other increments are not present in (B) and (N), meaning that they are likely anomalous artifacts of potentially unrealistic

vertical correlations.

Turning now to the surface fluxes, (A) and (N), Fig. 7 (b,f), have similar patterns and length-scales because (A) and (N)340

have the same length-scale settings for flux. The magnitude of the flux increments in (A) though are smaller than those in (N).

Configuration (A) has a timescale of 1 month, while (N) has 3 months, so there is stronger influence of more observations (from

different times) in (N). Configuration (B) has the smallest flux increments at most locations. It uses no temporal correlations,

so there is no direct influence of observations made beyond 1 month from the start of the experiment. Looking at (N) as the best

result, the flux increments have peaks over continental Europe, Eastern Europe, the Persian Gulf, and North Eastern China.345

Most of these locations do not coincide with observing stations, but they do all coincide with regions of high assumed a-priori

uncertainty, see Fig.1(c). This illustrates that the inverse problem, in its best form (N), can update fluxes which are assumed

most uncertain, even in the absence of nearby observations. The difference between panels (d) and (f) in particular highlight

some important differences between the B-matrices of the ‘diagonal-B’ INVICAT and the one described in this paper.

6.3 Land, sea, and total fluxes350

Figure 8 shows how the fluxes (aggregated over the globe, over land, and over sea points) change in time over the 100 days

of the observation period (January to April 2018), and beyond to June. The prior and posteriors for the three configurations

(A), (B), and (N) are shown. Looking at the total fluxes (blue and cyan lines in Fig. 8), the prior (blue) has the largest values,

which dip slightly in February. The posterior for the diagonal configuration (B, dotted cyan line) also has this dip, but all values

are lower by about 3%. The best configuration (N, dot-dashed cyan) is lower still, by about 7% from the prior. The worst355

performing configuration (A, continuous cyan line) has the lowest total fluxes, by about 9% from the prior. These results show

that it is probable that the prior flux values are too high, but the ‘wrong’ configuration of the B-matrix can reduce values too
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(e) Config. (N), initial concentration inc. 4.8 km (f) Config. (N), flux inc. Jan 2018

Figure 7. Analysis increments of the initial concentration at altitude 4.8km (left column) and the surface flux at 1 month (right) for three

configurations using the first observation subset considered. Configurations (A) (top row), (B) (middle), and (N) (bottom) are the worst,

control (diagonal B),and best performing configurations of the B-matrix (see Table 1). Note that each map is plotted with a different scale,

in order to to see the increments.
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much. A similar pattern of results are found for the land-only points (red and orange lines), which comprise approximately

97.5% of the total fluxes in February.

The sea-only fluxes are much smaller (green lines), which comprise approximately 2.5% of the total fluxes in February. All360

posterior fluxes shown are still smaller than the prior, but the best configuration (N, dot-dashed light green line) this time has

the smallest values rather than the worst configuration. All sea fluxes are broadly increasing at this time of the year.

Note that, apart from the diagonal configuration (B), all posterior flux amounts are different from the prior over all months

shown, even though the observations go up to the start of April only. This is expected as configurations (A) and (N) include

temporal correlations. This does mean that persistent negative increments in the flux for the early (observed) part of the year365

infer negative increments later in the year. It will require much longer test runs to find out how useful such temporal correlations

are. The total posterior flux values are comparable to other studies. Although we believe our evaluation approach is sufficient

to test the different B-matrices, the 3-month test period obviously makes it impossible to compare the seasonal cycle of CH4

to that in other studies.

7 Conclusions370

This paper documents our work to expand the capability of the B-matrix in the 4DVar-based INVICAT system beyond the

original diagonal INVICAT setup. This is done by efficiently allowing cross covariances in a-priori errors to be exploited. Cross

covariances include horizontal and vertical correlations for the methane initial concentrations, and horizontal and temporal

correlations for the surface methane flux. We model the correlations in the 4DVar as a control variable transform, which requires

only the ‘square-roots’ of the correlation matrices to be represented. As we use a spectral representation of the horizontal375

correlations, we call this a spectral method. We show how this method works in detail. To our knowledge this is the first time

that such a method has been used for a flux estimation problem. The spectral method is very efficient. It is applicable to systems

with very high resolutions, where existing methods that explicitly represent the B-matrix would not be feasible (Appendix D),

and to other chemical species.

The scheme allows us to switch on/off each of the above-mentioned correlation categories, and to choose the horizontal380

length-scales of a-priori errors in the initial concentration and flux, and the temporal timescale of errors in the flux. This

allowed us to test out different B-matrix configurations (including the standard diagonal setup) by systematic trial and error

assimilations over a 100 day test period at the start of 2018. We assimilate surface observations from NOAA GML’s flask

measurement network. As it is virtually impossible to evaluate the analysed methane fluxes, we instead evaluate experiments

against subsets of unassimilated surface methane observations from the same network. This is repeated using five different385

randomly selected subsets to increase the robustness of the results. We find the mean-squared differences between the evaluation

observations and the model’s analysed equivalents, and then determine the performance of each B-matrix configuration using

the reduction of this quantity between the particular posterior and the prior. This is the κ statistic in Eq. (9). As the experiments

are relatively expensive to run we make a judicious choice of 14 configurations.
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Figure 8. Time sequences of surface fluxes aggregated over the whole globe, over land points (both in top part) and over the sea (bottom

part) for the first observation network considered. Prior and posterior values are shown for configurations (A), (B), and (N), which are the

worst, control (diagonal B),and best performing configurations of the B-matrix (see Table 1

The configuration of the B-matrix has a significant impact on the results, which is an aspect that is usually ignored in most390

works. We find that considerable improvements can be made over the diagonal setup (configuration B). Introducing horizontal

or vertical prior error correlations of the initial concentration is not an optimal configuration for the B-matrix in this system

(configurations A and C). When used together, they can degrade the performance. The best configuration was found to have

no spatial background error correlations for the initial concentration of methane, but a 600 km SOAR (second order auto-

regressive) length-scale and 3 month SOAR timescale for the fluxes (configuration N). We have attempted to add robustness to395

the results by repeating the assimilation experiments with five different random divisions of the 665 observations between those

that are used for assimilation (∼ 75%) and those that are used for evaluation (∼ 25%). Within the context of the experiments,

this has allowed us to estimate the statistical significance of configuration N results as ‘high’.

We acknowledge the limitations of this study. Partly for cost reasons it is restricted to one 100-day time period of obser-

vations. We would expect some variation of the results for different start times and run lengths, but we would not expect the400
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general conclusions to be different, although this should be tested. Longer run lengths would likely to be less sensitive to the

configurations that describe errors in the initial concentration, which is an aspect that we are also interested in. We do not ac-

count for background error correlations between the initial concentration and the fluxes. We use a single lengthscale for each of

the inititial concentration and flux errors, while others use different lengthscales for land and ocean. For example Thanwerdas

et al. (2022) use e-folding lengthscales of 500km over land and 1000km over sea for the flux, found presumably by forming405

B explicitly and then finding B1/2 by decomposition (see bullet point 2 in Sect. 2.2). Our spectral method assumes homoge-

neous error correlation structures (i.e. a single lengthscale), but land/sea differences could be accounted for by using two sets

of spectral control variables (one set for the land and the other for the sea) and then using land/sea masks in model space.

This procedure would also decouple the land and sea fluxes. This could also be extended to different source types. Like other

studies, we use a single timescale, but this could easily be made dependent on the land/sea/source type. We do not evaluate410

the methane fluxes directly, but instead evaluate against methane observations, whose model equivalents are indirectly related

to the fluxes when the air mass sampled was last influenced by surface processes. For this reason the observations later in the

100-day window are likely to be more valuable in this respect than those early in the window.

A remaining question is why does accounting for background error covariances for the initial concentrations at worst degrade

the assimilation performance, and at best have little improvement over the diagonal B configuration (configurations A and C)?415

This is a pertinent question because we would expect errors in the a-priori methane concentration to have spatial correlations

since this field is produced by a model that includes dynamical advection. If the initial concentration has a significant bias

then any non-diagonal B configuration for the initial concentration would spread biased innovations to other locations and

conceivably make the results worse than using a diagonal B-matrix. Investigating this issue (e.g. by bias correction of the

a-priori) is an avenue for further work. We hope that the spectral method will be adopted by other inverse modelling systems.420

Code availability. Code and documentation are available via Bannister and Wilson (2024).

Appendix A: The forward spectral transform

A1 The forward spectral transform

The forward spectral transform, Sh, changes the representation of a field increment from spectral space (a function of the total

wavenumber, l, and zonal wavenumber, m, integers) to real space (a function of longitude, λi, and co-latitude, φj). Co-latitude425

is zero at the north pole, and so is related to latitude, ϕ, via φ = 90−ϕ. The basis functions of the spectral representation are

the spherical harmonic functions, Ylm(θ,φ):

Ylm(θ,φ) =





P̄lm(cosφ)cos(mθ) m≥ 0

P̄l|m|(cosφ)sin(|m|θ) m < 0.
(A1)
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Here P̄lm are the associated Legendre polynomials (ALPs) of degree l and order m, and the bar notation on the P̄lm indicates

that they are ‘4π normalised’ (other normalisations are possible). Let the representation in spectral space be χlm, and in real430

space be xij (longitude θi, co-latitude φj), which are related via the following linear combination:

xij =
L∑

l=0

l∑

m=−l

χlmYlm(θi,φj), (A2)

where L is the chosen maximum degree. Equation (A2) is the mathematical form of the spectral transform. From the perspective

of the transforms, the longitudes are best represented on a regularly spaced grid of 2L + 1 points, and the latitudes on a

Gaussian grid of L + 1 points Errera and Ménard (2012); Wieczorek et al. (2018). This is the grid structure assumed here and435

the difference between this grid and the INVICAT grid is the reason for the Rh operator in B1/2
sp in Eq. (7). The Gaussian grid

enables exact quadrature (known as Gauss-Legendre quadrature, see Appendix A2).

In order to translate (A2) onto a computer, specifically using standard libraries, we do some rewriting. Substituting (A1)

into (A2), separating the l summation into l = 0 and l > 0 parts, and further separating the m summation into −l ≤m≤−1,

m = 0, and 1≤m≤ l parts:440

xij = χ00P̄00(cosφj) +
L∑

l=1

[ −1∑

m=−l

χlmP̄l|m|(cosφj)sin(|m|θi) +
l∑

m=0

χlmP̄lm(cosφj)cos(mθi)

]

= χ00P̄00(cosφj) +
L∑

l=1

[
l∑

m=1

χl(−m)P̄lm(cosφj)sin(mθi) +χl0P̄l0(cosφj) +
l∑

m=1

χlmP̄lm(cosφj)cos(mθi)

]
.

The first and third terms can be combined, as can the second and fourth terms:445

xij =
L∑

l=0

χl0P̄l0(cosφj) +
L∑

l=1

l∑

m=1

P̄lm(cosφj)
[
χl(−m) sin(mθi) +χlm cos(mθi)

]
.

Further, let χlm = χR
lm (0≤m≤ l), and χl(−m) = χI

lm (1≤m≤ l):

xij =
L∑

l=0

χR
l0P̄l0(cosφj) +

L∑

l=1

l∑

m=1

P̄lm(cosφj)
[
χR

lm cos(mθi) +χI
lm sin(mθi)

]
. (A3)

This change of labelling means that we do not have to worry about negative wavenumber indices.

The double summation in Eq. (A3) first loops over l, and then loops over m where the upper m limit depends on l. This is450

summation order 1 in Fig. A1(a). In order to compute the above transform with standard software libraries, we first change the

summations to the equivalent order 2 in Fig. A1(b):

xij =
L∑

l=0

χR
l0P̄l0(cosφj) +

L∑

m=1

L∑

l=m

P̄lm(cosφj)
[
χR

lm cos(mθi) +χI
lm sin(mθi)

]
. (A4)
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Figure A1. Orders of summations in m and l space as used in transforms (A3) and (A4). In order 1 (panel a), the sum over l is done first,

and in order 2 (panel b), the sum over m is done first. Each order of summation is equivalent to the other as the same points are involved in

the double summation.

This can then be split into a Legendre part and a Fourier part. First define the following:

χ̃R
m(cosφj) =

L∑

l=m

χR
lmP̄lm(cosφj) 0≤m≤ L (A5a)455

χ̃I
m(cosφj) =

L∑

l=m

χI
lmP̄lm(cosφj) 1≤m≤ L, (A5b)

which leaves the rest of the transform as

xij = χ̃R
0 (cosφj) +

L∑

m=1

[
χ̃R

m(cosφj)cos(mθi) + χ̃I
m(cosφj)sin(mθi)

]
. (A6)

The inputs to this spectral transform are the sets of coefficients in m,l-space χR
lm (0≤m≤ L, m≤ l ≤ L), and χI

lm (1≤m≤
L, m≤ l ≤ L). These are transformed to the intermediate sets of coefficients in m,j space, χ̃R

m(cosφj) and χ̃I
m(cosφj) using460

Eqs. (A5) (the ‘tilde’ variables are half in spectral space, half in real space). In the code, these summations are performed

explicitly using tables of ALPs pre-calculated from SHTools Wieczorek et al. (2018). The spectral transform is completed to

i, j space (complete real space) using the standard Fourier transform (A6), which is performed exactly by the routine rfft1b in

the fftpack library Swarztrauber et al. (2016). Note that in data assimilation work, the transform from spectral to real space is

part of the forward transform (since it is part of the string of operators that go from control space to observation space, HB1/2465

in Eq. (4)), although readers may be more familiar with the transforms (A5) and (A6) being referred to an inverse transforms.

This is an unfortunate clash of terminology.
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A2 The inverse spectral transform

The inverse spectral transform, S−1
h , changes the representation of a field increment from real space (a function of longitude, λi,

and co-latitude, φj) to spectral space (a function of the total wavenumber, l, and zonal wavenumber, m, integers). The inverse470

of (A5) and (A6) is done in reverse order. Firstly, the χ̃R
m and χ̃I

m coefficients are found from standard Fourier transform

formulae, which exploit the orthogonality of the sine and cosine functions:

χ̃R
0 (cosφj) =

1
2L + 1

2L∑

i=0

xij (A7a)

χ̃R
m(cosφj) =

2
2L + 1

2L∑

i=0

xij cosmθi 1≤m≤ L (A7b)

χ̃I
m(cosφj) =

2
2L + 1

2L∑

i=0

xij sinmθi 1≤m≤ L. (A7c)475

This is the inverse of (A6) and is performed by the routine rfft1f in the fftpack library. Next the χR
lm and χI

lm (fully spectral)

coefficients are found from the formulae (derived below):

χR
l0 =

1
2

L∑

j=0

χ̃R
0 (cosφj)P̄l0(cosφj)GaussWt(φj) 0≤ l ≤ L (A8a)

χR
lm =

1
4

L∑

j=0

χ̃R
m(cosφj)P̄lm(cosφj)GaussWt(φj) 1≤m≤ L m≤ l ≤ L (A8b)

χI
lm =

1
4

L∑

j=0

χ̃I
m(cosφj)P̄lm(cosφj)GaussWt(φj) 1≤m≤ L m≤ l ≤ L, (A8c)480

where GaussWt(φj) are the Gaussian weights (GWs), which are found (together with the ALPs themselves) from the SHtools

package. The make up the inverse of (A5). The GWs allow co-latitude integrals of the following type to be discretised when

values f(φj) are on Gaussian latitude points φj as shown:

π∫

φ=0

f(φ)sinφdφ =
L∑

j=0

f(φj)GaussWt(φj). (A9)

Equations (A8) are derived from (A5) via the following orthogonality property of ALPs:485

π∫

φ=0

P̄lm(cosφ)P̄l′m(cosφ)sinφdφ = 2(2− δ0m)δll′ , (A10)

which, using (A9), becomes

L∑

j=0

P̄lm(cosφj)P̄l′m(cosφj)GaussWt(φj) = 2(2− δ0m)δll′ . (A11)
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Multiplying (A5a) by P̄l′m(cosφj)GaussWt(φj), summing over j, and then using (A11) gives

L∑

j=0

χ̃R
m(cosφj)P̄l′m(cosφj)GaussWt(φj) =

L∑

l=m

χR
lm

L∑

j=0

P̄lm(cosφj)P̄l′m(cosφj)GaussWt(φj) 0≤m≤ L490

= 2(2− δ0m)
L∑

l=m

χR
lmδll′

= 2(2− δ0m)χR
l′m for m≤ l′ ≤ L.

When m = 0 this gives (A8a) and when 1≤m≤ L this gives (A8b). Now multiplying (A5b) by P̄l′m(cosφj)GaussWt(φj),

summing over j, and then using (A11) similarly gives

L∑

j=0

χ̃I
m(cosφj)P̄l′m(cosφj)GaussWt(φj) =

L∑

l=m

χI
lm

L∑

j=0

P̄lm(cosφj)P̄l′m(cosφj)GaussWt(φj) 1≤m≤ L495

= 2(2− δ0m)
L∑

l=m

χI
lmδll′

= 2(2− δ0m)χI
l′m for m≤ l′ ≤ L.

The m = 0 case is of no interest, which leaves only the cases when 1≤m≤ L, which gives (A8c).

A3 The adjoint spectral transform

The adjoint of the spectral transform (which is part of B⊺/2) is needed to compute implied covariances (B1/2B⊺/2) and the500

gradient of the cost function (5). Given that the adjoint operator is mathematically equivalent to the operator that propagates

gradients (in the reverse direction to the forward counterparts), we use this equivalence as a means of deriving the adjoint

versions of (A6) and (A5). Let variables with a hat represent gradients (of some unspecified function) with respect to that

variable, namely ẑ = ∂/∂z.

We will start with (A6), and look at the gradient with respect to each input component (χ̃R
0 (cosφj), χ̃R

m(cosφj), and505

χ̃I
m(cosφj)) and exploit the chain rule in each case. The first input component of the forward transform (A6) is χ̃R

0 (cosφj).

The gradient with respect to this variable, ˆ̃χR
0 (cosφj), is the output of the adjoint operation:

ˆ̃χR
0 (cosφj) =

2L∑

i=0

∂xij

∂χ̃R
0 (cosφj)

x̂ij =
2L∑

i=0

x̂ij , (A12)

where the partial derivative is found from (A6). The next group of input components to (A6) is χ̃R
m(cosφj) (1≤m≤ L). The

gradient with respect to this variable, ˆ̃χR
m(cosφj), is another output of the adjoint operation and is calculated are a similar way:510

ˆ̃χR
m(cosφj)

2L∑

i=0

∂xij

∂χ̃R
m(cosφj)

x̂ij =
2L∑

i=0

cos(mθi)x̂ij m≤ l ≤ L. (A13)
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The final group of input components is χ̃I
m(cosφj) (1≤m≤ L) and are calculated in a similar way:

ˆ̃χI
m(cosφj)

2L∑

i=0

∂xij

∂χ̃I
m(cosφj)

x̂ij =
2L∑

i=0

sin(mθi)x̂ij m≤ l ≤ L. (A14)

Notice that the adjoint operators (A12), (A13), and (A14) are similar to the inverse Fourier formulae (A7a), (A7b), and (A7c)515

respectively, but with no prefactors. This means that the rfft1f routine in the fftpack library can be used to perform the adjoint.

The next adjoint step is of (A5), and we will look at the gradient with respect to each input component (χR
lm and χI

lm). The

first group of input components of the forward transform (A5) is χR
lm:

χ̂R
lm =

L∑

j=0

∂χ̃R
m(cosφj)
∂χR

lm

ˆ̃χR
m(cosφj) =

L∑

j=0

P̄lm(cosφj) ˆ̃χR
m(cosφj) 0≤m≤ L, m≤ l ≤ L. (A15)

The final group of input components is χI
lm:520

χ̂I
lm =

L∑

j=0

∂χ̃I
m(cosφj)
∂χI

lm

ˆ̃χI
m(cosφj) =

L∑

j=0

P̄lm(cosφj) ˆ̃χI
m(cosφj) 1≤m≤ L, m≤ l ≤ L. (A16)

Notice that the adjoint operators (A15) and (A16) are similar to the inverse Legendre formulae (A8b) and (A8c) respectively,

but with different scaling (specifically no prefactors and no Gaussian weights).

The above steps are needed to perform the adjoint of the spectral transform in terms of separate Fourier and Legendre steps.

It is also possible to write the adjoint of the whole horizontal transform (A2) in one go:525

χ̂lm =
L∑

j=0

2L∑

i=0

Ylm(θi,φj)x̂ij 0≤ l ≤ L, −l ≤m≤ l, (A17)

which is useful for the calibration of the horizontal transform (Appendix C1).

Appendix B: Notes on the practical application of the operators in Eq. (7)

B1 Application of the horizontal transform

The initial condition (ic) part of the control vector for use with the upper left part of Eq. (7) is a field that is a function of l, m,530

and height z, χc0(l,m,z). The RhShΛ
1/2

hc part of the CVT does the following. Let the lth diagonal element of Λ
1/2

hc be Λ
1/2

hc (l).

The action of Λ
1/2

hc is to multiply χc0(l,m,z) by Λ
1/2

hc (l). The resulting fields then pass through the Sh operator (separately

for each z) resulting in a function of λ,φ,z. The reconfiguration operator Rh interpolates this horizontally from the λ,φ grid

imposed by SHTools to the λ,ϕ grid of INVICAT.

The flux part of the control vector for use with the lower right part of Eq. (7) is a field that is a function of l, m, and time535

t, χρ(l,m,t). The RhShΛ
1/2

hρ part of the CVT does a similar thing as for the initial condition, apart from the result being a

function of λ,ϕ,t.

26

https://doi.org/10.5194/egusphere-2024-655
Preprint. Discussion started: 7 March 2024
c© Author(s) 2024. CC BY 4.0 License.



B2 Application of the vertical transform

Following on from the horizontal and reconfiguration transforms for the ic fields, the vertical transform, Ξ−1FvcΛ1/2
vc F⊺

vc, acts

on fields that are a function of λ,ϕ,z. Ξ, Fvc and Λvc are each nz ×nz matrices (Ξ and Λvc are diagonal). F⊺
vc projects onto540

vertical modes (the eigenvectors), Λ1/2
vc scales the projections, and Fvc projects from the vertical modes back to z. This is done

for each horizontal position separately. There is a different Λ1/2
vc and Ξ for each latitude. The output of the vertical transform is

also a function of λ,ϕ,z.

B3 Application of the temporal transform

Following on from the horizontal and reconfiguration transforms for the flux fields, the temporal transform, FtρΛ
1/2

tρ F⊺
tρ, acts545

on fields that are a function of λ,ϕ,t. Ftρ and Λtρ are each (T + 1)× (T + 1) matrices, and Λtρ is diagonal. F⊺
tρ projects

onto temporal modes (the eigenvectors), Λ
1/2

tρ scales the projections, and Ftρ projects from the temporal modes back to t. This

is done for each horizontal position separately. The Λ
1/2

tρ is the same for each horizontal position. The output of the temporal

transform is also a function of λ,ϕ,t.

Appendix C: Determining the transform matrices550

Equation (7) is the form of the spectral-based control variable transform. The objects to be determined are the following:

Ξ, Fvc, Λvc, Λhc, Ftρ, Λtρ, and Λhρ (other objects in that equation are either standard transforms – such as the spherical

transform, or take assumed values – see Sect. 3.2). The calibration procedures for determining the above objects are described

here.

C1 Determining the ‘variance spectra’ of the horizontal transforms555

The horizontal transforms for the ic and the flux fields are each described in the form ShΛ
1/2

h , where Sh is the spectral transform

(spherical harmonics to latitude/longitude), Λ
1/2

h = Λ
1/2

hc for the ic, and Λ
1/2

h = Λ
1/2

hρ for the flux. This section describes how Λh

can be determined given a prescribed form of the horizontal correlations.

The implied correlation is found by ShΛ
1/2

h

(
ShΛ

1/2

h

)⊺
= ShΛhS

⊺
h. Using the expanded form of the spectral transform

(A2) and the adjoint (A17), the result of acting with ShΛhST
h on a field that is a function of longitude λi and co-latitude φj560

(f(λi,φj)), giving f ′(λi′φj′) is

f ′(λi′φj′) =
L∑

l=0

l∑

m=−l

Ylm(θi′ ,φj′)

︸ ︷︷ ︸
Sh

Λh(l,m)

︸ ︷︷ ︸
Λh

L∑

j=0

2L∑

i=0

Ylm(θi,φj)

︸ ︷︷ ︸
ST

h

f(λi,φj).

For simplicity, we allow Λh to be a function of total wavenumber, l, only:

f ′(λi′φj′) =
L∑

j=0

2L∑

i=0

L∑

l=0

Λh(l)
l∑

m=−l

Ylm(θi′ ,φj′)Ylm(θi,φj)f(λi,φj). (C1)
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The addition theorem of spherical harmonics (see e.g. Appendix A3, Eq. (A9) of Errera and Ménard (2012)) is565

l∑

m=−l

Ylm(θi′ ,φj′)Ylm(θi,φj) =
√

2l + 1P̄l0(cosα), (C2)

where α is the great circle angular separation between positions (θi′ ,φj′) and (θi,φj). Substituting (C2) into (C1) gives

f ′(λi′φj′) =
L∑

j=0

2L∑

i=0

L∑

l=0

Λh(l)
√

2l + 1P̄l0(cosα)

︸ ︷︷ ︸
implied correlation matrix element

f(λi,φj),

and the implied correlation between (θi′ ,φj′) and (θi,φj) due to this horizontal transformation is the part indicated above:

Ch(λi′φj′ ;λi,φj) = Chα(α) =
L∑

l=0

Λh(l)
√

2l + 1P̄l0(cosα). (C3)570

Notice that the right hand side is a function only of the separation between the two positions, α, and not on their individual

values nor their relative orientation. These properties are called homogeneity and isotropy respectively. Let Chα(α) be a

prescribed function, e.g. the SOAR function {1 + |d/ξ|}exp(−d/ξ), where d = απRE/180, α is in degrees, RE is the radius

of the Earth, and ξ is the chosen length-scale of the correlation (specified in the same units as RE). Multiply each side of (C3)

by P̄l′0(cosα)sinα, and integrate over α = 0,π:575

π∫

α=0

Chα(α)P̄l′0(cosα)sinα =
L∑

l=0

Λh(l)
√

2l + 1

π∫

α=0

P̄l0(cosα)P̄l′0(cosα)sinα.

The orthogonality property (A10) is then used:

π∫

α=0

Chα(α)P̄l′0(cosα)sinα =
L∑

l=0

Λh(l)
√

2l + 12δll′ = 2
√

2l′+ 1Λh(l′).

The horizontal variance spectrum is then given below in continuous form and then in descrete form using (A9):

Λh(l) =
1

2
√

2l + 1

π∫

α=0

Chα(α)P̄l0(cosα)sinα580

=
1

2
√

2l + 1

L∑

j=0

Chα(αj)P̄l0(cosαj)GaussWt(αj). (C4)

It is important to ensure that Chα(0) = 1 (which may not be true due to numerical errors in the above procedure). Once Λh(l)

is computed with (C4), Chα(0) = 1 is ensured by multiplying Λh(l) by 1/
(∑L

l=0Λh(l)
√

2l + 1P̄l0(1)
)

.

C2 Determining the vertical transform for the initial concentration

The vertical transform is described by the nz ×nz matrices Ξ, Fvc and Λvc (see bullet points 3 and 4 of Sect. 3.2), where nz585

is the number of vertical levels. In principle, there can be a different set of such vertical matrices for each horizontal position.
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For simplicity, and because we have only limited knowledge of what the vertical correlations should be, we use just one set of

eigenvectors (in Fvc), found from a global vertical correlation matrix (see below), but there are multiple sets of ‘eigenvalue’

matrices (now labelled as Λvc(ϕ)) – one for each latitude position ϕ.

Suppose that we have target vertical correlation matrices, found from data at each latitude ϕ, Cv(ϕ). Further suppose that590

we also have a vertical correlation matrix found from globally averaged data, Cvg. Let Fvc be the eigenvectors of Cvg. The

matrices Λvc(ϕ) are found from the diagonal elements of the projection of Cv(ϕ) into the space of Fvc, namely Λvc(ϕ) =

diag(F⊺
vcC

v(ϕ)Fvc), where diag(•) sets off-diagonal elements to zero. Note that, although the Λvc(ϕ) are referred to as

‘eigenvalue’ matrices, they are only approximations to the eigenvalues at latitude ϕ.

The implied correlation matrix that this transform is intended to represent,
(
FvcΛ

1/2
vc (ϕ)F⊺

vc

)(
FvcΛ

1/2
vc (ϕ)F⊺

vc

)⊺
, is not595

guaranteed to be a strict correlation matrix due to the fact that Λvc(ϕ) are not the exact eigenvalues (the explicit ϕ is now

dropped for brevity). This is compensated for with the (ϕ-dependent and diagonal) Ξ−1 operator in (7) is chosen such that(
Ξ−1FvcΛ

1/2
vc F⊺

vc

)(
Ξ−1FvcΛ

1/2
vc F⊺

vc

)⊺
has unit diagonal elements. This is achieved by setting the ith diagonal element of Ξ

to Ξii =
√∑

j [Fvc]
2
ij [Λvc]jj .

The correlation matrices are formed from 10 years (1995-2004) of methane forecasts, first detrended to correct for methane600

trends (even though there was little methane growth over this period, Rigby et al. (2008)).

C3 Determining the temporal transform for the flux

The temporal transform is described by the (T + 1)× (T + 1) matrices Ftρ and Λtρ (see bullet point 8 of Sect. 3.2). First a

(T +1)× (T +1) correlation matrix Ct is formed with matrix elements Ct
ij = {1 + |ti− tj |/τ}exp(−|ti− tj |/τ), where ti

and tj are times (in months), and τ is the timescale. Ftρ and Λtρ are, respectively, eigenvectors and eigenvalues of Ct.605

Appendix D: Comparison of costs of an explicit vs a spectral scheme

This appendix illustrates how the cost of the spectral B-matrix scheme scales with the number of grid points, and how that

cost compares to the brute-force option of constructing a full the B-matrix explicitly and finding its square-root using eigen-

decomposition. The latter is used with some systems, e.g. Chevallier et al. (2007). The costs are estimated as a function of

the maximum total wavenumber, L, which is associated with 2L+1 longitudes and L+1 latitudes. Since we are interested in610

scaling only, these are each approximated to L, so the number of horizontal grid points scales as ∼ L2. Table D1 shows how

various components of the B-matrix model scale with L, the number of vertical levels, nz , and the number of months, T + 1.

Costs are shown with respect to computing the object using eigen-decomposition (which has to be done only once, off-line

column 3), and using the object within the minimisation (column 4). Row 1 refers to a diagonal representation of B, row 2

refers to a full representation of B, and rows 3 to 12 refer to the spectral representation (see Sect. 3.2). The costs are shown615

graphically in Fig. D1. It is clear to see how the explicit representation of B (blue) becomes unaffordable for large L, especially

in setting-up the system by computing its eigenvalues and eigenvectors (continuous blue line), while the spectral representation

remains affordable even for large L (the current study has L = 32).
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Table D1. How the cost of various B-matrix model components scale with L, nz , and T . The third column reflects the cost of computing

the component, where that requires the eigenvalues and eigenvectors of a matrix of size n (the computation is assumed to scale as O(n3)).

The fourth column reflects the cost of storage and use of the component. In the case of Sh, this has a part which is a fast Fourier transform,

which scales as (2L +1)log2(2L +1)≈ 2L log2(2L).

Object How determination of related

objects scale with system size

How cost of use and storage

scale with system size

1 Bd — L2 [nz +(T +1)]

2 full B-matrix B
1/2:

{
L2 [nz +(T +1)]

}3 {
L2 [nz +(T +1)]

}2

3 Σb
c — L2nz

4 Σb
ρ0 , . . . ,Σb

ρT — L2(T +1)

5 Λ
1/2
hc L2nz Lnz

6 Sh — (nz + T +1)L3×
[1+ 2log2(2L)]

7 Rh — negligible

8 Fvc
Fvc, Λ1/2

vc : Ln3
z

L2n2
z

9 Λ
1/2
vc Lnz

10 Ξ−1 — negligible

11 Ftρ
(T +1)3

(T +1)2L2

12 Λ
1/2
tρ (T +1)L2
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Figure D1. Plot of how the cost of various B-matrix model components scale with the total wavenumber, L. The continuous lines show how

the cost of computing the components of B scale with L (i.e. set-up costs, third column of Table D1), and the dashed lines show how the

cost of using the components scale (fourth column). The blue lines are for the explicit B-matrix representation (row 2 in Table D1) and the

red lines are for the spectral B-matrix representation (sum of rows 3 to 12). All curves assume nz = 60 vertical levels and T = 12 months.
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