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Abstract. Two simple feedforward neural networks (MLPs) are trained to classify wet and dry periods
:::::
detect

::::::
rainfall

::::::
events

using signal attenuation from commercial microwave links (CMLs) as predictors and high temporal resolution reference data as

target. MLPGA is trained against nearby rain gauges and MLPRA is trained against gauge-adjusted weather radar. Both MLPs

perform better than
::::
were

::::::
trained

:::
on

::
26

::::::
CMLs

::::
and

:::::
tested

:::
on

:::
843

::::::
CMLs,

:::
all

::::::
located

::::::
within

::
5

:::
km

::
of

::
a

:::
rain

::::::
gauge.

::::
Our

::::::
results

::::::
suggest

::::
that

::::
these

::::::
MLPs

:::::::::
outperform

:
existing methods, showcasing their effectiveness in

:::::::::
effectively capturing the intermittent5

behaviour
:::::::
behavior

:
of rainfall. This study is the first using

::
to

:::
use

:
both radar and rain gauges for training and testing for CML

wet-dry classification. Where previous studies has
::::::
rainfall

:::::::::
detection.

:::::
While

::::::::
previous

::::::
studies

::::
have

:
mainly focused on hourly

reference data, our findings show that it is possible to predict wet and dry periods with a higher temporal precision
::::::
classify

::::
rainy

:::
and

::::
dry

::::
time

::::
steps

::::
with

::::::
higher

:::::::
temporal

:::::::::
resolution.

1 Introduction10

::::::::::
Commercial

:::::::::
microwave

::::
links

:::::::
(CMLs)

:::
are

:::::
radio

::::
links

:::::::
between

::::::::::::::::
telecommunication

::::::
towers.

:
By exploiting the relation of rainfall

intensity to signal attenuation , commercial microwave links (CMLs) can be used to estimate path-average rainfall between

telecommunication towers
::::::
between

:::::
CML

:::::
signal

::::::::::
attenuation

:::
and

::::::
rainfall

::::::::
intensity,

::
it

::
is

:::::::
possible

::
to

:::::::
estimate

:::
the

::::::
average

:::::::
rainfall

:::::::
intensity

:::::
along

:::
the

:::::
CML

:
(Messer et al., 2006; Leijnse et al., 2007). As the signal is also attenuated by factors other than

rain, such as air humidity, these non-rainy factors must be taken into account in what is often called the baseline attenuation.15

Rain-induced attenuation can then be estimated by subtracting the estimated baseline from the total loss, where the baseline

is typically estimated from the mean signal attenuation shortly before the rainfall event (Chwala and Kunstmann, 2019). This

makes rain event detection a crucial step in deriving rainfall rates from CMLs.
:::::
Since

::::
each

:::::
CML

::::
can

::::
have

:
a
::::::::
different

:::::::
baseline
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:::::::::
attenuation,

::::
and

:::::::
because

:::
the

:::::::
baseline

:::::::::
attenuation

::::
can

::::::
change

:::::::
between

::::::::
different

::::::
rainfall

::::::
events,

::
it
::
is

::::::::
necessary

::
to
::::::::

estimate
:::
the

:::::::
baseline

:::::::::
attenuation

:::
for

:::::
each

::::::
rainfall

::::::
event.

::
A

::::::::
common

::::::::
approach

::
is

::
to

::::
use

:::
the

:::::
signal

::::::::::
attenuation

:::::
from

::::
time

:::::
steps

::::
that

:::
are20

:::::::::
temporally

::::
close

:::
to

:::
the

::::::
rainfall

::::::
period

::::::::::::::::::::::::::::::::::::::::
(Chwala and Kunstmann, 2019; Graf et al., 2020)

:
.
::::
This

:::::
raises

:::
the

:::::
need

:::
for

:::::::::
algorithms

:::
that

:::
can

::::::::
separate

:::
the

:::::
CML

::::
time

:::::
series

::::
into

:::::
rainy

::::
time

:::::
steps,

::::::
where

:::
the

:::::
CML

::::::::::
experiences

:::::
signal

::::::::::
attenuation

::::
due

::
to

:::::::
rainfall,

:::
and

:::
dry

::::
time

:::::
steps,

::::::
where

:::
the

::::
CML

::::::
signal

::::
level

::
is

:::
not

:::::::::
attenuated

::
by

::::::
rainfall.

::::
This

::::
task

:::
can

::
be

::::
seen

:::
as

:
a
:::::::::::
classification

::::::::
problem,

:::::
where

:::::
every

::::
time

::::
step

::
is

::::::::
classified

::
as

:::::
either

:::::
rainy

::
or

:::
dry.

::::
The

:::::::::
separation

::
of

:::
the

:::::
CML

::::
time

:::::
series

::::
into

::::
rainy

::::
and

:::
dry

::::
time

:::::
steps

:::
can

:::
also

::::
help

::
to
:::::
filter

:::
out

:::::
events

::
in

:::
the

:::::
CML

:::::
signal

::::
time

:::::
series

::::
that

:::::
show

::::
some

::
of

:::
the

:::::
same

::::::::::::
characteristics

::
as

::::::
rainfall

::::::
events

:::
but25

::
are

::::
not

::::::
caused

::
by

:::::::
rainfall. CML signal loss is recorded differently depending on the network operator and can for instance be

available as instantaneous measurements every minute. Another popular format is to record the minimum and maximum signal

loss over a period, typically 15 minutes. In this work, we focus on instantaneously sampled CML data as this data is becoming

more and more available, see for instance Andersson et al. (2022)
:::
and

::::::::::::::::::::
Covi and Roversi (2024).

During wet periods, the CML signal loss tends to fluctuate more than during dry periods
:::
The

:::::
CML

::::::
signal

::::::::::
experiences30

:::::::::
fluctuations

::::::
during

::::
rain

:::::
events. Based on this, a simple method for rain event detection was developed by Schleiss and Berne

(2010). They suggested using these fluctuations to predict wet
::::::
classify

:::::
rainy

:
periods by taking the standard deviation of a

60-minute rolling window and setting time steps with values above a certain threshold to wet
::::
rainy. This threshold is different

between CMLs, but can be derived from local climate characteristics. Graf et al. (2020) expanded this method by recognizing

that climate characteristics is
::
are

:
not necessarily valid for different locations, individual years

:
, and in particular specific rainy35

periods that might be of interest. They proposed to estimate the threshold by computing the 80 % quantile of the 60-minute

rolling standard deviation for each CML and multiplying this number by a constant that was found to be similar for all CMLs

in the study. A more data-driven approach was explored by Polz et al. (2020). They trained a convolutional neural network

(CNN) to detect wet periods
::::::
rainfall

::::::
events using 800 CMLs in Germany. As a reference, they used the gauge-adjusted radar

product RADOLAN-RW from Germany’s National Meteorological Service (DWD) which has an hourly resolution. Another40

approach is to include the signal loss from nearby CMLs (Overeem et al., 2011). This method was shown to work for dense

CML networks. The literature describes several other approaches (Habi and Messer, 2018; Reller et al., 2011; Rayitsfeld et al.,

2012; Wang et al., 2012).

Most
:::::::
Although

::::::
several

:
of the mentioned methods

:::::::::
approaches

::::::
classify

:::::::
rainfall

::
on

:
a
::::
high

::::::::
temporal

:::::::::
resolution,

::
all

:::::
large

::::::
studies

::::
using

::::::::::::
instantaneous

:::::::
sampled

:::::
CML

::::
data have been evaluated using hourly reference data. This might be a reasonable approach45

as rainfall detection is mostly used for estimating the baseline, which is typically set as a constant throughout a rainfall event

(Chwala and Kunstmann, 2019; Uijlenhoet et al., 2018; Messer and Sendik, 2015). However, existing methods are not opti-

mized for predicting
::::::::
estimating rainfall on a higher temporal resolution, and thus, the predictions

:::::::
estimates

:
might not reflect the

true intermittency of rainfall. Predicting too long wet periods couldresult in the CML baseline not being adapted to new time

steps, possibly introducing a bias in the rainfall retrieval
::::::::
Estimating

:::
too

::::
long

:::::
rainy

:::::::
periods

:::::
could,

::
in

:::::
cases

::::::
where

:::
the

:::::::
baseline50

:::::::::
attenuation

:::::
drops

::::::
during

:::
the

::::::
rainfall

:::::
event,

:::::
result

::
in
::

a
::::
bias

:::::
where

:::
the

:::::
CML

::::::::
estimates

::::::
rainfall

::::::
during

::::
time

:::::
steps

:::::
where

:::::
there

::
is

::
no

::::
rain. Further, a drawback of predicting too long

::::::::
estimating

::::::::
too-long rainy periods is that some of the predicted

::::::::
estimated

rainy time steps could contain non-liquid precipitation. As
:::::::
Because dry snow induces a very low signal attenuation, these time

2



steps appears
::::::
appear as dry in the CML time series. In an event where the precipitation type changes between rain and snow,

classifying dry snow events in the CML signal as dry is important as the presence of precipitation in a nearby rain gauge could55

then indicate that it is in fact snowing
:::::
Thus,

:::::::
correctly

:::::::::
estimating

:::::
rainy

::::
time

:::::
steps

::
is

::::::::
important

:::::::
because

:::::
CML

::::
time

:::::
steps

::::
that

::::::
indicate

:::
no

::::::::::
precipitation

:::::
could

:::::::
contain

:::
dry

:::::
snow.

In this paper
:::::
study, we present two methods to better detect wet periods in highly intermittent rainfall.

::
for

::::::::
detecting

:::::
rainy

::::
time

::::
steps

::
in

:::::
CML

::::
time

:::::
series

:::::
data.

:::
The

::::
goal

:::
of

::::
both

:::::::
methods

::
is

::
to

:::::
detect

:::::
rainy

::::
time

::::
steps

:::
in

:::
the

::::
time

:::::
series

::
of

:
a
:::::
CML

::::::
where

::
the

::::::
signal

:::::::::
attenuation

::
is

:::::::
provided

:::::
every

::
1

::::::
minute.

::::
This

::
is

::::
done

::::
with

::
a
:::::
higher

::::::::
temporal

::::::::
resolution

:::::::::
compared

::
to

::::::
existing

::::::::
methods60

::
so

:::
that

:::::
short

:::
dry

::::::
spells

::::::
during

::::
rainy

:::::::
periods

:::
can

:::
be

:::::::::
identified. One method is trained on radar reference data and the other

method is trained on rain gauge reference data. Both methods are tested against rain gauge and radar data, highlighting their

differences. We also examine the performance of the developed methods in comparison to existing approaches, aiming to gain a

clearer understanding of the distinctions between these various methodologies
:::::::::
differences

:::::::
between

:::
the

:::
two

:::::::::
alternative

:::::::
methods.

2
:::::::
Material

::::
and

:
Methods65

2.1 Data

A large dataset with 3901 CMLs from Germany was used, providing transmitted and received signal levels with a temporal res-

olution of one minute from 01-07-2021 to 31-07-2021. The total signal loss (TL) was computed by subtracting the transmitted

signal level from the received signal level. Each CML consists of two time
:::::::
two-time series called sublinks, reflecting the signal

loss in the beams going from location 0 to 1 and vice versa. More information on this dataset can be found in Graf et al. (2020).70

As ground truth, two different sources were explored. The first used rain gauges near the CMLs provided by DWD. The rain

gauge data was provided with a temporal resolution of one minute and
:
a volume resolution of 0.01 mm. We consider a minute

to be wet
::::
rainy if the rain gauge records any rainfall. The other source was the radar product RADKLIM-YW (Winterrath et al.,

2018). This product from DWD is a gauge-adjusted, climatologically corrected product with a temporal resolution of 5 min-

utes. For the comparison with CML data, the radar product was averaged over the CML pathintersections, with each grid value75

weighted by the length of the CML path
:::::::::
intersection

:
in each grid cell. For comparison of the path-averaged RADKLIM-YW

reference and the CML rainfall estimates, RADKLIM-YW was resampled from a 5-minute resolution to a 1-minute resolution

by linear interpolation and then dividing the rainfall sums by 5. To make it comparable to the rain gauges, minutes with rainfall

above 0.01 mm were set to wet
::::
rainy.

:::
Our

:::::
study

:::::::
focused

::
on

:::::::::
CML-rain

:::::
gauge

:::::
pairs

::::::
located

::::::
closer

::
to

::::
each

:::::
other

::::
than

:
5
::::
km.

::::
This

:::::::
resulted

::
in

::::
882

:::::
CMLs

::::::
where

:::
the80

::::
CML

:::::::
lengths

::::::
ranged

::::
from

::::::
0.3km

::
to
:::::::

22.9km
::::
with

:::
90

:::::::
percent

::
of

:::
the

::::::
CMLs

:::::
being

::::::
longer

::::
than

::::::
2.4km.

::::
The

:::::
CML

::::::::::
frequencies

:::::
ranged

::::::::
between

:
7
::::
GHz

::
to
:::
40

:::::
GHz,

::::
with

::::
most

::::::
CMLs

::::::
having

:
a
:::::::::
frequency

:::::
above

::
15

:::::
GHz.

:::::
Even

::::::
though

::::
there

:::
are

:::::
many

::::::
CMLs

::
in

:::
our

::::::
dataset,

:::
we

::::
only

::::
have

::::
429

::::::
unique

::::
rain

::::::
gauges

::::::
serving

::
as

:::::::::
references.

::::
This

::::::
means

::::
that

::::
some

::::::
CMLs

:::
use

:::
the

:::::
same

:::
rain

::::::
gauge

::
for

:::::::::
reference.

3



2.2 Neural network
:::
The

::::::::
MLPRA::::

and
::::::::
MLPGA :::::::

method85

In our approach, we have used a simple feed-forward neural network provided by the python library sklearn (Pedregosa et al.,

2011). This network consists of an input layer, fully connected hidden layers, and an output layer. Networks with simple

architecture of this type are often referred to as a Multilayer perceptron (MLP). The input layer takes the total
::::
MLPs

::::
job

:
is
:::

to
::::::
classify

::
a
::::
time

::::
step

::
in

:::
the

:::::
CML

:::::
time

:::::
series

::
as

:::::
either

:::::
rainy

:::
or

:::
dry.

::
It
::::
does

::::
this

:::
by

::::::::
analyzing

:::
the

:
signal loss from a

:::
the

::::::::::
surrounding 40

:::
time

:::::
steps.

::
In

:::::::
essence,

:::
the

:::::
MLP

::::
acts

:::
like

:
a
::::::
sliding

::::::::
window,

::::::
moving

::::::
across

::
40

:
time steps long centered moving90

window over both sublinks. The CML predictor datais
::
at

:
a
:::::
time,

:::
and

:::::::::::
determining

:::::::
whether

::::
each

:::::::
centered

::::
time

::::
step

::
is

:::::
rainy

::
or

:::
dry.

::::
The

:::::::
predictor

:::::
data,

:::
that

::
is

:::
the

:::
40

::::
time

::::
steps

:::::::
moving

:::::::
window,

::
is organized in a so-called design matrix (Equation 1) where

tls1,t and tls2,t represents the total signal loss at time step t for sublink 1 and sublink 2 respectively.

tls1,t0−20 . . . tls1,t0+20 tls2,t0−20 . . . tls2,t0+20

...
...

...
...

tls1,ti−20 . . . tls1,ti+20 tls2,ti−20 . . . tls2,ti+20

...
...

...
...

tls1,tn−20 . . . tls1,tn+20 tls2,tn−20 . . . tls2,tn+20


(1)

We experimented with longer windows, but could not find any improvements by increasing the window size beyond 40 time95

steps. There was also an improvement from using both sublinks rather than one. We do not show these findings in detail in this

note
::::
This

:::::::::::
improvement

:::::
could

:::
be

:::::::
because

:::::
using

:::
two

:::::::
sublinks

::::::::
includes

::::
more

:::::::::::
information,

:::::
which

:::::
could

::::
help

:::
the

:::::
MLP

:::::
filter

:::
out

::::
noise.

As pre-processing, we subtracted the 12 hours
:::::::
12-hour centered rolling median from the signal level for each CML. This

removes longer trends from the signal level making the time series stationary. We experimented with other detrending methods100

such as differencing, but got poorer results.

Next, two approaches were explored, one where we trained the neural network against radar data (MLPRA) and one where we

trained the MLP against rain gauge data (MLPGA).
:
It

::::
must

:::
be

::::
noted

::::
that

::::
both

:::::::::
references

::::::
observe

:::::::
rainfall

::
at

:::::::
different

::::::::
locations

:::
and

:::::::
different

:::::::::::::
spatio-temporal

:::::::::
aggregates

:::
as

::::::::
compared

::
to

:::
the

:::::
CML.

::::::::::
Particularly

:::
the

::::
rain

::::::
gauges

:::::::
observe

::::
time

:::::::::
aggregated

:::::
point

::::::
rainfall,

:::::::
whereas

:::
the

:::::
CML

::::::::
observes

:::::::::::
instantaneous

::::
path

:::::::
averaged

:::::::
rainfall.

:::::
Thus,

:::
the

:::::::::
references

:::
are

:::
just

::
an

:::::::::::::
approximation

::
of

:::
the105

::::::
rainfall

:::::::
observed

:::
by

:::
the

:::::
CML.

:

For testing, the optimal MLPRA and MLPGA were integrated in to
::::
into pycomlink, a python library for CML processing

(Chwala et al., 2023). Since the current pycomlink environment does not support sklearn, the weights and network architecture

were exported to tensorflow using the Keras API (Abadi et al., 2015). The final testing was performed by loading the exported

MLPs from the pycomlink environment.110
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2.3 Reference methods

Two reference methods were used for comparing the MLP results. The σ80 method from Graf et al. (2020) and the CNN

method from Polz et al. (2020).
::
We

::::
note

::::
that

::::::
similar

::
to

:::
our

:::::
MLP,

:::
the

::::
CNN

:::::::
method

::
is

:::
also

::::::
trained

::
to
::::
use

:::
two

::::::::
sublinks,

:::::::
whereas

::
the

::::
σ80 ::::::

method
::::
just

::::
uses

::::
one. Both methods are described in the introduction and can be run from pycomlink

::::::::
pycomlink.

2.4 Performance metrics115

The performance of the methods was evaluated by recording the predicted CML wet
::::::::
classified

:::::
CML

::::
rainy

:
and dry periods

against the reference data (rain gauge or radar) in a confusion matrix. In our case, the confusion matrix is a 2x2 matrix

listing the number of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). Although no

perfect performance metric exists, a balanced way of describing the confusion matrix as a single number can be done by the

Matthews correlation coefficient (MCC) (Chicco and Jurman, 2020). The MCC is a diagnostic that gives a number between -1120

and 1, where 1 represents a perfect prediction
:::::::::::
classification, 0 is no better than a random prediction

:::::
guess, and -1 is a perfect

disagreement with the reference.

2.5 CMLs close to rain gauges

Pairs of CMLs and rain gauges that are closer to each other than 5 km were selected for training and testing the MLPs. This

resulted in 395 pairs of CMLs and rain gauges spread out across Germany. All pairs are covered by the RADKLIM-YW radar125

product.

2.5 Train-test split

In order to assess how well the models performed, the CML data was split into a training set and a test set. Due to, for instance,

noisy CMLs, malfunctioning rain gauges, or spatio-temporal uncertainties, some CMLs showed a poor correlation with the

rain gauges or the radar. As these pairs could result in poor training data, we opted to exclusively include pairs with high MCC130

in our training set. We selected training pairs for MLPRA and MLPGA by predicting the CML wet
::::::::
estimating

:::
the

:::::
CML

:::::
rainy

periods using the σ80 method. The top 26 CML-radar pairs with the highest MCC, estimated
::::::::
evaluated using radar data

::
as

::::::
ground

::::
truth, were chosen for MLPRA. MLPGA used

::
the

:::
26 CML-rain gauge pairs with the highest MCC, estimated

::::::::
evaluated

using rain gauge . The remaining 369
::
as

::::::
ground

:::::
truth.

:::
As

::::
some

:::
of

:::
the

:::::
CMLs

:::::
share

:::
the

:::::
same

::::::::::
neighboring

::::
rain

::::::
gauge,

::::::
simply

:::::::
selecting

:::
the

:::::
pairs

::::
with

:::
the

::::::
highest

::::::
MCC

:::::
could

:::::
make

:::
the

:::::::
training

::::
data

:::
too

:::::::
focused

::
on

:::::
very

::::::
similar

::::::
rainfall

::::::
events.

::::::
Thus,

::
to135

:::::
ensure

::::::::
diversity

::
in

:::
the

:::::::
training

::::
data,

:::
the

:::::::
training

::::
data

:::::
used

::::
only

::::::
unique

::::
rain

::::::
gauges.

::::
The

:::::::::
remaining

:::
843

:
pairs were used for

testing. A possible drawback of this approach is that the MLPs are not trained on noisy CMLs, hindering their effectiveness

in dealing with erratic signal fluctuations. However, erratic CMLs are usually removed before the rain event detection step for

instance by removing CMLs where the rolling standard deviation of the total loss exceeds 2 dB at least 10% of the time or

where the 1 hour rolling standard deviation of the of the total loss exceeds 0.8 dB at least 33% of the time (Graf et al., 2020;140

Blettner et al., 2023).
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Table 1. MLP hyperparameters used in grid search

Hyperparameter Values

Hidden Layer Sizes [[1], [10], [20], [70], [5, 5], [10, 10],

[50, 50], [100, 100]]

Activation Function [’relu’, ’logistic’]

Regularization [0., 0.175, 0.35, 0.525, 0.7]

Initial Learning Rate [0.0000001, 0.00000147, 0.00002154,

0.00031623, 0.00464159, 0.06812921,

1]

2.6 Hyperparameter estimation and cross-validation

During training, the MLP classifier can be tuned using several hyperparameters such as activation function, hidden layers,

initial learning rate, and L2 regularization. The optimal hyperparameters were found by using k-fold cross-validation over a

grid search over the hyperparameter values listed in Table 1. We performed k-fold cross-validation by splitting the CMLs in145

the training data into 5 folds and iteratively trained the MLP on 4 folds of data and validated on the 5th fold using the MCC.

The final score is the mean of all 5 validation MCC scores.

The rainfall time series is characterized by extended periods of no rain, leading to an imbalance that can impede the effec-

tiveness of neural network training. A common method to address this issue is random undersampling, where samples from

the majority class are discarded to create a balanced dataset (Hoens and Chawla, 2013). However, rainfall time series often150

include short intermittent dry periods within longer events, which are of particular interest in our approach. If we were to use

random undersampling, these events might be underrepresented in the training dataset. Recognizing that the total signal loss

moving window can include rainy time steps during dry periods close to wet
::::
rainy ones, we have adopted a modified under-

sampling strategy. Specifically, we only discard dry steps more than 30 minutes away from any rainfall events as detected by

the reference methods.155

3 Results and discussion

3.1 Training the MLP

The MCC, given optimal given optimal initial learning rate and regularization,
:::
The

:::::::::::
performance

::::::
(MCC)

:::
of

:::::::
MLPRA::::

and

:::::::
MLPGA :::

for
:::
the

:::::::
training

:::
and

::::
test

::::::
dataset

:
as a function of an increasing

:::::::
increased

:
number of neurons and hidden layers for

the MLPRA and the MLPGA for both activation functions is presented
::::
layer

:::::
sizes

:
is
::::::

shown
:
in Fig. 1. For each hidden layer160

configuration, the optimal regularization and initial learning rate that yielded the highest mean MCC were
:::
was

:
selected and

plotted together with the minimum and maximum of all 5 folds obtained from k-fold cross-validation.
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Figure 1. MCC as a function of network architecture for the relu and logistic activation function. [5, 5] means two layers with 5 neurons in

each layer. The MLP was trained using k-fold cross-validation with 5 folds over 26 CML-rain gauge pairs using radar (MLPRA) and rain

gauge (MLPGA) as reference. The solid line is the mean value of the 5 folds while the shaded area shows the minimum and maximum score

of the 5 folds.

We can observe that the MLPGA generally has a lower score than the MLPRA method. This could be because of the spatial

differences between the CMLs and rain gauges
:::
the

:::
rain

::::::
gauges

::::
can

::
be

::::::
located

:::
up

::
to

::::
5km

::::
away

:::::
from

:::
the

:::::
CMLs, causing errors

related to spatial uncertainty
::::::::
variability. For the radar data, this

::::
issue

::::
with

:
spatial representation is most likely mitigated by the165

comparison based on CML path-weighted intersects
::::::::::
intersections. Another reason could be that the spatial averaging performed

by the radar and CMLs produces less intermittent rainfall time series than what is the case for the rain gauges, resulting in better

agreement between the CML and radar.

We can also observe that models using the logistic activation function generally seem to perform more consistently for all

network architectures than the relu activation function. The relu activation function has a lower score for simple network archi-170

tectures (for instance [1]), but produces larger scores with increased network architecture compared to the logistic activation

function. Further, for the relu activation function with larger networks ([70] and [100, 100]), MLPRA shows a larger deviation

between the train set and validation set, indicating that the model is not generalizing very well. MLPRA has a smaller deviation

between train and validation when the logistic activation function is used, indicating more general fits. Thus MLPRA seems

to have a good compromise between model complexity and score when using a single layer with 20 neurons and the logistic175

activation function. MLPGA on the other hand has a smaller deviation between the train and validation set and provides a

7



Table 2. Optimal hyperparameters for the MLP trained with radar reference (MLPRA) and the MLP trained with rain gauge reference

(MLPGA)

Hyperparameter MLPRA MLPGA

Network architecture [20] [50, 50]

Activation function logistic relu

Regularization 0.175 0.175

Initial learning rate 0.00031623 0.00031623

good compromise between model complexity and score when using two layers with 50 neurons in each and the relu activation

function. The optimal hyperparameters for MLPRA and MLPGA are shown in Table 2.

3.2 Testing the MLP

The MCC scatter plot density for the MLPRG and MLPRA method compared with the benchmark methods σ80 and CNN180

using the radar and rain gauge test data as reference is presented in Fig. 2. For both radar and rain gauge reference we can

observe that for most data pairs, the MCC score is higher when using one of the MLP methods than when using one of the

reference methods. Another observation is that MLPGA performed slightly better (median MCC of 0.59
::::
0.57) than MLPRA

(median MCC of 0.52) when the rain gauge was used as a reference. When the radar was used as a reference MLPRA scored

slightly better (median MCC of 0.62
::::
0.64) than MLPGA (median MCC of 0.66

:::
0.60). This difference could be explained by the185

inherent differences in the measurement methods, where the rain gauge captures the rainfall differently than the weather radar

due to for instance wind.

In

3.3
::::

CML
::::
time

::::::
series

::
To

::::::::
illustrate

:::
how

:::
the

::::::
MLPs

:::::::
perform

::
in

::::::::::
comparison

::
to

:::
the

::::
CNN

::::
and

:::
σ80:::::::

method,
:::
we

::::
have

:::::::
selected

:::
two

::::::
events

:::::
where

:::
the

::::::
MLPs190

:::::::::
outperform

:::
the

::::::::
reference

:::::::
methods

:
(Fig. 3 ,

::
and

:
Fig. 4, and

:
)
:::
and

:::
one

:::::
event

::::::
where

::
the

:::::
MLP

::::::::
performs

:::
less

::::
well

:
(Fig. 5we plot

:
).

:::
The

::::::
figures

:::::
show the CML signal loss as a function of time as well as the predicted wet

:::::::
estimated

:::::
rainy periods for all methods

and the ground truth. We also plot the confusion matrix and the corresponding MCC score for each method using the rain

gauge as a reference.

Fig. 3 shows the results from a 10-hour long period for a CML where the MLPRA method (MCC: 0.71
:::
0.73) and MLPGA195

method (MCC: 0.74
:::
0.76) outperformed the CNN method (MCC: 0.08) and the σ80 (MCC: 0.47). Looking at the CML total loss

(TL) we can observe that the CML behaves nicely with
:::
has a relatively constant baseline outside of wet periods

::
the

:::::
rainy

::::
time

::::
steps. Around time 06:00 the radar reference (RA) shows a short wet

::::
rainy period, while the rain gauge shows a longer highly

intermittent wet
::::
rainy period. The intermittent behavior of the rain gauge might be due to low-intensity rainfall or smaller

droplets falling into the bucket
::::
scale

:
from the collector. Both MLPs were

:::::::
MLPGA::::

was able to detect a short wet
::::
rainy

:
period200

8



Figure 2. Scatter density plot of the MCC score for the MLP trained on the rain gauge reference (MLPGA) and the MLP trained on the radar

reference (MLPRA) compared with the benchmark methods σ80 and CNN. The left plot used radar as reference and the right plot used rain

gauges as reference. CML, radar and rain gauge uses
:::
use a one minute resulution

:::::::
resolution. Scores were computed based on 369 CML-radar

data pairs over one month.

at this time
:::::::
whereas

:::::::
MLPRA:::

did
:::
not. For the full 10 hours, the CNN in general predicts

:::::::
estimates

:
a very long wet

::::
rainy period,

missing several dry events and leading to a poorer MCC. This is not surprising as it was trained to detect wet events
::::
rainy

::::::
periods

:
on an hourly basis. The σ80 method was better in classifying the dry events but still predicted longer wet

::::::::
estimated

:::::
longer

:::::
rainy periods than the MLPs. Further, MLPRA tended to predict wet

::::::
estimate

:::::
rainy

:
periods that started shortly before

the CML TL starts to rise, while the MLPGA tended to predict wet
:::::::
estimate

::::
rainy

:
periods shortly after the TL has started to205

rise. ,
:::
see

:::
for

:::::::
instance

:::::
time

:::
step

::::::
01:00. This is an interesting feature and could be due to the rain gauges showing short breaks

at the beginning of rainfall events due to low rainfall intensity. If the beginning of a wet
::::
rainy

:
event has more dry minutes than

wet
::::
rainy minutes, as seen by the rain gauge, this could lead MLPGA to just predict

:::::::
estimate

:
no rain on these occasions. It

could also be due to that the radar observes
:::::
caused

:::
by

::::
radar

:::::::::
observing rainfall before it is measured on the ground, making the

MLPRA estimate rainfall shortly before MLPGA.
:

210

9



Fig. 4 shows a 6-hour case for a different CMLwhere the difference between the MLPRA and MLPGA method is easier to

spot. Like in Figure 3, MLPRA predicts the wet starting point before the
::::::::
estimates

:
a
:::::

rainy
::::::
period

:::::::
starting

::
at

:::::
12:00,

:::::::
shortly

:::::
before

:
MLPGA does

::::::::
estimates

:
a
::::
wet

:::::
period. As in the previous case, the CNN predicts

:::::::
estimates

:
a very long wet

::::
rainy period,

while the σ80 predict
:::::::
estimate

:
rain before and after the rain gauge and radar reference rainfall prediction

:::::::
estimates. In this

instance
:::
case, none of the

::::
CML

:::::::
rainfall

:::::::
detection

:
methods can accurately predict the reference wet

:::::::
estimate

:::
the

:::::
radar

::
or

::::
rain215

:::::
gauge

::::::::
reference

::::
rainy

:
periods. Looking at the TL we can see that it increases gradually over an extended period, suggesting

a longer wet
::::
rainy period. In contrast, the reference data only indicates one or two short wet

::::
rainy

:
events. This discrepancy

may be attributed to very low rainfall rates, causing an elevated TL due to CML wet antenna attenuation. However, these rates

might be too small to register on the rain gauge or radar.

Fig. 3 and Fig. 4 also raise some interesting questions. The final rainfall amounts
::::::
amount

:
is often derived from a baseline220

that is typically estimated based on the values of the dry periods before the wet
:::::
rainfall

:
event. Since these baseline values

are estimated differently for the different methods we have explored in this study, the resulting rainfall rates are expected to

vary. For instance, if the MLPGA is used, the baseline would be placed at a higher level than if the MLPRA method was used,

resulting in a lower rainfall rate estimate. Looking at Figure 3 and the first and last rainfall event detected by MLPGA (time

steps 01.00 and 08.00), it is clear that MLPGA predicts
:::::::
estimates

:
rainfall shortly after the TL has started to rise. If we assume225

that the TL in these two cases is only affected by raindrops, then MLPGA would produce a too-high baseline estimate. MLPRA,

on the other hand, seems to better capture the entire rainfall event and thus is might be more suitable for baseline estimation.

A more detailed analysis of these effects is beyond the scope of this paper.

In Figure 5 we have depicted the TL as well as the predicted wet
:::::::
estimated

:::::
rainy

:
periods and reference wet

::::
rainy

:
periods

for a CML with more erratic signal fluctuations. For σ80, multiple wet
::::
rainy

:
periods are estimated. While these estimated wet230

::::
rainy

:
periods may seem plausible when observing the TL, the reference data reveals that there is no actual rainfall during this

time. Therefore, the wet predictions
::::::
rainfall

::::::::
estimates likely stem from a noisy CML signal.

3.4
::::::
General

::::::::::
discussion

:::
Our

::::::
MLPs

::::
were

::::::
trained

:::::
using

::::::
CML,

::::::
weather

:::::
radar

::::
and

:::
rain

::::::
gauge

::::
data

::::
from

:::
26

::::::::
CML-rain

::::::
gauge

::::
pairs

::::
over

::::
one

::::::
month.

::::
The

::::::
trained

:::::
MLPs

::::
were

::::
then

:::::
tested

:::
on

:::
843

:::::::::
CML-rain

:::::
gauge

::::
pairs

::::
that

::::
were

::::
kept

:::
out

::
of

:::
the

:::::::
training

::::::
process.

::
A
:::::::
possible

:::::::::
limitation

::
of235

:::
our

::::::::
approach

:
is
::::
that

:::
one

::::::
single

:::::
month

:::::
might

:::
not

::::::::::
adequately

::::::::
represent

::
the

::::::::
different

::::::
rainfall

:::::
types

:::::::::
associated

::::
with

::::
other

:::::::
months

::
or

:::::::
different

:::::::::::
geographical

:::::::::
locations.

:::
On

:::
the

:::::
other

:::::
hand,

::::
since

::::
our

::::::
dataset

::::::
covers

:::
the

::::::
whole

::
of

::::::::
Germany

:::
the

::::::
dataset

::::::::
contains

:::::
widely

::::::::
different

:::::::::::
precipitation

::::::
events.

::::
For

:::::::
instance,

:::
in

:::::::
addition

::
to

::::::
several

:::::::
smaller

::::::
events,

:::
the

:::::::
dataset

::::
also

:::::::
captures

:::
the

:::::
large

::::::::::
precipitation

:::::
event

:::
that

:::::::::
happened

::
in

::::::::
Germany

:::::::
between

:::
the

::::
13th

::::
and

::
15

::
of

::::
July

:::::
2021.

:::::::::
Moreover,

::
to

::::::
ensure

::::::::::
convergence

:::
of

:::
the

:::::
MLPs

:::
the

:::::::
training

:::
data

:::::
used

::::
only

::
26

:::::::::
CML-rain

:::::
gauge

:::::
pairs.

::::::::
Including

:::::
more

:::::
pairs,

:::::::
however,

:::
did

:::
not

::::::::
improve

:::
the

:::::
results

:::
on

:::
the240

::::::::
validation

:::::::
dataset,

::::::::
indicating

::::
that

::
the

::::::
MLPs

::
in

:::
fact

:::::::::
generalize

::
to

::::::
several

::::::::
different

::::::
events.

:::
Our

::::::
results

:::::::
indicate

::::
that

::::::::
MLPRA :::::::

provide
::::::
rainfall

:::::::::
estimates

:::
that

::::
are

:::::
more

::::::::::
continuous,

::::
and

:::::
more

::::::::
consistent

:::::
over

:::::
time,

::::::::
compared

::
to

:::
the

:::::
more

:::::::::
intermittent

::::::::
estimates

:::::::::
generated

::
by

::::::::
MLPGA :::

(see
:::
for

:::::::
instance

::::
Fig.

::
3

::::::::
time-step

::::::
06:00).

::::
This

:::::
could

:::::
come

::::
from

:::
the

::::
fact

:::
that

:::
the

::::
rain

::::::
gauges

::::
have

::
a
::::::::
1-minute

::::::::
resolution

::::::
while

:::
the

:::::::
weather

::::
radar

::::
has

:
a
::::::::
5-minute

:::::::::
resolution,

:::::::
making

:::
the

10



Figure 3.
:

a) CML signal loss (TL) for a 10-hour long interval and its corresponding confusion matrix (compared to rain gauge reference)

and MCC score for the CNN, σ80, MLPRA, MLPGA methods. The reference wet
::::
rainy

:
periods for the rain gauge (RG) and gauge-adjusted

radar (RA) were also plotted. The blue shaded area mark
::::
marks

:
the wet

::::
rainy

:
periods and

::
the

:::::
white

:::::
marks

::
the

:::
dry

:::::::
periods.

::
b)

::::::::
Confusion

:::::
matrix

:::
and its borders were colored grey to highlight

:::::::::::
corresponding

::::
MCC

::::
score

:::
for the intermittent behavior

::::::
10-hour

:::::
period

::::
using

:::
the

:::::
CNN,

:::
σ80,

:::::::
MLPRA,

::::::
MLPGA:::::::

methods
::::
with

::
the

::::
rain

::::
gauge

::
as

:::::::
reference.
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Figure 4.
::
a) CML signal loss (TL) for a 6-hour long interval and its corresponding confusion matrix (compared to rain gauge reference) and

MCC score for the CNN, σ80, MLPRA, MLPGA methods. The reference wet
:::
rainy

:
periods for the rain gauge (RG) and gauge-adjusted radar

(RA) was also plotted. The blue shaded area mark
:::::
marks the wet

::::
rainy

:
periods and

::
the

::::
white

:::::
marks

:::
the

:::
dry

::::::
periods.

::
b)
::::::::

Confusion
::::::

matrix

:::
and its borders was colored grey to better show

::::::::::
corresponding

:::::
MCC

::::
score

:::
for the intermittent behavior

:::::
6-hour

:::::
period

:::::
using

::
the

:::::
CNN,

::::
σ80,

::::::
MLPRA,

:::::::
MLPGA:::::::

methods
:::
with

:::
the

:::
rain

:::::
gauge

::
as

:::::::
reference.

12



Figure 5.
:
a)

:
CML signal loss (TL) for a 6 day long interval and its corresponding confusion matrix (compared to rain gauge reference)

and MCC score for the CNN, σ80, MLPRA, MLPGA methods. The reference wet
::::
rainy

:
periods for the rain gauge (RG) and gauge adjusted

:::::::::::
gauge-adjusted radar (RA) was

:::
were

:
also plotted. The blue shaded area mark

::::
marks the wet

::::
rainy periods and its borders was colored grey to

better show the intermittent behavior
::::
white

:::::
marks

::
the

:::
dry

::::::
periods. Here

:
b)

::::::::
Confusion

:::::
matrix

:::
and

:::
its

::::::::::
corresponding

:::::
MCC

::::
score

:::
for the CNN

outperformed
::::
6-day

::::::
period

::::
using

:
the other methods as it was able to better classify the noisy CML signal as dry

::::
CNN, which was more in

line
:::
σ80,

:::::::
MLPRA,

:::::::
MLPGA ::::::

methods
:
with the

:::
rain

::::
gauge

::
as
:
reference.13



::::
radar

:::::
rainy

::::::
periods

:::::
more

:::::::::
continuous.

:::::::
Another

::::::::::
explanation

:::::
could

:::
be

:::
that

::
at

:::
low

:::::::
rainfall

::::
rates,

:::
the

::::
rain

:::::
gauge

::::
will

:::
not

:::::
record

::::
any245

::::::
rainfall

::::::
before

:::
the

:::::::
droplets

::::
have

::::
been

::::::::::
transported

::
to

:::
the

:::::
scale,

:::::::
making

:::
the

::::::
period

:::::
seem

::::
more

::::::::::
intermittent

:::::
than

:
it
:::::::
actually

:::
is.

::::::
Further,

:::::
while

:::
the

::::
rain

::::::
gauges

:::::::
measure

:::::
point

::::::
rainfall

:::::
close

::
to

:::
the

:::::
CML,

:::
the

:::::::
weather

:::::
radar

::::::::
measures

::::::
average

:::::::
rainfall

:::::
along

:::
the

:::::
CML.

::::
This

::::
path

::::::::
averaging

::::
blurs

:::
the

:::::
rainy

:::::::
periods,

::::::
making

:::
the

:::::
rainy

:::::
period

:::::
more

:::::::::
continuous

::::
with

:::::
fewer

::::::::::
intermittent

::::::
breaks.

:::
An

::::::::
interesting

:::::::
finding

::
is

:::
that

::::
even

::::::
though

:::
the

::::
rain

::::::
gauges

:::
do

:::
not

:::::::
represent

:::
the

:::::::
average

::::::
rainfall

:::::
along

:::
the

::::::
CML,

:::::::
MLPGA::

is
::::
able

::
to

::::::
capture

::::
more

:::
of

::
the

::::::::::
underlying

:::::::::::
intermittency

::
as

::::::::
compared

::
to

::::::::
MLPRA.

::::
This

:
is
::::
also

:::::::
reflected

::
in

:::
the

::::::
neural

:::::::
network

:::::::::::
configuration250

:::::
where

:::
the

:::::::
MLPGA:::::::

benefits
::::
from

:
a
:::::
more

:::::::
complex

:::::::
network

::::::::::
architecture

:::
as

::::::::
compared

::
to

::::::::
MLPRA.

::::
Both

:::::
MLPs

:::::
were

::::::
trained

:::::
using

:::
the

::
26

:::::::::::::
CML-reference

:::::
pairs

:::
that

:::::::
showed

:::
the

::::::
highest

:::::
MCC

::::::::
estimated

:::::
using

:::
the

::::
σ80 :::::::

method.

::::
This

:::
can

::
be

:::::::
thought

:::
of

::
as

:
a
:::::::::::::

pre-processing
::::
step,

::::::
where

:::
the

::::
goal

::::
was

::
to

::::::
ensure

::::::
training

::::
data

:::::
with

:
a
:::::
good

:::::
match

::::::::
between

:::
the

:::::::
reference

::::
and

:::
the

::::::
CML.

::
In

:::
our

::::
case

::::
this

::::
was

::::::::
important

:::
for

:::::::
making

:::
the

::::::
MLPs

:::::::
converge

:::
to

::::::::::::
approximately

:::
the

:::::
same

:::::::
weights

::::
every

:::::
time

:::
we

::::::
trained

:::
the

:::::::
model.

:::::
These

::::::::
particular

:::::
pairs

::::::
might,

:::::
since

::::
they

:::
by

::::::::
selection

::::
have

::
a
:::::
good

:::::::::
correlation

::::
with

:::::
their255

::::::::
reference,

::::
also

::::::
contain

::::
little

::
or

:::
no

:::::
noise.

:::::
Thus,

:::
the

::::
MLP

:::::::
training

:::::::
datasets

:::::
might

::::
lack

:::::::
exposure

::
to

:::::
noisy

:::::
CML

::::
time

:::::
series,

::::
and

::
as

:
a
:::::::::::
consequence,

:::
the

:::::
MLPs

:::::
might

:::
not

::::
very

::::
well

::::::
handle

:::::
noisy

:::::::
periods.

::
On

:::
the

:::::
other

:::::
hand,

::::
from

::::
Fig.

:
2
:::
we

:::::
know

:::
that

:::
the

:::::
MLPs

::::
still

:::::::::
outperform

:::
the

:::
σ80::::

and
:::::
CNN

::::::
method

:::
on

:::
the

:::
843

::::::
CMLs

::::
used

::
in
:::

the
::::

test
::::::
dataset,

::::::
which

::::
was

:::
not

::::::
subject

::
to

::::
any

::::
noise

::::::::
filtering,

:::::::::
suggesting

:::
that

:::
the

::::::
MLPs

::
at

::::
least

::
to

:::::
some

::::::
extent

:::
can

::::::
handle

:::::
noise.

:::::::::
Moreover,

::::
very

:::::
noisy

::::::
CMLs

:::
are

::::::::
typically

:::::::
handled

:::::
using

::::::::::::
pre-processing

:::::::
methods

::::
such

:::
as

:::::::
filtering

:::
out

::::::
CMLs

::::
with

:::::
strong

:::::::
diurnal

:::::
cycles

::
or

::::::::
plateaus

::::
such

::
as

:::::
done

::
in

:::::::::::::::
Graf et al. (2020)260

:::
and

:::::::::::::::::
Blettner et al. (2023)

:
.

Overall it must be noted that while the MCC is a useful and balanced metric, its score must be seen in relation to the reference

chosen for evaluation. As weather radar provides average rainfall intensities for the entire radar grid cell, we expect that the

radar rainfall estimates are less intermittent than what is observed by a rain gauge. This is supported by the findings in Figure

3 , Figure 4, and Figure 5 where the weather radar rainfall events are less intermittent than what is the case for the rain gauges.265

The CML, like the weather radar, also measures spatially averaged rainfall. However, the CML measures rainfall closer to

the ground and might thus be able to better capture the intermittency as seen by the rain gauge. In this study MLPGA was

able to better detect rainfall events as seen by the rain gauge than MLPRA. This suggests that there is no single best reference

or method for evaluating CML rainy periods. Rather, the CML rain event detection method must be seen in relation to its

application.270

4 Conclusions

In this technical note, we introduced a
:::
two

:
simple feedforward neural network (MLP) designed to detect intermittent rainfall

from CML signals at a higher temporal resolution compared to existing methods. Our approach involved training the MLPs

on
:::::::
networks

:::::::
(MLPs)

::::::
trained

::
to

:::::
detect

:::::
rainy

::::
time

:::::
steps

::
in

:::::
signal

::::::::::
attenuation

::::
data

::::
from

::::::::::
commercial

::::::::::
microwave

::::
links

::::::::
(CMLs).

:::
The

::::::
MLPs

:::
are

::::::
trained

:::
and

:::::
tested

:::::
using

:
reference data from rain gauges (MLPGA) with a temporal resolution of 1 minute and275

gauge-adjusted radar (MLPRA) with a temporal resolution of 5 minutes. Both MLPs outperformed the two reference methods .

:::::::
Whereas

:::::::
existing

:::::::
methods

::::
tend

::
to

:::::::
estimate

::::::
longer

:::::::::
continuous

::::
rainy

:::::::
periods,

:::
the

::::::
MLPs

:::::::
estimate

::::::
shorter

::::
rainy

:::::::
periods

:::
that

:::::
more

14



::::::
closely

:::::::
resemble

:::
the

::::::::::
intermittent

:::::::
rainfall

::::::
patterns

::::
that

:::
are

::::::::
observed

::
by

:::
the

::::
rain

::::::
gauges

:::
and

:::::::
weather

:::::
radar.

::::
The

:::::::::::
performance

::
of

::
the

::::::
MLPs

::
is

::::::::
evaluated

::
by

:::::::::
comparing

:::
the

:::::
MLPs

::::::::
estimates

::::
with

::::::::
estimates

::::::::
produced

::
by

::::
two

:::::::
existing

:::::::
methods

:::::
using

::
the

:::::::::
Matthews

:::::::::
correlation

:::::::::
coefficient.

::::
Our

:::::
results

:::::
show

::::
that

:::
the

:::::
MLPs

:::::::::
outperform

:::::::
existing

:::::::
methods

:::
in

:::::
almost

:::
all

:::::
cases.

:
280

::::::::::
Interestingly,

:::::
even

:
if
:::
the

::::
rain

::::::
gauges

:::
do

:::
not

:::::::
resemble

:::
the

::::
path

::::::::
averaged

::::::
rainfall

::
as
::::::::
observed

:::
by

:::
the

:::::
CML,

:
MLPGA typically

predicts rainfall shortly after MLPRA and often after the CML total loss has started to increase. Thus, if the MLPGA method is

used, the user should consider setting for instance 5 minutes before and after a wet event to wet, similar to Pastorek et al. (2022)

:::
was

::::
still

:::
able

::
to

:::::
learn

:::
the

::::::
rainfall

::::::
pattern

::
in

:::
the

:::::
CML

::::
time

:::::
series. Moreover, MLPGA better predicts wet

::::::::
estimates

::::
rainy

:
periods

as recorded at the nearby rain gauges than what is the case for MLPRA, while both methods perform equally well when radar285

data is used as reference. Thus, the different methods capture different nuances of the rainfall patterns

:::::
While

:::::::
MLPRA:::::

tend
::
to

:::::::
estimate

:::::
rainy

:::::::
periods

::::::
shortly

::::::
before

::::::::
MLPGA,

:::::
both

:::::
MLPs

:::::
tend

::
to

::::::::
estimate

:::::
rainy

::::::
periods

:::::
after

::
the

::::::
CML

::::
total

::::
loss

:::
has

::::::
started

::
to
::::::::

increase.
:::::
Thus,

::
if
::::

the
:::::
MLPs

:::
are

:::::
used

:::
for

:::::::
baseline

:::::::::
estimation

:::
the

:::::
user

::::::
should,

::::::
similar

:::
to

:::::::::::::::::
Pastorek et al. (2022)

:
,
:::::::
consider

:::::
using

:::
dry

::::
time

:::::
steps

::
at

:::::
least

:
5
:::::::
minutes

:::::
away

::::
from

::::
the

::::::::
identified

::::
rainy

:::::
time

::::
step

:::
for

:::::::
baseline

:::::::::
estimation.

:::::::
Another

:::::::::
possibility

::
is

::
to

:::
use

:::
the

::::::
median

:::::
value

::
of

:
a
::::::
longer

::::::
period

:::::
before

:::
the

:::::
rainy

:::::
period.290

Future work may involve further refining the model architecture and testing its robustness in generalization to other datasets.

Another interesting topic could be to better understand how different wet and dry classifications affect the resulting baselines

and the effect this has on rainfall rate estimation from CML data. Overall, both MLPs showed successful skill for the challenge

of rainfall event detection in CML attenuation time series.

Code availability. The MLPRA method and the MLPGA method are available from pycomlink under https://github.com/pycomlink/pycomlink/295

tree/master/pycomlink/processing/wet_dry. An example notebook running the different rainfall detection methods is available under https:

//github.com/pycomlink/pycomlink/tree/master/notebooks

Data availability. The rain gauge data was derived from the open data server of the German Meteorological Service and can be found here:

https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/1_minute/precipitation/.
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