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Abstract  14 

In-situ glacier‒wide mass balances (MB) from traditional glaciological method often carry 15 

systematic biases. The glacier‒wide MB series on Chhota Shigri Glacier has been reanalysed 16 

by combining the traditional MB reanalysis framework and a nonlinear MB model. The 17 

nonlinear model is preferred over the traditional glaciological method to compute the glacier‒18 

wide MBs as the former can capture the spatiotemporal variability of point MBs from a 19 

heterogeneous in-situ point MB network. Further, nonlinear model is also used to detect the 20 

erroneous measurements from the point MB observations over 2002‒2023. ASTER and 21 

Pléiades stereo-imagery show limited areal changes but negative mass balances of ‒0.38 ± 0.05 22 

m w.e. a−1 during 2003‒2014 and ‒0.51 ± 0.06 m w.e. a−1 during 2014‒2020. The nonlinear 23 

model outperforms the traditional glaciological method and agrees better with these geodetic 24 

estimates. The reanalysed mean glacier‒wide MB over 2002‒2023 is ‒0.47 ± 0.19 m w.e. a−1, 25 

equivalent to a cumulative loss of ‒9.81 m w.e. Our analysis suggests that the nonlinear model 26 

can also be used to complete the MB series if for some years the field observations are poor or 27 

unavailable. With this analysis, we revisit the glacier-wide MB series of Chhota Shigri Glacier 28 

and provide the most accurate and up-to-date version of this series, the longest continuous ever 29 

recorded in the Himalaya. We recommend applying the nonlinear model on all traditional 30 

glaciological mass balance series worldwide whenever data is sufficient, especially in the 31 

Himalaya where in-situ data are often missing due to access issues.  32 

 33 

1. Introduction 34 
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Glaciers are excellent indicators of changing climate; therefore, long-term glacier mass 35 

changes are observed to understand the impacts of climate change (Oerlemans, 2001; Zemp et 36 

al., 2019). Glacier monitoring is also essential to understand the possible glacial hazards 37 

(Harrison et al., 2018; Shukla et al., 2018; Shugar et al., 2021; Gantayat and Ramsankaran, 38 

2023), regional hydrology (Azam et al., 2021; Yao et al., 2022; Nepal et al., 2023), and sea 39 

level rise (Gardner et al., 2013; Rounce et al., 2023). The glacier mass balance (MB) can be 40 

estimated from satellite data, through modelling approaches or measured using field-based 41 

traditional glaciological method (Cogley, 2009; Zemp et al., 2015; Kumar et al., 2018; Miles 42 

et al., 2021; Berthier et al., 2023). 43 

Over the last decade, rapid development has been made through satellite geodetic MB 44 

estimates covering almost all glacierized areas in the Himalaya (Brun et al., 2017; Bolch et al., 45 

2019; Shean et al., 2020; Hugonnet et al., 2021; Jackson et al., 2023). These geodetic estimates 46 

are primarily available at a multiannual scale and thus cannot be used to understand the inter-47 

annual variability in glacier MB. Conversely, field-based traditional MBs —estimated at 48 

annual/seasonal scale—directly respond to local meteorological conditions. Traditional MB 49 

observations remain scarce in the Himalaya (Azam et al., 2018). Most observations are 50 

available from easily accessible and small glaciers for short periods, generally less than 10-15 51 

years.  52 

For annual glacier‒wide MB estimation, traditional field-based glaciological method 53 

has been used in the Himalaya (Azam et al., 2018). This method involves 54 

interpolation/extrapolation of point MB measurements from fixed locations to the whole 55 

glacier area by applying different approaches, including contouring, profiling, and kriging 56 

(Østrem and Brugman, 1991; Zemp et al., 2013) or application of observed MB gradients to 57 

the glacier hypsometry (Funk et al., 1997; Wagnon et al., 2021). The selected point 58 

measurement sites may not be representative of surrounding areas because (1) ablation stakes 59 

are often inserted away from the steep slopes towards the valley walls for safety reasons; thus, 60 

the snow avalanche inputs are not included, (2) crevassed areas are not sampled, (3) snow 61 

accumulation is site-specific and largely depends on local topography that controls snow 62 

blowing/deposition and (4) harsh weather sometimes restricts access to accumulation 63 

measurement sites. Almost all the MB series are victims of one or other such issues; therefore, 64 

the estimated glacier‒wide MBs often carry systematic biases (Thibert et al., 2008). These 65 

biases can be corrected by calibrating the MB series using satellite-derived geodetic mass 66 

estimates generally over 5-10 years (Zemp et al., 2013; Wagnon et al., 2021). 67 
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Furthermore, it is practically difficult to keep the position fixed for point measurements 68 

due to accessibility, stake displacement due to glacier dynamics, use of different surveying 69 

equipment (GPS, dGPS, total station, theodolite, etc.) and different researchers’ involvement 70 

for decades of monitoring. Hence, the measurement network differs in space and time. In this 71 

situation, heterogeneous in-situ measurements do not always allow to catch the large 72 

spatiotemporal variability of point MBs; consequently, the point MB-elevation relationship is 73 

insufficient to investigate the changes in glacier‒wide MBs (Kuhn, 1984; Funk et al., 1997; 74 

Huss and Bauder, 2009; Thibert et al., 2013; Vincent and Six, 2013). 75 

To include the spatiotemporal variability of point MB measurements, Lliboutry (1974) 76 

proposed a linear statistical model and tested it over the small ablation area of Saint Sorlin 77 

Glacier (France), assuming similar temporal changes of the MB over the whole area. Vincent 78 

et al. (2018) suggested that the linear model of Lliboutry (1974) was valid over a limited 79 

elevation range, hence ignoring the decreasing spatiotemporal variability of point MBs with 80 

elevation (Oerlemans, 2001). To address this issue, they proposed a nonlinear model that 81 

considers the decreasing spatiotemporal changes in point MBs over the large elevation range 82 

and successfully tested their model on four different glaciers from different climate regimes, 83 

including Chhota Shigri Glacier (India). 84 

In the present study, we apply the nonlinear model to reanalyse the annual MB series 85 

of Chhota Shigri Glacier since 2002, the longest series in the Himalaya. Azam (2021) 86 

highlighted the importance of Chhota Shigri as a reference glacier for large-scale MB and 87 

hydrological studies; therefore, the main aim of the present study is to produce the most 88 

accurate glacier‒wide MB series in this region. First, the nonlinear model of Vincent et al. 89 

(2018) was used to detect the erroneous point MB measurements in the series. Second, the 90 

nonlinear model was applied using the observed point MBs to estimate the glacier‒wide MB 91 

at annual scale. Third, homogenization of the glacier‒wide MB series accounting for glacier 92 

areal changes was performed; and fourth, the glacier‒wide MB series was calibrated using 93 

geodetic MBs as recommended by Zemp et al. (2013). Further, we also tested the performance 94 

of the nonlinear model to estimate the glacier‒wide MB from the snowline at the end of ablation 95 

season if no field measurements were conducted in a particular year.  96 

2. Study area 97 

Chhota Shigri Glacier (32.28° N, 77.58° E) is in the Chandra River Basin, a tributary of Upper 98 

Indus Basin, Lahaul-Spiti valley of the western Himalaya (Fig. 1). Chhota Shigri flows from 99 

5830 to 4100 m a.s.l., with a length of ~9 km and an area of 15.47 km2 (in 2020). Based on the 100 
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most updated map obtained in September 2020, 12% of its total surface area is covered with 101 

debris between the snout and 4500 m a.s.l., over medial and lateral moraines from 4100 to 102 

~4900 m a.s.l. and over an eastern tributary glacier (Fig. 1). Debris thickness ranges from less 103 

than a few centimetres of thin debris to a few meters of boulders. Valley walls bound its 104 

accumulation area, with the highest Devachan peak (6250 m a.s.l.). The accumulation area has 105 

two east- and west-oriented tributaries that feed to the main ablation area (<5070 m a.s.l.), 106 

having a north aspect and divided into two parallel flows by a medial moraine. 107 

 108 

Figure 1: Chhota Shigri Glacier showing the location of ablation and accumulation point 109 

measurement sites. Orange strips show the debris-covered glacier area. The background image 110 

is a Pléiades satellite image taken on 12 September 2020 (Copyright CNES 2020, Distribution 111 

Airbus Defence and Space). The glacier extent corresponds to 12 September 2020. Coordinates 112 

are in UTM North, Zone 43. 113 

 114 

Chhota Shigri is a well-studied glacier for various aspects, including traditional MBs, 115 

energy balance, dynamics, ice thickness, hydrology, etc. (Wagnon et al., 2007; Azam et al., 116 

2012; Ramsankaran et al., 2018; Haq et al., 2021; Srivastava and Azam, 2022a; Mandal et al., 117 
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2020, 2022). Several studies have also observed its geodetic MBs (Berthier et al., 2007; 118 

Vincent et al., 2013; Brun et al., 2017; Mukherjee et al, 2018). Long-term annual MBs have 119 

been reconstructed over 1950–2020 applying a temperature index model (Srivastava et al., 120 

2022) and over 1979‒2020 using an energy balance model (Srivastava and Azam, 2022b). Due 121 

to recent glacier wastage on Chhota Shigri Glacier, the western tributary (WT) glacier got 122 

disconnected in the summer of 2012 (Srivastava et al., 2022). The fragmented tributary is now 123 

clearly visible in the high-resolution Pléiades image from 12 September 2020 (Fig. 1). 124 

In this study, we focus on Chhota Shigri Glacier, but the available satellite stereo-125 

images also cover neighbouring Hamtah and Sichum glaciers; therefore, we also estimated the 126 

areal changes and geodetic MBs for these two glaciers (sections 3.4 and 3.5). Hamtah Glacier 127 

has been studied for its MBs and avalanche contribution (Vincent et al., 2013; Laha et al., 128 

2017). Further, for all three glaciers, we also delineated the debris cover corresponding to 2020 129 

(Table 1). 130 

3. Methods 131 

3.1 Traditional mass balance method 132 

Glacier‒wide annual MBs (Ba) have been estimated using a network of 22-25 ablation bamboo 133 

stakes (inserted up to 10 m inside the glacier) distributed over 4300-4900 m a.s.l. along the 134 

main axis of the glacier (Fig. 1), and 4-6 accumulation pits/cores over 5160-5550 m a.s.l 135 

distributed over the eastern and western tributaries of the glacier (Wagnon et al., 2007). The 136 

traditional glaciological profile method was used to estimate the glacier‒wide MB from the 137 

observed point MBs (Østrem and Stanley, 1969). First, using the observed point MBs, the mean 138 

altitudinal MBs were estimated for each 50-m elevation band from available point MBs within 139 

each elevation band (Fig. 1). In case no measurements were available (due to loss of stakes or 140 

missing accumulation measurements) the MBs were estimated using linear 141 

interpolation/extrapolation of neighbouring bands. Second, the Ba (in m w.e. a-1) was estimated 142 

as follows: 143 

𝐵𝑎 =
1

𝑆
∑ 𝑏𝑧𝑠𝑧

𝑧=𝑚𝑎𝑥

𝑧=𝑚𝑖𝑛

,                     (1) 148 

where bz is the mean altitudinal MB (in m w.e. a−1) of a given elevation band, z, of area sz (m
2) 144 

and S is the total glacier area (m2). In the ablation area, emergence changes at each ablation 145 

stake were converted to the point MB using a fixed density of 900 kg m−3 for ice and 350 kg 146 

m−3 for snow, while in the accumulation area, the varying snow/firn/ice densities (350-900 kg 147 
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m−3) were measured in the field (Wagnon et al., 2007). The hydrological year for MB 149 

calculations is defined from 1 October to 30 September of the following year; however, the 150 

exact measurement dates on site varied from a couple of days to a week. Following Thibert et 151 

al. (2008), an overall uncertainty of ± 0.40 m w.e. a−1 for glacier‒wide MB was estimated by 152 

incorporating the errors in point measurements and their distribution over the glacier (Azam et 153 

al., 2012). 154 

Due to access difficulties, snowstorms like on 22-24 September 2018, or logistical or 155 

budget issues, some years were under-sampled. This was the case for October 2015, where 156 

only two accumulation measurements could be performed, or 2018, where measurements were 157 

done early in the season, before the storm. For those two years, point MB data in the 158 

accumulation zone, where no measurements had been taken, was estimated using previous 159 

years with a similar ablation pattern (Mandal et al., 2020). In 2020, only two in-situ point MB 160 

data are available, preventing the traditional method from being applied. Further, no 161 

measurements could be performed in 2021; hence, no MB could be estimated. Supplementary 162 

Table S1 provides all information about the point MBs and field expeditions since 2002. 163 

3.2 Nonlinear mass balance model 164 

The nonlinear MB model suggests that the observed point MB, bi,t, at any site i for year t, can 165 

be decomposed into (1) spatial effect term, 𝛼𝑖, and (2) temporal term, 𝛽𝑡, combined with a 166 

spatial effect, γi, and can be written as (Vincent et al., 2018): 167 

𝑏𝑖,t = 𝛼𝑖 + 𝛽𝑡𝛾𝑖 + 𝜀𝑖,𝑡 ,            2 168 

where αi, the spatial effects at location i, is the average point MB at the site over the whole 169 

study period, βt is the annual deviation from the average point MB (thus Σ βt = 0), and γi = 170 

σi/σmax is a scaling factor defined as the ratio of the standard deviation of annual MB at site i 171 

by the maximum standard deviation (σmax) observed from the point MB measurements over a 172 

long period. The εi,t term represents residuals resulting from measurement errors and 173 

inconsistencies between the model and observed data. The spatiotemporal decomposition 174 

proposed in equation 2 assumes that βt is the same at each location for any given year (t) and 175 

thus has a glacier‒wide significance while γi term accounts for nonlinear effects with elevation 176 

(Vincent et al., 2018). 177 

To compute the scaling factor, γi, on Chhota Shigri Glacier, standard deviations were 178 

computed from the point MBs available for each 50-m elevation band as the point MBs are not 179 

available each year from the same fixed locations (Fig. 2). The standard deviations were 180 
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computed only for 50-m elevation bands where mean annual MBs were available from in-situ 181 

measurements over minimum ten years, and it was assumed that the computed standard 182 

deviations are representative of the whole period of investigation (2002-2023). This resulted in 183 

16 standard deviation values over the whole glacier with a maximum standard deviation of 1.17 184 

m w.e. a−1 at 4525 m a.s.l. (4500-4550 band) and a minimum standard deviation of 0.40 m w.e. 185 

a−1 at 5325 m a.s.l. The decreasing magnitude of standard deviation with elevation indicates 186 

the decreasing sensitivity of the annual MB to temperature and precipitation (Fig. 2), as already 187 

suggested by several studies on glaciers worldwide (Kuhn, 1984; Soruco et al., 2009; Basantes-188 

Serrano et al., 2016; Vincent et al., 2018; Wagnon et al., 2021). The measurements are poor in 189 

the accumulation area, and no measurement was available above 5325 m a.s.l.; therefore, after 190 

some trials, we adjusted the standard deviation at 6000 m a.s.l. to be zero (Fig. 2). A decreasing 191 

trend in standard deviation values below 4525 m a.s.l. (Fig. 2) is due to the presence of debris 192 

cover over the tongue of Chhota Shigri Glacier (Fig. 1) that undermines the glacier’s sensitivity 193 

to climate (Vincent et al., 2013; Banerjee and Shankar, 2013). The scaling factor, γi, at each 194 

point MB location, was computed from the 2-degree polynomial function, fitted over the 195 

standard deviation vs elevation scatter plot (Fig. 2). 196 

 197 

Figure 2: Standard deviations of the annual MBs versus elevation. The black line corresponds 198 

to a polynomial fit (degree of freedom = 2). The standard deviations were estimated for those 199 

50m elevation bands where a minimum of 10 years of point measurements were available at 200 

each site, and it is assumed to be zero at 6000 m a.s.l. (above glacier top at 5830 m a.s.l.). 201 

 202 

The nonlinear model was run at 200m x 200m spatial resolution over 2002-2023 using 203 

all available point MBs (413-point measurements, excluding the erroneous measurements, 204 
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section 3.3) and polynomial equation (Fig. 2; details can be found in SI of Vincent et al., 2018). 205 

The MB is assumed to be spatially constant over each 200m x 200m grid for a given year. If 206 

there is more than one observation in a grid in a given year, then the mean MB of the available 207 

observations was used for MB computation. The size of the grid is a compromise between the 208 

spatial variability and the density of available point measurements.  209 

Field measurements were unavailable in the 2020/21 year (section 3.1); hence, the 210 

nonlinear model cannot be run. To run the model, at least one point MB measurement is 211 

required each year (Vincent et al., 2018). We assumed the snow line altitude (SLA) at the end 212 

of the ablation season to be equivalent to the equilibrium line altitude (ELA) (Rabatel et al., 213 

2005; Brun et al, 2015; Davaze et al., 2020; Barandun et al., 2021). The SLA was delineated 214 

on 6 September 2021 Sentinel image and zero MBs (MB at ELA = 0 m w.e.) were assumed for 215 

two 200m x 200m grids where MB observations were available from other years (Fig. 3). It is 216 

to be noted that there was no other cloud-free image from September 2021. The MB estimation 217 

from SLA using nonlinear model is discussed in detail in section 5.3. 218 
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 219 

Figure 3: Distribution of all 413-point MB measurements (yellow dots) available over 2002-220 

2023 on Chhota Shigri Glacier. The grids (in light blue) show spatial resolution of 200m x 221 

200m of the nonlinear model. For 2020/21, no field measurement was conducted hence two-222 

point MBs (grids shown with green colour outline), corresponding to zero MB, were selected 223 

on delineated SLA to run the model. The background is Sentinel image from 6 September 2021 224 

which is used to delineate the SLA.   225 

The model output provides the mean 𝛼𝑖 and mean γi for each point location over 2002-226 

2023, and 𝛽𝑡 for each year (equation 2). The calculation of glacier‒wide MB needs to get a 227 

spatial distribution of 𝛼𝑖 over the whole surface area of the glacier. First, for each 50-m 228 

elevation range (e), mean αe was estimated from all available 𝛼𝑖 by taking a simple arithmetic 229 

mean and γe from all available γi from respective elevation bands (equation 2). The modelled 230 

point MBs were available over the 4355–5512 m a.s.l. elevation range and beyond this range, 231 

the mean 𝛼e and γe from the lowest (4300–4350 m a.s.l.) and highest (5500–5550 m a.s.l.) 232 

ranges were used to cover the lowest (0.15 km2) and highest (0.68 km2) parts of the glacier. 233 

https://doi.org/10.5194/egusphere-2024-644
Preprint. Discussion started: 22 April 2024
c© Author(s) 2024. CC BY 4.0 License.



10 
 

Second, applying αe, γe and βt from all elevation bands in equation 1 along with corresponding 234 

elevation areas, the annual glacier‒wide MBs over 2002-2023 were estimated.  235 

3.3 Tracking the erroneous in-situ point mass balances 236 

The nonlinear model computes the residuals (difference between the measured and theoretical 237 

values) of each measured point MB and can detect errors in in-situ point MB data (Vincent et 238 

al., 2018). The distribution of residuals over the glacier as a function of distance from the snout 239 

showed no spatio-temporal pattern (Fig. 4A), indicating that the nonlinear model does not 240 

provide any apparent bias for any specific year. As expected, the residuals followed a normal 241 

distribution with a standard deviation (STD) of 0.35 m w.e. a‒1 (Fig. 4B). To detect the 242 

measurement errors in the point MBs in the Chhota Shigri measurement network over 2002‒243 

2023, we assumed all the point MBs having residuals >2STD (0.70 m w.e. a‒1) to be suspicious. 244 

Of 423-point MB measurements, 15 such point MBs were found and investigated further. Five-245 

point MBs had been wrongly reported from the notebooks and thus have been corrected. We 246 

could not find any reason for the rest of the suspicious points. Therefore, they have been 247 

considered wrong and discarded in the final model run. The wrong field measurements come 248 

from different years (five ablation point measurements from 2009, 2012, 2018 and 2022, and 249 

five accumulation point measurements from 2011, 2014 and 2022) (Fig. 4). The standard 250 

deviation of the residuals from the nonlinear model reduced from 0.35 to 0.30 m w.e. a‒1 after 251 

correction/removal of suspicious point MB measurements. 252 

 253 
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Figure 4: (A) Shows the residuals between measured and modelled point MBs form the 254 

nonlinear model using all available 423-point MBs as a function of distance from glacier snout 255 

for each hydrological year between 2002 and 2023. The dark and light blue shaded envelopes 256 

represent the 1 STD and 2 STD values, respectively. (B) shows the probability density function 257 

(normal distribution curve) of all point MB residuals between 2002 and 2023.   258 

 259 

3.4 Areal changes and debris cover estimation 260 

The areal changes and debris cover were estimated on Chhota Shigri, Sichum and Hamtah 261 

glaciers by manual delineation following the Global Land Ice Measurements from Space 262 

(GLIMS) guidelines from the available ASTER (08/10/2003) and Pléiades images (26/09/2014 263 

and 12/09/2020) (Raup et al., 2007). We have preferred manual delineation as it was considered 264 

the most accurate method for delineating glacier outlines (Stokes et al., 2007; Garg et al., 2017; 265 

Shukla and Qadir, 2016). The ice divides were interpreted using the Pléiades Digital Elevation 266 

model (DEM). The changes were estimated for the ablation area for 2014 and 2020, as the 267 

changes in the accumulation area were insignificant. The generated glacier outlines (2003, 268 

2014 and 2020) were used to estimate the glacier area changes during 2003‒2020. The 269 

uncertainties associated with the glacier area were calculated using the buffer method (Bolch 270 

et al., 2010; Chand and Sharma, 2015). The buffer size was half the pixel value (Bolch et al., 271 

2010; Andreassen et al., 2022).  272 

3.5 Geodetic mass balances  273 

The geodetic MBs were estimated over two periods (2003‒2014 and 2014‒2020) for Chhota 274 

Shigri, Sichum and Hamtah glaciers using satellite stereo images from ASTER (15 m 275 

resolution) acquired on 08/10/2003 and Pléiades (0.70 m resolution) acquired on 26/09/2014 276 

and 12/09/2020, respectively. The ASTER October 2003 stereo-pair was preferred to other 277 

ASTER or SPOT5 stereo pairs acquired in late summer 2002, 2004, and 2005 because it 278 

resulted in the smallest uncertainties. The stereo images were acquired close to the end of the 279 

hydrological year, reducing the impact of any seasonal offset. The DEM generation, co-280 

registration and MB calculation procedure is the same as in Falaschi et al. (2023). Uncertainties 281 

for the glacier‒wide geodetic MB were estimated using the patch method (Wagnon et al., 282 

2021). 283 

Geodetic MBs were estimated over 10.97 years (from 08/10/2003 to 26/09/2014) and 284 

5.96 years (from 26/09/2014 to 12/09/2020) and linearly scaled to estimate the geodetic MBs 285 

over 11- and 6-year periods, respectively to make a direct comparison with the in-situ MBs 286 

(estimated from end of September to end of September next year). Further, the WT glacier 287 
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fragmented sometime around 2012 (Srivastava et al., 2022) and its geodetic MBs were 288 

estimated with Chhota Shigri (area-weighted) (Table 1) for direct comparison with the 289 

traditional and nonlinear MBs, including the WT glacier. 290 

3.6 Homogenization of glacier‒wide mass balances 291 

In initial studies (Wagnon et al., 2007; Azam et al., 2012), a fixed hypsometry (glacier area and 292 

elevation) from SPOT5 2005 DEM was used, while in follow-up studies (Azam et al., 2014; 293 

Mandal et al., 2020) a fixed hypsometry from Pléiades August 2014 DEM was used to estimate 294 

the traditional MBs on Chhota Shigri Glacier. These fixed hypsometries insert bias in the MB 295 

series (Cogley et al., 2011; Zemp et al., 2013). Here, the Chhota Shigri Glacier annual MBs 296 

(from the traditional method and nonlinear model) are homogenized with the linearly changing 297 

annual hypsometries from ASTER and Pléiades DEMs over 2003‒2014 and Pléiades DEMs 298 

over 2014‒2020 (section 4.1). We adopted the approach suggested by Zemp et al. (2013) that 299 

assumes a linear area change over a record period (N years) and estimates the area (s) of an 300 

elevation band (e) for each year (t) as follows: 301 

 302 

𝑠𝑒,𝑡 = 𝑠𝑒,0 +
𝑡

𝑁
∙ (𝑠𝑒,𝑁 − 𝑠𝑒,0),                     (3) 303 

 304 

where se,0 and se,N are the elevation bin areas from the first and the second geodetic survey, 305 

respectively, and the time t is zero in the year of the first survey. The homogenization process 306 

of both traditional and nonlinear MB series changed the annual glacier‒wide MBs at most by 307 

0.02 m w.e., reflecting the negligible impact of areal changes over the 2003‒2020 period on 308 

Chhota Shigri Glacier (section 4.1). Post-2020, the hypsometry of the 2020 year was used to 309 

estimate the MBs till 2023. Figure 5 summarizes the overall methodology step-by-step, 310 

including homogenization, validation/calibration and error estimation (sections 3.7 and 3.9).   311 
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 312 

Figure 5: Conceptual diagram of the overall methodology: homogenization, uncertainty 313 

estimation, validation, and calibration steps. 314 

 315 

3.7 Validation and calibration of glacier‒wide mass balances 316 

Previously, we validated the traditional MBs with geodetic MB available over 2005-2014 317 

(Azam et al., 2016). The systematic biases were within the uncertainty ranges of traditional and 318 

geodetic MBs; hence, no calibration was done. In this study, we repeated this validation over 319 

two periods when the geodetic MBs were calculated (section 4.2).  320 

The traditional as well as nonlinear MBs over 2003‒2014 were not statistically different 321 

from the geodetic MB, and the null hypothesis H0 (the cumulative glaciological MB is not 322 

statistically different from the geodetic MB) was accepted at 95% and 90% levels (Zemp et al., 323 

2013). However, over 2014‒2020, both traditional and nonlinear MBs were statistically 324 

different from the geodetic MBs and the null hypothesis H0 was rejected at 95% as well as 90% 325 

levels. This showed that the systematic biases were significant over 2014‒2020 (Table 2). Even 326 

though we did not observe a significant bias over 2003‒2014, we decided to calibrate the 327 

traditional as well as nonlinear MBs over both periods as suggested in previous studies (Thibert 328 

et al., 2008; Huss et al., 2009; Andreassen et al., 2016; Wagnon et al., 2021). 329 

In the calibration procedure, the annual relative variability of glacier‒wide MBs is taken 330 

from the MB series and the series was fitted to the multi-annual geodetic MB, Bg, as follows: 331 
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𝐵𝑎,𝑐𝑎𝑙 = 𝐵𝑎 +
(𝐵𝑔 − ∑ 𝐵𝑎𝑁 )

𝑁
,                     (4) 332 

where Ba,cal is the annual calibrated glacier‒wide MB and N is the number of years over which 333 

the geodetic MB has been estimated. It should be mentioned that the MBs obtained from 334 

traditional method or nonlinear model refer only to the surface MB, whereas the geodetic MBs 335 

also integrate the internal and basal MBs, assumed to be small compared to the surface MB 336 

(Cuffey and Paterson, 2010). 337 

3.8 Calibration of mean altitudinal mass balances  338 

The mean altitudinal MBs (𝑏e,t) for each 50-m elevation band (e) and each year (t) were 339 

computed using equation 1 exploiting the values of 𝛼𝑖 , 𝛽𝑡 and 𝛾𝑖 obtained from the nonlinear 340 

model. These altitudinal mean MBs were adjusted to fit the calibrated annual glacier‒wide 341 

MBs following Zemp et al. (2013). First, the centred mean altitudinal MB (𝛽e,t) is calculated 342 

as the deviation from the uncalibrated annual nonlinear MBs (Ba):   343 

𝛽𝑒,𝑡 = 𝑏𝑒,𝑡 − 𝐵𝑎 , (5) 344 

Then, the calibrated altitudinal mean MB (be,t,cal) for each year is estimated as: 345 

𝑏𝑒,𝑡,𝑐𝑎𝑙 = 𝛽𝑒,𝑡 + 𝐵𝑎,𝑐𝑎𝑙,    (6) 346 

The equilibrium line altitude (ELAcal) and MB gradient for each year (t) are also estimated by 347 

plotting the linear regression over the calibrated annual mean altitudinal MBs (be,t,cal) over an 348 

elevation range of 4375-5225 m. Finally, using the calibrated ELAs, the calibrated AARs were 349 

estimated each year (Table 3).  350 

3.9 Random error estimation in nonlinear mass balances 351 

The random error (𝜎𝐵𝑛,𝑐𝑎𝑙
) in calibrated nonlinear glacier‒wide MB is estimated following: 352 

𝜎𝐵𝑛,𝑐𝑎𝑙
= ±√

𝜎𝐵𝑔
2

𝑁
+ ∑ 𝑠𝑖

2 𝜎𝜀
2,                (7) 353 

 354 

𝜎𝐵𝑔
 is the error in the geodetic MBs (𝜎𝐵𝑔

 = 0.57 and 0.36 m w.e. a−1 over 2003‒2014 and 2014‒355 

2020, respectively), N is the number of years for geodetic MB estimation (section 3.3), 𝑠𝑖 terms 356 

represent the relative areas of each 50-m elevation band (except for 5400-5850 m a.s.l. range 357 

that has been treated as a single band) compared to the total glacier area (therefore Σ𝑠𝑖 = 1), 358 

and 𝜎𝜀 = 0.30 m w.e. a−1 is the standard deviation of the residual term of equation (2) obtained 359 

with the nonlinear model (section 3.2). Equation 7 is valid for the hydrological years within 360 
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calibration periods (2003‒2014 and 2014‒2020). The random errors in nonlinear glacier‒wide 361 

MBs for 2002/03 and 2020‒2023 hydrological years were estimated following the procedure 362 

described in Wagnon et al. (2021). The mean annual random error, 𝜎𝐵𝑛,𝑐𝑎𝑙
, of the calibrated 363 

nonlinear glacier‒wide MB was estimated to be ±0.19 m w.e. a−1 over 2002-2023, with slightly 364 

higher random errors for the years outside the calibration period (Table 3). 365 

4. Results 366 

4.1 Glacier area changes since 2003 367 

Chhota Shigri, Sichum and Hamtah glaciers showed limited areal changes since 2003, mostly 368 

restricted to the snout area (Table 1; Fig. 6). The estimated debris cover, corresponding to 369 

September 2020 year, was 12%, 22% and 79% of the total area on Chhota Shigri, Sichum and 370 

Hamtah glaciers, respectively (Table 1). During 2003‒2020, the total area change for each 371 

glacier was very small with a deglaciation rate of ‒0.07 ± 0.22 % a−1, ‒0.07 ± 0.22 % a−1 and 372 

‒0.03 ± 0.19 % a−1 for Chhota, Sichum and Hamtah, respectively (Table 1). 373 

4.2 Geodetic mass balances 374 

The maps of elevation changes for 2003‒2014 and 2014‒2020 periods indicate a general 375 

pattern of thinning for the glacier tongues and limited changes in the upper reaches of the 376 

glaciers (Fig. 7). The area-weighted geodetic MB of Chhota Shigri Glacier (including WT) was 377 

‒0.43 ± 0.08 m w.e. a−1 over 2003‒2020 (Table 1), with a higher annual wastage of ‒0.51 ± 378 

0.06 m w.e. a−1 over 2014‒2020 compared to ‒0.38 ± 0.10 m w.e. a−1 over 2003‒2014 (Table 379 

2). Sichum and Hamtah glaciers showed slightly stronger annual mass wastage of ‒0.57 ± 0.08 380 

and ‒0.51 ± 0.08 m w.e. a−1, respectively over 2003‒2020, with similarly an increased mass 381 

wastage over the recent period (2014‒2020) (Table 1). The slightly more negative glacier‒wide 382 

MBs on all these glaciers during 2014-2020 agree with a recent study suggesting an increased 383 

wastage over the recent decade in the Himalaya (Hugonnet et al., 2021). 384 
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 385 

Figure 6: Glacier area change of Chhota Shigri, Sichum and Hamtah glaciers between 2003 386 

and 2020 (Background image is Pleiades satellite imagery of 12 September 2020; CNES 2020, 387 

Distribution Airbus D&S). 388 

 389 

Table 1: The areal and geodetic mass changes on Chhota Shigri, Sichum and Hamtah glaciers 390 

over 2003-2014 and 2014-2020 periods. 391 

Time Period 2003-14 2014-2020 2003-2020 

Chhota Shigri with WT (Area = 15.47 km2, 12% debris cover in 2020) 
Area change (km2) –0.15 ± 0.58 ‒0.05 ± 0.14 ‒0.20 ± 0.57 

Area change rate (% a−1) –0.09 ± 0.33 ‒0.05 ± 0.15 ‒0.07 ± 0.22 

Geodetic MB (m w.e.) –4.18 ± 0.57 ‒3.08 ± 0.36 ‒7.26 ± 0.93 

Geodetic MB (m w.e. a−1) –0.38 ± 0.10 ‒0.51 ± 0.06 ‒0.43 ± 0.08 

Sichum (Area = 13.84 km2, 22% debris cover in 2020) 
Area change (km2) ‒0.14 ± 0.52 ‒0.02 ± 0.12 ‒0.16 ± 0.52 

Area change rate (% a−1) ‒0.09 ± 0.34 ‒0.03 ± 0.14 ‒0.07 ± 0.22 

Geodetic MB (m w.e.) ‒6.07 ± 0.66 ‒3.68 ± 0.36 ‒9.75 ± 1.02 

Geodetic MB (m w.e. a−1) ‒0.55 ± 0.09 ‒0.61 ± 0.06 ‒0.57 ± 0.08 

Hamtah (Area = 4.12 km2, 79% debris cover in 2020) 

Area change (km2) ‒0.02 ± 0.13 ‒0.00 ± 0.03 ‒0.02 ± 0.13 

Area change rate (% a−1) ‒0.05 ± 0.29 ‒0.01 ± 0.13 ‒0.03 ± 0.19 

Geodetic MB (m w.e.) ‒5.19 ± 0.55 ‒3.44 ± 0.36 ‒8.63 ± 0.91 

Geodetic MB (m w.e. a−1) ‒0.47 ± 0.09 ‒0.57 ± 0.06 ‒0.51 ± 0.08 
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 392 

Figure 7: The thickness changes for Chhota Shigri, Sichum and Hamtah glaciers differencing 393 

the ASTER 2003 (08/10/2003) and Pléiades (26/09/2014) DEMs over 2003‒2014 and Pléiades 394 

DEMs (26/09/2014 and 12/09/2020) over 2014‒2020. 395 

The mean annual geodetic mass wastage of ‒0.43 ± 0.08 m w.e. a−1 on Chhota Shigri 396 

Glacier over 2003‒2020 is in good agreement with the region-wide mean glacier mass wastage 397 
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of ‒0.37 ± 0.15 m w.e. a−1 over the whole Lahaul-Spiti region (glacierized area = 7960 km2) 398 

during a slightly different period (2000‒2016), from multiple ASTER DEMs (Brun et al., 399 

2017). Hence, Chhota Shigri is not only a reference glacier in the Himalaya (Azam, 2021) but 400 

also a representative glacier for the whole Lahaul-Spiti region, as already suggested (Vincent 401 

et al., 2013).      402 

4.3 Annual and cumulative glacier‒wide mass balances since 2002 403 

Table 2 and Fig. 8 show the traditional and nonlinear MBs (before and after calibration) and 404 

geodetic MBs over available periods. The traditional MBs were not available for 2019/20 and 405 

2020/21 (section 3.1); therefore, to calibrate these MBs and to cover the geodetic observations, 406 

the modelled MBs (2019/20 = 0.07 m w.e. and 2020/21 = ‒1.17 m w.e.) from surface energy 407 

balance approach (Srivastava and Azam, 2022b) were added to the series.  408 

Compared to uncalibrated traditional MB series, uncalibrated nonlinear MB series 409 

showed much lesser biases with a slightly negative bias of ‒0.03 m w.e. a−1 (against a bias of 410 

‒0.10 m w.e. a−1 in traditional MBs) over 2003‒2014 and of ‒0.17 m w.e. a−1 (against a bias of 411 

0.33 m w.e. a−1 in traditional MBs) over 2014‒2020 (Table 2; Fig. 8). Therefore, following 412 

equation 4, the nonlinear annual MBs were systematically increased by 0.03 m w.e. a−1 over 413 

2003‒2014 and by 0.17 m w.e. a−1 over 2014‒2020 while traditional MBs were systematically 414 

increased by 0.10 m w.e. a−1 over 2003‒2014 and decreased by 0.33 m w.e. a−1 over 2014‒415 

2020 to match the geodetic estimates (Fig. 8). The hydrological years 2002/03 and 2020-2023 416 

are outside the calibration periods, but these years were also calibrated by the mean values of 417 

biases observed over 2003‒2014 and 2014‒2020, respectively. To avoid confusion, we 418 

discussed only the calibrated nonlinear glacier‒wide MBs in the manuscript, although the 419 

calibrated traditional MBs are given in Table 2 and 3 for reference.   420 

Table 2: Cumulative MBs (in parenthesis, mean annual MBs) from the traditional method, 421 

nonlinear model, and geodetic estimates over available periods. The balance year 2002/03 is 422 

not included here as it is not covered in the geodetic estimate available over 2003‒2014. The 423 

cumulative traditional MB over the 2014‒2020 period has been estimated by adding the 424 

modelled annual MB for 2019/20 (Srivastava and Azam, 2022b). All units are in m w.e. (m 425 

w.e. a−1). 426 

 2003‒2014 2014‒2019 2014‒2020 

Traditional MB ‒5.31 (‒0.48) ‒1.14 (‒0.23) ‒1.07 (‒0.18)* 

Nonlinear MB ‒4.48 (‒0.41) ‒3.22 (‒0.64) ‒4.10 (‒0.68) 

Geodetic MB ‒4.18 (‒0.38) - ‒3.08 (‒0.51) 

Calibrated traditional MB ‒4.18 (‒0.38) ‒2.82 (‒0.56) ‒3.08 (‒0.51) 

Calibrated nonlinear MB ‒4.18 (‒0.38) ‒2.37 (‒0.47) ‒3.08 (‒0.51) 
*estimated from traditional MBs (2014-2019) and modelled MB (2019/20). 427 
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 428 

Figure 8: Calibrated nonlinear annual glacier‒wide MBs (with random errors) over 2002‒429 

2023, traditional cumulative MBs over 2002‒2023, nonlinear cumulative MBs over 2002‒430 

2023, calibrated nonlinear cumulative MBs over 2002‒2023, calibrated traditional cumulative 431 

MBs over 2002‒2023, and geodetic MBs over 2003‒2014 and 2014‒2020 (with estimated 432 

uncertainties). The cumulative traditional MB series (2002‒2019) is completed till 2023 by 433 

adding the modelled MB of 2019/2020 and 2020/21 from Srivastava and Azam (2022b). 434 

 435 

Table 3: Calibrated nonlinear MBs (𝐵𝑎𝑛,𝑐𝑎𝑙
), calibrated traditional MBs (𝐵𝑎𝑡,𝑐𝑎𝑙

), MB gradients 436 

(db/dz), ELAcal and AARcal on Chhota Shigri Glacier between 2002 and 2023. 437 

Year 

Glacier Area 

(km2) 

𝐵𝑎𝑛,𝑐𝑎𝑙
 

(m w.e. a-1) 

Error of 𝐵𝑎𝑛,𝑐𝑎𝑙
 

 (m w.e. a-1) 

𝐵𝑎𝑡,𝑐𝑎𝑙
  

(m w.e. a-1) 

db/dz  

(m w.e. (100)-1 a-1) 

ELAcal 

(m a.s.l.) 

AARcal 

(%) 

Difference 

𝐵𝑎𝑛,𝑐𝑎𝑙
- 𝐵𝑎𝑡,𝑐𝑎𝑙

 

2002/03 15.66 -1.10 0.21 -1.34 0.70 5145 33 0.24 
2003/04 15.64 -1.14 0.19 -1.14 0.71 5156 32 0.01 

2004/05 15.63 0.49 0.19 0.24 0.59 4911 67 0.26 

2005/06 15.61 -1.14 0.19 -1.33 0.71 5157 32 0.19 
2006/07 15.59 -0.91 0.19 -0.90 0.69 5128 36 -0.01 

2007/08 15.57 -0.67 0.19 -0.84 0.67 5096 40 0.17 

2008/09 15.56 0.29 0.19 0.22 0.60 4942 63 0.07 
2009/10 15.54 0.43 0.19 0.42 0.59 4921 65 0.01 

2010/11 15.52 -0.16 0.19 0.17 0.64 5022 50 -0.33 
2011/12 15.50 -0.42 0.19 -0.36 0.66 5061 44 -0.06 

2012/13 15.49 -0.91 0.19 -0.66 0.69 5131 34 -0.25 

2013/14 15.47 -0.05 0.19 0.02 0.63 5004 53 -0.07 
2014/15 15.46 -0.05 0.16 -0.48 0.64 5027 50 0.43 

2015/16 15.45 -0.89 0.16 -1.18 0.70 5148 33 0.29 

2016/17 15.44 -0.91 0.16 -0.62 0.70 5151 31 -0.29 
2017/18 15.44 -1.05 0.16 -0.73 0.71 5167 30 -0.32 

2018/19 15.43 0.53 0.16 0.21 0.60 4930 64 0.32 

2019/20 15.42 -0.71 0.16 -0.26 0.69 5125 35 -0.45 
2020/21 15.42 0.04 0.20 -1.49 0.63 5013 51 1.53 

2021/22 15.42 -1.71 0.24 -2.00 0.76 5248 19 0.29 

2022/23 15.42 0.21 0.27 -0.22 0.62 4985 56 0.44 

Mean 15.51 -0.47 0.19 -0.58 0.66 5070 44 0.12 

SD 0.08 0.65 0.02 0.67 0.05 97 14 0.42 
*The calibrated traditional MBs for 2019/20 and 2020/21 years are originally from the model (Srivastava and Azam, 2022b). 438 
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The annual calibrated glacier‒wide MB from the nonlinear model varied from 0.53 ± 439 

0.16 m w.e. a−1 in 2018/19 to ‒1.71 ± 0.24 m w.e. a−1 in 2021/22 with a standard deviation of 440 

0.65 m w.e. a−1 during 2002‒2023 (Table 3). In the 21-year-long MB series, six hydrological 441 

years (2004/05, 2008/09, 2009/10, 2018/19, 2020/21, and 2022/23 showed positive/near steady 442 

state MBs. The mean annual glacier‒wide MB was estimated to be ‒0.47 ± 0.19 m w.e. a−1, 443 

equivalent to a cumulative loss of ‒9.81 m w.e. over 2002‒2023 (Table 3).    444 

4.4 Equilibrium line altitude and accumulation area ratio 445 

Using the calibrated mean altitudinal MBs (section 3.8), the equilibrium line altitude ELAcal, 446 

accumulation area ratio AARcal and MB gradients (db/dz) were also estimated. The maximum 447 

ELAcal was 5248 m a.s.l. corresponding to the most negative MB of ‒1.71 ± 0.24 m w.e. a−1 448 

and minimum AARcal of 19% in 2021/22, while the minimum ELAcal was 4911 m a.s.l. 449 

corresponding to a positive MB of 0.49 ± 0.19 m w.e. a−1 and a maximum AARcal of 67% in 450 

2004/05. The mean ELAcal was 5070 m a.s.l. corresponding to a mean mass wastage of ‒0.47 451 

± 0.19 m w.e. a−1 and mean AARcal of 44% over 2002-2023. 452 

The annual ELAcal and AARcal showed good correlations with annual glacier‒wide MBs 453 

(r2 = 0.98 and 0.97, respectively) over 2002-2023 (Fig. 5). The ELAcal for a zero glacier‒wide 454 

MB (ELA0) was also computed from the regression between glacier‒wide MBs and ELAcal over 455 

2002-2023 and calculated as ~5001 m a.s.l. (Fig. 9). Similarly, AAR0 was computed as ~54% 456 

for steady-state glacier‒wide MB.  457 

 458 

Figure 9: The ELA and AAR as a function of annual glacier‒wide MB. 459 

 460 
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5. Discussion 461 

5.1 Biases in glacier‒wide mass balances and performance of nonlinear model  462 

A total of 358 annual ablation and 65 annual accumulation point measurements were observed 463 

on Chhota Shigri Glacier over 2002‒2023 to estimate the glacier‒wide MBs (five ablation and 464 

five accumulation point MB measurements were removed before final model run; section 3.3). 465 

Figure 10 shows the temporal evolution of the number of these point measurements, and Table 466 

S1 provides the details about these point MBs. In general, the point MB measurement network 467 

(especially the accumulation points) has been poor after 2014 (section 3.1, Fig. 10). The eastern 468 

accumulation site at 5550 m a.s.l. (Fig. 1) could only be accessed five times (2003, 2004, 2005, 469 

2009, 2011) over the 2002-2023 period, while no accumulation measurements were done in 470 

2018, 2020 and 2021 (section 3.1). Occasionally, the ablation measurements were also missing 471 

due to missing stakes (heavy ablation or destroyed stakes). In the traditional method, these 472 

missing measurements were filled with extrapolated values from nearby ablation/accumulation 473 

MB measurements or previous years’ point MB measurements to estimate the glacier‒wide 474 

MBs (Azam et al., 2016; Mandal et al., 2020; Table S1). 475 

 476 

Figure 10: Number of available ablation, accumulation, and total point MBs for each 477 

hydrological year between 2002 and 2023. 478 

 The systematic biases in glacier‒wide annual MB series with the same monitoring 479 

network are expected to be of the same sign throughout the observation period, and the series 480 

is systematically adjusted to match the geodetic MBs available over one or more periods (Zemp 481 

et al., 2013; Wagnon et al., 2021). Nonlinear MB series on Chhota Shigri Glacier showed 482 

negative biases (‒0.03 and ‒0.17 m w.e. a−1 over the 2003-2014 and 2014-2020 periods, 483 
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respectively), suggesting that the nonlinear model can reasonably estimate the glacier‒wide 484 

MBs with the existing monitoring network. Conversely, the traditional MB series showed a 485 

negative bias (‒0.10 m w.e. a−1) over the 2003-2014 period and a large, positive bias (0.33 m 486 

w.e. a−1) over the 2014-2020 (Fig. 8; Table 2). The major disagreement between the cumulative 487 

nonlinear and traditional MB curves after 2017 (Fig. 8) is likely due to a degradation of the 488 

quality of field observations due to harsh weather, too short field surveys, or observers not 489 

experienced enough (Fig. 10; Table S1; section 3.1). 490 

 To further investigate the performance of the nonlinear model compared to the traditional 491 

MB method, we calibrated both the MB series with the geodetic MB estimated using ASTER 492 

(08/10/2003) and Pléiades (12/09/2020) DEMs (details in SI) and used the geodetic MB over 493 

2003‒2014 (section 4.2) to validate both the calibrated series. The calibrated nonlinear MB 494 

series showed a good agreement with the available geodetic MB (‒3.88 m w.e. against ‒4.18 495 

m w.e.), while the traditional MB showed very strong deviation from the geodetic MB over 496 

2003‒2014 (‒6.13 m w.e. against ‒4.18 m w.e.) (Fig. S1). This good agreement between 497 

nonlinear and geodetic MBs over 2003-2014 shows the robustness of the nonlinear model for 498 

the glacier‒wide mass balance estimation. Further, this comparison also highlights the 499 

importance of using short-duration geodetic MB estimates for the calibration process, as with 500 

two calibration periods; the calibrated traditional MB is in better agreement with the geodetic 501 

MB (Fig. S1).  502 

 The nonlinear model shows a much better agreement with geodetic MBs than the 503 

traditional method (Fig. 8; Table 2) mainly due to the (i) capability of the nonlinear model to 504 

better capture the spatial variability of surface MB from a heterogeneous, discontinuous and 505 

limited point MB data series than the traditional method (Vincent et al., 2018), (ii) 506 

correction/exclusion of erroneous measurements (section 3.3) and (iii) exclusion of the 507 

extrapolated ablation/accumulation points in the nonlinear model that might have introduced 508 

biases in traditional MB. The outperformance of the nonlinear model suggests that the 509 

extrapolation of point accumulations (in case of missing point measurements) in estimating the 510 

glacier‒wide MB using the traditional method is risky. 511 

5.2 2019/20 glacier‒wide mass balance from two point mass balances  512 

The spatial and temporal terms in equation (2) are computed from a data sample available from 513 

the whole series; therefore, MB computation is expected to be affected by missing data from 514 

any single year (or, in general, from all years whenever data is missing). The glacier‒wide MB 515 
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for 2019/20 was estimated using only two point MB observations (section 3.2; Table S1); 516 

therefore, it might have biases (Lliboutry, 1974; Vincent et al., 2018).   517 

To investigate the additional error, we selected the year 2022/23 to test the performance 518 

of the nonlinear model. The 2022/23 year was selected because it is among the years with the 519 

maximum of point MB observations, and they were performed at their original locations. The 520 

nonlinear model was re-run over the 2002-2023 period, keeping only two point MB data (out 521 

of 26) for 2022/23 year corresponding to the locations of the two point MB measurements in 522 

2019/20. With only two point MBs, the glacier‒wide MB for 2022/23 was recomputed to be 523 

0.13 m w.e. a−1 against the original MB of 0.04 m w.e. a−1 with a difference of 0.09 m w.e. a−1, 524 

while all other year’s glacier‒wide MBs were changed by a maximum of ±0.01 m w.e. a−1 (Fig. 525 

11A). As expected, the changes in the temporal term, 𝛽𝑡, having a glacier‒wide significance, 526 

showed significant deviation from 0.93 to 1.06 m w.e. a−1 for 2022/23 year, while for other 527 

years it changed by maximum up to ±0.04 m w.e. a−1 (Fig. 11B). Conversely, the deviations in 528 

mean altitudinal spatial terms αe and γe were very small (maximum up to ±0.06 m w.e. and 529 

±0.005, respectively) (Fig. 11C, 11D). Therefore, the temporal term (𝛽𝑡) in equation (2) mainly 530 

controls the annual glacier‒wide MB and it is severely affected for the years when the in-situ 531 

MB monitoring is poor (for instance, 2019/20 year). 532 

 533 
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Figure 11: Glacier‒wide MBs (A), temporal (βt) (B) and spatial terms (αe, and γe) (C and D, 534 

respectively) obtained with the nonlinear model following two different scenarios as a function 535 

of their original values obtained with full dataset. In the first scenario (2023/23_2020), we 536 

remove all the data from 2022/23 (24-point MBs) except two located at the observation points 537 

in 2019/20 (see section 5.2). In the second scenario (2022/23_SLA), we remove all the data 538 

from 2022/23 and keep only two point MB data (= 0 m w.e.) obtained along the SLA (see 539 

section 5.3). The filled dots highlight the test year of 2022/23. 540 

The deviation of 0.09 m w.e. a−1 in glacier‒wide MB estimated with only two point 541 

MBs is less than the estimated random error of 0.27 m w.e. a−1 in 2022/23 glacier‒wide MB in 542 

original model run; therefore, it is assumed that the error in 2019/20 glacier‒wide MB due to 543 

restricted number of MB measurements is also less than the estimated random error of 0.16 m 544 

w.e. a−1 (Table 3). Unlike the traditional MB method, the nonlinear model can fill the gaps in 545 

glacier‒wide MB where some point MB observations are missing and can provide a consistent 546 

series of temporal fluctuations. 547 

5.3 2020/21 glacier‒wide mass balance from nonlinear model-SLA method 548 

The glacier‒wide MB for 2020/21 year was estimated by inferring two point MB input from 549 

end-of-summer SLA, assuming it to be equivalent to ELA (i.e., MB = 0 m w.e.) (section 3.2; 550 

Fig. 3). Due to only two point MB input data, the modelled glacier‒wide MB for 2020/21 may 551 

also have additional errors.  552 

To quantify this error, we repeated the same exercise as in section 5.2 for the year 553 

2022/23, this time keeping again two point MB data of 2022/23, but at the two sites where 554 

point MB data have been assessed to be zero in 2020/21. The resulting 2022/23 glacier-wide 555 

MB is 0.26 m w.e. a−1, 0.22 m w.e. a−1 higher than the original value (Fig. 11A), mainly 556 

explained by the 𝛽𝑡 term (Fig. 11B). This difference is still lower than the estimated random 557 

error of 0.27 m w.e. a−1 in 2022/23 (Table 3). However, there are still possible biases in glacier‒558 

wide MB of 2020/21 year as the SLA was delineated from a Sentinel image from 6 September 559 

2021 (section 3.2; Fig. 3) that is not exactly from the end of ablation season (30 September) on 560 

Chhota Shigri Glacier. The surface energy balance model estimated a MB of ‒0.19 m w.e. over 561 

the 6 September – 30 September 2021 (Srivastava and Azam, 2022a). However, this seasonal 562 

offset correction in SLA-derived annual MB may be given, but it was avoided as the differences 563 

are within the estimated random error of 0.20 m w.e. a−1 (Table 3). Our analysis shows that the 564 

glacier-wide MB can also be estimated from SLA using the nonlinear model if the field 565 

measurements cannot be carried out for some specific years.    566 
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However, the nonlinear model-SLA method has several limitations: (i) the delineated 567 

SLA must pass through grid/s having previous point MB observation/s (Fig. 3) as at least one 568 

previous measurement is required to run the model, (ii) the delineated SLA must be from the 569 

end of ablation season to consider it as ELA, (iii) SLA delineation has its challenges and often 570 

it is difficult to find the cloud-free image for delineation at the end of ablation season (Brun et 571 

al., 2015; Racoviteanu et al., 2019), and (iv) SLA is severely affected by recent snowfall hence 572 

must be checked with in-situ precipitation data before using SLA in nonlinear model. This 573 

latter point implies that the ELA can be inferred from the end-of-ablation-season SLA, which 574 

is not always possible over glaciers, especially in monsoon-dominated regions (Brun et al., 575 

2015). 576 

Conclusions 577 

This work reanalyses glacier‒wide MBs by combining the traditional reanalysis framework 578 

(Zemp et al., 2013) and the nonlinear MB model (Vincent et al., 2018). Previously, the annual 579 

glacier‒wide MBs had been estimated on Chhota Shigri Glacier since 2002, applying the 580 

traditional glaciological method using heterogeneous in-situ point MB measurements. The 581 

heterogeneous measurement network does not always catch the large spatiotemporal variability 582 

of point MBs; hence. the point MB-elevation relationship is insufficient to investigate the 583 

changes in glacier‒wide MBs. Therefore, we applied the nonlinear model to compute the 584 

glacier‒wide MBs of Chhota Shigri Glacier as it enables the computation of the glacier‒wide 585 

MB from a heterogeneous in-situ point MB network. The nonlinear model was used to detect 586 

the measurement errors. Out of 423-point measurements, seven were corrected from field 587 

notebooks, and ten were recognized as wrong observations and discarded before running the 588 

final model. 589 

ASTER and Pléiades DEMs were used to estimate the geodetic MBs over 2003‒2014 590 

and 2014‒2020 that have been used to reanalyse the nonlinear MBs. Nonlinear MBs agreed 591 

well with the geodetic estimates available over 2003‒2014 and 2014‒2020, unlike traditional 592 

MBs that showed large differences, especially over the 2014‒2020 period. The reanalysed 593 

nonlinear MBs showed a large annual variability ranging from 0.53 ± 0.16 m w.e. a−1 in 594 

2018/19 to ‒1.71 ± 0.24 m w.e. a−1 in 2021/22. The Chhota Shigri Glacier is imbalanced with 595 

a mean mass wastage of ‒0.47 ± 0.19 m w.e. a−1, equivalent to a cumulative loss of ‒9.81 m 596 

w.e. over 2002‒2023.  597 

With the 21-year-long MB observations, the Chhota Shigri Glacier MB series is the 598 

longest in the Himalaya. This work has enabled the data set to be extended, optimised, and 599 
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corrected to provide the best possible mass balance series for this benchmark glacier. We plan 600 

to monitor this glacier over a long period, with repeated satellite image acquisitions by the 601 

Pléiades Glacier Observatory to regularly validate/calibrate the glacier‒wide MB, typically 602 

every five years. 603 

Our detailed analysis suggests that the nonlinear model performs better in calculating 604 

the glacier‒wide MB than the traditional method as (i) the nonlinear MBs are in much better 605 

agreement with the geodetic MB estimates, (ii) it can detect erroneous measurements, (iii) it 606 

provides better glacier‒wide MBs than those of the traditional method when the observational 607 

network is very limited, and (iv) glacier‒wide MB can be computed using SLA if the ablation-608 

end SLA passes through a grid cell that contains point MB observations from previous years. 609 

Therefore, the application of the nonlinear model is suggested on all monitored glaciers 610 

whenever data is sufficient. It becomes even more relevant in the Himalaya, where data are 611 

sometimes missing due to access issues. However, the estimated glacier‒wide MBs may 612 

contain systematic bias (arises from the distribution of point measurements over the glacier) 613 

and, therefore, should be checked and, if necessary, reanalysed with geodetic estimates. 614 
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