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Figure S1: The influences of wind dead-bands (w0) on REA-H2O (a, d), REA-CO2 (b, e) and REA-heat (c, f) fluxes in the daytime 35 
(a-c) and nighttime (d-f), driven by EC raw data with a constant b = 0.60. F* and F represent the REA fluxes with and 

without w0, respectively. The linear regressions and correlation coefficients (r) between F* and F are inset in each 

figure, and n is the total number of the valid fluxes. 
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Figure S2: The comparison of O3 concentration in the updraft and downdraft reservoirs. 
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Figure S3: The comparison of CO2 (a), H2O (b) and heat (c) fluxes driven by EC theory and REA technique with a constant b = 45 
0.60 and w0. The linear regressions and correlation coefficients (r) between two fluxes are inset in each figure. 
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Figure S4: Variations of O3 flux (purple lines) and concentration (orange lines) during (a) 8-13 April, (b) 27 April-1 

May and (c) 18-22 May, with shades representing daytime hours. 50 
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Figure S5: Variations of nighttime averaged O3 deposition velocity (Vd, blue circle lines), H2O flux (𝑭𝑯𝟐𝑶, green lines) 55 

and NO concentration (red lines) during 18 March-2 June. 
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Table S1:  Summary of observed O3 deposition velocity (Vd) in recent years. 

Surface 

type 
Date Metrics 

Vd  

(cm s-1) 
Site Method References 

Wheat 2016.3.16-5.30 Mean 0.39 Nanjing, China EC (Xu et al., 2018) 

2012.3.7-6.7 Day Mean 0.42 Yucheng, China EC (Zhu et al., 2015) 

Night Mean 0.14 

Maize 2011.8.9-9.28 Day mean 0.29 Yucheng, China EC (Zhu et al., 2014) 

Night mean 0.09 

2002 summer Mean 
0.5 

Grignon, France EC (Lamaud et al., 

2009) 

Potato 2006 summer Mean 0.66 Scotland, England EC (Coyle et al., 2009) 

Grassland May 2000  Mean 
0.22±0.22 

Braunschweig, 

Germany 

EC (Mészáros et al., 

2009) 

May 2001- Nov. 2004 Median 0.48±0.37 Scotland, England FG/EC (Coyle, 2005) 

Moorland 1995-1998 Mean, at 0-

40 ppb 
0.75 

Auchencorth 

Moss, Scotland 

FG/EC (Fowler et al., 2001) 

1995-1998 Mean, at 40-

80 ppb 
0.4 

Forest 2000-2009 Range 0.11-0.42 Hyytiälä, Finland EC (Rannik et al., 2012) 

1993-2000 Median 0.30 Massachusetts, 

America 

EC (Wu et al., 2015) 

0.35 FG c 

0.35 FG d 

0.62 FG e 

Soil 2001.4.30-5.31 Mean 0.21±0.21 La Crau, France EC (Stella et al., 2019) 

2008-2010 a 
0.29±0.33 

Lamasquere, 

France 

2007.10.19-2008.3.4 
0.26±0.20 

La Cape Sud, 

France 

2011.3.17-5.5 0.36±0.28 Lusignan, France 

2014.3.24-4.14 0.61±0.48 Turro, Italy 

Sea 2006-2008 Range 
0.01-0.24 

Gulf of Mexico EC (Bariteau et al., 

2010) 

2006-2008 Range 0.009-
— b EC (Helmig et al., 
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0.034 2012) 

EC represents eddy covariance (EC) method, and FG refers flux-gradient (FG) approach. 

a The specific observation periods includes 2008.4.24-5.26, 2008.11.20-12.18, 2009.11.14-2010.5.12 and 2010.9.29-11.9. 60 

b The seas includes The Gulf of Mexico, Eastern Pacific Ocean, Western Atlantic Ocean and Southern Ocean. 

c Modified micrometeorological gradient method. 

d Modified Bowen ratio gradient method. 

e Aerodynamic gradient method. 

 65 
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Table S2: Winter wheat phenology at GC during 2022-2023. 

Stage Sowing Emergence Three-leaf Tillering Dormancy Greening Standing 

Date 2022.10.18 2022.10.28 2022.11.19  2022.11.29 2023.03.02 2023.03.21 

Stage Elongation Booting Heading Flowering Milk-ripe Ripening Harvest 

Date 2023.04.01 2023.04.15 2023.04.27 2023.05.05 2023.05.25 2023.06.11 2023.06.18 
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Table S3: The relationships of O3 deposition velocity (Vd) and friction velocity (u*), soil volumetric water content (soil VWC) at 70 
different ranges of LAI.  

  Slope Intercept Std. Err. p-value r n 

Vd ~ u* LAI<1 0.84 0.09 0.32 0.00 0.39 158 

1≤LAI<2 1.13 0.04 0.67 0.00 0.45 48 

2≤LAI<3 2.36 0.01 0.40 0.00 0.57 282 

LAI≥3 1.91 0.15 0.49 0.00 0.42 285 

Vd ~ soil VWC LAI>3.0 4.42 -1.23 1.01 0.00 0.46 285 

LAI>3.5 7.25 -2.30 2.02 0.00 0.46 186 

LAI>4.0 8.44 -2.86 2.40 0.00 0.52 132 

LAI>4.5 15.32 -5.86 5.61 0.00 0.67 39 
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