

1 **Cluster Dynamics-based Parameterization for Sulfuric Acid-Dimethylamine**
2 **Nucleation: Comparison and Selection through Box- and Three-Dimensional-**
3 **Modeling**

4 Jiewen Shen^{1,2}, Bin Zhao^{1,2}, Shuxiao Wang^{1,2,*}, An Ning³, Yuyang Li², Runlong Cai⁴,
5 Da Gao^{1,2}, Biwu Chu^{5,6}, Yang Gao⁷, Manish Shrivastava⁸, Jingkun Jiang², Xiuhui
6 Zhang³, Hong He^{5,6}

7

8 ¹*State Key Joint Laboratory of Environment Simulation and Pollution Control, School
9 of Environment, Tsinghua University, Beijing, 100084, China*

10 ²*State Environmental Protection Key Laboratory of Sources and Control of Air
11 Pollution Complex, Beijing, 100084, China*

12 ³*Key Laboratory of Cluster Science, Ministry of Education of China, School of
13 Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081,
14 China*

15 ⁴*Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP³),
16 Department of Environmental Science & Engineering, Fudan University, Shanghai,
17 200438, China*

18 ⁵*State Key Joint Laboratory of Environment Simulation and Pollution Control,
19 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,
20 Beijing 100085, China*

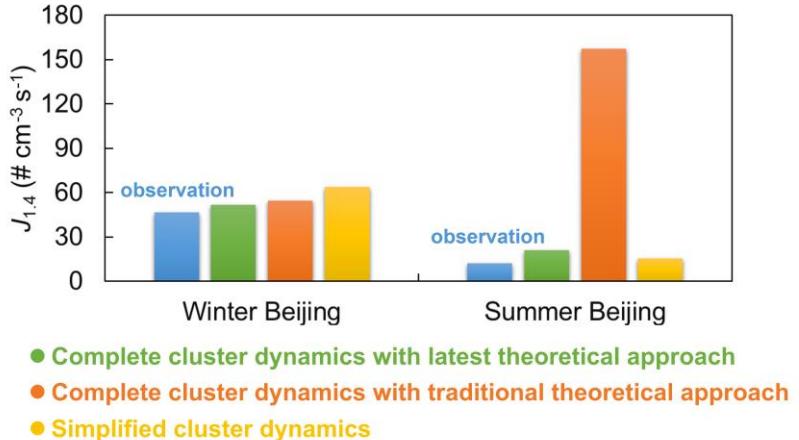
21 ⁶*College of Resources and Environment, University of Chinese Academy of Sciences,
22 Beijing 100049, China*

23 ⁷*Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean
24 University of China, Qingdao 266100, China*

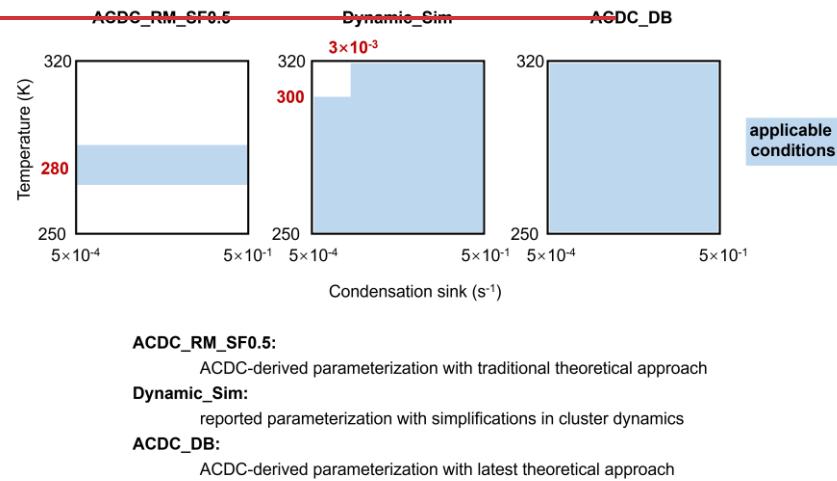
25 ⁸*Pacific Northwest National Laboratory, Richland, Washington, USA*

26

27 *Correspondence to: Shuxiao Wang (shxwang@tsinghua.edu.cn)


← Formatted: Justified

28 **ABSTRACT**


29 Clustering of gaseous sulfuric acid (SA) enhanced by dimethylamine (DMA) is a
30 major mechanism for new particle formation (NPF) in polluted atmospheres. However,
31 uncertainty remains regarding the SA-DMA nucleation parameterization that
32 reasonably represents cluster dynamics and is applicable across various atmospheric
33 conditions. This uncertainty hinders accurate three-dimensional (3-D) modeling of NPF
34 and subsequent assessment of its environmental and climatic impacts. Here we
35 extensively compare different cluster dynamics-based parameterizations for SA-DMA
36 nucleation and identify the most reliable one through a combination of box-model
37 simulations, 3-D modeling, and in-situ observations. Results show that the
38 parameterization derived from Atmospheric Cluster Dynamic Code (ACDC)
39 simulations, incorporating the latest theoretical insights (DLPNO-CCSD(T)/aug-cc-
40 pVTZ//ωB97X-D/6-311++G(3df,3pd) level of theory) and adequate representation of
41 cluster dynamics, exhibits dependable performance in 3-D NPF simulation for both
42 winter and summer conditions in Beijing and shows promise for application in diverse
43 atmospheric conditions. Another ACDC-derived parameterization, replacing the level
44 of theory with RI-CC2/aug-cc-pV(T+d)Z//M06-2X/6-311++G(3df,3pd), also performs
45 well in NPF modeling at relatively low temperatures around 280 K but exhibits
46 limitations at higher temperatures due to inappropriate representation of SA-DMA
47 cluster thermodynamics. Additionally, a previously reported parameterization
48 incorporating simplifications is applicable for simulating NPF in polluted atmospheres
49 but tends to overestimate particle formation rates under conditions of elevated
50 temperature ($> \sim 300$ K) and low condensation sink ($< \sim 3 \times 10^{-3}$ s $^{-1}$). Our findings
51 highlight the applicability of the new ACDC-derived parameterization, which couples
52 the latest SA-DMA nucleation theory and holistic cluster dynamics, in 3-D NPF
53 modeling. The ACDC-derived parameterization framework provides valuable reference
54 for developing parameterizations for other nucleation systems.

55 **GRAPHICAL ABSTRACT**

56

57

58

59

60 **1 INTRODUCTION**

61 Atmospheric aerosols have significant impacts on visibility, human health, and
62 global climate (Gordon et al., 2016; Gao et al., 2024). New Particle Formation (NPF)
63 is the predominant source of global aerosol population, with nucleation being the key
64 stage of the gas-to-particle transformation (Zhao et al., 2020; Almeida et al., 2013). In
65 polluted regions such as urban China, compelling evidence indicates that sulfuric acid
66 (SA)-driven nucleation enhanced by dimethylamine (DMA) can generate
67 thermodynamically stable SA-DMA clusters and lead to high particle formation rates
68 close to kinetic limit of SA clustering, which is responsible for the observed intensive
69 NPF events (Cai et al., 2021; Yao et al., 2018). Meanwhile, it has been demonstrated
70 that variations in atmospheric conditions, including condensation sinks (CS) arising
71 from background aerosols, along with temperature (T), can exert profound impacts on
72 the cluster dynamics of SA-DMA nucleation by varying the particle formation rates
73 across several orders of magnitude (Cai et al., 2021; Deng et al., 2020). Given that
74 complex interactions exist among various gaseous precursors, molecular clusters, and
75 pre-existing aerosols during nucleation, reasonable representation of the cluster
76 dynamics of SA-DMA nucleation in three-dimensional (3-D) models is important for
77 3-D NPF modeling and subsequent assessment of its impacts on environment and
78 climate.

79 Empirical models in form of power law functions have been extensively utilized to
80 examine how particle formation rates respond to precursor concentrations (Semeniuk
81 and Dastoor, 2018). Through parameter fitting, these empirical models can effectively
82 reproduce the particle formation rates observed in both laboratory experiments and field
83 measurements (Kulmala et al., 2006; Riccobono et al., 2014; Semeniuk and Dastoor,
84 2018). Subsequently, they can be integrated into 3-D models for regional or global NPF
85 simulations. Bergman et al. (2015) and Dunne et al. (2016) have simulated SA-DMA
86 nucleation utilizing global models, which incorporate empirical equations derived from
87 experimental data obtained from CLOUD chamber or flow tube experiments. These
88 parameterization schemes successfully characterize the response of particle formation
89 rates to precursor concentrations, however, they fail to account for dependencies on T
90 and CS due to the ignorance of explicit cluster dynamics. As a result, they are identified
91 to be inadequate for accurately reproducing NPF events in winter Beijing (Li et al.,
92 2023c).

93 We recently developed an analytical equation for SA-DMA nucleation
94 parameterization based on detailed cluster dynamics simulations (abbreviated as
95 Dynamic_Sim) (Li et al., 2023c). Previous theoretical insights into the SA-DMA
96 system (Olenius et al., 2013, 2017; Ortega et al., 2012; Myllys et al., 2019) indicate that
97 (SA)_k(DMA)_k (k = 1-4) and (SA)₂(DMA)₁ clusters are considered the key clusters along
98 the cluster formation pathways in SA-DMA nucleation. Under the polluted conditions
99 (CS > ~1.0×10⁻² s⁻¹), the evaporation rates of clusters (SA)_k(DMA)_k (k = 2-4) and
100 (SA)₂(DMA)₁ clusters are negligible compared to their coagulation sink.
101 Accordingly to derive an explicit equation, several simplifications have been made in

102 Dynamic_Sim, including 1) only $(SA)_k(DMA)_k$ ($k = 1-4$) and $(SA)_2(DMA)_1$ clusters are
103 considered; 2) clusters larger than $(SA)_1(DMA)_1$ are regarded stable with no
104 evaporation; and 3) $(SA)_4(DMA)_4$ cluster is the only terminal cluster in calculating
105 particle formation rates. Subsequent applications in 3-D modeling have demonstrated
106 significantly improved performance of Dynamic_Sim compared to previous data-fitting
107 parameterizations in simulating the particle formation rates, the evolution of particle
108 number size distributions (PNSDs), and NPF events in winter Beijing. However, the
109 efficacy of Dynamic_Sim in NPF simulation has yet to be assessed under varying
110 atmospheric conditions, such as the summer season characterized by relatively higher
111 T and lower CS compared to winter. Moreover, the impacts of simplifications made in
112 the derivation of Dynamic_Sim on 3-D NPF simulation under different atmospheric
113 conditions remain unclear.

114 In addition to the form of explicit formulations, integration of nucleation dynamics
115 in 3-D models can also be realized using precomputed look-up tables generated by box
116 models. Atmospheric Cluster Dynamics Code (ACDC) is a representativeflexible box
117 model for simulating cluster dynamics and particle formation rates (Mcgrath et al., 2012;
118 Olenius et al., 2013). In addition to representing T - and CS- dependencies for particle
119 formation rate as Dynamic_Sim, ACDC considers the source/sink terms of all given
120 molecules/clusters within a nucleation system without simplifications of the clustering
121 processes. By integrating quantum chemical calculations with ACDC, Almeida et al.
122 (2013) discovered that the simulated SA-DMA nucleation provides valuable insights
123 for interpreting the measurements from the CLOUD chamber experiments. Similarly,
124 Lu et al. (2020) demonstrated that ACDC coupled with quantum chemistry calculations
125 can effectively reproduce the particle formation rates observed in urban Shanghai. In
126 addition to its extensive utilization in box modeling (Almeida et al., 2013; Lu et al.,
127 2020; Yang et al., 2021), several studies have simulated nucleation pathways in
128 chemical transport models using precomputed look-up tables generated by ACDC. For
129 example, Baranizadeh et al. (2016) and Croft et al. (2016) used ACDC-derived look-up
130 tables as nucleation parameterizations to probe the impacts of SA-NH₃-H₂O nucleation
131 on aerosol number concentration, cloud properties, and radiation balance. Olin et al.
132 (2022) and Julin et al. (2018) evaluated the impact of new particle formation on aerosol
133 number concentrations in Europe under historical and emission reduction scenarios,
134 respectively, using ACDC-derived parameterizations involving both SA-NH₃-H₂O and
135 SA-DMA nucleation. It should be noted that While ACDC has been extensively utilized
136 in box modeling (Almeida et al., 2013; Lu et al., 2020; Yang et al., 2021), its potential
137 for deriving parameterizations for 3-D models has not been explored in previous studies.

138 Furthermore, ACDC program in modeling the nucleation process is highly reliant on
139 specific thermodynamic data for the molecular clusters of interest, which are primarily
140 obtained through quantum chemical calculations (Elm et al., 2020). A very recent study
141 by Svenhag et al. (2024) compared the impact of two typical quantum calculation
142 methods on 3-D modeling of SA-NH₃ nucleation using ACDC-derived
143 parameterizations. However, it is still unclear how different quantum chemical methods

144 ~~affect the 3-D modeling of SA-DMA nucleation. The uncertainty surrounding the~~
145 ~~influence of different quantum chemical calculation approaches adds additional~~
146 ~~complexity to the application of ACDC-derived parameterization in 3-D NPF modeling.~~

147 This study aims to compare different cluster dynamic-based parameterizations for
148 SA-DMA nucleation and identify the robust one applicable for 3-D models. We
149 introduced ~~new~~ parameterizations developed using the ACDC program, incorporating
150 various quantum chemical calculations. Different cluster dynamic-based
151 parameterizations, including ACDC-derived ones as well as Dynamic_Sim, are
152 comprehensively compared and evaluated through a combination of box-model
153 simulations, 3-D modeling, and in-situ observational data. Our findings reveal that by
154 incorporating the latest theoretical understanding and complete representation of cluster
155 dynamics, ACDC-derived parameterization demonstrates reliable performance in 3-D
156 NPF simulation for both winter and summer conditions in Beijing and exhibits potential
157 applicability in diverse atmospheric conditions. The study sheds light on the impacts of
158 employing various simplifications in cluster dynamics and different theoretical
159 approaches in deriving parameterizations on NPF simulation. In addition to
160 contributing to the precise simulation of SA-DMA nucleation and the quantification of
161 its environmental and climatic effects, this study provides valuable references for
162 simulating other nucleation mechanisms in 3-D models.

163 2 METHODS

164 2.1 Configurations of ACDC

165 Here, $(SA)_m(DMA)_n$ clusters ($0 < n \leq m \leq 3$, m and n represent the number of
166 SA and DMA molecules in a cluster) are used to build the ACDC-derived
167 parameterizations for SA-DMA nucleation due to their reported much higher stability
168 compared to those containing more DMA molecules than SA molecules (Xie et al.,
169 [2017](https://github.com/tolenius/ACDC_2017)). The ACDC code is available at https://github.com/tolenius/ACDC_2017. The
170 conformations and thermodynamics of SA-DMA clusters are taken from our other
171 study (Ning et al., 2024). Briefly, the conformations of selected clusters are taken from
172 the reported global minima from Li et al. (2020), and the key thermodynamic data for
173 ACDC, Gibbs free energy change (ΔG), are recalculated at the DLPNO-CCSD(T)/aug-
174 cc-pVTZ// ω B97X-D/6-311++G(3df,3pd) level of theory. Based on benchmark studies
175 (Elm et al., 2020), this level of theory provides dependable thermodynamic insights into
176 molecular clusters during nucleation and represents the latest theoretical approach. In
177 addition, the rotational symmetry is consistently considered in quantum calculations
178 following Besel et al. (2020). Following most previous ACDC simulation studies (Xie
179 et al., 2017; Elm et al., 2020; Ning et al., 2020), $(SA)_4(DMA)_3$ and $(SA)_4(DMA)_4$
180 clusters are defined as the boundary conditions, i.e. the clusters fluxing out the
181 simulated system and participating in subsequent growth in ACDC simulations,
182 considering their high stability. Since clusters containing SA tetramers are estimated to
183 have an electrical mobility diameter of 1.4 nm (Cai et al., 2023; Jen et al., 2014; Thomas
184 et al., 2016), the formation rates of $(SA)_4(DMA)_3$ and $(SA)_4(DMA)_4$ clusters are
185 therefore deemed as the particle formation rates at 1.4 nm ($J_{1.4}$). Size-dependent

186 coagulation sink (CoagS) is counted for each SA-DMA cluster which is consistent with
187 Dynamic_Sim (Li et al., 2023c):

188
$$\text{CoagS}_i = \text{CS} \left(\frac{V_i}{V_1} \right)^{-\frac{1.7}{3}}$$

189 where V_i and V_1 (m^3) represent the volume of cluster i and SA molecule, respectively.
190 The power-law exponent of -1.7 is selected according to typical range in the atmosphere
191 (Lehtinen et al., 2007). In addition, enhancement for collision processes from Van de
192 Waals forces is also considered. We refer to the ACDC-derived parameterization in
193 coupling the DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97X-D/6-311++G(3df,3pd) level of
194 theory and adequate cluster dynamics as ACDC_DB, which is established as the base-
195 case for our discussion of other cluster dynamics-based parameterizations.

196 In addition to the direct comparison of ACDC_DB to Dynamic_Sim, additional test
197 parameterizations combining ACDC_DB and three simplifications within
198 Dynamic_Sim are established and compared with ACDC_DB to further probe the
199 impacts of these simplifications on NPF simulations. According to our previous study,
200 altering the simplifications within Dynamic_Sim to explicit treatment would
201 substantially escalate the computational demand by several orders of magnitude (Li et
202 al. 2023c). Therefore, we utilize the ACDC-derived look-up tables to evaluate the
203 impacts of the simplified treatments. The configurations of all parameterizations are
204 detailed in Table 1. It should be noted that when all simplifications are applied on
205 ACDC_DB, Dynamic_Sim still predicts higher $J_{1.4}$ compared to ACDC_DB (Figure
206 S1A). This is because the ΔG value of the initial $(\text{SA})_1(\text{DMA})_1$ cluster at 298.15 K used
207 in Dynamic_Sim, which is taken from Myllys et al. (Myllys et al., 2019), is slightly
208 lower than that used in ACDC_DB (-13.5 kcal mol⁻¹ for Dynamic_Sim and -12.9 kcal
209 mol⁻¹ for ACDC_DB) (Ning et al., 2024), even though both parameterizations employ
210 the quantum chemical calculation method of DLPNO-CCSD(T). Possible reasons for
211 the discrepancy include the utilization of a larger basis set (3-zeta 6-311++G(3df,3pd))
212 and higher convergence criteria (Tight PNO + Tight SCF) in this study compared to
213 that in Myllys et al.. Aligning the ΔG for $(\text{SA})_1(\text{DMA})_1$ cluster in Dynamic_Sim with
214 that of ACDC leads to a high consistency in the predicted $J_{1.4}$ between the two
215 approaches (Figure S1B). The uncertainty of ΔG used in Dynamic_Sim is discussed in
216 our previous study (Li et al., 2023c) and here we mainly focus on the impacts of
217 simplifications in Dynamic_Sim.

218 While the DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97X-D/6-311++G(3df,3pd) level
219 of theory yields reasonable cluster thermodynamics, quantum chemistry calculations
220 employing the RI-CC2 method predicting lower ΔG for cluster formation (stronger
221 binding between molecules within clusters), has been widely used in conjunction with
222 ACDC to interpret experimental and observed particle formation rates in previous
223 studies (Almeida et al., 2013; Kürten et al., 2018; Ning et al., 2020). The prevalent
224 combination used with the RI-CC2 method is RI-CC2/aug-cc-pV(T+d)Z//M06-2X/6-
225 311++G(3df,3pd) level of theory (Lu et al., 2020; Liu et al., 2021; Ning et al., 2022;
226 Ning and Zhang, 2022; Liu et al., 2019). Based on Elm²¹s work, compared to DLPNO-

227 CCSD(T)/aug-cc-pVTZ// ω B97X-D/6-311++G(3df,3pd), the differences in predicted
 228 cluster binding energies primarily stem from discrepancies between DLPNO-CCSD(T)
 229 and RI-CC2 in single-point energy calculations, while the ω B97X-D and M06-2X
 230 functionals exhibit similar performance (Elm et al., 2013; Elm et al., 2020). Also, in
 231 previous studies the RI-CC2 method combined with ACDC was consistently
 232 accompanied by application of a sticking factor (SF) of 0.5 in treating collision
 233 processes (Almeida et al., 2013; Lu et al., 2020). However, it is noteworthy that,
 234 according to Stolzenburg et al.^{7,8,9} work (Stolzenburg et al., 2020), the SF of the neutral
 235 SA-DMA cluster system should be unity. Here, we refer to the traditional theoretical
 236 approach as employing the RI-CC2/aug-cc-pV(T+d)Z//M06-2X/6-311++G(3df,3pd)
 237 level of theory and incorporating the SF of 0.5 in collision processes. An ACDC-derived
 238 parameterization coupling the traditional theoretical approach is established to assess
 239 the effectiveness of the traditional method in NPF simulation (ACDC_RM_SF0.5).
 240 Except for the varied thermodynamic inputs and SF, the remaining configurations of
 241 ACDC_RM_SF0.5 are identical to ACDC_DB. Additionally, we establish a test
 242 parameterization coupling RI-CC2/aug-cc-pV(T+d)Z//M06-2X/6-311++G(3df,3pd)
 243 level of theory with an SF of unity (ACDC_RM) to evaluate the impact solely arising
 244 from the quantum chemical calculation method. Note that SF of unity is applied to all
 245 parameterizations in this study except for the ACDC_RM_SF0.5.

246 To quantify the differences in simulating $J_{1,4}$ among different cluster dynamics-
 247 based parameterizations compared to our base-case ACDC_DB, we introduce a
 248 parameter R :

$$249 \quad R_X = \frac{\sum_i^n (X_i / \text{ACDC_DB}_i)}{n}$$

250 where ACDC_DB $_i$ and X_i denote the simulated $J_{1,4}$ by the base-case ACDC_DB and
 251 another specific parameterization X, respectively, given the input scenarios of i (a set
 252 of input values for T , CS, concentration of SA ([SA]) and DMA ([DMA])), and n
 253 signifies the total number of input scenarios.

254

255 **Table 1.** Summary of various cluster dynamics-based parameterizations of SA-DMA
 256 nucleation in this study (main parameterizations are in bold, while test ones in regular)

Case	Description
Dynamic_Sim	Reported parameterization from Li et al. 2023 combining the simplifications in boundary conditions, cluster evaporation, and cluster number
ACDC_DB	ACDC-derived parameterization coupling DLPNO-CCSD(T)/aug-cc-pVTZ// ω B97X-D/6-311++G(3df,3pd) level of theory, namely the latest theoretical approach
ACDC_DB_BC	ACDC-derived parameterization coupling DLPNO-CCSD(T)/aug-cc-pVTZ// ω B97X-D/6-311++G(3df,3pd) level of theory and simplification in boundary conditions (only (SA) ₄ (DMA) ₄ cluster is

	set as boundary condition)
ACDC_DB_CE	ACDC-derived parameterization coupling DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97X-D/6-311++G(3df,3pd) level of theory and simplification in cluster evaporation (the evaporation rates of $(SA)_k(DMA)_k$ ($k = 2-3$) and $(SA)_2(DMA)_1$ clusters are kept zero)
ACDC_DB_CN	ACDC-derived parameterization coupling DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97X-D/6-311++G(3df,3pd) level of theory and simplification in cluster number (only $(SA)_k(DMA)_k$ ($k = 1-3$) and $(SA)_2(DMA)_1$ clusters are involved)
ACDC_RM_SF0.5	ACDC-derived parameterization coupling RI-CC2/aug-cc-pV(T+d)Z//M06-2X/6-311++G(3df,3pd) level of theory and a SF of 0.5 is applied in collision process, namely the traditional theoretical approach
ACDC_RM	ACDC-derived parameterization coupling RI-CC2/aug-cc-pV(T+d)Z//M06-2X/6-311++G(3df,3pd) level of theory and a SF of 1 is applied

257

258 **2.2 Incorporating the ACDC-derived Parameterizations into WRF-Chem/R2D-
259 VBS Model**

260 Various parameterizations are subsequently implemented in the Weather Research
 261 and Forecasting-Chemistry model (WRF-Chem) integrating an experimentally
 262 constrained Radical Two-Dimensional Volatility Basis Set (2D-VBS) (denoted as
 263 WRF-Chem/R2D-VBS) (Zhao et al., 2020). Incorporating the box-model ACDC into a
 264 3-D model using the explicit mathematical formula, as Dynamic_Sim, proves to be
 265 challenging. Here, we created a four-dimensional look-up table that delineates the
 266 response of $J_{1,4}$ to four input variables (T , CS, [SA], and [DMA]) for each ACDC-
 267 derived parameterization (Yu, 2010). The table is derived based on multiple ACDC runs
 268 by varying input variables. The ranges for the input variables correspond to typical
 269 conditions of the atmosphere. Except for T , the ranges of variation for all other variables
 270 exceed at least one order of magnitude. Therefore, temperature is assumed to follow
 271 arithmetic uniform distribution, while the other variables are assumed to follow
 272 geometric uniform distribution. Details for the input variables are given in Table S1. In
 273 WRF-Chem/R2D-VBS simulations, $J_{1,4}$ are online calculated by interpolating values
 274 from a look-up table based on real-time input parameters. In our previous study, we
 275 have developed an emission inventory for China and its surrounding regions (Li et al.,
 276 2023c). Here [DMA] is calculated in WRF-Chem/R2D-VBS based on a comprehensive
 277 source-sink representation of DMA. More details of including DMA in WRF-
 278 Chem/R2D-VBS can be found in our previous study (Li et al., 2023c). In addition, a
 279 time-integrated-average [DMA] as well as [SA] of each time step were used to drive

Formatted: Font color: Auto

280 SA-DMA nucleation, since SA-DMA nucleation is accompanied with condensation of
281 gaseous SA and DMA on pre-existing aerosols simultaneously in the atmosphere.

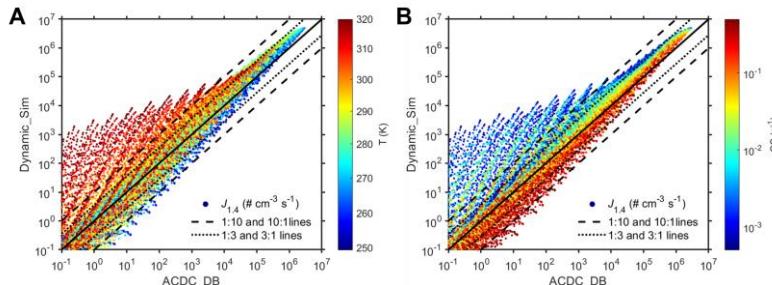
282 Besides SA-DMA nucleation, seven other nucleation mechanisms have already
283 been incorporated in WRF-Chem/R2D-VBS (Zhao et al., 2020), including neutral/ion-
284 induced $\text{SAH}_2\text{SO}_4\text{-H}_2\text{O}$ nucleation, neutral/ion-induced $\text{SAH}_2\text{SO}_4\text{-NH}_3\text{-H}_2\text{O}$
285 nucleation, neutral/ion-induced pure organics nucleation, and $\text{SAH}_2\text{SO}_4\text{-organics}$
286 nucleation. The organics involved in nucleation are ultralow- and extremely low-
287 volatility organic compounds (ULVOC and ELVOC) with O:C > 0.4. The formation
288 chemistry of ULVOC and ELVOC from monoterpenes, including autoxidation and
289 dimerization, is traced by the R2D-VBS framework (Zhao et al., 2020). Note that the
290 impact of the other seven mechanisms on particle formation rates and particle number
291 concentration is low compared to SA-DMA as revealed by our previous study (Li et al.,
292 2023c). In WRF-Chem/R2D-VBS, the evolution of PNSDs from 1 nm to 10 μm is
293 treated by MOSAIC (Model for Simulating Aerosol Interactions and Chemistry)
294 module. The newly formed 1.4 nm particles from SA-DMA nucleation are injected into
295 the smallest size bin (1 - 1.5 nm) of the MOSAIC.

296 **2.3 Configurations of WRF-Chem/R2D-VBS Model**

297 The WRF-Chem/R2D-VBS model, incorporating various cluster dynamics-based
298 SA-DMA nucleation parameterizations, was employed in a simulation over a domain
299 with a spatial resolution of 27 km. This domain covers eastern Asia, with Beijing
300 situated close to the center of the simulation area. Details of model configurations can
301 be found in our previous study (Li et al., 2023c). Briefly, we use the ABaCAS-EI 2017
302 and IIASA 2015 emission inventories for mainland China and other areas in the domain,
303 respectively, to represent the anthropogenic emissions (Zheng et al., 2019; Li et al.,
304 2017; Li et al., 2023b); we use Model of Emissions of Gases and Aerosols from Nature
305 (MEGAN) v2.04 to calculate the biogenic emissions (Guenther et al., 2006). To
306 accurately represent the variation and distribution of chemical species concentrations
307 during the simulation period, the chemical initial conditions, which represent the
308 concentration field of chemical species at the initial simulation time, and the boundary
309 conditions, which represent the flux or concentration around the simulation domain
310 during the simulation period (Brasseur et al., 2017), are used in our WRF-Chem/R2D-
311 VBS simulations. The simulation results from the National Center for Atmospheric
312 Research's Community Atmosphere Model with Chemistry
313 (<https://www.acom.ucar.edu/cam-chem/cam-chem.shtml>) is used for the chemical
314 initial and boundary conditions in WRF-Chem/R2D-VBS simulations. In addition, we
315 use a 5-day spin-up to minimize the impact of chemical initial conditions on simulation
316 results.

317 The simulation period consists of two parts: the winter period, which spans from
318 January 14 to January 31, 2019, and the summer period, which is from August 18 to
319 August 31, 2019. Previous observational studies have shown that the particle formation
320 rates reach their highest and lowest levels during winter and summer in China,
321 respectively (Deng et al., 2020; Chu et al., 2019). Therefore, periods from these two

322 seasons are selected as representative simulation periods in this study and the specific
323 time periods corresponded to those with relatively complete and continuous PNSDs and
324 $J_{1.4}$ observations. Since observational data for DMA concentration is only available for
325 the period from January 1, 2019 to January 23, 2019, similar to our other study (Ning
326 et al., 2024), we performed additional simulation for this period to compare
327 observational and simulated DMA concentrations. For each season, all the SA-DMA
328 parameterizations listed in Table 1 were employed for simulation. Among them,
329 ACDC_DB, Dynamic_Sim, and ACDC_RM_SF0.5 serve as three main
330 parameterizations, while ACDC_DB_CE, ACDC_DB_BC, ACDC_DB_CN, and
331 ACDC_RM are set as test cases to investigate the impact of individual simplification
332 or theoretical approach on NPF simulations. In all comparisons, ACDC_DB is set as a
333 reference.

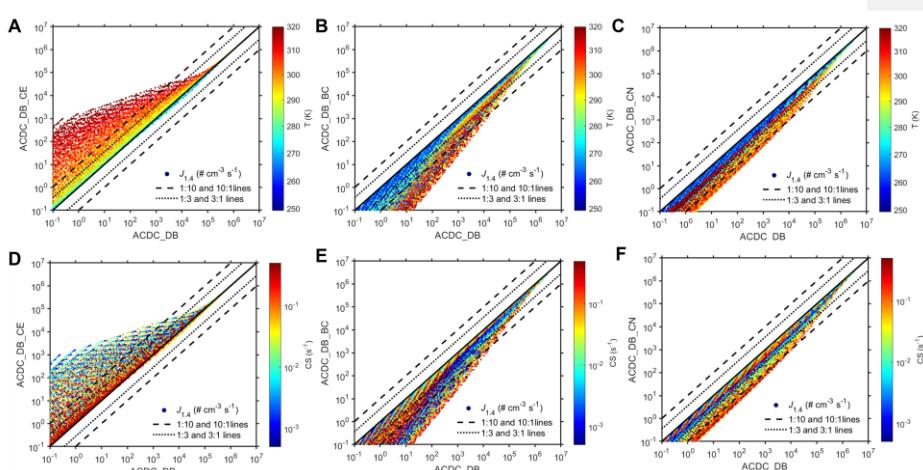

334 **2.4 Ambient Measurements**

335 In the 3-D simulations, we utilize measured concentrations of nucleation precursors
336 and PNSDs as a criterion to discuss the model performance with various
337 parameterizations. The duration of the observational data matches that of the
338 simulations mentioned above. Detailed descriptions of the observation site and
339 instruments can be found in our previous research (Deng et al., 2020; [Zhu et al., 2022](#)).
340 Briefly, the observation site is located on the West Campus of the Beijing University of
341 Chemical Technology. CI-TOF-MS (chemical ionization time-of-flight mass
342 spectrometer; Aerodyne Research Inc.) were used to measure the concentrations of SA.
343 Amine concentrations were measured with a modified TOF-MS using H_3O^+ or its
344 clusters as the reagent ions ([Zhu et al., 2022](#)). PNSDs from 1 nm to 10 μm were
345 measured using a PSD (particle size distribution) system and a DEG-SMPS (diethyl
346 glycol scanning mobility particle spectrometer). $J_{1.4}$ derived from observation is
347 calculated employing an improved aerosol population balance formula (Cai and Jiang,
348 2017).
349

350 **3 RESULTS AND DISCUSSIONS**351 **3.1 Comparison of Different Parameterizations Based on Box-Model Simulations**352 **3.1.1 Comparison between ACDC_DB and Dynamic_Sim**

353 Figure 1 illustrates the comparison between the reported cluster dynamics-based
 354 parameterization with simplifications, Dynamic_Sim, and the base-case
 355 parameterization ACDC_DB. The comparison is based on a comprehensive dataset that
 356 includes over 40,000 box-model simulations for each parameterization, by varying
 357 parameters such as [SA] ($1 \times 10^5 - 1 \times 10^8$ molec. cm^{-3}), [DMA] ($5 \times 10^6 - 54 \times 10^8$
 358 molec. cm^{-3}), CS ($5 \times 10^{-4} - 5 \times 10^{-1}$ s^{-1}), and T (250 – 320 K). In most scenarios, $J_{1.4}$
 359 predicted by ACDC_DB and Dynamic_Sim demonstrates deviations within one order
 360 of magnitude, with the majority falling within a factor of 3. However, Dynamic_Sim
 361 predicts notably higher $J_{1.4}$ than ACDC_DB in scenarios where T exceeds ~300 K and
 362 CS is below $\sim 3 \times 10^{-3}$ s^{-1} , characteristic of a clean atmosphere during summer. The
 363 discrepancy in these scenarios elevates the overall $R_{\text{Dynamic_Sim}}$ up to 17.0. Furthermore,
 364 no clear correlation is observed between the differences of the two parameterizations
 365 and other input parameters such as [DMA] and [SA] (Figure S2). The differences
 366 between parameterizations are attributed to the combined effects of the three
 367 simplifications and the lower ΔG of $(\text{SA})_1(\text{DMA})_1$ cluster in Dynamic_Sim. However,
 368 the latter should not be the primary cause for the significant differences of $J_{1.4}$ prediction
 369 under high T and low CS conditions, as it typically results in an overestimation within
 370 an order of magnitude ($R=3.3$) (Figure S1).

371



372 **Figure 1.** Comparison of $J_{1.4}$ predictions between ACDC_DB and Dynamic_Sim
 373 correlated with T variation (A) and CS variation (B). Solid dots represent simulated $J_{1.4}$
 374 values, solid lines indicate a 1:1 line, dotted lines correspond to 1:3 and 3:1 lines, and
 375 dashed lines represent 1:10 and 10:1 lines.

376

377 The impacts of the three simplifications made in Dynamic_Sim are shown in Figure
 378 2. Specifically, the simplification in cluster evaporation tends to elevate the predicted
 379 $J_{1.4}$, whereas the simplifications in boundary conditions and cluster number tend to
 380 lower them. When applying the simplification in cluster evaporation (clusters larger
 381 than $(\text{SA})_1(\text{DMA})_1$ are regarded stable with no evaporation) to ACDC_DB, the
 382 predicted $J_{1.4}$ by ACDC_DB_CE only slightly exceed than that of ACDC_DB within a

384 factor of 3 under conditions where $T < \sim 290$ K and CS $> \sim 0.1$ s $^{-1}$. However, the
 385 overestimation of $J_{1.4}$ prediction by ACDC_DB_CE becomes much greater with
 386 increasing T and decreasing CS. The discrepancy between ACDC_DB_CE and
 387 ACDC_DB should be primarily attributed to the pivotal role of T in influencing cluster
 388 evaporation rates (Ortega et al., 2012; Deng et al., 2020). At low T , the evaporation
 389 rates of clusters are low enough to allow efficient nucleation, thus whether setting the
 390 concerned SA-DMA clusters to evaporate based on the expected evaporation rates does
 391 not lead to a significant impact on $J_{1.4}$ prediction. However, at high T , the evaporation
 392 rates of clusters significantly increase, therefore the simplification in cluster
 393 evaporation within ACDC_DB_CE is likely to predict higher $J_{1.4}$ than those with no
 394 simplification. The impact of simplification in cluster evaporation across varying T is
 395 also found in a nonbranched SA-DMA nucleation scheme from 280 K to 298 K reported
 396 by Li et al. (2023a). Note also that the overestimation of ACDC_DB_CE diminishes as
 397 CS increases (Figure 2D), with CS becoming the primary sink in the nucleation system
 398 and the impact of cluster evaporation becoming less pronounced. This underscores the
 399 connection between the specific deviation arising from simplification in cluster
 400 evaporation and the respective contributions of CS and cluster evaporation to the
 401 overall sink for clusters in nucleation. In addition, the relative independence of the
 402 differences between ACDC_DB_CE and ACDC_DB from variations in precursor
 403 concentrations ([SA] and [DMA]) is similar to that between Dynamic_Sim and
 404 ACDC_DB (Figure S3). Overall, the scenarios where ACDC_DB_CE predicts higher
 405 $J_{1.4}$ than ACDC_DB only occurs under conditions of both high T and low CS (Figure
 406 2A and Figure 2D). The averaged discrepancy between ACDC_DB_CE and
 407 ACDC_DB $R_{ACDC_DB_CE}$ is 22.3, closely resembling $R_{Dynamic_Sim}$, indicating that the
 408 simplification in cluster evaporation is a major factor contributing to the difference
 409 between Dynamic_Sim and ACDC_DB.
 410

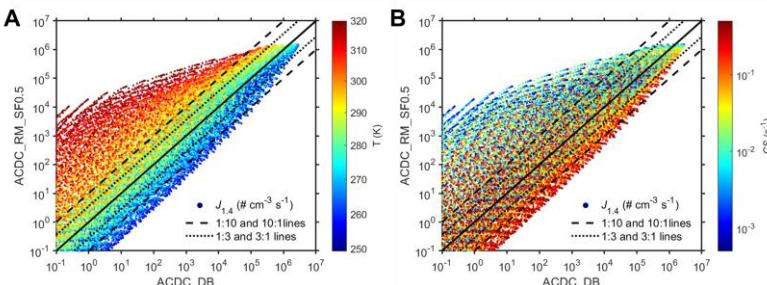
411
 412 **Figure 2.** Comparison of $J_{1.4}$ predictions between ACDC_DB and test cases including

413 ACDC_DB_CE (A and D), ACDC_DB_BC (B and E), and ACDC_DB_CN (C and F).
414 The first row in the panel (A, B and C) is correlated with T variation and the second
415 row (D, E and F) is correlated with CS variation. Solid dots represent simulated $J_{1.4}$
416 values, solid lines indicate a 1:1 line, dotted lines correspond to 1:3 and 3:1 lines, and
417 dashed lines represent 1:10 and 10:1 lines.

418

419 The underestimations of ACDC_DB_BC and ACDC_DB_CN in $J_{1.4}$ prediction
420 compared to base-case ACDC_DB are related to the growth pathways of SA-DMA
421 clusters. In the original scheme of ACDC_DB, precursor molecules have the flexibility
422 to pass through any $(SA)_m(DMA)_n$ clusters ($0 < n \leq m \leq 3$), and terminal 1.4-nm
423 particles are formed when the clusters grow to $(SA)_4(DMA)_4$ or $(SA)_4(DMA)_3$. As
424 expected, ACDC_DB_BC, which assumes $(SA)_4(DMA)_4$ cluster as the only boundary
425 condition with an omission of $(SA)_4(DMA)_3$ cluster, predicts lower $J_{1.4}$ than ACDC_DB.
426 $(SA)_4(DMA)_3$ and $(SA)_4(DMA)_4$ clusters are primarily formed from $(SA)_3(DMA)_3$
427 cluster by colliding with a SA molecule and a $(SA)_1(DMA)_1$ cluster, respectively. As
428 the concentration of $(SA)_1(DMA)_1$ cluster is more sensitive to T , we further found that
429 the discrepancy between ACDC_DB_BC and ACDC_DB becomes more pronounced
430 with increasing T (Figure 2B). Furthermore, we found no apparent correlation between
431 the variation of CS and the disparity between ACDC_DB_BC and ACDC_DB (Figure
432 2E).

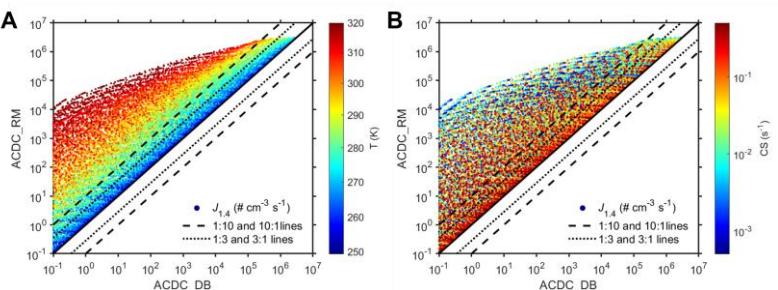
433 In addition to ACDC_DB_BC, ACDC_DB_CN also underestimates $J_{1.4}$ compared
434 to ACDC_DB with a comparable value (~0.5) of $R_{ACDC_DB_CN}$ and $R_{ACDC_DB_BC}$. Under
435 the simplification in cluster number, the formation of 1.4-nm clusters can only occur
436 through specific pathways, including $(SA)_1(DMA)_1 \rightarrow (SA)_2(DMA)_2 \rightarrow (SA)_3(DMA)_3$
437 $\rightarrow (SA)_4(DMA)_4/(SA)_4(DMA)_3$, $(SA)_1(DMA)_1 \rightarrow (SA)_2(DMA)_1 \rightarrow (SA)_2(DMA)_2 \rightarrow$
438 $(SA)_3(DMA)_3 \rightarrow (SA)_4(DMA)_4/(SA)_4(DMA)_3$, or a combination thereof, while other
439 pathways are restricted. Due to the variability in growth pathways and their
440 contributions to $J_{1.4}$ under different atmospheric conditions, the difference between
441 ACDC_DB_CN and ACDC_DB is not strongly correlated with the variations of T and
442 CS (Figure 2C and Figure 2F). Despite that, while the differences between the two
443 tested parameterizations (ACDC_DB_BC and ACDC_DB_CN) involving cluster
444 growth pathways and the original ACDC_DB are not highly correlated with [DMA],
445 there is a more pronounced correlation with [SA], which implies a more important role
446 of SA in cluster growth (Figure S4 and Figure S5).


447 In our previous study, we demonstrated improvements in computing CS- dependent
448 $J_{1.4}$ of SA-DMA nucleation with the Dynamic_Sim compared to the previous power-
449 law parameterizations under polluted atmospheric conditions (Li et al., 2023c). Here,
450 we further show that, based on Dynamic_Sim, the new ACDC_DB with complete
451 cluster dynamics can more reasonably simulate $J_{1.4}$ under previously less studied
452 conditions of high T ($> \sim 300$ K) and low CS ($< \sim 3 \times 10^{-3}$ s $^{-1}$), where Dynamic_Sim tends
453 to produce significant overestimation of $J_{1.4}$. This overestimation is primarily driven by
454 the simplification in cluster evaporation within Dynamic_Sim. Even though a

455 comparable performance in $J_{1,4}$ prediction between ACDC_DB and Dynamic_Sim
 456 could be achieved under other ambient conditions, cautions should be made that the
 457 mutual offsetting effect between overestimation and underestimation resulting from
 458 different simplifications in Dynamic_Sim when computing $J_{1,4}$.

459 3.1.2 Comparison between ACDC_DB and ACDC_RM_SF0.5

460 In Figure 3, ACDC_DB is compared with another main ACDC-derived
 461 parameterization, ACDC_RM_SF0.5, which uses the RI-CC2/aug-cc-pV(T+d)Z//M06-
 462 2X/6-311++G(3df,3pd) level of theory and employs a SF of 0.5 in processing collision.
 463 It can be observed that at lower temperatures (~280 K), ACDC_RM_SF0.5 and
 464 ACDC_DB exhibit similar performance in predicting $J_{1,4}$. However, with higher T
 465 (accompanied by lower CS with a slight dependency), $J_{1,4}$ predicted by
 466 ACDC_RM_SF0.5 become higher than that predicted by ACDC_DB, reaching even
 467 several orders of magnitude at the upper limit of the T range (320 K). Furthermore, we
 468 also observed that in scenarios close to the lower limit of the T range (250 K), the $J_{1,4}$
 469 predicted by ACDC_RM_SF0.5 shift from being higher to lower compared to
 470 ACDC_DB.


471

472
 473 **Figure 3.** Comparison of $J_{1,4}$ predictions between ACDC_DB and ACDC_RM_SF0.5
 474 correlated with T variation (A) and CS variation (B). Solid dots represent simulated $J_{1,4}$
 475 values, solid lines indicate a 1:1 line, dotted lines correspond to 1:3 and 3:1 lines, and
 476 dashed lines represent 1:10 and 10:1 lines.

477 The distinction between ACDC_RM_SF0.5 and ACDC_DB arises from the
 478 combined effects of variation in quantum chemical calculation method and the
 479 application of the 0.5 SF in collision processing. As depicted in Figure 4, when the SF
 480 in ACDC_RM_SF0.5 is set to unity as in ACDC_DB, the resulting ACDC_RM
 481 parameterization predicts consistently higher $J_{1,4}$ than ACDC_DB. This implies that the
 482 modified quantum chemical calculation method, which results in lower evaporation
 483 rates for clusters within the system compared to ACDC_DB under the same condition,
 484 leads to higher $J_{1,4}$ predictions. The impact from varying quantum chemical calculation
 485 method is akin to that from simplification in cluster evaporation discussed earlier. The
 486 distinction between ACDC_RM and ACDC_DB_CE lies in the fact that the modified
 487 quantum chemical calculation method affects all clusters within the system, whereas

489 the simplification in cluster evaporation is specific to limited clusters. This contributes
 490 to a much higher R_{ACDC_RM} (614.5) compared to $R_{ACDC_DB_CE}$ (22.3). Despite that,
 491 compared to ACDC_DB, the differences for both ACDC_DB_CE, ACDC_RM, as well
 492 as ACDC_RM_SF0.5 demonstrate similar sensitivity to T (Figure 3A and Figure 4A)
 493 and CS (Figure 3B and Figure 4B) but independence on [SA] (Figure S6A and Figure
 494 S7A) and [DMA] (Figure S6B and Figure S7B). Comparing ACDC_RM_SF0.5 and
 495 ACDC_RM, it can be inferred that the application of a 0.5 SF in collision processes
 496 would result in an underestimation in $J_{1.4}$ prediction. It can be noted that in most
 497 previous studies (Almeida et al., 2013; Kürten et al., 2018; Elm et al., 2020),
 498 comparisons of ACDC simulations using the traditional method and measured particle
 499 formation rates are conducted at around 280 K. At this temperature, all three main
 500 parameterizations of ACDC_RM_SF0.5, ACDC_DB, and Dynamic_Sim tends to yield
 501 similar $J_{1.4}$ predictions and should have consistent applicability in NPF simulation.
 502

503
 504 **Figure 4.** Comparison of $J_{1.4}$ predictions between ACDC_DB and ACDC_RM
 505 correlated with T variation (A) and CS variation (B). Solid dots represent simulated $J_{1.4}$
 506 values, solid lines indicate a 1:1 line, dotted lines correspond to 1:3 and 3:1 lines, and
 507 dashed lines represent 1:10 and 10:1 lines.

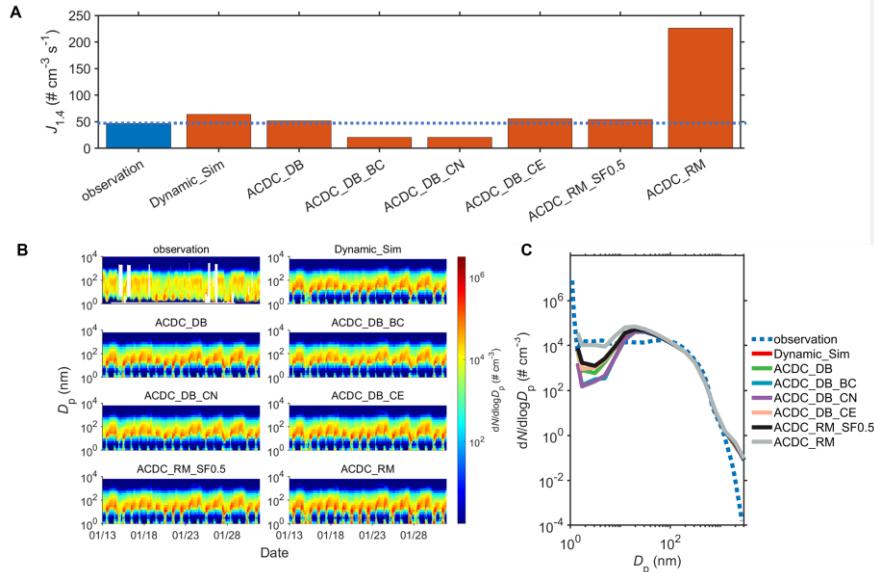
508 In summary, based on our base-case parameterization ACDC_DB, the extensive
 509 box-model simulations above demonstrate the characteristics and applicability
 510 conditions of different parameterizations. Specifically, Dynamic_Sim shows general
 511 consistency with ACDC_DB in simulating $J_{1.4}$ s applicable under most atmospheric
 512 conditions with $T < \sim 300$ K and CS $> \sim 3.0 \times 10^{-3} \text{ s}^{-1}$, while overestimating $J_{1.4}$ with $T >$
 513 ~ 300 K and CS $> \sim 3.0 \times 10^{-3} \text{ s}^{-1}$ compared to ACDC_DB. ACDC_RM_SF0.5 performs
 514 similarly to ACDC_DB is suitable under conditions of with T around 280 K but give
 515 different $J_{1.4}$ predictions at other temperatures. We further use reported measurements
 516 from well-controlled CLOUD chamber experiments to examine the characteristics and
 517 applicability of these parameterizations (Xiao et al., 2021). As shown in Figure S8,
 518 simulated $J_{1.4}$ simulations using three main parameterizations, ACDC_DB,
 519 ACDC_RM_SF0.5, and Dynamic_Sim, correspond well to measured $J_{1.7}$ experimental
 520 results at low temperature ($T = 278$ K), proving the applicability of all three
 521 parameterizations at this temperature. In the experiments with elevated temperature (T
 522

523 = 293 K), ACDC_DB and Dynamic_Sim continues to exhibit similar performance, with
524 slight overestimation by approximately 2 factors. This may be because the much lower
525 cluster concentrations at high temperatures compared to those at low temperatures lead
526 to slower cluster growth and thus an enlarged gap between $J_{1.4}$ and $J_{1.7}$ (Figure
527 S9). simulated results still corresponding to experimental results. In contrast,
528 ACDC_RM_SF0.5 only shows a slight T -dependence, which is deviated from the
529 measurements. The comparison between controlled experiments and box-model
530 simulations hence confirms our conclusions above, and provides a solid basis for further
531 discussions on 3-D simulations using these parameterizations with constraint from field
532 observations.

533 **3.2 Comparison of Different Parameterizations Based on 3-D Model Simulations**

534 Various cluster dynamics-based parameterizations for SA-DMA nucleation were
535 subsequently integrated into the WRF-Chem/R2D-VBS model. 3-D simulations using
536 these parameterizations have been conducted for both wintertime and summertime
537 conditions in Beijing. Given that the concentrations of precursors are crucial input
538 variables for each parameterization, the simulated and observed concentrations of
539 [DMA] and [SA] are compared. Figure S10S9, Figure S110 and Table S2 illustrates
540 good consistencies in temporal variations and the mean values between simulations and
541 observations in Beijing. This validates the reliability of our representation of sources
542 and sinks for nucleating precursors and serves as a foundation for our discussions on
543 the performances of various parameterizations. In the following sections, we discuss
544 the results of 3-D NPF simulations in Beijing during winter and summer by employing
545 different parameterizations. The evaluation of various parameterizations focuses on
546 their ability to reproduce in situ NPF measurements across different seasons.

547 **3.2.1 Wintertime Simulations**


548 Figure 5A and Figure S124A primarily compare the simulated $J_{1.4}$ values from
549 different parameterizations with those derived from wintertime observations in Beijing,
550 as $J_{1.4}$ being a key parameter describing NPF events. The performance of Dynamic_Sim
551 in simulating $J_{1.4}$ during wintertime Beijing has been discussed in our previous study
(Li et al., 2023c). The averaged $J_{1.4}$ simulated by three main parameterizations
(Dynamic_Sim: $64.0 \text{ cm}^{-3} \text{ s}^{-1}$; ACDC_DB: $51.6 \text{ cm}^{-3} \text{ s}^{-1}$; ACDC_RM_SF0.5: $54.5 \text{ cm}^{-3} \text{ s}^{-1}$) approximate the observation ($46.7 \text{ cm}^{-3} \text{ s}^{-1}$). For test cases, however, only
555 ACDC_DB_CE ($55.7 \text{ cm}^{-3} \text{ s}^{-1}$) demonstrates a reasonable representation of $J_{1.4}$. $J_{1.4}$
556 simulated from ACDC_DB_BC ($20.5 \text{ cm}^{-3} \text{ s}^{-1}$) and ACDC_DB_CN ($20.8 \text{ cm}^{-3} \text{ s}^{-1}$) are
557 approximately two times lower than the observed values, while ACDC_RM ($226.2 \text{ cm}^{-3} \text{ s}^{-1}$) is approximately five times higher than the observations.

559 The performances of different parameterizations on depicting $J_{1.4}$ subsequently
560 influences their representations of PNSDs evolution and NPF events, which are shown
561 in Figure 5B. Generally, most parameterizations efficiently reproduce the observed time
562 evolution of PNSDs and captures NPF events, such as those on 01/20, 01/21, 01/30,
563 and 01/31, which are characterized by the burst of aerosol number concentrations in
564 nanometer-sized range. Simulations using ACDC_DB_BC and ACDC_DB_CN result

Formatted: Font color: Auto

565 in lower particle concentrations in the low size range (1-10 nm) during the NPF period
 566 compared to three main parameterizations and the observations, while simulations with
 567 ACDC_RM show higher concentrations.⁵ This is consistent with the comparison of $J_{1.4}$
 568 among different parameterizations and further evident by the comparison of averaged
 569 PNSDs in Figure 5C. Notably, when compared to observations, all parameterizations
 570 consistently underestimate the averaged PNSDs within the 2-10 nm range but
 571 overestimate them in the 10-50 nm range. This discrepancy may stem from simplified
 572 assumptions in particle growth simulation, as discussed in our previous study (Li et al.,
 573 2023c).

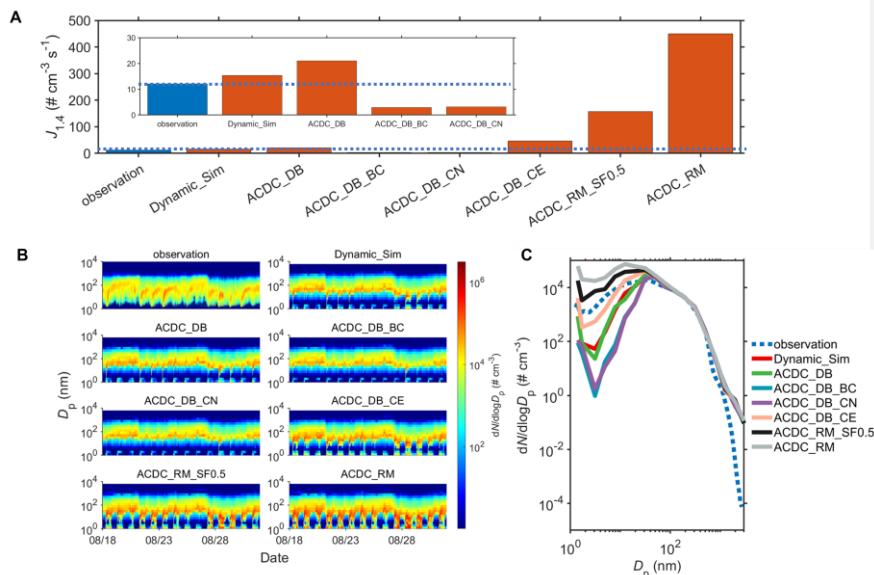
574
 575

576
 577 **Figure 5.** Comparison of simulated particle formation rates and particle number size
 578 distributions (PNSDs) with observations during January 13, 2019, to January 31, 2019,
 579 in Beijing. A represents the averaged particle formation rates during the period, the blue
 580 bars and orange bars represent observations and simulations, respectively, while the
 581 blue dashed line represents the observed values. Daily maximum values of $J_{1.4}$ are used
 582 following Deng et al. (2020); B for the time series of PNSDs; and C for the averaged
 583 PNSDs.

584

585 The results show the applicability of all three main parameterizations in NPF
 586 modeling during wintertime periods. Importantly, the reliability of the new ACDC-
 587 derived parameterization based on the latest theoretical approach (ACDC_DB) without
 588 simplifications in 3-D NPF simulation, is affirmed. The differences among various
 589 parameterizations can be explained by the comprehensive box-model simulations

590 above at corresponding conditions. Compared to ACDC_DB, the $J_{1.4}$ and PNSDs
591 simulated by other two main parameterizations (Dynamic_Sim and ACDC_RM_SF0.5)
592 agree similarly with observations, but for different reasons. In the case of Dynamic_Sim,
593 the simplification in cluster evaporation has minimal impact on NPF simulation since
594 CS is the dominant sink for clusters under the wintertime conditions (averaged T and
595 CS is 274.7 K and $3.3 \times 10^{-2} \text{ s}^{-1}$, respectively). However, the simplifications in boundary
596 conditions and cluster number lead to the underestimation of the $J_{1.4}$, consequently
597 lowering the simulated particle number concentrations in 1-100 nm size range due to
598 the ignorance of clusters contributing to growth. As a result, the agreement of
599 Dynamic_sim to observations should result from a combination of underestimation due
600 to simplifications in boundary conditions and cluster number, along with the
601 compensatory effect of the overestimation caused by lower ΔG for (SA)₁(DMA)₁
602 cluster. For another main parameterization ACDC_RM_SF0.5, since the test
603 parameterization ACDC_RM considerably overestimates $J_{1.4}$ and PNSDs compared to
604 the observations, the general agreement between ACDC_RM_SF0.5 and observations
605 should be attributed to a balance between reduced kinetic limit through the application
606 of SF and the compensatory effect of the overestimation caused by inappropriate
607 representation of cluster thermodynamics.


608 3.2.2 Summertime Simulations

609 Figure 6 provides additional insight into the performance of various
610 parameterizations in NPF simulation during summer. It can be noted that there exists a
611 significant difference in particle formation rates between winter and summer in Beijing.
612 As shown in Figure 6 and Figure S124B, ACDC_DB and Dynamic_Sim continues to
613 demonstrate consistent and effective performance in simulating $J_{1.4}$ (within a factor of
614 2), PNSDs evolution as well as NPF events. However, distinct differences emerge in
615 the NPF simulation for other parameterizations, including another main
616 parameterization ACDC_RM_SF0.5. Specifically, in contrast to the good performance
617 of ACDC_DB and Dynamic_Sim, ACDC_RM_SF0.5, along with the test case
618 ACDC_RM, exhibits a significant overestimation of $J_{1.4}$, exceeding the observations by
619 more than 15 times and over two orders of magnitude, respectively. This aligns with
620 their overestimation of NPF occurrences and particle number concentration in the size
621 range of 1-100 nm in comparison to observation, with a more pronounced
622 overestimation for ACDC_RM. Conversely, the test cases of ACDC_DB_BC and
623 ACDC_DB_CN show an underestimation of averaged $J_{1.4}$ by approximately 4-5 times.
624 They almost fail to depict NPF events, resulting in a significant underestimation of
625 number concentrations in the 1-100 nm size range. Simulations using ACDC_DB_CE
626 notably overestimates $J_{1.4}$ especially on 08/28 – 08/31 (Figure S11B), which results in
627 an overestimation of averaged $J_{1.4}$ by approximately 4 times compared to the
628 observations. However, apart from a moderate overestimation in the initial particle size,
629 we can observe a closer alignment of particle number concentrations in the 2-50100 nm
630 range with observations for ACDC_DB_CE, which should result from a combination
631 of surplus newly formed particles and fast particle growth from inadequate assumptions

Formatted: Font color: Auto

632 within the model. For the broader 2-100 nm size range, it can be observed that
 633 ACDC DB and Dynamic Sim are closer to the observations compared to
 634 ACDC DB CE and another major parameterization ACDC_RM_SF0.5 (Figure S13).
 635 The latter two overestimate the average number concentrations during the simulation
 636 period by 1.6 times and 2.5 times, respectively. Given the more accurate representation
 637 of nucleation rates by ACDC DB and Dynamic Sim, the discrepancies in the 2-100
 638 nm size range compared to the observed PNSDs should also stem from the simplified
 639 assumptions in particle growth simulations.

640

641

642 **Figure 6.** Comparison of simulated particle formation rates and particle number size
 643 distributions (PNSDs) with observations during August 18, 2019, to August 31, 2019,
 644 in Beijing. A represents the averaged particle formation rates during the period, the blue
 645 bars and orange bars represent observations and simulations, respectively, while the
 646 blue dashed line represents the observed values. Daily maximum values of $J_{1.4}$ are used
 647 following Deng et al. (2020); B for the time series of PNSDs; and C for the averaged
 648 PNSDs.

649

650 Most previous NPF studies combining experiments/observations with simulations
 651 are conducted under conditions biased towards winter (~280K) (Almeida et al., 2013;
 652 Lu et al., 2020). Under summer conditions with elevated T , there exists a deficiency in
 653 parameterization evaluations for simulating NPF. The 3-D simulation results during the
 654 summer period provide additional validation for the reliability of ACDC_DB. For
 655 ACDC_RM_SF0.5, evidence from both box-model simulations and 3-D simulations
 656 suggests that it can accurately reproduce real SA-DMA nucleation at temperatures

657 around 280 K, while it has limitations in higher temperatures. Another main
658 parameterization Dynamic_Sim consistently demonstrates good performance in NPF
659 simulation, akin to its efficacy in winter conditions. With the increased temperature in
660 summer (averaged T is 298.2 K), the influence of simplifications in cluster evaporation,
661 cluster number, and boundary conditions becomes more profound, mirroring the trends
662 observed in box-model simulations above. This leads to more significant
663 overestimation for ACDC_DB_CE, and underestimation for ACDC_DB_CN and
664 ACDC_DB_BC compared to the observation as well as the base-case ACDC_DB. Note
665 that CS during the summer period (averaged CS is $2.8 \times 10^{-2} \text{ s}^{-1}$) decreases compared to
666 winter but remains significantly higher than typical values in clean regions ($\sim 3.0 \times 10^{-3}$
667 s^{-1}) (Dal Maso et al., 2008). According to the limited conditions for Dynamic_Sim
668 described above, although the overestimation of $J_{1.4}$ prediction resulting from the
669 simplification in cluster evaporation is more pronounced in summer compared to that
670 in winter, impacts from diverse overestimations and underestimations from different
671 simplifications and varied thermodynamics for (SA)₁(DMA)₁ cluster can still offset
672 each other, thereby allowing Dynamic_Sim to match observations. Based on previous
673 comparisons using box-models, significant differences in $J_{1.4}$ predictions between
674 Dynamic_Sim and ACDC_DB only exist under conditions of high $T > \sim 300$ K and low
675 CS $< \sim 3 \times 10^{-3} \text{ s}^{-1}$, thus similar performance of Dynamic_Sim and ACDC_DB can be
676 expected in the polluted atmosphere (CS $> \sim 1.0 \times 10^{-2} \text{ s}^{-1}$). In clean atmosphere with
677 high temperature, however, caution is advised when using Dynamic_Sim for 3-D NPF
678 simulations.

679 **4. CONCLUSIONS and DISCUSSIONS**

680 By integrating box modeling, 3-D simulations, also under the constraint from in
681 situ measurements, this study conducts comprehensive comparison of different cluster
682 dynamics-based parameterizations for SA-DMA nucleation. Among them, the ACDC-
683 derived parameterization grounded in the latest molecular-level understanding and
684 complete representation of cluster dynamics (ACDC_DB), is identified to effectively
685 model particle formation rates and PNSDs evolution in both winter and summer in
686 Beijing within 3-D simulations. While a previously proposed simplified cluster
687 dynamics-based parameterization (Dynamic_Sim) performs comparably in modeling
688 NPF in Beijing, analysis reveals that their similarity arises from a delicate balance
689 between overestimation and underestimation due to simplifications in cluster dynamics
690 processes and the difference in thermodynamics of initial cluster. Particularly, under
691 specific conditions of high temperature ($> \sim 300$ K) and low CS ($< \sim 3 \times 10^{-3} \text{ s}^{-1}$),
692 Dynamic_Sim tends to make significant overestimation of particle formation rates
693 compared to the reality. Moreover, the study furnishes evidence that integrating ACDC-
694 derived parameterizations with the traditional theoretical approach RI-CC2/aug-cc-
695 pV(T+d)Z//M06-2X/6-311++G(3df,3pd) (ACDC_RM_SF0.5) effectively captures
696 particle formation rates and the evolution of PNSDs around 280 K, a temperature range
697 frequently explored in prior experiments and simulations investigating NPF (Kirkby et
698 al., 2011; Almeida et al., 2013; Kirkby et al., 2016; Xie et al., 2017; He et al., 2021; Ma

Formatted: Font color: Auto

699 et al., 2019). Therefore, ACDC_RM_SF0.5 exhibits consistent applicability as other
700 two parameterizations at around ~280 K. However, attributed to an inappropriate
701 representation of cluster thermodynamics, ACDC_RM_SF0.5 has limitations in
702 predicting particle formation rates at elevated temperatures. Overall, considering all
703 aspects, we recommend ACDC_DB as a more reliable parameterization for simulating
704 NPF across various atmospheric environments.

705 In addition to contributing to a more reasonable 3-D modeling of NPF, our research
706 further provides valuable references for the development of parameterizations for other
707 nucleation systems. Firstly, we demonstrate the efficacy of the DLPNO-CCSD(T)/aug-
708 cc-pVTZ//ωB97X-D/6-311++G(3df,3pd) level of theory in describing the
709 thermodynamic properties of SA-DMA clusters through comprehensive evidence. This
710 approach can thus be referenced when using quantum chemical calculations to obtain
711 thermodynamic data for other nucleation clusters, especially for other alkylamines such
712 as methylamine/trimethylamine-sulfuric acid clusters. Although DLPNO method still
713 has uncertainties in accurately describing cluster thermodynamics (Besel et al., 2020),
714 it is well recognized as the best available method currently (Elm et al., 2020). Besides, it
715 should be also noted, however, that in some qualitative studies, e.g., comparing the
716 enhancing potential or synergistic effects of different precursors in SA-driven
717 nucleation, methods other than DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97X-D/6-
718 311++G(3df,3pd), such as RI-CC2/aug-cc-pV(T+d)Z//M06-2X/6-311++G(3df,3pd),
719 are equally valid (Liu et al., 2019).

720 ComprehensiveSecondly, we provide comprehensive modeling evidences are
721 provided in this study that certain simplifications or assumptions in cluster dynamics,
722 such as reducing the number of expected clusters, modifying boundary conditions, and
723 assuming certain clusters to be non-evaporative, can significantly impact the prediction
724 of particle formation rates and hence alter the 3-D NPF simulation under certain
725 conditions. While applying certain simplifications concurrently under specific ambient
726 conditions can offset different influences against each other, leading to a satisfactory
727 model-observation comparison, there is a risk that certain simplifications may drive the
728 model's outcomes away from reality when environmental conditions change.
729 Therefore, caution should be exercised when applying these simplifications in
730 derivation of nucleation parameterizations and subsequent application in 3-D models.
731 In addition to the simplifications within the cluster dynamics regime, it should be noted
732 that current standard treatments in 3-D models that ignore detailed gas-cluster-aerosol
733 interactions may also lead to biases under certain atmospheric conditions (Olenius and
734 Roldin, 2022). This applies not only to parameterizations involving explicit
735 mathematical expressions but also to those using ACDC-derived look-up tables.
736 Additional evaluations for the SA-DMA system indicate that the impacts of these
737 treatments may be highest under a combination of low temperature (<~270 K), low CS
738 (<~0.003 s⁻¹), and low precursor concentrations, which leads to elevated time to reach
739 steady state and a higher proportion of precursor consumption from cluster formation,
740 as also indicated by Olenius and Roldin's study (Olenius and Roldin, 2022). Despite

741 these impacts being generally limited under most atmospheric conditions in our
742 modeling scenarios (see supporting information), further research, especially using
743 computationally lightweight models, should aim to circumvent the potential bias by
744 linking the cluster and aerosol dynamics (Olenius and Roldin, 2022).

745 It is recognized Lastly, we note that the development of cluster dynamics-based
746 nucleation parameterizations in the form of explicit mathematical expressions is subject
747 to limitations, especially for systems involving multiple precursor species (Semeniuk
748 and Dastoor, 2018). Given that the original ACDC has been extended to involve more
749 than two precursor species, the ACDC-derived parameterization framework, in the form
750 of a look-up table, is highly meaningful for establishing parameterizations for these
751 multi-component nucleation systems. Given that multiple nucleation pathways may be
752 simultaneously considered and simulated in 3-D modeling through ACDC-derived
753 look-up tables, automated incorporation of tables are needed through useful tools such
754 as J-GAIN developed recently (Yazgi and Olenius, 2023).

755

756 **Appendix.** Abbreviations used in the main text.
757
758 **SA:** sulfuric acid
759 **DMA:** dimethylamine
760 **ACDC:** Atmospheric Cluster Dynamic Code
761 **DB:** DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97X-D/6-311++G(3df,3pd) level of theory
762 **RM:** RI-CC2/aug-cc-pV(T+d)Z//M06-2X/6-311++G(3df,3pd) level of theory
763 **CE:** simplification in cluster evaporation (only $(SA)_k(DMA)_k$ ($k = 1-4$) and
764 $(SA)_2(DMA)_1$ clusters are considered)
765 **CN:** simplification in cluster number (clusters larger than $(SA)_1(DMA)_1$ are regarded
766 stable with no evaporation)
767 **BC:** simplification in boundary conditions ($(SA)_4(DMA)_4$ cluster is set as the only
768 terminal cluster in calculating particle formation rates)
769 **SF:** sticking factor used in collision process
770 **Dynamic_Sim:** a reported cluster-dynamic based parameterization incorporating
771 simplifications of CE, CN and BC.
772 **$J_{1.4}$:** particle formation rate at 1.4 nm
773 **R:** a parameter to quantify the differences in simulating $J_{1.4}$ among different cluster
774 dynamics-based parameterizations compared to the base-case ACDC_DB
775

776 **Code and data availability.** The data and code used in this study are available upon
777 request from the corresponding author.

778
779 **Author contributions.** JS, BZ, and SW designed the research; AN and XZ collected
780 the quantum chemistry calculation data; JS performed the ACDC and WRF-
781 Chem/R2D-VBS simulations; YL, RC, and JJ collected the observational data. JS, BZ,
782 and SW analyzed the data; RC, DG, JJ, YG, MS, BC, and HH presented important
783 suggestions for the paper; JS, BZ, and SW wrote the paper with input from all co-
784 authors.

785
786 **Competing interests.** At least one of the (co-)authors is a member of the editorial board
787 of Atmospheric Chemistry and Physics.

788
789 **Acknowledgements.** This study was supported by the National Natural Science
790 Foundation of China (22188102 and 42275110) [and Samsung PM_{2.5} SRP](#).

Formatted: Subscript

791
792 **Financial support.** Financial support from National Natural Science Foundation of
793 China (22188102 and 42275110) [and Samsung PM_{2.5} SRP](#).

Formatted: Font color: Auto

794
795

796 **REFERENCES**

797 Almeida, J., Schobesberger, S., Kurten, A., Ortega, I. K., Kupiainen-Maatta, O.,
798 Praplan, A. P., Adamov, A., Amorim, A., Bianchi, F., Breitenlechner, M.,
799 David, A., Dommen, J., Donahue, N. M., Downard, A., Dunne, E., Duplissy,
800 J., Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A.,
801 Heinritzi, M., Henschel, H., Jokinen, T., Junninen, H., Kajos, M.,
802 Kangasluoma, J., Keskinen, H., Kupc, A., Kurten, T., Kvashin, A. N.,
803 Laaksonen, A., Lehtipalo, K., Leiminger, M., Leppa, J., Loukonen, V.,
804 Makhmutov, V., Mathot, S., McGrath, M. J., Nieminen, T., Olenius, T.,
805 Onnela, A., Petaja, T., Riccobono, F., Riipinen, I., Rissanen, M., Rondo, L.,
806 Ruuskanen, T., Santos, F. D., Sarnela, N., Schallhart, S., Schnitzhofer, R.,
807 Seinfeld, J. H., Simon, M., Sipila, M., Stozhkov, Y., Stratmann, F., Tome, A.,
808 Trostl, J., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Virtanen, A., Vrtala,
809 A., Wagner, P. E., Weingartner, E., Wex, H., Williamson, C., Wimmer, D., Ye,
810 P., Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger, U.,
811 Worsnop, D. R., Vehkamaki, H., and Kirkby, J.: Molecular understanding of
812 sulphuric acid-amine particle nucleation in the atmosphere, *Nature*, 502, 359-
813 363, 10.1038/nature12663, 2013.
814 [Baranizadeh, E., Murphy, B. N., Julin, J., Falahat, S., Reddington, C. L., Arola, A.,](#)
815 [Ahlm, L., Mikkonen, S., Fountoukis, C., Patoulas, D., Minikin, A.,](#)
816 [Hamburger, T., Laaksonen, A., Pandis, S. N., Vehkamäki, H., Lehtinen, K. E.,](#)
817 [J., and Riipinen, I.: Implementation of state-of-the-art ternary new-particle](#)
818 [formation scheme to the regional chemical transport model PMCAMx-UF in](#)
819 [Europe. Geoscientific Model Development, 9, 2741-2754, 10.5194/gmd-9-](#)
820 [2741-2016, 2016.](#)
821 Bergman, T., Laaksonen, A., Korhonen, H., Malila, J., Dunne, E. M., Mielonen, T.,
822 Lehtinen, K. E. J., Kühn, T., Arola, A., and Kokkola, H.: Geographical and
823 diurnal features of amine - enhanced boundary layer nucleation, *Journal of*
824 *Geophysical Research: Atmospheres*, 120, 9606-9624, 10.1002/2015jd023181,
825 2015.
826 Besel, V., Kubeka, J., Kurten, T., and Vehkamaki, H.: Impact of Quantum Chemistry
827 Parameter Choices and Cluster Distribution Model Settings on Modeled
828 Atmospheric Particle Formation Rates, *J Phys Chem A*, 124, 5931-5943,
829 10.1021/acs.jpca.0c03984, 2020.
830 [Brasseur GP, Jacob DJ. Model Equations and Numerical Approaches. In: Modeling of](#)
831 [Atmospheric Chemistry. Cambridge University Press; 2017:84-204.](#)
832 Cai, R. and Jiang, J.: A new balance formula to estimate new particle formation rate:
833 reevaluating the effect of coagulation scavenging, *Atmospheric Chemistry and*
834 *Physics*, 17, 12659-12675, 10.5194/acp-17-12659-2017, 2017.
835 Cai, R., Yin, R., Li, X., Xie, H.-B., Yang, D., Kerminen, V.-M., Smith, J. N., Ma, Y.,
836 Hao, J., Chen, J., Kulmala, M., Zheng, J., Jiang, J., and Elm, J.: Significant
837 contributions of trimethylamine to sulfuric acid nucleation in polluted

838 environments, npj Climate and Atmospheric Science, 6, 10.1038/s41612-023-
839 00405-3, 2023.

840 Cai, R., Yan, C., Yang, D., Yin, R., Lu, Y., Deng, C., Fu, Y., Ruan, J., Li, X.,
841 Kontkanen, J., Zhang, Q., Kangasluoma, J., Ma, Y., Hao, J., Worsnop, D. R.,
842 Bianchi, F., Paasonen, P., Kerminen, V.-M., Liu, Y., Wang, L., Zheng, J.,
843 Kulmala, M., and Jiang, J.: Sulfuric acid–amine nucleation in urban Beijing,
844 Atmospheric Chemistry and Physics, 21, 2457-2468, 10.5194/acp-21-2457-
845 2021, 2021.

846 Chu, B., Kerminen, V.-M., Bianchi, F., Yan, C., Petäjä, T., and Kulmala, M.:
847 Atmospheric new particle formation in China, Atmospheric Chemistry and
848 Physics, 19, 115-138, 10.5194/acp-19-115-2019, 2019.

849 Croft, B., Wentworth, G. R., Martin, R. V., Leaitch, W. R., Murphy, J. G., Murphy, B.
850 N., Kodros, J. K., Abbatt, J. P. D., and Pierce, J. R.: Contribution of Arctic
851 seabird-colony ammonia to atmospheric particles and cloud-albedo radiative
852 effect, Nature Communications, 7, 10.1038/ncomms13444, 2016.

853 Dal Maso, M., Hyvärinen, A., Komppula, M., Tunved, P., Kerminen, V.-M.,
854 Lihavainen, H., Visanen, Y., Hansson, H.-C., and Kulmala, M.: Annual and
855 interannual variation in boreal forest aerosol particle number and volume
856 concentration and their connection to particle formation, Tellus B: Chemical
857 and Physical Meteorology, 60, 10.1111/j.1600-0889.2008.00366.x, 2008.

858 Deng, C., Fu, Y., Dada, L., Yan, C., Cai, R., Yang, D., Zhou, Y., Yin, R., Lu, Y., Li, X.,
859 Qiao, X., Fan, X., Nie, W., Kontkanen, J., Kangasluoma, J., Chu, B., Ding, A.,
860 Kerminen, V. M., Paasonen, P., Worsnop, D. R., Bianchi, F., Liu, Y., Zheng, J.,
861 Wang, L., Kulmala, M., and Jiang, J.: Seasonal Characteristics of New Particle
862 Formation and Growth in Urban Beijing, Environ Sci Technol, 54, 8547-8557,
863 10.1021/acs.est.0c00808, 2020.

864 Dunne, E. M., Gordon, H., Kurten, A., Almeida, J., Duplissy, J., Williamson, C.,
865 Ortega, I. K., Pringle, K. J., Adamov, A., Baltensperger, U., Barmet, P.,
866 Benduhn, F., Bianchi, F., Breitenlechner, M., Clarke, A., Curtius, J., Dommen, J.,
867 Donahue, N. M., Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R.,
868 Hakala, J., Hansel, A., Heinritzi, M., Jokinen, T., Kangasluoma, J., Kirkby, J.,
869 Kulmala, M., Kupc, A., Lawler, M. J., Lehtipalo, K., Makhmutov, V., Mann, G.,
870 Mathot, S., Merikanto, J., Miettinen, P., Nenes, A., Onnela, A., Rap, A.,
871 Reddington, C. L., Riccobono, F., Richards, N. A., Rissanen, M. P., Rondo, L.,
872 Sarnela, N., Schobesberger, S., Sengupta, K., Simon, M., Sipila, M., Smith, J. N.,
873 Stozkhov, Y., Tome, A., Trostl, J., Wagner, P. E., Wimmer, D., Winkler, P. M.,
874 Worsnop, D. R., and Carslaw, K. S.: Global atmospheric particle
875 formation from CERN CLOUD measurements, Science, 354, 1119-1124,
876 10.1126/science.aaf2649, 2016.

877 Elm, J., Bilde, M., and Mikkelsen, K. V.: Assessment of binding energies of
878 atmospherically relevant clusters, Phys Chem Chem Phys, 15, 16442-16445,
879 10.1039/c3cp52616j, 2013.

880 Elm, J., Kubečka, J., Besel, V., Jääskeläinen, M. J., Halonen, R., Kurtén, T., and
881 Vehkamäki, H.: Modeling the formation and growth of atmospheric molecular
882 clusters: A review, *Journal of Aerosol Science*, 149,
883 10.1016/j.jaerosci.2020.105621, 2020.

884 [Gao, D., Zhao, B., Wang, S. X., Shen, J. W., Wang, Y., Zhou, C., Jiang, J. K., Wu, Q.](#)
885 [R., Li, S. Y., Sun, Y. S., He, Y. C., Zhu, Y., and Jiang, Z.: Distinct PM_{2.5}-](#)
886 [Related Near-Term Climate Penalties Induced by Different Clean Air](#)
887 [Measures in China, Geophysical Research Letters](#), 51, 10.1029/2024gl108204,
888 2024.

889 Gordon, H., Sengupta, K., Rap, A., Duplissy, J., Frege, C., Williamson, C., Heinritzi,
890 M., Simon, M., Yan, C., Almeida, J., Trostl, J., Nieminen, T., Ortega, I. K.,
891 Wagner, R., Dunne, E. M., Adamov, A., Amorim, A., Bernhammer, A. K.,
892 Bianchi, F., Breitenlechner, M., Brilke, S., Chen, X., Craven, J. S., Dias, A.,
893 Ehrhart, S., Fischer, L., Flagan, R. C., Franchin, A., Fuchs, C., Guida, R.,
894 Hakala, J., Hoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma, J., Kim, J.,
895 Kirkby, J., Krapf, M., Kurten, A., Laaksonen, A., Lehtipalo, K., Makhmutov,
896 V., Mathot, S., Molteni, U., Monks, S. A., Onnella, A., Perakyla, O., Piel, F.,
897 Petaja, T., Praplan, A. P., Pringle, K. J., Richards, N. A., Rissanen, M. P.,
898 Rondo, L., Sarnela, N., Schobesberger, S., Scott, C. E., Seinfeld, J. H.,
899 Sharma, S., Sipila, M., Steiner, G., Stozhkov, Y., Stratmann, F., Tome, A.,
900 Virtanen, A., Vogel, A. L., Wagner, A. C., Wagner, P. E., Weingartner, E.,
901 Wimmer, D., Winkler, P. M., Ye, P., Zhang, X., Hansel, A., Dommen, J.,
902 Donahue, N. M., Worsnop, D. R., Baltensperger, U., Kulmala, M., Curtius, J.,
903 and Carslaw, K. S.: Reduced anthropogenic aerosol radiative forcing caused
904 by biogenic new particle formation, *Proc Natl Acad Sci U S A*, 113, 12053-
905 12058, 10.1073/pnas.1602360113, 2016.

906 Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.:
907 Estimates of global terrestrial isoprene emissions using MEGAN (Model of
908 Emissions of Gases and Aerosols from Nature), *Atmos. Chem. Phys.*, 6, 3181-
909 3210, 10.5194/acp-6-3181-2006, 2006.

910 He, X. C., Tham, Y. J., Dada, L., Wang, M., Finkenzeller, H., Stolzenburg, D., Iyer, S.,
911 Simon, M., Kurten, A., Shen, J., Rorup, B., Rissanen, M., Schobesberger, S.,
912 Baalbaki, R., Wang, D. S., Koenig, T. K., Jokinen, T., Sarnela, N., Beck, L. J.,
913 Almeida, J., Amanatidis, S., Amorim, A., Ataei, F., Baccarini, A., Bertozi, B.,
914 Bianchi, F., Brilke, S., Caudillo, L., Chen, D., Chiu, R., Chu, B., Dias, A.,
915 Ding, A., Dommen, J., Duplissy, J., El Haddad, I., Gonzalez Carracedo, L.,
916 Granzin, M., Hansel, A., Heinritzi, M., Hofbauer, V., Junninen, H.,
917 Kangasluoma, J., Kemppainen, D., Kim, C., Kong, W., Krechmer, J. E.,
918 Kvashin, A., Laitinen, T., Lamkaddam, H., Lee, C. P., Lehtipalo, K.,
919 Leiminger, M., Li, Z., Makhmutov, V., Manninen, H. E., Marie, G., Marten,
920 R., Mathot, S., Mauldin, R. L., Mentler, B., Mohler, O., Muller, T., Nie, W.,
921 Onnella, A., Petaja, T., Pfeifer, J., Philippov, M., Ranjithkumar, A., Saiz-Lopez,

922 A., Salma, I., Scholz, W., Schuchmann, S., Schulze, B., Steiner, G., Stozhkov,
923 Y., Tauber, C., Tome, A., Thakur, R. C., Vaisanen, O., Vazquez-Pufleau, M.,
924 Wagner, A. C., Wang, Y., Weber, S. K., Winkler, P. M., Wu, Y., Xiao, M., Yan,
925 C., Ye, Q., Ylisirnio, A., Zauner-Wieczorek, M., Zha, Q., Zhou, P., Flagan, R.
926 C., Curtius, J., Baltensperger, U., Kulmala, M., Kerminen, V. M., Kurten, T.,
927 Donahue, N. M., Volkamer, R., Kirkby, J., Worsnop, D. R., and Sipila, M.:
928 Role of iodine oxoacids in atmospheric aerosol nucleation, *Science*, 371, 589-
929 595, 10.1126/science.abe0298, 2021.
930 Jen, C. N., Hanson, D. R., and McMurry, P. H.: Toward Reconciling Measurements of
931 Atmospherically Relevant Clusters by Chemical Ionization Mass
932 Spectrometry and Mobility Classification/Vapor Condensation, *Aerosol*
933 *Science and Technology*, 49, i-iii, 10.1080/02786826.2014.1002602, 2014.
934 Julin, J., Murphy, B. N., Patoulas, D., Fountoukis, C., Olenius, T., Pandis, S. N., and
935 Riipinen, I.: Impacts of Future European Emission Reductions on Aerosol
936 Particle Number Concentrations Accounting for Effects of Ammonia, Amines,
937 and Organic Species, Environ Sci Technol, 52, 692-700,
938 10.1021/acs.est.7b05122, 2018.
939 Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S., Franchin, A.,
940 Gagne, S., Ickes, L., Kurten, A., Kupc, A., Metzger, A., Riccobono, F., Rondo,
941 L., Schobesberger, S., Tsagkogeorgas, G., Wimmer, D., Amorim, A., Bianchi,
942 F., Breitenlechner, M., David, A., Dommen, J., Downard, A., Ehn, M., Flagan,
943 R. C., Haider, S., Hansel, A., Hauser, D., Jud, W., Junninen, H., Kreissl, F.,
944 Kvashin, A., Laaksonen, A., Lehtipalo, K., Lima, J., Lovejoy, E. R.,
945 Makhmutov, V., Mathot, S., Mikkila, J., Minginette, P., Mogo, S., Nieminen,
946 T., Onnela, A., Pereira, P., Petaja, T., Schnitzhofer, R., Seinfeld, J. H., Sipila,
947 M., Stozhkov, Y., Stratmann, F., Tome, A., Vanhanen, J., Viisanen, Y., Vrtala,
948 A., Wagner, P. E., Walther, H., Weingartner, E., Wex, H., Winkler, P. M.,
949 Carslaw, K. S., Worsnop, D. R., Baltensperger, U., and Kulmala, M.: Role of
950 sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol
951 nucleation, *Nature*, 476, 429-433, 10.1038/nature10343, 2011.
952 Kirkby, J., Duplissy, J., Sengupta, K., Frege, C., Gordon, H., Williamson, C.,
953 Heinritzi, M., Simon, M., Yan, C., Almeida, J., Trostl, J., Nieminen, T., Ortega,
954 I. K., Wagner, R., Adamov, A., Amorim, A., Bernhammer, A. K., Bianchi, F.,
955 Breitenlechner, M., Brilke, S., Chen, X., Craven, J., Dias, A., Ehrhart, S.,
956 Flagan, R. C., Franchin, A., Fuchs, C., Guida, R., Hakala, J., Hoyle, C. R.,
957 Jokinen, T., Junninen, H., Kangasluoma, J., Kim, J., Krapf, M., Kurten, A.,
958 Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot, S., Molteni, U.,
959 Onnela, A., Perakyla, O., Piel, F., Petaja, T., Praplan, A. P., Pringle, K., Rap,
960 A., Richards, N. A., Riipinen, I., Rissanen, M. P., Rondo, L., Sarnela, N.,
961 Schobesberger, S., Scott, C. E., Seinfeld, J. H., Sipila, M., Steiner, G.,
962 Stozhkov, Y., Stratmann, F., Tome, A., Virtanen, A., Vogel, A. L., Wagner, A.
963 C., Wagner, P. E., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P., Zhang,

964 X., Hansel, A., Dommen, J., Donahue, N. M., Worsnop, D. R., Baltensperger,
965 U., Kulmala, M., Carslaw, K. S., and Curtius, J.: Ion-induced nucleation of
966 pure biogenic particles, *Nature*, 533, 521-526, 10.1038/nature17953, 2016.

967 Kulmala, M., Lehtinen, K. E. J., and Laaksonen, A.: Cluster activation theory as an
968 explanation of the linear dependence between formation rate of 3nm particles
969 and sulphuric acid concentration, *Atmospheric Chemistry and Physics*, 6, 787-
970 793, DOI 10.5194/acp-6-787-2006, 2006.

971 Kürten, A., Li, C., Bianchi, F., Curtius, J., Dias, A., Donahue, N. M., Duplissy, J.,
972 Flagan, R. C., Hakala, J., Jokinen, T., Kirkby, J., Kulmala, M., Laaksonen, A.,
973 Lehtipalo, K., Makhmutov, V., Onnela, A., Rissanen, M. P., Simon, M., Sipilä,
974 M., Stozhkov, Y., Tröstl, J., Ye, P., and McMurry, P. H.: New particle
975 formation in the sulfuric acid–dimethylamine–water system: reevaluation of
976 CLOUD chamber measurements and comparison to an aerosol nucleation and
977 growth model, *Atmospheric Chemistry and Physics*, 18, 845-863,
978 10.5194/acp-18-845-2018, 2018.

979 Lehtinen, K. E. J., Dal Maso, M., Kulmala, M., and Kerminen, V. M.: Estimating
980 nucleation rates from apparent particle formation rates and vice versa: Revised
981 formulation of the Kerminen-Kulmala equation, *Journal of Aerosol Science*,
982 38, 988-994, 10.1016/j.jaerosci.2007.06.009, 2007.

983 Li, C., Zhao, Y., Li, Z., Liu, L., Zhang, X., Zheng, J., Kerminen, V.-M., Kulmala, M.,
984 Jiang, J., Cai, R., and Xiao, H.: The dependence of new particle formation
985 rates on the interaction between cluster growth, evaporation, and condensation
986 sink, *Environmental Science: Atmospheres*, 3, 168-181, 10.1039/d2ea00066k,
987 2023a.

988 Li, H., Ning, A., Zhong, J., Zhang, H., Liu, L., Zhang, Y., Zhang, X., Zeng, X. C., and
989 He, H.: Influence of atmospheric conditions on sulfuric acid-dimethylamine-
990 ammonia-based new particle formation, *Chemosphere*, 245, 125554,
991 10.1016/j.chemosphere.2019.125554, 2020.

992 Li, M., Zhang, Q., Kurokawa, J., Woo, J. H., He, K. B., Lu, Z. F., Ohara, T., Song, Y.,
993 Streets, D. G., Carmichael, G. R., Cheng, Y. F., Hong, C. P., Huo, H., Jiang, X.
994 J., Kang, S. C., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian
995 anthropogenic emission inventory under the international collaboration
996 framework of the MICS-Asia and HTAP, *Atmospheric Chemistry and Physics*,
997 17, 935-963, 10.5194/acp-17-935-2017, 2017.

998 Li, S., Wang, S., Wu, Q., Zhang, Y., Ouyang, D., Zheng, H., Han, L., Qiu, X., Wen, Y.,
999 Liu, M., Jiang, Y., Yin, D., Liu, K., Zhao, B., Zhang, S., Wu, Y., and Hao, J.:
1000 Emission trends of air pollutants and CO₂ in China from 2005 to 2021, *Earth
1001 System Science Data*, 15, 2279-2294, 10.5194/essd-15-2279-2023, 2023b.

1002 Li, Y., Shen, J., Zhao, B., Cai, R., Wang, S., Gao, Y., Shrivastava, M., Gao, D., Zheng,
1003 J., Kulmala, M., and Jiang, J.: A dynamic parameterization of sulfuric acid–
1004 dimethylamine nucleation and its application in three-dimensional modeling,
1005 *Atmospheric Chemistry and Physics*, 23, 8789-8804, 10.5194/acp-23-8789-

1006 2023, 2023c.

1007 Liu, L., Yu, F., Tu, K., Yang, Z., and Zhang, X.: Influence of atmospheric conditions
1008 on the role of trifluoroacetic acid in atmospheric sulfuric acid–dimethylamine
1009 nucleation, *Atmospheric Chemistry and Physics*, 21, 6221-6230, 10.5194/acp-
1010 21-6221-2021, 2021.

1011 Liu, L., Zhong, J., Vehkamaki, H., Kurten, T., Du, L., Zhang, X., Francisco, J. S., and
1012 Zeng, X. C.: Unexpected quenching effect on new particle formation from the
1013 atmospheric reaction of methanol with SO₃, *Proc Natl Acad Sci U S A*, 116,
1014 24966-24971, 10.1073/pnas.1915459116, 2019.

1015 Lu, Y., Liu, L., Ning, A., Yang, G., Liu, Y., Kurtén, T., Vehkamäki, H., Zhang, X., and
1016 Wang, L.: Atmospheric Sulfuric Acid - Dimethylamine Nucleation Enhanced
1017 by Trifluoroacetic Acid, *Geophysical Research Letters*, 47,
1018 10.1029/2019gl085627, 2020.

1019 Ma, F., Xie, H. B., Elm, J., Shen, J., Chen, J., and Vehkamaki, H.: Piperazine
1020 Enhancing Sulfuric Acid-Based New Particle Formation: Implications for the
1021 Atmospheric Fate of Piperazine, *Environ Sci Technol*, 53, 8785-8795,
1022 10.1021/acs.est.9b02117, 2019.

1023 McGrath, M. J., Olenius, T., Ortega, I. K., Loukonen, V., Paasonen, P., Kurtén, T.,
1024 Kulmala, M., and Vehkamäki, H.: Atmospheric Cluster Dynamics Code: a
1025 flexible method for solution of the birth-death equations, *Atmospheric
1026 Chemistry and Physics*, 12, 2345-2355, 10.5194/acp-12-2345-2012, 2012.

1027 Mylllys, N., Chee, S., Olenius, T., Lawler, M., and Smith, J.: Molecular-Level
1028 Understanding of Synergistic Effects in Sulfuric Acid-Amine-Ammonia
1029 Mixed Clusters, *J Phys Chem A*, 123, 2420-2425, 10.1021/acs.jpca.9b00909,
1030 2019.

1031 Ning, A. and Zhang, X.: The synergistic effects of methanesulfonic acid (MSA) and
1032 methanesulfinic acid (MSIA) on marine new particle formation, *Atmospheric
1033 Environment*, 269, 10.1016/j.atmosenv.2021.118826, 2022.

1034 Ning, A., Liu, L., Ji, L., and Zhang, X.: Molecular-level nucleation mechanism of
1035 iodic acid and methanesulfonic acid, *Atmospheric Chemistry and Physics*, 22,
1036 6103-6114, 10.5194/acp-22-6103-2022, 2022.

1037 Ning, A., Zhang, H., Zhang, X., Li, Z., Zhang, Y., Xu, Y., and Ge, M.: A molecular-
1038 scale study on the role of methanesulfinic acid in marine new particle
1039 formation, *Atmospheric Environment*, 227, 10.1016/j.atmosenv.2020.117378,
1040 2020.

1041 Ning, A., Shen, J., Zhao, B., Wang, S., Cai, R., Jiang, J., Yan, C., Fu, X., Zhang, Y., Li,
1042 J., Ouyang, D., Sun, Y., Saiz-Lopez, A., Francisco, J., and Zhang, X.:
1043 Overlooked significance of iodic acid in new particle formation in the
1044 continental atmosphere, *Proc Natl Acad Sci U S A*, 2024. In [pressPreparation](#).

1045 [Olenius, T., Kupiainen-Maatta, O., Ortega, I. K., Kurten, T., and Vehkamaki, H.: Free
1046 energy barrier in the growth of sulfuric acid-ammonia and sulfuric acid-
1047 dimethylamine clusters, J Chem Phys, 139, 084312, 10.1063/1.4819024, 2013.](#)

1048 [Olenius, T., Halonen, R., Kurtén, T., Henschel, H., Kupiainen - Määttä, O., Ortega, I.,](#)
1049 [K., Jen, C. N., Vehkamäki, H., and Riipinen, I.: New particle formation from](#)
1050 [sulfuric acid and amines: Comparison of monomethylamine, dimethylamine,](#)
1051 [and trimethylamine, Journal of Geophysical Research: Atmospheres, 122,](#)
1052 [7103-7118, 10.1002/2017jd026501, 2017.](#)

1053 [Olenius, T. and Roldin, P.: Role of gas-molecular cluster-aerosol dynamics in](#)
1054 [atmospheric new-particle formation, Sci Rep, 12, 10135, 10.1038/s41598-022-](#)
1055 [14525-y, 2022.](#)

1056 [Olin, M., Patoulas, D., Kuuluvainen, H., Niemi, J. V., Rönkkö, T., Pandis, S. N.,](#)
1057 [Riipinen, I., and Dal Maso, M.: Contribution of traffic-originated nanoparticle](#)
1058 [emissions to regional and local aerosol levels, Atmospheric Chemistry and](#)
1059 [Physics, 22, 1131-1148, 10.5194/acp-22-1131-2022, 2022.](#)

1060 Ortega, I. K., Kupiainen, O., Kurtén, T., Olenius, T., Wilkman, O., McGrath, M. J.,
1061 Loukonen, V., and Vehkamäki, H.: From quantum chemical formation free
1062 energies to evaporation rates, Atmospheric Chemistry and Physics, 12, 225-
1063 235, 10.5194/acp-12-225-2012, 2012.

1064 Riccobono, F., Schobesberger, S., Scott, C. E., Dommen, J., Ortega, I. K., Rondo, L.,
1065 Almeida, J., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Downard,
1066 A., Dunne, E. M., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A.,
1067 Hansel, A., Junninen, H., Kajos, M., Keskinen, H., Kupc, A., Kurten, A.,
1068 Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot, S.,
1069 Nieminen, T., Onnela, A., Petaja, T., Praplan, A. P., Santos, F. D., Schallhart,
1070 S., Seinfeld, J. H., Sipila, M., Spracklen, D. V., Stozhkov, Y., Stratmann, F.,
1071 Tome, A., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Vrtala, A., Wagner,
1072 P. E., Weingartner, E., Wex, H., Wimmer, D., Carslaw, K. S., Curtius, J.,
1073 Donahue, N. M., Kirkby, J., Kulmala, M., Worsnop, D. R., and Baltensperger,
1074 U.: Oxidation Products of Biogenic Emissions Contribute to Nucleation of
1075 Atmospheric Particles, Science, 344, 717-721, 10.1126/science.1243527,
1076 2014.

1077 Semeniuk, K. and Dastoor, A.: Current state of aerosol nucleation parameterizations
1078 for air-quality and climate modeling, Atmospheric Environment, 179, 77-106,
1079 10.1016/j.atmosenv.2018.01.039, 2018.

1080 Stolzenburg, D., Simon, M., Ranjithkumar, A., Kürten, A., Lehtipalo, K., Gordon, H.,
1081 Ehrhart, S., Finkenzeller, H., Pichelstorfer, L., Nieminen, T., He, X.-C., Brilke,
1082 S., Xiao, M., Amorim, A., Baalbaki, R., Baccarini, A., Beck, L., Bräkling, S.,
1083 Caudillo Murillo, L., Chen, D., Chu, B., Dada, L., Dias, A., Dommen, J.,
1084 Duplissy, J., El Haddad, I., Fischer, L., Gonzalez Carracedo, L., Heinritzi, M.,
1085 Kim, C., Koenig, T. K., Kong, W., Lamkaddam, H., Lee, C. P., Leiminger, M.,
1086 Li, Z., Makhmutov, V., Manninen, H. E., Marie, G., Marten, R., Müller, T.,
1087 Nie, W., Partoll, E., Petäjä, T., Pfeifer, J., Philippov, M., Rissanen, M. P.,
1088 Rörup, B., Schobesberger, S., Schuchmann, S., Shen, J., Sipilä, M., Steiner,
1089 G., Stozhkov, Y., Tauber, C., Tham, Y. J., Tomé, A., Vazquez-Pufléau, M.,

1090 Wagner, A. C., Wang, M., Wang, Y., Weber, S. K., Wimmer, D., Wlasits, P. J.,
1091 Wu, Y., Ye, Q., Zauner-Wieczorek, M., Baltensperger, U., Carslaw, K. S.,
1092 Curtius, J., Donahue, N. M., Flagan, R. C., Hansel, A., Kulmala, M.,
1093 Lelieveld, J., Volkamer, R., Kirkby, J., and Winkler, P. M.: Enhanced growth
1094 rate of atmospheric particles from sulfuric acid, *Atmospheric Chemistry and*
1095 *Physics*, 20, 7359-7372, 10.5194/acp-20-7359-2020, 2020.

1096 Svenhag, C., Sporre, M. K., Olenius, T., Yazgi, D., Blichner, S. M., Nieradzik, L. P.,
1097 and Roldin, P.: Implementing detailed nucleation predictions in the Earth
1098 system model EC-Earth3.3.4: sulfuric acid-ammonia nucleation, EGUsphere
1099 [preprint], <https://doi.org/10.5194/egusphere-2023-2665>, 2024.

1100 Thomas, J. M., He, S., Larriba-Andaluz, C., DePalma, J. W., Johnston, M. V., and
1101 Hogan, C. J., Jr.: Ion mobility spectrometry-mass spectrometry examination of
1102 the structures, stabilities, and extents of hydration of dimethylamine-sulfuric
1103 acid clusters, *Phys Chem Chem Phys*, 18, 22962-22972, 10.1039/c6cp03432b,
1104 2016.

1105 Xiao, M., Hoyle, C. R., Dada, L., Stolzenburg, D., Kürten, A., Wang, M.,
1106 Lamkaddam, H., Garmash, O., Mentler, B., Molteni, U., Baccarini, A., Simon,
1107 M., He, X.-C., Lehtipalo, K., Ahonen, L. R., Baalbaki, R., Bauer, P. S., Beck,
1108 L., Bell, D., Bianchi, F., Brilke, S., Chen, D., Chiu, R., Dias, A., Duplissy, J.,
1109 Finkenzeller, H., Gordon, H., Hofbauer, V., Kim, C., Koenig, T. K.,
1110 Lampilahti, J., Lee, C. P., Li, Z., Mai, H., Makhmutov, V., Manninen, H. E.,
1111 Marten, R., Mathot, S., Mauldin, R. L., Nie, W., Onnela, A., Partoll, E., Petäjä,
1112 T., Pfeifer, J., Pospisilova, V., Quéléver, L. L. J., Rissanen, M., Schobesberger,
1113 S., Schuchmann, S., Stozhkov, Y., Tauber, C., Tham, Y. J., Tomé, A., Vazquez-
1114 Pufleau, M., Wagner, A. C., Wagner, R., Wang, Y., Weitz, L., Wimmer, D., Wu,
1115 Y., Yan, C., Ye, P., Ye, Q., Zha, Q., Zhou, X., Amorim, A., Carslaw, K.,
1116 Curtius, J., Hansel, A., Volkamer, R., Winkler, P. M., Flagan, R. C., Kulmala,
1117 M., Worsnop, D. R., Kirkby, J., Donahue, N. M., Baltensperger, U., El
1118 Haddad, I., and Dommen, J.: The driving factors of new particle formation and
1119 growth in the polluted boundary layer, *Atmospheric Chemistry and Physics*,
1120 21, 14275-14291, 10.5194/acp-21-14275-2021, 2021.

1121 Xie, H. B., Elm, J., Halonen, R., Myllys, N., Kurten, T., Kulmala, M., and Vehkamaki,
1122 H.: Atmospheric Fate of Monoethanolamine: Enhancing New Particle
1123 Formation of Sulfuric Acid as an Important Removal Process, *Environ Sci*
1124 *Technol*, 51, 8422-8431, 10.1021/acs.est.7b02294, 2017.

1125 Yang, S., Liu, Z., Clusius, P. S., Liu, Y., Zou, J., Yang, Y., Zhao, S., Zhang, G., Xu, Z.,
1126 Ma, Z., Yang, Y., Sun, J., Pan, Y., Ji, D., Hu, B., Yan, C., Boy, M., Kulmala,
1127 M., and Wang, Y.: Chemistry of new particle formation and growth events
1128 during wintertime in suburban area of Beijing: Insights from highly polluted
1129 atmosphere, *Atmospheric Research*, 255, 10.1016/j.atmosres.2021.105553,
1130 2021.

1131 Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H.,

1132 Mazon, S. B., Ehn, M., Paasonen, P., Sipila, M., Wang, M., Wang, X., Xiao,
1133 S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, F., Li, L., Wang, H.,
1134 Qiao, L., Yang, X., Chen, J., Kerminen, V. M., Petaja, T., Worsnop, D. R.,
1135 Kulmala, M., and Wang, L.: Atmospheric new particle formation from sulfuric
1136 acid and amines in a Chinese megacity, *Science*, 361, 278-281,
1137 10.1126/science.aa04839, 2018.

1138 [Yazgi, D. and Olenius, T.: J-GAIN v1.1: a flexible tool to incorporate aerosol](#)
1139 [formation rates obtained by molecular models into large-scale models,](#)
1140 [Geoscientific Model Development, 16, 5237-5249, 10.5194/gmd-16-5237-](#)
1141 [2023, 2023.](#)

1142 Yu, F.: Ion-mediated nucleation in the atmosphere: Key controlling parameters,
1143 implications, and look-up table, *Journal of Geophysical Research*, 115,
1144 10.1029/2009jd012630, 2010.

1145 Zhao, B., Shrivastava, M., Donahue, N. M., Gordon, H., Schervish, M., Shilling, J. E.,
1146 Zaveri, R. A., Wang, J., Andreae, M. O., Zhao, C., Gaudet, B., Liu, Y., Fan, J.,
1147 and Fast, J. D.: High concentration of ultrafine particles in the Amazon free
1148 troposphere produced by organic new particle formation, *Proc Natl Acad Sci*
1149 *U S A*, 117, 25344-25351, 10.1073/pnas.2006716117, 2020.

1150 Zheng, H. T., Cai, S. Y., Wang, S. X., Zhao, B., Chang, X., and Hao, J. M.:
1151 Development of a unit-based industrial emission inventory in the Beijing-
1152 Tianjin-Hebei region and resulting improvement in air quality modeling,
1153 *Atmospheric Chemistry and Physics*, 19, 3447-3462, 10.5194/acp-19-3447-
1154 2019, 2019.

1155 [Zhu, S., Yan, C., Zheng, J., Chen, C., Ning, H., Yang, D., Wang, M., Ma, Y., Zhan, J.,](#) ←
1156 [Hua, C., Yin, R., Li, Y., Liu, Y., Jiang, J., Yao, L., Wang, L., Kulmala, M., and](#)
1157 [Worsnop, D. R.: Observation and Source Apportionment of Atmospheric](#)
1158 [Alkaline Gases in Urban Beijing, Environ Sci Technol, 56, 17545-17555,](#)
1159 [10.1021/acs.est.2c03584, 2022.](#)

Formatted: EndNote Bibliography, Indent: Left: 0
cm, Hanging: 7.2 ch

Formatted: Font: Not Bold