

1 Variable contribution of wastewater treatment plant effluents to nitrous oxide emission

2

- 3 Weiyi Tang^{1, *}, Jeff Talbott², Timothy Jones², Bess B. Ward¹
- 4
- 5 Affiliations:
- 6 1. Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
- 7 2. Department of Environmental Quality, Woodbridge, VA 22193, USA
- 8
- 9 *Correspondence to: <u>weiyit@princeton.edu</u>
- 10

11 Abstract

12 Nitrous oxide (N₂O), a potent greenhouse gas and ozone-destroying agent, is produced during 13 nitrogen transformations in both natural and human-constructed environments. Wastewater treatment plants (WWTPs) produce and emit N₂O into the atmosphere during the nitrogen removal 14 process. However, the impact of WWTPs on N₂O emissions in downstream aquatic systems 15 16 remains poorly constrained. By measuring N2O concentrations at a monthly resolution over a year in the Potomac River Estuary, a tributary of Chesapeake Bay in the eastern United States, we found 17 18 a strong seasonal variation in N₂O concentrations and fluxes: N₂O concentrations were larger in fall and winter but the flux was larger in summer and fall. Observations at multiple stations across 19 the Potomac River Estuary revealed hotspots of N2O emissions downstream of WWTPs. N2O 20 concentrations were higher at stations downstream of WWTPs compared to other stations (median: 21 21.2 nM vs 16.2 nM) despite the similar concentration of dissolved inorganic nitrogen, suggesting 22 23 the direct discharge of N₂O from WWTPs into the aquatic system or a higher N₂O production yield 24 in waters influenced by WWTPs. Since wastewater production has increased substantially with the growing population and is projected to continue to rise, accurately accounting for N₂O emissions 25 26 downstream of the WWTPs would better constrain the global N₂O emissions. Efficient N₂O 27 removal, in addition to dissolved nitrogen removal, should be an essential part of water quality 28 control in WWTPs.

29

30 Key words: nitrous oxide, greenhouse gas emission, nitrogen pollution, wastewater treatment

31 plants, spatial and seasonal variation

- 33 Summary: Wastewater treatment plants (WWTPs) are known to be hotspots of greenhouse gas
- 34 emissions. However, the impact of WWTPs on the emission of the greenhouse gas N₂O in
- 35 downstream aquatic environments is less constrained. We found spatially and temporally variable
- 36 but overall higher N₂O concentrations and fluxes in waters downstream of WWTPs, pointing to
- 37 the need for efficient N_2O removal in addition to treating nitrogen in WWTPs.
- 38

39 Graphical abstract

41 Introduction

Nitrogen (N) enters the aquatic environment from agricultural and urban runoff, atmospheric 42 43 deposition, and wastewater treatment plants (WWTPs), potentially leading to eutrophication, 44 especially in densely populated regions (Galloway et al., 2008; Morée et al., 2013). During microbial transformations of N in aquatic systems (e.g., nitrification and denitrification), a 45 powerful greenhouse gas and ozone depleting agent $-N_2O$ – is produced (Quick et al., 2019). 46 47 Aquatic systems are large but highly variable sources of N₂O to the atmosphere (Wang et al., 2023). For example, on a global basis, 0.04 - 0.291 Tg N yr⁻¹ and 0.15 - 0.91 Tg N yr⁻¹ of N₂O are 48 49 estimated to outgas from rivers and estuaries, respectively (Murray et al., 2015; Maavara et al., 2019; Yao et al., 2019). The high end of the estimates in these inland and coastal waters approaches 50 the scale of the global marine N₂O emissions (2.5 - 4.3 Tg N yr⁻¹ in Tian et al., 2020). The large 51 uncertainty in the estimate of aquatic N₂O emission is partly due to high spatial and temporal 52 variabilities of N₂O flux within/across rivers and estuaries and the lack of observations to capture 53 such variability. Therefore, sampling and measurements of N₂O concentration at high spatial and 54 55 temporal resolutions would be desirable to constrain aquatic N₂O emission.

56

57 The major factors that appear to correlate with N₂O concentration are dissolved inorganic nitrogen 58 (DIN) and oxygen status (Hu et al., 2016; Zheng et al., 2022). Waste and wastewater release large 59 amounts of DIN into the aquatic environment. Meanwhile, waste and wastewater emit ~0.3 Tg N yr⁻¹ of N₂O (estimated from 2007-2016) into the atmosphere globally, an amount that is 60 continuously increasing at a rate of 0.04 ± 0.01 Tg N yr⁻¹ per decade (Tian et al., 2020). N₂O 61 emission from WWTPs accounts for \sim 5.2% of total N₂O emission in 2021 in US (EPA, 2023). 62 63 N₂O emission from different WWTPs is highly variable, and is normally calculated as a function of DIN loading into the WWTPs, using an N₂O emission factor (Kampschreur et al., 2009). N₂O 64 emission factors range from 0.16% to 4.5% (N₂O emitted/DIN loading) (De Haas and Andrews, 65 2022; Eggleston et al., 2006). In addition to direct emission from the WWTPs, N₂O can be 66 discharged via WWTP effluent and produced due to DIN release from WWTP effluent into the 67 creeks, rivers, and other downstream aquatic systems (McElroy et al., 1978; Beaulieu et al., 2010; 68 Masuda et al., 2018). However, the impact of WWTPs on downstream N₂O concentration is less 69 70 studied and the downstream N₂O emission remains poorly constrained. Here we specifically compared the N₂O concentration upstream and downstream of the WWTPs in order to assess the 71

- 72 impact of WWTPs on N₂O emission, which could help to constrain the emission factor associated
- 73 with the WWTPs effluents.
- 74

The Potomac River is a major tributary of the Chesapeake Bay – the largest estuary in the United 75 States. The Potomac River Estuary is located in a highly populated area, mainly surrounded by 76 77 Washington, D.C., and the states of Virginia and Maryland in the eastern United States. The Potomac River Estuary has experienced ecological degradation for decades partly due to excess 78 nutrient inputs including from the effluents of WWTPs (Bricker et al., 2014; Jaworski et al., 2007). 79 80 For example, the Blue Plains Advanced WWTP in Washington, D.C. is one of largest WWTPs in the world, treating an average of ~1454 million liters of water per day. Pioneering work in 1978 81 showed that Blue Plains WWTP was a large source of nitrogen to the Potomac River Estuary, 82 triggering high N₂O production and concentration downstream (McElroy et al., 1978). Thanks to 83 higher standards mandated by governmental agencies (nitrogen concentration below 7.5 mg L⁻¹) 84 85 starting in 1980s and the technical improvements in N removal from the wastewater, the nitrogen concentration in effluents of WWTPs in the Potomac River has decreased substantially (Pennino 86 et al., 2016). However, the concurrent effect on N_2O concentration is largely unknown. The 87 Department of Environmental Quality (DEQ) of Virginia maintains an approximately monthly 88 routine monitoring program for water quality (e.g., nitrogen concentration, phosphorus 89 90 concentration, chlorophyll concentration) and physical properties (e.g., temperature, salinity, pH, and dissolved oxygen concentration) in the Potomac River Estuary but not for N₂O. Therefore, we 91 92 collaborated with DEQ of Virginia to measure the spatial and temporal variation of N2O 93 concentration in the Potomac River Estuary.

95 Materials and Methods

96 Sample collection for N₂O and nutrients

97 Surface waters at ~0.5 m depth at eleven stations in the tidal Potomac River Estuary were sampled monthly or bimonthly (depending on the weather) for the analysis of nitrogen concentration, and 98 both concentration and nitrogen isotopes of N_2O from April 2022 to May 2023 (Figure 1). The 99 eleven stations are characterized into 3 groups: embayments downstream of WWTPs, embayments 100 101 not associated with WWTPs, and the central channel of the Potomac River. The embayment stations have been routinely sampled for water quality analyses by the DEQ of Virginia since the 102 early 1970's. The central channel stations were added for this study. The purposes of this sampling 103 104 design are to evaluate the impact of WWTPs on downstream distribution of nitrogen nutrients and 105 N₂O, and to compare nitrogen nutrients and N₂O concentrations between edge and central channel 106 of the river. The central channel is likely affected both by the Potomac mainstem flow and by the input from tributaries, while the embayment stations may be mainly affected by water flow from 107 108 tributaries but also influenced by the tidal cycle (see the salinity change in Supplementary Figure 1b). Water samples for N₂O concentration were collected via a submersible pump into 60 mL 109 serum bottles after overflowing three times the bottle's volume. After creating a 3 mL air 110 headspace, the serum bottles were immediately sealed with butyl stoppers and aluminum crimps 111 112 and preserved with 0.5 mL of 10M NaOH solution to stop biological activities. NaOH has been shown to be an effective and less environmentally hazardous preservative for N₂O and nutrient 113 analysis (Frame et al., 2016; Wong et al., 2017). 114

- Figure 1. Sampling stations in the Potomac River Estuary including embayment stations associated
 with WWTPs (red circles) and without WWTPs (blue circles), and central channel stations (yellow
 circles). Locations of WWTPs (Noman Cole, Mooney and Aquia) are shown in red stars.
- 120 Creeks/rivers with sampling stations are numbered in the map with names shown in the legend.
- 121

122 In addition to the routine sampling in the Potomac River Estuary, we also sampled its tributaries, 123 some of which were associated with the WWTPs, on May 18, 2023 (Figure 1) to specifically evaluate the impact of WWTPs on downstream N2O concentration. Four creeks/rivers were 124 125 sampled including Neabsco Creek (5 stations: 2 stations upstream and 3 stations downstream of Mooney WWTP), Occoquan River (3 stations, no WWTP), Pohick Creek (4 stations: 2 stations 126 127 upstream and 2 stations downstream of Noman Cole WWTP), and Accotink Creek (2 stations, no 128 WWTP). Mooney WWTP discharges ~54.9 million liters of water and 147 kg N per day into the 129 Neabsco Creek while Noman Cole WWTP discharges ~140.8 million liters of water and 370 kg N per day into Pohick Creek. Because Aquia WWTP discharges much less water and N into the 130 Aquia Creek (~21.2 million liters per day and 35 kg N per day), its impact was not specially 131 132 investigated. Since water depths of these creeks/rivers were shallow, the water samples were collected by directly submerging 60 mL serum bottles into the surface water (~ 0.1 m) and 133 preserving them as described above. 134

135

Besides N₂O sampling, temperature, salinity, and dissolved O₂ concentration were recorded via a
YSI EXO1 sonde. Chlorophyll-a samples (300 mL) were filtered onto GF/F filters and kept on ice
in a cooler. The filters were then kept frozen at -20°C in the lab until analysis within 3 months
(Arar and Collins, 1997). Samples of total nitrogen and phosphorus (both particulate and
dissolved) were collected into 250 mL HDPE bottles and kept in ice in a cooler until analysis
within 48 hours on land (Rice et al., 2012; EPA, 1983).

142

143 Measurement of N₂O and nutrient concentrations

144 N₂O in the serum bottles was stripped by helium carrier gas into a Delta V Plus mass spectrometer

145 (Thermo) for the analyses of N₂O concentration and isotope ratio (m/z = 44, 45, 46) (Tang et al.,

146 2022). The total amount of N₂O in the serum bottles was determined using a standard curve of

147 N₂O peak area with N₂O standards containing a known amount of N₂O reference gas (0, 0.207,

148 0.415, 0.623, 0.831, 1.247 nmol N₂O). The total amount of N₂O dissolved in the water was 149 calculated after accounting for the amount of N₂O in 3 mL air headspace. The N₂O concentration 150 in samples was then calculated from the total amount of N₂O dissolved in the water divided by the 151 volume of water in the serum bottles. The detection limit and precision of N₂O concentration 152 measurement were 1.29 and 0.33 nM, respectively. We used N₂O produced from nitrate isotope 153 standards (USGS34 = -1.8 ‰ and IAEA = 4.7 ‰) to calibrate for δ^{15} N of N₂O samples.

154

After analyzing N₂O concentration, samples were neutralized to pH \sim 7 by adding 10% 155 hydrochloric acid. NO₂⁻ + NO₃⁻ (NO_x⁻) concentration in these samples was measured using the 156 157 vanadium (III) reduction method by converting NO_x^{-1} to NO, which was then quantified by 158 chemiluminescence analyzer (Braman and Hendrix, 1989). The detection limit of NO_xconcentration is $0.15 \,\mu$ M. NH₄⁺ and NO₂⁻ concentrations were measured at a few selected stations 159 using the fluorometric orthophthalaldehyde method (Holmes et al., 1999) and the colorimetric 160 method (Hansen and Koroleff, 1999), respectively. Their concentrations were much smaller than 161 NO_3 alone, mostly accounting for less than 10% of the DIN concentration. Therefore, we only 162 present NO_x^- data in this study. 163

164

177

165 N₂O flux calculation

Surface N₂O flux is calculated using the following equation: $Flux = k \times (N_2O_{measured} - N_2O_{measured})$ 166 167 $N_2O_{equibrium}$). The equilibrium N₂O concentration ($N_2O_{equibrium}$) was calculated based on the solubility of N₂O (Weiss and Price, 1980) and the gas transfer velocity (k) was estimated based on 168 the empirical relationship between physical conditions and gas fluxes: $k = 0.251 \times U^2 \times U^2$ 169 $\left(\frac{sc}{660}\right)^{-0.5}$ (Wanninkhof, 2014). U is the wind speed at the 10 m height obtained from NCEP 170 reanalysis (Kalnay et al., 1996) and Sc is the Schmidt number. We acknowledge large variations 171 in estimating k values in the riverine and estuarine aquatic systems by using different empirical 172 173 models (Rosentreter et al., 2021; Raymond and Cole, 2001; Borges et al., 2004). For instance, the effect of water velocity and water depth on gas transfer velocity was not considered in the 174 parameterization above. Therefore, we focus on comparing the N₂O fluxes among different 175 176 stations and their driving factors instead of their absolute magnitude.

178 Results and discussion

179 Spatial and temporal variations of N₂O concentrations in the Potomac River Estuary

Along the roughly 50 km sampling transect in the Potomac River Estuary, NO_x^{-1} concentration 180 decreased from 98 to $<1 \mu$ M from upstream to downstream (Figure 2a). NO_x⁻ concentration also 181 showed a clear seasonal pattern: higher in winter and spring while lower in summer and fall. The 182 spatial and temporal patterns are likely attributable to the distribution of nutrient sources into the 183 Potomac River, DIN uptake and other removal processes along the river (Glibert et al., 1995; 184 Carstensen et al., 2015). For example, the maximum N loading into the Chesapeake Bay occurs in 185 winter and spring (Da et al., 2018). Meanwhile, N2O concentration decreased from approximately 186 187 40 to 10 nM along the sampling transect and was higher in the fall and winter (Figure 2b). Since temperature decreased from ~31°C in summer to 4°C in winter (Supplementary Figure 1a), the 188 increase in N₂O solubility in colder water during winter partly explained the seasonal change. In 189 190 contrast, N₂O saturation had higher values in summer and fall (Figure 2c), suggesting a higher N₂O production in summer and fall. It is worth noting that N₂O saturation was above 100% at all 191 sampling stations with a maximum reaching 500%, indicating the Potomac River Estuary was a 192 193 consistent and strong source of N₂O to the atmosphere. N₂O flux ranged from 0.4 to 14.5 µmol N₂O m⁻² d⁻¹ (Figure 2d). N₂O concentration (median: 18.2 nM) and flux (median: 2.4 µmol N₂O 194 $m^{-2} d^{-1}$) in the Potomac River Estuary were substantially higher than in the mainstem of the 195 Chesapeake Bay (2.6-20.9 nM N₂O with a median value at 10.6 nM and -0.3-4.3 μ mol N₂O m⁻² d⁻ 196 ¹ with a median at 0.5 µmol N₂O m⁻² d⁻¹ (Tang et al., 2022; Laperriere et al., 2019)). Therefore, the 197 198 tributaries of the Chesapeake Bay (i.e., Potomac River) are intense sources of N₂O to the atmosphere. 199 200

201

Figure 2. Spatial and temporal variations of NO_x^- concentration (a), N₂O concentration (b), N₂O 202 saturation (c), N₂O flux (d) and δ^{15} N of N₂O (e). The distance shows from upstream to downstream 203 204 stations in the Potomac River. Embayment stations associated with WWTPs (red circles and lines) and without WWTPs (blue circles and lines), and central channel stations (yellow circles and 205 206 lines). For the boxplots, the red line in each box is the median. The bottom and top of each box are the 25th and 75th percentiles of the observations, respectively. The error bars represent 1.5 times 207 the interquartile range away from the bottom or top of the box, with black + signs showing outliers 208 beyond that range. Embayment stations associated with WWTPs had significantly higher N₂O 209 concentration, N₂O saturation, N₂O flux and δ^{15} N values compared to other stations (p<0.01, t-210 test) but not significantly different NO_x concentration. 211

Stations close to each other had similar NO_x concentrations (e.g., upstream stations > downstream 213 stations), regardless of station category (i.e., with WWTP, without WWTP, central channel of the 214 Potomac River). In contrast, N₂O concentrations varied within locations according to the station 215 216 category: N₂O concentrations were substantially higher at stations downstream of WWTPs (except 217 downstream of the Aquia WWTP, which discharges a much smaller amount of treated water and N into the river) (p < 0.01, *t*-test). N₂O concentrations were similar between stations in embayments 218 219 without WWTPs and the central channel (Figure 2). This suggests these WWTPs are efficient in 220 removing DIN from sewage and other sources but WWTPs may discharge N₂O directly into the 221 effluent or enhance downstream N₂O production (e.g., higher N₂O production yield from the same 222 amount of DIN). This effect extended to our sampling stations ~1.8-4.2 km downstream of the 223 WWTPs. Particularly, the highest N₂O concentration of up to 40 nM was found at two stations 224 downstream of the Noman Cole and Mooney WWTPs on August 23, 2022. High-resolution spatial 225 and temporal sampling allowed us to capture these N₂O hotspots. Previous studies have shown the 226 impact of WWTPs on downstream N₂O concentration. For example, the highest N₂O concentration 227 ~675 nM in the Potomac River was measured near the discharge of the Blue Plains WWTP in 1977 (McElroy et al., 1978). Highest N₂O emissions in the Ohio River near Cincinnati were 228 229 attributed to direct input of N₂O from WWTPs effluent (Beaulieu et al., 2010).

230

In addition, higher nitrogen isotopic signature (δ^{15} N) of N₂O also suggests the distinct sources or 231 cycling processes of N₂O associated with WWTPs in the Potomac River Estuary (median δ^{15} N of 232 N₂O at 13‰ vs 6‰ for stations with or without the influence by WWTPs, Figure 2e). In 233 234 comparison, the average δ^{15} N of N₂O in the tropospheric air is around 6.55‰ (Snider et al., 2015). δ^{15} N of N₂O produced in WWTPs depends on the treatment stages and aeration conditions 235 (Toyoda et al., 2011; Tumendelger et al., 2014). For example, the average $\delta^{15}N$ values were 236 reported to be -24.5‰ and 0‰ respectively for N₂O produced from nitrification during oxic 237 treatment versus N2O produced from anaerobic denitrification in a California WWTP (Townsend-238 Small et al., 2011). Our observed δ^{15} N of N₂O downstream of WWTPs was higher than the values 239 found in these urban WWTPs. One of the reasons for the increased $\delta^{15}N$ of N₂O may be partial 240 N₂O reduction via denitrification in the WWTPs or in downstream creeks; this denitrification 241 effect has been seen in the marine oxygen minimum zones (Kelly et al., 2021). Denitrification as 242 243 the cause of the elevated δ^{15} N is partly supported by the higher δ^{15} N of N₂O when NO_x⁻ was

reduced to less than 40 μ M, suggesting the occurrence of N₂O reduction when the concentration of other denitrification substrates became low (Supplementary Figure 2). The influence of denitrification on unique isotopic signatures of N₂O produced from WWTPs has also been observed in Tama River in Japan (Toyoda et al., 2009).

248

249 Environmental controls on N₂O concentrations

250 N_2O concentrations showed a strong positive correlation with total N (r=0.62, p<0.01) and NO_x⁻ concentrations (r=0.51, p<0.01) (Figure 3a). Correlation analyses done separately for stations with 251 or without WWTPs had similar patterns (Supplementary Figure 3). A better correlation between 252 253 the N₂O concentration and total N may indicate the contribution of other N sources besides NO_x^{-1} 254 to N₂O production. N₂O could be produced from nitrification in the process of oxidizing NH_4^+ to 255 NO_x in the oxic environment as previously shown in the oxygenated mainstem of the Chesapeake 256 Bay (Tang et al., 2022). However, we can't exclude the possibility of N_2O production from denitrification associated with anaerobic microsites in particles or in sediment (Beaulieu et al., 257 258 2011; Wan et al., 2023). Future investigations with ¹⁵N tracers should be conducted to differentiate N₂O production pathways around the WWTPs. Furthermore, N₂O concentration was negatively 259 260 correlated with temperature since higher temperature reduced the N₂O solubility. Although 261 previous studies have showed dissolved oxygen to be an important driver of N₂O concentrations 262 or fluxes in rivers and estuaries (Zheng et al., 2022; Rosamond et al., 2012; Wang et al., 2015), we 263 did not find a strong dependence of N₂O on oxygen concentrations in the Potomac River Estuary (Figure 3a), probably because of the overall oxygenated conditions (Supplementary Figure 1c). 264 265

Figure 3. (a) Correlation coefficients among different environmental factors and N₂O
concentration. (b) Relationship between N₂O and NO_x⁻ concentration. P: total phosphorus
concentration; [Chla]: chlorophyll a concentration.

270

271 The significant positive relationship between N_2O and NO_x concentration existed for samples collected at stations from all three different categories (Figure 3b). N₂O concentrations at stations 272 273 downstream of WWTPs were notably higher than at other stations not associated with WWTPs 274 even under the similar range of NO_x^- concentration. The larger slope of N_2O concentration vs $NO_x^$ concentration at stations downstream of WWTPs may be related to the direct input of N₂O from 275 276 WWTPs into the downstream waters or different N₂O production pathways and production yields that deserve further investigations. The DIN concentration has been found to be a good predictor 277 278 of N₂O concentration and emission in many other rivers and estuaries (Zheng et al., 2022; Reading 279 et al., 2020; Murray et al., 2015). However, the correlation varied spatially, which may be affected 280 by the variable N₂O emission factors from DIN cycling. The emission factors are affected by 281 temperature, concentration and forms of N, oxygen, organic carbon concentration and many other 282 factors (Hu et al., 2016). The external N₂O input (e.g., input from WWTPs) could also affect the 283 relationship between N₂O and DIN concentration (Dong et al., 2023). Compared to DIN (~28 to 71 μ M) and N₂O concentrations (~16 to 61 nM) measured approximately 45 years ago in the same 284 section of the Potomac River (McElroy et al., 1978), current DIN and N₂O concentrations have 285 slightly decreased. Thus, an additional benefit of nutrient regulation is the reduction of greenhouse 286 gas - N₂O - emission, beyond improving water quality. 287

288

289 Since N₂O concentrations had the strongest correlation with total N concentrations (reflecting the N₂O production potential) and temperature (affecting N₂O solubility), we developed a predictive 290 291 model of N₂O concentration based on total N and temperature. Predictions were performed separately for stations with WTTPs (N_2O concentration = $0.115 \times total N - 0.241 \times$ 292 293 temperature + 17.185), (r=0.78; p<0.01) and without WWTPs (N_2O concentration = $0.049 \times total N - 0.298 \times temperature + 18.888$), (r=0.81, p<0.01). The observed N₂O 294 variability was generally captured by these simple linear models (Supplementary Figure 4) but 295 there were variabilities in the observations remaining to be explained. Addition of other predictors 296 297 did not significantly improve the model performance, so we chose the simple predictive model 298 that is mechanistically understandable. We then estimated the N₂O concentration at an embayment 299 station in the Occoquan River using total N concentration and temperature that were measured since 2008 by the DEQ of Virginia monitoring program. N₂O concentrations showed a clear 300 301 seasonality: higher in winter (up to 24.8 nM) and lower in summer (down to 11.7 nM) (Supplementary Figure 5). N₂O concentrations decreased slightly (-0.1 nM /year, not statistically 302 303 significant) possibly due to the nutrient reduction (total N concentration decreasing at non-304 statistically significant rate of 0.5 μ M/year) in the Occoquan River over the last 14 years. 305 Continuation of environmental monitoring in the Potomac River (e.g., N nutrients and 306 temperature), which is much easier than sampling and measuring N_2O gas, could be used to 307 indirectly estimate the changes in N₂O concentration in the future. These predictors are likely to 308 be important in other estuaries, but the weighting would vary among locations.

309

310 Impact of wastewater treatment plants on N₂O concentrations and emissions

311 To further evaluate how WWTPs affect the N₂O distribution in the Potomac River, we measured 312 N₂O concentrations upstream and downstream of the two WWTP effluents (Mooney and Noman 313 Cole in Neabsco Creek and Pohick Creek, respectively) and compared them to N₂O concentrations measured in two creeks that do not have WWTPs. Interestingly, the N₂O concentration at the 314 315 station upstream of Mooney WWTP in Neabsco Creek was higher than the N2O concentration at the station downstream of Mooney WWTP (20.1 vs 15.0 nM) (Figure 4a). The exact mechanisms 316 317 were not clear but one of the potential reasons could be the influence by tidal cycles: high tide during the sampling time (salinity was 0.17 instead of 0) may have reversed the water flow and 318

diluted the WWTP effluent with low N₂O concentration Potomac water (12.1 nM at the outflow 319 320 of Neabsco Creek into the Potomac River Estuary). In contrast, we found substantially higher N₂O concentration downstream of the Noman Cole WWTP (30.8 nM downstream vs 16.7 nM 321 upstream) in the Pohick Creek, which is less affected by the tidal cycle due to its semi-closed 322 geography (salinity was 0.12). The high downstream N₂O concentration may suggest the direct 323 addition of N₂O from WWTP effluent to the downstream environment. Furthermore, $\delta^{15}N$ of N₂O 324 in stations downstream of WWTPs were generally higher than the other two creeks that do not 325 have WWTPs (Figure 4b), confirming the distinct source of N₂O production by WWTPs found in 326 the Potomac River Estuary. Overall, the influence of WWTP effluents on downstream distribution 327 of N₂O is variable, and could be affected by the physical movement of water. 328 329

Figure 4. (a) Color-coded N₂O concentration at creek sampling stations on May 18, 2023. WWTPs 331 332 (Mooney and Noman Cole) are shown in red stars. The insert figures show the change in N₂O concentration as a function of distance up or down stream from the WWTPs. Creeks/rivers with 333 334 sampling stations are numbered in the map with names shown in the legend. (b) Box plots of NO_x^{-1} , N₂O flux and δ^{15} N of N₂O comparing four creeks. Neabsco and Pohick Creeks with WWTPs are 335 displayed with red color boxes. Red and black circles in the boxplots show the data points of 336 stations downstream and upstream/or without WWTPs, respectively. NO_x, N₂O flux and δ^{15} N of 337 N₂O were clearly higher at stations downstream from the WWTP in Pohick Creek. 338

339

340 Dong et al. (2023) evaluated the potential impact of wastewater nitrogen discharge on estuarine 341 N₂O emissions globally. Here we compiled data from previous studies with direct N₂O 342 measurements in aquatic systems associated with WWTPs (not included in Dong et al., 2023) to 343 assess the global impact of WWTPs on aquatic N₂O concentrations or emissions (McElroy et al., 1978; Hemond and Duran, 1989; Toyoda et al., 2009; Beaulieu et al., 2010; Rosamond et al., 2012; 344 Chun et al., 2020; Masuda et al., 2021; Masuda et al., 2018; Dylla, 2019). WWTP effluents or 345 water downstream of the WWTPs contain some of the highest N₂O concentrations and fluxes 346 347 observed in the aquatic system (Table 1 and Supplementary Figure 6). For example, up to 12,411.4% saturation of N₂O was measured in the effluent of WWTPs in the Tama River in Japan 348 (Toyoda et al., 2009). In addition, N₂O flux up to 40,800 µmol N₂O-N m⁻² d⁻¹ was found 349 downstream of the Regina WWTP in the Wascana Creek in Canada (Dylla, 2019). The 350 351 downstream N_2O flux was >300 times higher than the N_2O flux upstream of the Regina WWTP. In comparison, the maximum N₂O saturation and flux previously reported in a global riverine N₂O 352 dataset were around 2,500% and 12,754 N₂O-N m⁻² d⁻¹ (Hu et al., 2016). Across the sites listed in 353 Table 1, N₂O concentration/saturation/flux downstream of the WWTPs was 1.45 to 374-fold of 354 355 the upstream waters. The only exception was our observed decrease in N₂O concentrations 356 downstream of Mooney WWTP on May 18, 2023, which was likely influenced by the tidal cycle. The wide range of apparent WWTP effect is related to many factors including the variable N_2O 357 358 emission factors in the WWTPs, the ratio of river discharge vs WWTP effluent, the distance from 359 the WWTPs where measurements were conducted and the direction of water flow. Overall, failing to account for the N₂O emission downstream of the WWTPs and its variability would substantially 360 bias estimates of aquatic N₂O emissions. This uncertainty is increased by the fact that only a few 361 observations are available (all in the northern hemisphere) (Supplementary Figure 6) compared to 362 363 >58 000 WWTPs present globally (Ehalt Macedo et al., 2022). It is also important to restrict the N₂O emission via efficient N₂O reduction in the WWTPs considering the projected increase in 364 365 future wastewater production (Qadir et al., 2020).

366

367 Table 1. Global N₂O observations in aquatic systems associated with wastewater treatment plants.

- 368 N₂O data are presented in concentration (nM), saturation (%) or flux (μ mol N₂O-N m⁻² d⁻¹)
- according to how they are reported in different studies.

River/location	WWTP	N2O upstream or in tributaries without WWTP	N ₂ O in WWTP effluent	N ₂ O downstream or in tributaries with WWTP	Average fold change (downstream vs upstream)	Reference
Potomac River/ Washington, D.C., USA	Blue Plains WWTP	11-34 nM		147-318 nM	9.3	McElroy et al., 1978
Assabet River/ Massachusetts, USA	Westborough WWTP	~10 nM	1045 nM	163 nM	16.3	Hemond and Duran. 1989
Tama River/	Plant 1	350.7% saturation	12411.4% saturation	3454.8% saturation	9.8	Toyoda et al., 2009
Tokyo, Japan	Plant 2	219.3%	3326.2%	1029.6%	4.7	
Ohio River/ Cincinnati, USA		27.9 μmol N ₂ O-N m ⁻² d ⁻¹		1068 μmol N2O-N m ⁻² d ⁻¹	38.2	Beaulieu et al., 2010
Grand River/ Ontario, Canada	e.g., Kitchener WWTP	4-12 μmol N2O-N m ⁻² d ⁻¹		9-113 μmol N ₂ O-N m ⁻² d ⁻¹	9.4	Rosamond et al., 2012
Wascana Creek/ Saskatchewan, Canada	Regina WWTP	-32.5 to 109 μmol N ₂ O-N m ⁻² d ⁻¹	227 to 72800 μmol N ₂ O-N m ⁻² d ⁻¹	398 to 40800 μmol N ₂ O-N m ⁻² d ⁻¹	374	Dylla. 2019
Han River/ Seoul, Korea	JNW	39.7 nM	602.1 nM	441.6 nM	11.1	Chun et al., 2020
A-river	A-WWPT	61 nM	493 nM	180 nM	3	Masuda et al., 2021
B-river	B-WWTP	95	246	286	3	Masuda et al., 2018
C-river/Miyagi, Japan	C-WWTP	100	319	145	1.45	
Potomac River	Noman Cole	10.8-29.7 nM		11.87-39.5 nM	1.6	This study
Estuary	Mooney					
/Virginia, USA	Aquia					
Neabsco Creek/ Virginia, USA	Mooney	20.1 nM		15.0 nM	0.75	This study
Pohick Creek/ Virginia, USA	Noman Cole	16.7 nM		30.8 nM	1.84	This study

370

371 Conclusion

372 Taking advantage of the routine water monitoring program by the DEQ of Virginia, we detected 373 strong spatial and temporal variabilities of N2O concentrations and emissions in the Potomac River Estuary, a major tributary of Chesapeake Bay. Observations across the Potomac River Estuary also 374 allowed us to identify hotspots of N2O emissions associated with WWTPs effluents. Higher N2O 375 376 concentrations downstream of WWTPs compared to regions with similar nitrogen nutrient concentrations suggested the direct discharge of dissolved N2O from WWTPs and/or intense N2O 377 production. A survey of globally available data shows N₂O concentrations or emissions are 378 consistently elevated in waters downstream from WWTPs. Future ¹⁵N tracer incubations would 379

380	help to explain the high N_2O concentration downstream of WWTPs by disentangling the N_2O
381	production pathways. In addition, concurrent measurements of the N flux and N_2O concentration
382	downstream of WWTPs will help to constrain overall N_2O emission factors associated with
383	WWTPs. Our work could encourage potential collaborations between scientific community and
384	governmental agencies/the public to better observe the environmental pollution or quality, e.g.,
385	increasing the frequency and resolution of observations for $\mathrm{N}_2\mathrm{O}$ and other greenhouse gases along
386	with many regularly monitored environmental factors like temperature and nutrients. Such efforts
387	may identify previously overlooked sources of N_2O emission and help to better estimate the N_2O
388	emission from aquatic systems.
389	
390	Data availability
391	Data presented in this study has been deposited in Zenodo repository:
392	https://doi.org/10.5281/zenodo.10775250.
393	
394	Author contribution
395	W. T. conceived the study. J. T., T. J. and W. T. collected N_2O samples from the Potomac River
396	Estuary. W. T. analyzed samples and interpreted data with other coauthors. W. T. wrote the first
397	draft of the manuscript with input from B. B. W. All coauthors contributed to the result discussion
398	and manuscript writing.
399	
400	Competing interests
401	The authors declare that they have no conflict of interest.
402	
403	Acknowledgements
404	We thank Catherine Hexter for the help with water sampling in the tributaries of Potomac River
405	on May 18, 2023. We thank Elizabeth Wallace and Lindsay Pagaduan for analyzing the nutrient
406	samples. We thank Virginia Department of Environmental Quality for maintaining the routine
407	sampling and for providing the opportunity to collect N_2O samples in the Potomac River Estuary.
408	This study is supported by Princeton University.
409	

410 **References**

- 411 Arar, E. J. and Collins, G. B.: Method 445.0: In vitro determination of chlorophyll a and
- 412 pheophytin a in marine and freshwater algae by fluorescence, United States Environmental
- 413 Protection Agency, Office of Research and Development, 1997.
- 414 Beaulieu, J. J., Shuster, W. D., and Rebholz, J. A.: Nitrous Oxide Emissions from a Large,
- 415 Impounded River: The Ohio River, Environmental science & technology, 44, 7527-7533,
- 416 10.1021/es1016735, 2010.
- 417 Beaulieu, J. J., Tank, J. L., Hamilton, S. K., Wollheim, W. M., Hall, R. O., Jr., Mulholland, P. J.,
- 418 Peterson, B. J., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., Dodds, W. K., Grimm, N. B.,
- 419 Johnson, S. L., McDowell, W. H., Poole, G. C., Valett, H. M., Arango, C. P., Bernot, M. J., Burgin,
- 420 A. J., Crenshaw, C. L., Helton, A. M., Johnson, L. T., O'Brien, J. M., Potter, J. D., Sheibley, R.
- 421 W., Sobota, D. J., and Thomas, S. M.: Nitrous oxide emission from denitrification in stream and
- 422 river networks, Proceedings of the National Academy of Sciences of the United States of America,
- 423 108, 214-219, 10.1073/pnas.1011464108, 2011.
- 424 Borges, A. V., Vanderborght, J.-P., Schiettecatte, L.-S., Gazeau, F., Ferrón-Smith, S., Delille, B.,
- 425 and Frankignoulle, M.: Variability of the gas transfer velocity of CO₂ in a macrotidal estuary (the
- 426 Scheldt), Estuaries, 27, 593-603, 10.1007/BF02907647, 2004.
- 427 Braman, R. S. and Hendrix, S. A.: Nanogram nitrite and nitrate determination in environmental
- 428 and biological materials by vanadium (III) reduction with chemiluminescence detection,
- 429 Analytical Chemistry, 61, 2715-2718, 1989.
- 430 Bricker, S. B., Rice, K. C., and Bricker, O. P.: From Headwaters to Coast: Influence of Human
- 431 Activities on Water Quality of the Potomac River Estuary, Aquatic Geochemistry, 20, 291-323,
- 432 10.1007/s10498-014-9226-y, 2014.
- 433 Carstensen, J., Klais, R., and Cloern, J. E.: Phytoplankton blooms in estuarine and coastal waters:
- 434 Seasonal patterns and key species, Estuarine, Coastal and Shelf Science, 162, 98-109,
- 435 10.1016/j.ecss.2015.05.005, 2015.
- 436 Chun, Y., Kim, D., Hattori, S., Toyoda, S., Yoshida, N., Huh, J., Lim, J. H., and Park, J. H.:
- 437 Temperature control on wastewater and downstream nitrous oxide emissions in an urbanized river
- 438 system, Water Res, 187, 116417, 10.1016/j.watres.2020.116417, 2020.

- 439 Da, F., Friedrichs, M. A. M., and St-Laurent, P.: Impacts of Atmospheric Nitrogen Deposition and
- 440 Coastal Nitrogen Fluxes on Oxygen Concentrations in Chesapeake Bay, Journal of Geophysical
- 441 Research: Oceans, 123, 5004-5025, 10.1029/2018jc014009, 2018.
- 442 de Haas, D. and Andrews, J.: Nitrous oxide emissions from wastewater treatment Revisiting the
- 443 IPCC 2019 refinement guidelines, Environmental Challenges, 8, 10.1016/j.envc.2022.100557,444 2022.
- 445 Dong, Y., Liu, J., Cheng, X., Fan, F., Lin, W., Zhou, C., Wang, S., Xiao, S., Wang, C., Li, Y., and
- 446 Li, C.: Wastewater-influenced estuaries are characterized by disproportionately high nitrous oxide
- 447 emissions but overestimated IPCC emission factor, Communications Earth & Environment, 4,
- 448 10.1038/s43247-023-01051-6, 2023.
- 449 Dylla, N. P.: Downstream effects on denitrification and nitrous oxide from an advanced
- 450 wastewater treatment plant upgrade, University of Saskatchewan, 2019.
- 451 Eggleston, H., Buendia, L., Miwa, K., Ngara, T., and Tanabe, K.: 2006 IPCC guidelines for
- 452 national greenhouse gas inventories, 2006.
- 453 Ehalt Macedo, H., Lehner, B., Nicell, J., Grill, G., Li, J., Limtong, A., and Shakya, R.: Distribution
- 454 and characteristics of wastewater treatment plants within the global river network, Earth System
- 455 Science Data, 14, 559-577, 10.5194/essd-14-559-2022, 2022.
- 456 EPA, U.: Method 365.4: Phosphorous, total (Colorimetric, automated, block digester AA II),457 1983.
- EPA, U.: Inventory of US Greenhouse gas emissions and sinks: 1990-2021, United States
 Environmental Protection Agency, 2023.
- 460 Frame, C. H., Lau, E., Nolan, E. J. t., Goepfert, T. J., and Lehmann, M. F.: Acidification Enhances
- 461 Hybrid N₂O Production Associated with Aquatic Ammonia-Oxidizing Microorganisms, Front
- 462 Microbiol, 7, 2104, 10.3389/fmicb.2016.02104, 2016.
- 463 Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli,
- L. A., Seitzinger, S. P., and Sutton, M. A.: Transformation of the nitrogen cycle: recent trends,
- 465 questions, and potential solutions, Science, 320, 889-892, 2008.
- 466 Glibert, P. M., Conley, D. J., Fisher, T. R., Harding, L. W., and Malone, T. C.: Dynamics of the
- 467 1990 winter/spring bloom in Chesapeake Bay, Marine Ecology Progress Series, 122, 27-43, 1995.
- 468 Hansen, H. P. and Koroleff, F.: Determination of nutrients, in: Methods of Seawater Analysis,
- 469 159-228, 10.1002/9783527613984.ch10, 1999.

- 470 Hemond, H. F. and Duran, A. P.: Fluxes of N_2O at the sediment-water and water-atmosphere 471 boundaries of a nitrogen-rich river, Water Resources Research, 25, 839-846,
- 472 10.1029/WR025i005p00839, 1989.
- 473 Holmes, R. M., Aminot, A., Kérouel, R., Hooker, B. A., and Peterson, B. J.: A simple and precise
- 474 method for measuring ammonium in marine and freshwater ecosystems, Canadian Journal of
- 475 Fisheries and Aquatic Sciences, 56, 1801-1808, 10.1139/f99-128, 1999.
- 476 Hu, M., Chen, D., and Dahlgren, R. A.: Modeling nitrous oxide emission from rivers: a global
- 477 assessment, Global Change Biology, 22, 3566-3582, 10.1111/gcb.13351, 2016.
- 478 Jaworski, N. A., Romano, B., Buchanan, C., and Jaworski, C.: The Potomac River Basin and its
- 479 Estuary: landscape loadings and water quality trends, 1895–2005, Report, Interstate Commission
- 480 on the Potomac River Basin, Rockville, Maryland, USA, 2007.
- 481 Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S.,
- White, G., and Woollen, J.: The NCEP/NCAR 40-year reanalysis project, Bulletin of the American
 meteorological Society, 77, 437-471, 1996.
- 484 Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S., and van Loosdrecht, M. C.:
- 485 Nitrous oxide emission during wastewater treatment, Water Res, 43, 4093-4103,
- 486 10.1016/j.watres.2009.03.001, 2009.
- 487 Kelly, C. L., Travis, N. M., Baya, P. A., and Casciotti, K. L.: Quantifying Nitrous Oxide Cycling
- 488 Regimes in the Eastern Tropical North Pacific Ocean With Isotopomer Analysis, Global
- 489 Biogeochemical Cycles, 35, 10.1029/2020gb006637, 2021.
- 490 Laperriere, S. M., Nidzieko, N. J., Fox, R. J., Fisher, A. W., and Santoro, A. E.: Observations of
- 491 Variable Ammonia Oxidation and Nitrous Oxide Flux in a Eutrophic Estuary, Estuaries and
- 492 Coasts, 42, 33-44, 10.1007/s12237-018-0441-4, 2019.
- 493 Maavara, T., Lauerwald, R., Laruelle, G. G., Akbarzadeh, Z., Bouskill, N. J., Van Cappellen, P.,
- 494 and Regnier, P.: Nitrous oxide emissions from inland waters: Are IPCC estimates too high?, Global
- 495 Change Biology, 25, 473-488, 10.1111/gcb.14504, 2019.
- 496 Masuda, S., Otomo, S., Maruo, C., and Nishimura, O.: Contribution of dissolved N₂O in total N₂O
- 497 emission from sewage treatment plant, Chemosphere, 212, 821-827,
- 498 10.1016/j.chemosphere.2018.08.089, 2018.

- 499 Masuda, S., Sato, T., Mishima, I., Maruo, C., Yamazaki, H., and Nishimura, O.: Impact of nitrogen
- 500 compound variability of sewage treated water on N₂O production in riverbeds, J Environ Manage,
- 501 290, 112621, 10.1016/j.jenvman.2021.112621, 2021.
- 502 McElroy, M. B., Elkins, J. W., Wofsy, S. C., Kolb, C. E., Durán, A. P., and Kaplan, W. A.:
- 503 Production and release of N_2O from the Potomac Estuary 1, Limnology and Oceanography, 23,
- 504 1168-1182, 10.4319/lo.1978.23.6.1168, 1978.
- 505 Morée, A. L., Beusen, A. H. W., Bouwman, A. F., and Willems, W. J.: Exploring global nitrogen
- 506 and phosphorus flows in urban wastes during the twentieth century, Global Biogeochemical
- 507 Cycles, 27, 836-846, 10.1002/gbc.20072, 2013.
- 508 Murray, R. H., Erler, D. V., and Eyre, B. D.: Nitrous oxide fluxes in estuarine environments:
- response to global change, Global Change Biology, 21, 3219-3245, 10.1111/gcb.12923, 2015.
- 510 Pennino, M. J., Kaushal, S. S., Murthy, S. N., Blomquist, J. D., Cornwell, J. C., and Harris, L. A.:
- 511 Sources and transformations of anthropogenic nitrogen along an urban river–estuarine continuum,
- 512 Biogeosciences, 13, 6211-6228, 10.5194/bg-13-6211-2016, 2016.
- 513 Qadir, M., Drechsel, P., Jiménez Cisneros, B., Kim, Y., Pramanik, A., Mehta, P., and Olaniyan,
- 514 O.: Global and regional potential of wastewater as a water, nutrient and energy source, Natural
- 515 Resources Forum, 44, 40-51, 10.1111/1477-8947.12187, 2020.
- 516 Quick, A. M., Reeder, W. J., Farrell, T. B., Tonina, D., Feris, K. P., and Benner, S. G.: Nitrous
- 517 oxide from streams and rivers: A review of primary biogeochemical pathways and environmental
- variables, Earth-Science Reviews, 191, 224-262, 10.1016/j.earscirev.2019.02.021, 2019.
- 519 Raymond, P. A. and Cole, J. J.: Gas exchange in rivers and estuaries: Choosing a gas transfer
- 520 velocity, Estuaries, 24, 312-317, 10.2307/1352954, 2001.
- 521 Reading, M. J., Tait, D. R., Maher, D. T., Jeffrey, L. C., Looman, A., Holloway, C., Shishaye, H.
- 522 A., Barron, S., and Santos, I. R.: Land use drives nitrous oxide dynamics in estuaries on regional
- and global scales, Limnology and Oceanography, 10.1002/lno.11426, 2020.
- 524 Rice, E. W., Bridgewater, L., and Association, A. P. H.: Standard methods for the examination of
- 525 water and wastewater, American public health association Washington, DC2012.
- 526 Rosamond, M. S., Thuss, S. J., and Schiff, S. L.: Dependence of riverine nitrous oxide emissions
- 527 on dissolved oxygen levels, Nature Geoscience, 5, 715-718, 10.1038/ngeo1556, 2012.

- 528 Rosentreter, J. A., Wells, N. S., Ulseth, A. J., and Eyre, B. D.: Divergent Gas Transfer Velocities
- 529 of CO₂, CH₄, and N₂O Over Spatial and Temporal Gradients in a Subtropical Estuary, Journal of
- 530 Geophysical Research: Biogeosciences, 126, 10.1029/2021jg006270, 2021.
- 531 Snider, D. M., Venkiteswaran, J. J., Schiff, S. L., and Spoelstra, J.: From the ground up: global
- 532 nitrous oxide sources are constrained by stable isotope values, PloS one, 10, e0118954,
- 533 10.1371/journal.pone.0118954, 2015.
- 534 Tang, W., Tracey, J. C., Carroll, J., Wallace, E., Lee, J. A., Nathan, L., Sun, X., Jayakumar, A.,
- and Ward, B. B.: Nitrous oxide production in the Chesapeake Bay, Limnology and Oceanography,
- 536 10.1002/lno.12191, 2022.
- 537 Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W., Suntharalingam, P., Davidson,
- 538 E. A., Ciais, P., Jackson, R. B., Janssens-Maenhout, G., Prather, M. J., Regnier, P., Pan, N., Pan,
- 539 S., Peters, G. P., Shi, H., Tubiello, F. N., Zaehle, S., Zhou, F., Arneth, A., Battaglia, G., Berthet,
- 540 S., Bopp, L., Bouwman, A. F., Buitenhuis, E. T., Chang, J., Chipperfield, M. P., Dangal, S. R. S.,
- 541 Dlugokencky, E., Elkins, J. W., Eyre, B. D., Fu, B., Hall, B., Ito, A., Joos, F., Krummel, P. B.,
- 542 Landolfi, A., Laruelle, G. G., Lauerwald, R., Li, W., Lienert, S., Maavara, T., MacLeod, M., Millet,
- 543 D. B., Olin, S., Patra, P. K., Prinn, R. G., Raymond, P. A., Ruiz, D. J., van der Werf, G. R.,
- 544 Vuichard, N., Wang, J., Weiss, R. F., Wells, K. C., Wilson, C., Yang, J., and Yao, Y.: A
- comprehensive quantification of global nitrous oxide sources and sinks, Nature, 586, 248-256,
 10.1038/s41586-020-2780-0, 2020.
- 547 Townsend-Small, A., Pataki, D. E., Tseng, L. Y., Tsai, C. Y., and Rosso, D.: Nitrous oxide
- 548 emissions from wastewater treatment and water reclamation plants in southern California, J
- 549 Environ Qual, 40, 1542-1550, 10.2134/jeq2011.0059, 2011.
- 550 Toyoda, S., Iwai, H., Koba, K., and Yoshida, N.: Isotopomeric analysis of N₂O dissolved in a river
- 551 in the Tokyo metropolitan area, Rapid Communications in Mass Spectrometry, 23, 809-821,
- 552 10.1002/rcm.3945, 2009.
- 553 Toyoda, S., Suzuki, Y., Hattori, S., Yamada, K., Fujii, A., Yoshida, N., Kouno, R., Murayama, K.,
- and Shiomi, H.: Isotopomer Analysis of Production and Consumption Mechanisms of N₂O and
- 555 CH₄ in an Advanced Wastewater Treatment System, Environmental science & technology, 45,
- 556 917-922, 10.1021/es102985u, 2011.

- Tumendelger, A., Toyoda, S., and Yoshida, N.: Isotopic analysis of N₂O produced in a
 conventional wastewater treatment system operated under different aeration conditions, Rapid
 Commun Mass Spectrom, 28, 1883-1892, 10.1002/rcm.6973, 2014.
- 560 Wan, X. S., Sheng, H. X., Liu, L., Shen, H., Tang, W., Zou, W., Xu, M. N., Zheng, Z., Tan, E.,
- 561 Chen, M., Zhang, Y., Ward, B. B., and Kao, S. J.: Particle-associated denitrification is the primary
- 562 source of N₂O in oxic coastal waters, Nat Commun, 14, 8280, 10.1038/s41467-023-43997-3, 2023.
- 563 Wang, J., Chen, N., Yan, W., Wang, B., and Yang, L.: Effect of dissolved oxygen and nitrogen on
- 564 emission of N 2 O from rivers in China, Atmospheric Environment, 103, 347-356,
- 565 10.1016/j.atmosenv.2014.12.054, 2015.
- 566 Wang, J., Vilmin, L., Mogollon, J. M., Beusen, A. H. W., van Hoek, W. J., Liu, X., Pika, P. A.,
- 567 Middelburg, J. J., and Bouwman, A. F.: Inland Waters Increasingly Produce and Emit Nitrous
- 568 Oxide, Environmental science & technology, 57, 13506-13519, 10.1021/acs.est.3c04230, 2023.
- 569 Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean revisited,
- 570 Limnol. Oceanogr. Methods, 12, 351-362, 2014.
- 571 Weiss, R. F. and Price, B. A.: Nitrous oxide solubility in water and seawater, Marine Chemistry,
- **572** 8, 347-359, 10.1016/0304-4203(80)90024-9, 1980.
- 573 Wong, G. T. F., Li-Tzu Hou, L., and Li, K. Y.: Preservation of seawater samples for soluble
- reactive phosphate, nitrite, and nitrate plus nitrite analyses by the addition of sodium hydroxide,
- 575 Limnology and Oceanography: Methods, 15, 320-327, 10.1002/lom3.10160, 2017.
- 576 Yao, Y., Tian, H., Shi, H., Pan, S., Xu, R., Pan, N., and Canadell, J. G.: Increased global nitrous
- 577 oxide emissions from streams and rivers in the Anthropocene, Nature Climate Change,
- 578 10.1038/s41558-019-0665-8, 2019.
- 579 Zheng, Y., Wu, S., Xiao, S., Yu, K., Fang, X., Xia, L., Wang, J., Liu, S., Freeman, C., and Zou, J.:
- 580 Global methane and nitrous oxide emissions from inland waters and estuaries, Glob Chang Biol,
- 581 28, 4713-4725, 10.1111/gcb.16233, 2022.