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Abstract. Accurate representation of fire emissions is critical for modeling the in-plume, near-
source, and remote effects of biomass burning (BB) on atmospheric composition, air quality, and 
climate. In recent years application of advanced instrumentation has significantly improved 
knowledge of the compounds emitted from fires, which coupled with a large number of recent 
laboratory and field campaigns, has facilitated the emergence of new emission factor (EF) 20 
compilations. The Next-generation Emissions InVentory expansion of Akagi (NEIVA) version 
1.0 is one such compilation in which the EFs for 14 globally-relevant fuel and fire types have 
been updated to include data from recent studies, with a focus on gaseous non-methane organic 
compounds (NMOC_g). The data are stored in a series of connected tables that facilitate flexible 
querying from the individual study level to recommended averages of all laboratory and field 25 
data by fire type. The querying features are enabled by assignment of unique identifiers to all 
compounds and constituents, including 1000s of NMOC_g. NEIVA also includes chemical and 
physical property data and model surrogate assignments for three widely-used chemical 
mechanisms for each NMOC_g. NEIVA EF datasets are compared with recent publications and 
other EF compilations at the individual compound level and in the context of overall volatility 30 
distributions and hydroxyl reactivity (OHR) estimates.  The NMOC_g in NEIVA include ~4-8 
times more compounds with improved representation of intermediate volatility organic 
compounds resulting in much lower overall volatility (lowest volatility bin shifted by as much as 
three orders of magnitude) and significantly higher OHR (up to 90%) than other compilations. 
These updates can strongly impact model predictions of the effects of BB on atmospheric 35 
composition and chemistry.  
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1. Introduction 

The identification, quantification, and model representation of gaseous and particulate compounds 
emitted from fires are critical for modeling the effects of biomass burning (BB) on air quality and 40 
climate. BB occurs under a variety of conditions and involves a range of plant-based fuels, which 
vary greatly across the world’s ecosystems. In the dry forests of the Western US, long-term policies 
of wildfire suppression and management practices have led to the accumulation of understory fuels 
in many forests (Collins et al., 2011). This decades-long shift in forest structure, coupled with a 
warming climate, greatly increases the potential for destructive wildfires (Stephens et al., 2014; 45 
North et al., 2015). Land use and climate trends have driven significant changes in BB in other 
parts of the world as well, with sometimes uncertain effects on air quality and climate (Doerr and 
Santín, 2016). Some examples include a lengthening of the fire season and increased area burned 
in boreal forests (de Groot et al., 2013; Jolly et al., 2015), an increase in fire severity and area 
burned in tropical peatlands (Page and Hooijer, 2016), and a decrease in area burned in sub-50 
Saharan Africa with conversion of savanna to croplands (Andela and van der Werf, 2014; Hickman 
et al., 2021). 
 
On a global scale, fires emit large amounts of trace gases, including nitrogen oxides (NOx), carbon 
monoxide (CO), and carbon dioxide (CO2); non-methane organic compounds (NMOCs); and 55 
primary (directly emitted) particulate matter (PM). Emission rates and properties of gaseous and 
particulate compounds are highly variable and largely dependent on fuel characteristics and burn 
conditions (Guyon et al., 2005; Yokelson et al., 2007; McMeeking et al., 2009; Jolleys et al., 2012; 
Urbanski, 2014; Liu et al., 2017). During plume dilution directly emitted PM, a large fraction of 
which is organic (Zhao et al., 2013; Liu et al., 2017), can evaporate reducing the amount of primary 60 
organic aerosol (POA), but also adding reactive gases, e.g., semi-volatile NMOCs (Bian et al., 
2017; Hodshire et al., 2019). During plume evolution gaseous NMOCs (NMOC_g) may react to 
form ozone (O3); secondary PM, more commonly referred to as secondary organic aerosol (SOA); 
and other secondary products that can degrade air quality and endanger human health (Crutzen 
and Andreae, 1990; Poschl, 2005; McClure and Jaffe, 2018; Buysse et al., 2019; Wei et al., 2023). 65 
Model representation of the NMOC_g and the ambient conditions (e.g., light, oxidant, and NOx 
levels), are important for accurate predictions of O3, SOA, and other pollutants (Alvarado et al., 
2009; Tkacik et al., 2017; Ahern et al., 2019; Hatch et al., 2019; Decker et al., 2019, 2021; 
Ninneman and Jaffe, 2021; Xu et al., 2021; Fredrickson et al., 2022). 
 70 
Application of advanced instrumentation has significantly improved estimates of gaseous and 
particulate compounds emitted from fires in recent years. For example, high-resolution chemical 
ionization mass spectrometry, CIMS (Stockwell et al., 2015; Koss et al., 2018; Palm et al., 2020), 
and one- and two-dimensional gas chromatography with time-of-flight mass spectrometry, GC-
TOF-MS and GC´GC-TOF-MS (Hatch et al., 2015; Gilman et al., 2015; Hatch et al., 2019; Jen et 75 
al., 2019; Liang et al., 2021) have expanded the capacity to measure organic compounds with 
diverse chemical and physical properties, making it possible to identify and quantify much of the 
previously-ubiquitous unknown emissions (Christian et al., 2003; Warneke et al., 2011). 
Laboratory studies that carefully simulated globally-relevant fuels and fire types enabled initial 
measurements with these new techniques (Stockwell et al., 2014; Hatch et al., 2015; Selimovic et 80 
al., 2018) and the development of comprehensive NMOC_g datasets (Koss et al., 2018; Hatch et 
al., 2017). Incandescence (Schwarz et al., 2006) and photoacoustic (Lewis et al., 2008; Nakayama 
et al., 2015) techniques for measuring black carbon, BC, have overcome some of the limitations 
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with older thermal and thermal-optical approaches for measuring elemental carbon, EC (Li et al., 
2019). Online aerosol measurements with the Aerodyne aerosol mass spectrometer (AMS), along 85 
with offline filter-based measurements, have greatly expanded particulate emissions datasets 
(Jayarathne et al., 2018; Jen et al., 2019). Application of these and other techniques during field 
campaigns have led to improved characterization of emissions from specific fuel and fire types, 
including peat fires in Borneo (Stockwell et al., 2016a; Yokelson et al., 2022); cooking fires, 
agricultural fires, and garbage burning in Nepal (Stockwell et al., 2016b); and most notably, 90 
wildfires and agricultural burns in the US (Liu et al., 2016, 2017; Permar et al., 2021; Gkatzelis et 
al., 2023; Travis et al., 2023).  
 
The large number of laboratory and field campaigns, and rapid expansion of published BB 
emissions datasets, has facilitated the emergence of new emission factor (EF) compilations, 95 
including Andreae (2019) an update to the 2001 compilation of Andreae and Merlet (2001) and 
the Smoke Emissions Repository Application, SERA (Prichard et al., 2020) an update to the 2014 
Wildland Fire Emissions Database (Lincoln et al., 2014). The Andreae (2019) inventory includes 
EFs for 121 gas- and particle-phase species or constituents (i.e., total PM); the data are almost 
entirely from field measurements and include a range of globally-relevant fuel and fire types. The 100 
SERA database (Prichard et al., 2020) includes EFs for 276 gas- and particle-phase species or 
constituents; the focus of the database is North American wildland fuels and both laboratory and 
field data are included. Similarly to Andreae (2019) the NEIVA (Next-generation Emissions 
Inventory expansion of Akagi) database described herein includes EFs for globally-relevant fuel 
and fire types, but in contrast to Andreae (2019) 1000s of compounds and representative laboratory 105 
data were selectively included. Similarly to SERA (Prichard et al., 2020) NEIVA is an online, 
searchable database that includes source data and recommended average EFs across fuel and/or 
fire types. Additional features unique to NEIVA are summarized below, and detailed in the 
manuscript Sections 2-5, the Supplementary Information (SI), and on GitHub 
(https://github.com/NEIVA-BB-Emissions-Inventory). 110 
     
In v1.0, NEIVA exists as a collection of datasets and Python script files (summarized in Table S1). 
The datasets include a primary database (multiple data tables) with collected and reformatted data 
from existing emission inventories and recent laboratory and field campaigns, and a recommended 
EF dataset (single data table) with EFs averaged across studies and summarized for 14 globally-115 
relevant fuel and fire types. NEIVA also includes a property dataset that links each NMOC_g with 
a suite of chemical and physical properties using unique identifiers. Because one function of 
emission inventories in models is to distribute the total gaseous NMOC emitted from fires among 
the suite of compounds or lumped model species represented in the model, each of the NMOC_g 
in the NEIVA database has been mapped to SAPRC (Carter, 2010, 2020, 2023a), MOZART-120 
T1(Emmons et al., 2020), and GEOS-Chem (Bey et al., 2001; Carter et al., 2022) model surrogates. 
Using the Python script files, NEIVA can produce detailed NMOC_g speciation profiles for 
different fuel and/or fire types, as well as lumped NMOC_g speciation profiles in which individual 
compounds are mapped to model surrogates. The inclusion of recent laboratory and field data 
within NEIVA results in significant differences in the molar, mass, and property distributions of 125 
NMOC_g as individual compounds and as mapped to model surrogates when compared with 
existing inventories. The data underlying NEIVA are described in Section 2. The structure and 
contents of NEIVA are described in Section 3. Evaluation of the data processing steps to generate 
the datasets within NEIVA and differences between NEIVA and existing EF compilations are 
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presented in Section 4, including implications of these differences on atmospheric composition 130 
and air quality predictions. Examples of querying commands and data products are presented in 
Section 5. Further details on the processes and procedures used to create the datasets, and 
additional verification and validation, are presented in the SI. NEIVA can be accessed through the 
GitHub page: https://github.com/NEIVA-BB-Emissions-Inventory/NEIVAv1.0, which includes 
detailed instructions and Jupyter notebooks for querying EF data and adding EF data using the 135 
associated script files.  

2. Data 

2.1 Legacy data and structure (“NEIVA legacy database”) 

In 2011, Akagi et al. (2011) published a compilation and assessment of EFs for domestic and open 
BB and garbage burning (GB), which included recommended EFs based on literature averages. 140 
The overarching aim of the 2011 paper was to compile EF data from numerous field studies of 
fresh plumes, especially for NMOC_g, that had been published in the ten years since the 2001 
Andreae and Merlet (2001) compilation. Some additional useful features in the 2011 paper include: 
1) discussions of BB terminology, combustion chemistry, photochemistry in young plumes, 
tracers, and other relevant topics; 2) a table of published measurements of fuel consumption per 145 
unit area for major types of open burning; 3) examples of scaling to global estimates; 4) methods 
to estimate unmeasured species; and 5) updated EFs for some species (notably formic acid and 
glycolaldehyde) based on new infrared reference data. In addition, as relevant to this work, Akagi 
et al. (2011) expanded from 7 to 14 representative fuel types, included more species, and provided 
estimated EFs for the sum of unknown species.  150 
 
In Akagi et al. (2011) the selected EFs for each species in each study were explicitly shown in 14 
supplemental tables organized by fuel or fire type. Also shown in the supplemental tables was a 
reasonably-simple and transparent averaging scheme (detailed and justified in the Akagi et al. 
manuscript) designed to make the literature averages representative. Between 2014 and 2015, 155 
some of the SI tables were updated online (Wiedinmyer et al., 2014), specifically temperate forest 
and chaparral in 2014 and savanna in 2015. In these updates, compounds were listed in mass order 
while still providing common names, to solve the problem of multiple common names and to 
enhance the ability to quickly locate specific compounds. NEIVA builds on the Akagi et al. (2011) 
EF data and their updates through 2015. These data are referred to as the “legacy database” in 160 
NEIVA and are included as a series of 14 tables (listed in Table S2). Each table includes the data 
as presented by Akagi et al. (2011) (see Table S3), as well as unique identifiers assigned in this 
work to link datasets within NEIVA. Since 2015, lists of new papers with useful EFs were posted 
online and organized by the original 14 fuel and fire types in Akagi et al. (2011), and they included 
brief comments on paper content, while contemplating how best to progress given the frequent 165 
appearance of new data and the expanding number of compounds measured. The next section gives 
brief updates on the progress, or lack thereof, for each of these original 14 fuel and fire types. 

2.2 New data and structure (“NEIVA raw database”) 

Based largely on the lists posted online since 2015, data from a total of 30 publications associated 
with 12 of the 14 fuel and fire types have been compiled and are referred to here as the “raw 170 
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database”. Data from these publications were included in NEIVA as a series of 30 tables (listed in 
Table S5). The publications and data are introduced under the relevant fuel or fire categories 
below. One category, peatland, has been removed from the legacy fuel categories (see S2) and one 
category under domestic BB has been added (see S2, Table S7). These revisions and any other 
major changes to the categories are described in further detail below. The new data include field 175 
and laboratory data from single-institution studies to multi-institution campaigns, including the 4th 
Fire Laboratory at Missoula Experiment, FLAME-4 (Stockwell et al., 2014); Western Wildfire 
Experiment for Cloud chemistry, Aerosol Absorption, and Nitrogen, WE-CAN (Juncosa 
Calahorrano et al., 2021); Fire Influence on Regional to Global Environments and Air Quality, 
FIREX laboratory and FIREX-AQ field (Warneke et al., 2023); and Nepal Ambient Monitoring 180 
and Source testing Experiment, NAMaSTE (Jayarathne et al., 2018). 

2.2.1 Savanna fires 

The Akagi et al. (2011) savanna fire table was updated in February 2015 with extensive PTR-ToF-
MS data from FLAME-4. There have been no large-scale field campaigns measuring fire EFs in 
tropical savannas since SAFARI 2000. However, Desservettaz et al. (2017) reported new BB EFs 185 
for several gaseous compounds and particulate constituents measured during a field study in 
Australian savannas and the data were included here. In addition, Travis et al. (2023) reported EFs 
for gaseous compounds and particulate constituents from prescribed burns of grasslands in the 
midwestern US that were included here.  

2.2.2 Boreal forest 190 

EFs were included here for over 190 gas- and particle-phase compounds or constituents reported 
by Hayden et al. (2022) based on airborne sampling of a smoldering boreal forest fire. In addition, 
black spruce from Alaska was burned during the FLAME-4 laboratory studies and the associated 
EFs reported by Stockwell et al. (2015) and Hatch et al. (2015) were included here (see Table S6 
for mapping of individual fuels to the 14 representative fuel and fire types). 195 

2.2.3 Tropical forest 

Several new EFs were included for particulate compounds or constituents reported by Hodgson et 
al. (2018) for evergreen tropical forest and cerrado (seasonally dry tropical forest, aka “monsoon 
forest”) measured during the 2018 SAMMBA campaign.  

2.2.4 Temperate forest  200 

The Akagi et al. (2011)  temperate forest table was updated in May of 2014. Since that update, 
several relevant papers have been published and the EF data were included here. Data were 
included for wildfires and prescribed burns (tagged accordingly in the datasets). Liu et al. (2017) 
reported EFs for many gas- and particle-phase species and constituents for western US wildfires 
from the 2013 SEAC4RS and BBOP field campaigns. Permar et al. (2021) reported EFs for 161 205 
NMOC_g and particle-phase constituents largely from wildfires sampled in the 2018 WE-CAN 
field campaign. Gkatzelis et al. (2023) reported EFs for 98 NMOC_g and four particulate 
constituents (nitrate; ammonium; black carbon, BC; organic aerosol, OA) also largely from 
wildfires sampled during the 2019 FIREX-AQ campaign. Travis et al. (2023) reported EFs for 148 
NMOC_g and ten particulate constituents (PM ≤ 1 microns, PM1;  BC; organic carbon, OC; OA; 210 
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ammonium chloride; potassium; nitrate; sulphate) for prescribed burns (slash, pile, and Blackwater 
River State Forest understory) of temperate forest fuels measured in the midwestern US during 
FIREX-AQ. Müller et al. (2016) published NMOC_g EFs for a small prescribed fire in the SE US. 
The old nephelometer-based temperate forest prescribed fire PM2.5  (PM ≤ 2.5 microns) EFs from 
Burling et al. (2011) were replaced with new PM1 EFs for the same fires based on AMS data from 215 
May et al. (2014). Laboratory-based wildfire simulations were conducted during FLAME-4 
(Stockwell et al., 2014) and FIREX (Selimovic et al., 2018), resulting in new EFs for gas- and 
particle-phase species and constituents (Stockwell et al., 2015; Hatch et al., 2015, 2017; Koss et 
al., 2018; Selimovic et al., 2018). EF data for relevant fuels from FLAME-4, ponderosa pine and 
juniper, and most of the FIREX laboratory burns were included here, as listed in Table S6.  220 

2.2.5 Peat 

Peat is often thought of as a single fuel that burns by smoldering in the field and therefore, in 
theory, should be easy to burn representatively in a laboratory (neglecting the challenge of 
obtaining international samples). However, in reality the type of peat varies with depth for 
undisturbed sites and in more complex ways for disturbed sites (Stockwell et al., 2016a), which 225 
translates into additional uncertainties for laboratory-based emissions measurements. Artificially 
low % C values reported in the literature for some peat samples suggests that such samples 
contained significant amounts of mineral soil and thus resulted in low bias for associated EFs. 
Further, peat ignition can be difficult, and aggressive ignition with a propane torch can lead to 
unrepresentative flaming. Such cases have been identified by high modified combustion efficiency 230 
(MCE) values, NOx, and/or high acetylene (C2H2) emissions (e.g., C2H2/C2H4 > 1) and have been 
omitted here. In field studies, random sampling of real peat fires should return representative 
values, but interference from the emissions from other fuels can be difficult to avoid and potential 
storage artifacts for off-line analyses also may be unavoidable if shipping delays are encountered. 
After carefully screening for all these effects, some excellent new data emerged. 235 
 
Four papers presented new field measurements of “pure” tropical peat fires. Jayarathne et al. 
(2018) reported comprehensive filter-based EFs (PM2.5, EC, OC, numerous organic compounds, 
metals, etc.) from measurements obtained during the 2015 El Niño in Borneo. Stockwell et al. 
(2016a) reported EFs for ~100 gases, BC, brown carbon (BrC), and aerosol optical properties from 240 
the same study. Smith et al. (2018) measured trace gas EFs on authentic peat fires in Malaysia and 
Roulston et al. (2018) measured PM2.5 EFs on peat fires also in Malaysia. Data from all four 
publications were included here. 
 
Laboratory studies of peat have provided much more detail than has been possible in field studies 245 
to date. Peat-fire EFs from both the FLAME-4 and FIREX laboratory studies were included here. 
As part of FLAME-4, Stockwell et al. (2015) reported EFs for an extensive list of gas-phase species 
from two samples each of temperate, boreal, and tropical peat based on PTR-TOF-MS and FTIR 
measurements. Also as part of FLAME-4, Hatch et al. (2015) used GC´GC-TOF-MS to add EF 
data for alkanes and other species not detected by PTR-MS or FTIR. They also speciated numerous 250 
isomers at exact masses where MS sees a single peak. This groundbreaking application of GC´GC 
led to EFs for > 600 NMOC_g for an Indonesian peat sample. Aerosol optical properties and PM2.5 
EFs for peat from FLAME-4 reported by Jayarathne et al. (2014) an Pokhrel et al. (2016) were 
included here. More recently, the FIREX laboratory experiments resulted in EFs for an extensive 
list of gas-phase species for an Indonesian peat sample based on measurements described in 255 
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Selimovic et al. (2018) and Koss et al. (2018). The EFs in the latter study were recalculated here 
using the actual % C value for the peat provided in Selimovic et al. (2018). Watson et al. (2019) 
reported laboratory-based EFs for several trace gases for peat samples from the boreal through 
tropical zones, which were included here, with the exception of EFs for nitrous oxide (N2O) due 
to the difficulty of decoupling N2O from high levels of CO and CO2 by infrared spectroscopy. 260 

2.2.6 Chaparral 

The Akagi et al. (2011) chaparral table was updated in May 2014. Since then, FIREX provided 
comprehensive EFs for gases reported by Koss et al. (2018) and Selimovic et al. (2018). In these 
laboratory studies, chaparral was represented by burning two dominant shrub species: manzanita 
and chamise. The EFs for NMOC_g and particulate constituents reported by Travis et al. (2023) 265 
for prescribed burns of shrublands in the midwestern US also were included here, making this 
category representative of shrub types beyond chaparral. 
 

2.2.7 Domestic biomass burning  

Domestic (household) biofuel use includes many fuels and burning options that are primarily for 270 
cooking, but also heating. Akagi et al. (2011) presented study-level results (in their SI) and “global 
averages” for five domestic biofuel activities: 1) open cooking (e.g., three stone fires with wood 
fuel only, believed to be the most common type of domestic biofuel use), 2) wood cooking with 
improved stoves (including “rocket type” stoves only, which were believed to be the most common 
improved stove), 3) charcoal making, 4) charcoal burning (open or in improved stoves), and 5) 275 
dung burning (open or in improved stoves). Since 2011, many new improved stove designs have 
been developed and characterized, many new EFs have been measured, and results for mixed fuel 
cooking fires (e.g., wood and dung) have been published. To capture the new results slightly 
revised categories were established as follows (see Table S7): 1) open cooking (three stone and 
wood), 2) cookstove (traditional and modern), and 3) dung burning (w/ and w/o wood, traditional 280 
and modern). Since there is no systematic approach for grouping fuels and stoves in the literature, 
the above approach has been adopted here while tagging data appropriately in the raw database to 
facilitate custom selection of relevant data by users. The charcoal making and charcoal burning 
categories were retained. 
 285 
Open cooking: The open cooking fire type includes all open wood cooking (i.e., three stone). Data 
from three new publications on various types of open cooking were included here. EFs for gases 
and aerosol optical properties for open cooking with wood were measured in-situ in Nepal as part 
of the NAMaSTE campaign and reported by Stockwell et al. (2016b). Gravimetric PM2.5 data and 
chemical speciation of PM from the same study were reported by Jayarathne et al. (2018). EFs for 290 
CO2, CO, and PM2.5 were measured for a variety of traditional and improved stoves in Ghana by 
Coffey et al. (2017) and the data for three stone wood burning were included here. Laboratory-
based EFs were included here from the carefully-simulated open cooking during FLAME-4, with 
several wood species commonly used in Mexico, reported by Stockwell et al. (2015). 
 295 
Cookstoves: Akagi et al. (2011) limited improved stove data to rocket stoves burning wood, but 
in NEIVA additional advanced stove types and fuels were included in the cookstove category.  
Stockwell et al. (2015, 2016b), Jayarathne et al. (2018), and Fleming et al. (2018) reported data 
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for many types of advanced stoves that were included here. For a subset of the same sources in 
Stockwell et al. (2015, 2016b) and Jayarathne et al. (2018), Goetz et al. (2018) reported EFs for 300 
OA, BC, sulfate, nitrate, chloride, ammonium, and polycyclic aromatic hydrocarbons (PAHs) that 
were included here. EFs for CO2, CO, and PM2.5 for improved stoves reported by Coffey et al. 
(2017) were included here. 
 
Dung burning: Data from several new studies with EFs for open dung burning, dung burning in 305 
stoves, and mixed dung/wood burning have been reported and were included here. Stockwell et al. 
(2016b), Jayarathne et al. (2018), Goetz et al. (2018), and Fleming et al. (2018) reported data from 
studies in Nepal and India. In addition, data were included from the open dung burning sampled 
in detail during the FIREX laboratory experiments as reported by Koss et al. (2018) and Selimovic 
et al. (2018). 310 
 
Charcoal making: Literature searches suggest there are no new laboratory- or field-based EFs for 
charcoal making since Akagi et al. (2011) and thus this remains the least-characterized globally-
relevant major fuel type. 
 315 
Charcoal burning: Stockwell et al. (2016b) and Jayarathne et al. (2018) reported data for charcoal 
burning in the Nepal study and the reported EFs were included here. EFs for CO2, CO, and PM2.5 
for charcoal burning reported by Coffey et al. (2017) also were included. 
 

2.2.8 Pasture maintenance 320 

Literature searches suggest there are no new laboratory- or field-based EFs for pasture 
maintenance fires since Akagi et al. (2011).  

2.2.9 Crop residue 

Akagi et al. (2011) highlighted that the NMOC_g EFs from pile burning of crop residue, which is 
associated with manual harvest and promotes smoldering, are much higher than those for burning 325 
residue loose in the field, which is associated with mechanized agriculture and promotes flaming. 
More recently, Lasko and Vadrevu (2018) estimated the relative amount of these two burning 
practices in Vietnam. In addition to the inclusion of new data, the Akagi et al. (2011) EFs were 
updated here to represent the evolving literature average % C. Following Stockwell et al. (2016a, 
b), the Mexican “loose in field” crop residue EFs from Yokelson et al. (2011) used in Akagi et al. 330 
(2011) and Andreae (2019), were normalized to lower fuel % C values (40 %) by multiplying the 
original Yokelson et al. (2011) values by 0.8.  
 
Regarding new data, field measurements of loose and piled crop residue fires were carried out in 
Nepal with EFs for gases and aerosol optical properties reported by Stockwell et al. (2016b). EFs 335 
for PM constituents reported by Goetz et al. (2018) and EFs from filter-based PM2.5 analyses 
reported by Jayarathne et al. (2018) were included here. Holder et al. (2017) used several platforms 
to measure emissions from burning residue in wheat and bluegrass fields in the NW US; the 
reported EFs from the individual observations and averaged across platforms were included here. 
Also included were the EFs from field measurements of crop residue fires in the SE US made on 340 
the NASA-DC-8, from burning rice straw loose in the field, as part of SEAC4RS  and reported by 
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Liu et al. (2016); and the EFs from field measurements of crop residue fires also in the midwestern 
US, mase as part of FIREX-AQ and reported by Travis et al. (2023). During FLAME-4, numerous 
types of crop residue were burned in the laboratory, both in piles and loose. The EFs for an 
extensive selection of gases and residue types reported by Stockwell et al. (2015) and the rice straw 345 
emissions reported by Hatch et al. (2015, 2017) were included here (see Table S6). Rice straw EFs 
measured during a FIREX laboratory pile-burning simulation also were included (Koss et al., 
2018; Selimovic et al., 2018; Gkatzelis et al., 2023; Travis et al., 2023). 

2.2.10 Garbage burning 

The Akagi et al. (2011) recommended EFs for garbage burning (GB) were based almost entirely 350 
on one field campaign in Mexico (Christian et al., 2010). These data were incorporated into a 
global GB inventory by Wiedinmyer et al. (2014). New EFs for mixed garbage fires in Nepal for 
gases and aerosol optical properties reported by Stockwell et al. (2016b); gravimetric PM2.5, EC, 
OC, and chemical speciation reported by Jayarathne et al. (2018); and size distributions and a full 
suite of AMS species (OA, OC, ammonium, sulfate, chloride, and nitrate) reported by Goetz et al. 355 
(2018) were included here. In addition, laboratory-based GB EF data from Yokelson et al. (2013) 
and FLAME-4 reported by Stockwell et al. (2015) were included. 

3. NEIVA structure and contents 

3.1 Overview 

A schematic of NEIVA is shown in Figure 1. NEIVAv1.0 is a collection of linked data tables. 360 
Groups of related tables are organized as a single database and include the legacy database and 
raw database described above in Sections 2.1 and 2.2, respectively, and the primary database 
described below in Section 3.2. Collections of related data tables are referred to as databases, while 
single data tables are referred to as datasets. Datasets in NEIVA include the integrated EF, 
processed EF, recommended EF, and chemical property and surrogate (‘property_surrogate’) 365 
datasets, which collectively comprise the output database and are described below in Section 3.3. 
Each of the databases and datasets are listed in Table 1. In this section, the structure and contents 
of the primary database and of the integrated EF, processed EF, recommended EF, and chemical 
property and surrogate datasets are further described, as well as the formatting and data processing 
steps that were performed to create each of the data tables. All of the datasets can be accessed 370 
through GitHub and the recommended EF dataset is also provided here as a Supplemental Table.   
 
All of the compounds or constituents in the NEIVA database were assigned one of the following 
pollutant categories: inorganic gas, methane, gaseous non-methane organic compound 
(NMOC_g), particulate non-methane organic compound (NMOC_p), or particulate matter (PM). 375 
The PM was further differentiated as “size” (e.g., PM1, PM2.5, PM2.5* (PM1-5), PM10),  
“organic” (e.g., OA, OC), “elemental” (e.g., EC, BC), “ion” (e.g., Na), “metal” (e.g., lead), and 
“optical” (e.g., absorption/backscattering coefficients at specific wavelengths). All tables in the 
legacy, raw, and primary databases include the following columns: molar mass (mm), chemical 
formula (formula), compound (compound name), pollutant category, EF, and unique ID for each 380 
compound or constituent. Additional information from the source publications was retained in the 
databases as described in S1. In the EF datasets, each row in a table represents a chemical 
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compound or constituent, and the columns represent attributes of that compound or constituent, 
primarily EFs. The algorithm and approach for assigning the unique IDs are described in S1. The 
unique IDs are one of the critical features for creating and linking the datasets. 385 

 

 

 

 
 390 
  

Figure 1: Schematic of NEIVA. The use of “contextual” here (data processing phase 1) refers to information to provide 
additional context for EF data including: measurement location (lab/field), fuel type, modified combustion efficiency 
(MCE), and publication identifiers (e.g., DOI, year).   
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Table 1: Description of the databases (multiple related data tables) and datasets (single data tables) that 
comprise NEIVA. 

Data Storage Name Description 

Legacy database (ldb) 
The Akagi et al. (2011) supplemental data, including 2014 and 2015 updates, are stored 
as tables in this repository. There are 14 tables, one for each fuel or fire type. All 
compounds and constituents were assigned a unique id. No data processing performed. 

Raw database (rdb) 

Data from selected publications (2015 or later) are stored as tables in this repository. 
There are 30 tables in this database: one for each of the publications added since Akagi 
et al.(2011). All compounds and constituents were assigned a unique id. No data 
processing performed. 

Primary database (pdb) 

Data from the legacy and raw database tables were reformatted to achieve a consistent 
structure and combined with some data processing as described in the manuscript and 
S2, namely updates to the % C for some reported fuels. The resultant 44 tables are stored 
in this repository.  

NEIVA output database (odb) 

Four datasets are stored in the NEIVA output database: 

Integrated EFs: EF data aggregated in the primary database were merged and stored in 
this single dataset for all fuel and fire types. The process for merging EFs is described in 
the manuscript and S3.  

Processed EFs: Additional data processing steps were performed on the integrated EF 
dataset prior to calculating recommended EFs, as described in S4. Laboratory data were 
adjusted to represent known differences in combustion conditions between laboratory 
and field studies. Groups of isomeric compounds were resolved and assigned fractional 
contributions when possible. 

Recommended EFs: The arithmetic means of the processed EFs for each compound or 
constituent in each of the 14 representative fuel or fire types are stored in this single 
dataset. Prior to averaging, NOx EFs were converted to “NOx as NO" EFs if NO and NO2 
data were available (see S5). 

Property_Surrogate: For each of the gaseous organic compounds in these datasets, 
chemical and physical property data, as well as model surrogate assignments for specific 
chemical mechanisms, are stored in this single dataset (see S6). 

Backend database (bdb) 
Tables that are used in the Python scripts for data processing, listed and described in S8, 
are stored in this database. The tables in the backend database were used to create the 
output datasets but are not necessary for users to access the EF data.    

 

3.2 Primary database  

Prior to combining the legacy and raw databases to form the primary database, several formatting 
and data processing steps were performed. The data processing steps on the legacy database 395 
included removing peatland and the estimated temperate forest EFs that were included in Akagi et 
al. (2011) (and were retained in the legacy database), removing EFs for unknown proton ion 
transfer (PIT) masses for temperate forest and chaparral, combining isomers, and calculating a 
study average for any studies that reported multiple EFs for a given fuel or fire type. From the raw 
database, the EFs reported by Koss et al. (2018) were recalculated to reflect measured % C as 400 
reported by Selimovic et al. (2018). Further detail on these and additional data processing steps is 
provided in S2. The resultant primary database is comprised of 44 tables (listed in Table S8). The 
tables represent the Akagi et al. (2011) EF data separated by fuel or fire type (14 tables) and the 
EF data from publications since 2015 (30 tables). For publications that include data for a single 
fuel or fire type, a fuel designation abbreviation precedes the table name, and otherwise for 405 
publications that include data for multiple fuel or fire types, the table name only reflects the source 
publication (see S2, Table S8 for examples). 
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3.3 Output database 

Four datasets are stored in the output database, each of which are described in further detail below. 
These include the integrated EF dataset, the processed EF dataset, the recommended EF dataset, 410 
and the chemical property and chemical mechanism assignment (model surrogate) dataset.  

3.3.1 Integrated EF dataset 

The aggregated EF data from the tables in the primary database were merged across all studies 
into a single EF dataset. An algorithm was developed to merge data from individual studies across 
tables in the primary database. The algorithm uses a multistep process to group compounds across 415 
datasets, determine whether the compounds are the same or different, and then append each 
compound to the integrated dataset as a new row (indicating a new compound) and each EF as a 
new column (indicating a new EF). In this dataset, EFs are available for a total of 1311 compounds 
or constituents with up to 263 measurements (i.e., EFs) study-averaged for individual fuel types 
from the primary database. Details on the integration algorithm are provided in S3 and illustrated 420 
in Tables S11-S13. 

3.3.2 Processed EF dataset 

Following integration, the EF data from laboratory studies were corrected to account for known 
differences between laboratory and field combustion conditions. The results of this correction are 
presented and discussed in 4.1, with further detail on the correction methods presented in S4. In 425 
addition, to minimize over- or under-counting of individual NMOC_g and to increase the number 
of measured EFs per individual gaseous NMOC (and thus the statistical robustness), where 
applicable speciated EF data were used to assign fractional contributions to EFs representing 
groups of compounds that could not be differentiated using the published method of detection. For 
example, because methyl vinyl ketone (MVK) and methacrolein have the same molar mass they 430 
are not differentiable by PTR-MS, and thus are often reported as a sum (MVK + methacrolein). 
For fuel and fire types in which EFs were reported for MVK and methacrolein as a sum and as 
individual compounds (e.g., using GC´GC-TOF-MS, GC-PTR-MS), the relative EFs of the 
individual compounds were used to assign fractional contributions to the summed EF, resulting in 
two (or more) EFs for MVK and for methacrolein, and no EF for MVK + methacrolein in the 435 
processed data set. The results of assigning fractional contributions are presented and discussed in 
4.2, with further detail on the fractional assignment presented in S4. 
 

3.3.3 Recommended EF dataset 

The arithmetic means of the EFs in the processed dataset were calculated to obtain a single 440 
recommended EF for each compound or constituent in each of the 14 fuel or fire types, with equal 
weighting of the laboratory-adjusted and field EF data. These recommended EFs, along with 
standard deviation (1s), data count (number of studies), and emission ratios (ERs) to CO were 
stored in the recommended EF dataset and are available in the Supplemental Table. A subset of 
the Supplemental Table is represented in Tables 2 (EFs) and Table 3 (ERs) below; ERs may be 445 
particularly useful in modeling studies where emissions are not explicitly defined. Prior to 
calculating the recommended EF for each compound or constituent, one additional data processing 
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step was performed: for studies in which EFs for NO, NO2, and NOx were reported, NOx EFs were 
converted to “NOx as NO" EFs (see S5). In the recommended EF dataset, for savanna fires, the EF 
for OA is greater than the EF for PM2.5. The OA represents a single value reported by Travis et al. 450 
(2023). In their paper, the EFs for PM1, OA, and OC are self-consistent and reasonable. When 
averaged here with the other data, because there is only one EF for OA and many EFs for PM2.5, 
the Travis et al. (2023) data disproportionately affect the EFOA. The Travis et al. (2023) data were 
not considered outliers but representative of the natural variability of fuel and fire conditions, and 
thus the data were not removed.  455 
 

Table 2: Recommended EFs (g/kg) for selected compounds and constituents.  

 Savanna Boreal 
Forest 

Tropical 
Forest 

Temperate 
Forest Peat Chaparral Crop 

Residue 
Garbage 
Burning 

Carbon 
dioxide    
(CO2) 

1.640´103 1.610´103 1.625´103 1.581´103 1.572´103 1.649´103 1.441´103 1.502´103 

Carbon 
monoxide    
(CO) 

8.10´101 1.00´102 1.11´102 9.60´101 2.25´102 6.66´101 5.75´101 5.20´101 

Methane 
(CH4) 

2.83´100 4.78´10 4.68´100 4.74´100 1.11´101 2.57´100 2.14´100 3.06´100 

Nitric oxide 
(NO) 

1.76´100 9.16´10-1 9.00´10-1 7.85´10-1 3.21´10-1 1.15´100 9.62´10-1 8.10E-01 

Nitrogen 
oxides  
(NOx as NO) 

3.40´100 1.21´100 2.55´100 1.65´100 9.27´10-1 2.42´100 2.05´100 2.31´100 

Nitrogen 
dioxide (NO2) 

2.60´100 9.22´10-1 3.55´100 1.40´100 5.43´10-1 1.02´100 1.96´100 2.34´100 

Nitrous oxide 
(N2O) 

1.40´10-1 2.05´10-1  1.55´10-1  2.50´10-1   

Nitrous acid 
(HONO) 

4.99´10-1 2.55´10-1 1.18´100 3.78´10-1 2.22´10-1 5.52´10-1 3.53´10-1 2.51´10-1 

Sulphur 
dioxide (SO2) 

9.44´10-1 5.64´10-1 4.03´10-1 9.50´10-1 2.06´100 5.53´10-1 1.25´100 7.05´10-1 

Isocyanic acid 
(CHNO) 

1.05´100 8.30´10-2  4.05´10-1 5.74´10-1 3.02´10-1 4.69´10-1 1.29´10-1 

Ammonia 
(NH3) 

6.59´10-1 1.47´100 1.33´100 1.06´100 6.15´100 9.09´10-1 9.68´10-1 6.88´10-1 

Gaseous Non-
Methane 
Organic 
Compounds 
(NMOC_g) 

3.73´101 4.05´101 2.53´101 4.25´101 7.37´101 2.17´101 3.81´101 3.36´101 

PM2.5
*(a) 1.6´101 1.28´101 9.11´100 1.79´101 2.48´101 1.51´101 1.27´101 9.68´100 

OA 2.73´101 
(b) 

6.60´100  1.71´101  1.08´101 1.12´101 7.36´100 

OC 6.49´100  3.99´100 1.04´101 1.32´101 1.08´101 9.47´100 5.47´100 
BC 3.50´10-1 1.30´10-1 3.44´10-1 4.35´10-1 1.60´10-2 6.24´10-1 4.46´10-1 1.98´100 
EC     4.32´10-1  4.99´10-1 1.92´10-1 

(a)PM2.5* includes PM1-PM5. (b) OA is a single value from Travis et al. (2023) that is less than PM1 from the same 
study. 
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 460 

Table 3: Recommended ERs (ppb/ppm CO) to CO for selected compounds and constituents.  

 Savanna Boreal 
Forest 

Tropical 
Forest 

Temperate 
Forest Peat Chaparral Crop 

Residue 
Garbage 
Burning 

Carbon 
dioxide    
(CO2) 

1.289´104 1.020´104 9.335´104 1.049´104 4.447´103 1.576´104 1.594´104 1.837´104 

Methane 
(CH4) 

6.10´101 8.31´101 7.38´101 8.63´101 8.61´101 6.74´101 6.50´101 1.03´102 

Nitric oxide 
(NO) 

2.02´101 8.50´100 7.58´100 7.63´100 1.33´100 1.61´101 1.56´101 1.45´101 

Nitrogen 
oxides  
(NOx as NO) 

3.92´101 1.12´101 2.15´101 1.61´101 3.85´100 3.39´101 3.33´101 4.14´101 

Nitrogen 
dioxide 
(NO2) 

1.95´101 5.59´100 1.95´101 8.91´100 1.47´100 9.35´100 2.07´101 2.74´101 

Nitrous oxide 
(N2O) 

1.10´100 1.30´100  1.03´100  2.39´100   

Nitrous acid 
(HONO) 

3.67´100 1.51´100 6.35´100 2.35´100 5.88´10-1 4.94´100 3.65´100 2.87´100 

Sulfur dioxide 
(SO2) 

5.10´100 2.45´100 1.59´100 4.33´100 4.01´100 3.63´100 9.47´100 5.92´100 

Isocyanic acid 
(CHNO) 

8.45´100 5.38´10-1  2.75´100 1.66´100 2.96´100 5.31´100 1.61´100 

Ammonia 
(NH3) 

1.34´101 2.41´101 1.97´101 1.82´101 4.51´101 2.25´101 2.77´101 2.18´101 

Gaseous Non-
Methane 
Organic 
Compounds 
(NMOC_g) 

2.31´102 1.99´102 1.35´102 2.04´102 1.67´102 1.66´102 3.10´102 3.45´102 

ERs (g/g CO) 
PM2.5

*(a) 2.17´10-1 1.27´10-1 8.22´10-2 1.85´10-1 1.10´10-1 2.25´10-1 2.21´10-1 1.86´10-1 
OA 3.38´10-1 6.57´10-2  1.78´10-1  1.62´10-1 1.95´10-1 1.41´10-1 
OC 8.01´10-2  3.60´10-2 1.09´10-1 5.86´10-2 1.63´10-1 1.65´10-1 1.05´10-1 
BC 4.32´10-3 1.29´10-3 3.10´10-3 4.54´10-3 7.13´10-5 9.36´10-3 7.75´10-3 3.80´10-2 
EC     1.92´10-3  8.67´10-3 3.68´10-3 

(a)PM2.5* includes PM1-PM5.  
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3.3.4 Chemical property and model surrogate dataset  

In many model applications, it is impractical to represent hundreds of individual organic 
compounds and thus lumping of compounds is often required. In gas-phase chemical mechanisms, 465 
it is typical to lump organic compounds based on their reaction rate constant with OH (kOH) and 
the oxidation products that they form. Groups of compounds may be represented by individual 
compounds or by model surrogates. To facilitate the use of the comprehensive EF data for 
NMOC_g included in NEIVA, individual NMOC_g were mapped to model surrogates for the 
common gas-phase chemical mechanisms SAPRC-07/-07T/-18/-22 (Carter, 2010, 2020, 2023a), 470 
MOZART-T1(Emmons et al., 2020), and GEOS-Chem (Bey et al., 2001; Carter et al., 2022). The 
methods for assigning the model surrogates and sources for the property data are described in detail 
in S6. Briefly, compounds were first assigned to the SAPRC and MOZART-T1 mechanisms using 
the SAPRC Mechanism Generation (MechGen) System web interface (Carter, 2019) and the 
SAPRC model species assignment database ‘SpecDB’(Carter, 2023b). The SAPRC and 475 
MOZART-T1 assignments were then used to determine the GEOS-Chem assignments (see Tables 
S18-S21), with additional reference to Hutzell et al. (2012), Li et al. (2014), and Carter et al. 
(2022). The model surrogate assignments are provided in a property dataset (see Table S22) that 
also includes oxidation rate constants with OH, O3, and NO3 (cm3/molecule-s); vapor pressures 
(mm Hg); saturation vapor concentration (C*, µg/m3); Henry’s Law constants (atm-m3/mole); O:C 480 
ratio; and average carbon oxidation state (Pence and Williams, 2010; NIST Chemistry WebBook, 
2022; US EPA, 2023; Kim et al., 2023; ChemSpider, 2024) linked to individual NMOCs by the 
unique ID. 

4. Evaluation 
4.1 Adjustment of Laboratory-Based Emission Factors and Integration of Laboratory 485 
and Field Data 

Representative laboratory-based EFs were selectively included in NEIVA largely to capture the 
extensive speciation of gas- and particle-phase organic carbon (i.e., NMOC_g and NMOC_p) that 
has been achieved in laboratory studies. Laboratory studies also provide additional measurements 
for fuel and fire types that have a limited number of field-based EF measurements, and thus if 490 
representative, decrease the uncertainty associated with those EFs. While the designation of 
representative is subjective, studies were prioritized here that emphasized careful handling of 
relevant fuels (e.g., using fresh fuels from specific locations) and combustion in configurations 
that mimic natural conditions to the extent possible. Nonetheless, even in these representative 
laboratory studies, MCE values were typically higher than observed in the field. Therefore, the 495 
laboratory-based EFs for all fuels (with the exception of peat) were adjusted to account for the 
generally lower combustion efficiencies under field conditions. Briefly, to calculate the adjusted 
laboratory-based EFs, the laboratory-based ERs to CO were multiplied by the field-average EFCO 
for smoldering compounds; an analogous calculation was done for flaming compounds using 
EFCO2. The adjustments are described in further detail in S4. Results of the adjustment are shown 500 
here and in S4.  
 
Figure 2 illustrates the magnitude of the adjustment to laboratory-based EFs for smoldering 
dominant compounds. For each fuel or fire type, the average field-based EF for CO is shown in  
dark grey and the laboratory-based EF for CO in light grey. The laboratory-based CO values are 505 
lower for most fuel or fire types, with the exception of boreal forest, charcoal burning, and crop 
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residue. For boreal forest, the relatively high laboratory-based CO value is largely driven by EFs 
measured in boreal peat studies and reported by Yokelson et al. (1997). For crop residue, the 
relatively high value is driven by laboratory-based pile burns of rice straw reported by Christian 
et al. (2003). For charcoal burning, there are a greater number of field studies (n = 5) than 510 
laboratory studies (n = 2) and the variability is larger for the field studies, with lower end CO 
values of 122 g/kg.  The sum of the adjusted EFs for the smoldering dominant compounds thus 
increases for most fuel or fire types, consistent with the lower EFCO values measured under more 
flaming conditions in laboratory studies. For two fire types, boreal and temperate forest, the sum 
of the adjusted EFs does not decrease and increase (respectively) as expected. The reason for this 515 
is twofold: the number of compounds measured in laboratory studies is significantly larger than 
the number measured in the field and, in the case of temperate forest, the natural variability (driven 
by fuel and fire characteristics) is larger than the small difference between the average field and 
laboratory EFCO.  Figure S2 is the analogous figure for the flaming dominant compounds (NO, 
NO2, NOx as NO, N2O, HONO, SO2, HCl, gaseous Hg). 520 

 
Figure 2: Averaged EF values for CO (field, dark grey; lab, light grey) and the sum of smoldering dominant compounds 
(excluding CO and CH4) pre-(blue) and post-(green) adjustment to account for differences in combustion conditions 
between laboratory and field studies. Integrated_EF indicates data from the integrated EF dataset and Processed_EF 
indicates data from the processed EF dataset. 525 

In the processed EF dataset the adjusted laboratory-based EFs replace the unadjusted laboratory-
based EFs from the integrated dataset and are used in the calculation of the recommended EFs. To 
more closely evaluate this adjustment on an individual compound level, Figure 3 shows the 
distribution of field and adjusted laboratory EFs (box and whiskers) for the 25 most abundant 
NMOC_g in the temperate forest fire type. The mean value is equivalent to the recommended EF 530 
and is shown by the red line. Also shown are the average EF based on the unadjusted laboratory 
data only (‘Average EF (lab)’) and the field data only (‘Average EF (field)’), as well as the EFs 
reported by Permar et al. (2021) for WE-CAN and Gkatzelis et al. (2023) for FIREX-AQ. A 
corresponding figure for the 25 compounds with the highest number of observations (“n”) in the 
NEIVA integrated EF database, that are not shown in Fig. 3, is included in the SI (Figure S3), and 535 
equivalent figures for crop residue are also included in the SI (Figures S4, S5). While the 
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unadjusted laboratory EF averages are outside the upper (75%) and lower (25%) quartiles for five 
of the 25 compounds shown in Fig. 3 (and 11 of the 25 in Fig. S5), the mean EF values (which 
include adjusted laboratory EF) do not deviate significantly from the field-based averages. 
Agreement with the values reported by Permar et al. (2021) and Gkatzelis et al. (2023) is 540 
compound dependent, but generally those values are within the upper and lower quartiles of the 
NEIVA processed dataset. This analysis suggests that the inclusion of the adjusted laboratory data 
does not introduce unrepresentative values that are outside of the expected variability and/or 
uncertainty observed in the field data, and serves to increase the number of observations and 
compounds represented in the database.  545 

 
Figure 3: The 25 most abundant NMOC_g EFs for temperate forest. The box and whiskers represent the values in the 
processed EF dataset and thus include the field EFs and the adjusted laboratory EFs. The outliers (> 1.5 ´ above/below the 
interquartile range) in the processed EF dataset are indicated by the plus symbols. The red line indicates the mean value 
and is equivalent to the recommended EF. The number of observations is listed in parenthesis (“n”). Compounds marked 550 
with an asterisk before the name have had an additional correction, application of isomeric distributions described below.  

4.2 Assignment of Isomer Contributions to Exact Masses 

In some cases, isomers that are not resolved using one analytical technique can be resolved using 
another analytical technique. Because the individual compounds in these unresolved mixtures may 
have very different chemical and physical properties, it is preferable to resolve the mixtures when 555 
possible. In addition, resolving mixtures leads to an increase in the number of observations for 
associated individual compounds. Therefore, prior to their inclusion in the recommended EF 
database, fractional distributions were assigned to mixtures as described in S4.  

The summed EFs for groups of NMOC_g in the NEIVA integrated dataset that were assigned 
fractional distributions are listed before and after processing in Table 4 for each fuel or fire type. 560 
Also included are the number of unique chemical formulas for which isomer contributions were 
assigned. The summed EFs for these NMOC_g decreases with the application of the fractional 
distribution, largely due to double counting prior to assigning isomer contributions to groups of 
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NMOC_g. There were no group assignments in open cooking or charcoal making so no isomer 
contribution assignments were made. 565 
 

Table 4: The summed EFs for the subset of NMOC_g to which isomeric contributions have been assigned, pre- 
and post- assignment of fractional contributions, shown for each fuel or fire type. Also shown are the number of 
unique chemical formulas for which fractional distributions were assigned.   

Fuel or Fire Type 
Summed Isomeric 
NMOC_g EFs Pre- 

Fractional Contribution 

Summed Isomeric 
NMOC_g EFs Post- 

Fractional Contribution 

Number of Unique 
Chemical Formulas 

Savanna 12.23 7.02 11 

Boreal forest 8.33 4.16 38 

Tropical forest 1.47 0.74 2 

Temperate forest 28.27 14.71 80 

Peat 37.44 19.67 76 

Chaparral 11.74 5.93 36 

Domes&c Biomass Burning 

Open cooking 0 0 0 

Cookstove 0.47 0.20 4 

Dung burning 22.56 12.22 15 

Charcoal making 0 0 0 

Charcoal burning 0.90 0.42 1 

Pasture maintenance 0.17 0.09 1 

Crop residue 28.05 13.93 85 

Garbage burning 2.33 1.21 6 

 
The laboratory-based EFs in the processed EF dataset were adjusted for MCE and, where 
applicable, assigned isomeric contributions. Figures 4 and 5 compare the NEIVA temperate forest 
EFs from the recommended EF database (includes laboratory-adjusted EFs) with EFs reported by 570 
Permar et al. (2021) for WE-CAN and Gkatzelis et al. (2023) for FIREX-AQ, respectively. For 
115 of 145 overlapping gaseous compounds agreement is within a factor of two with Permar et al. 
(2021) and for 84 of 95 with Gkatzelis et al. (2023). Focusing on the compounds for which NEIVA 
is higher than Permar et al. (2021)and/or Gkatzelis et al. (2023) by a factor of two or more, there 
were no systematic biases or unexplained discrepancies in the laboratory data relative to the field 575 
data, supporting the inclusion of laboratory data in this EF compilation. For some compounds, 
higher EFs measured in laboratory studies, and in Gkatzelis et al. (2023) relative to Permar et al. 
(2021), can be explained by photochemical losses as a function of aging. In Figs. 4 and 5, marker 
colors are representative of kOH values for the NMOC_g, with red values indicating higher OH 
reactivity and blue values indicating lower OH reactivity. The loss of the more reactive compounds 580 
measured during WE-CAN relative to laboratory studies likely partially explains the higher EFs 
in NEIVA, and to a lesser extent the compounds measured during FIREX-AQ. Similar 
observations were made by Gkatzelis et al. (2023), that ERs for some highly reactive compounds 
in WE-CAN were lower than laboratory measurements and in FIREX-AQ higher than laboratory 
measurements, highlighting variability in oxidation and emissions in both laboratory and field 585 
studies. When multiple data points were available for comparison, high EF values were also 
reported for field studies (and low EF values for laboratory studies) representing diversity in fuels 
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burned and fires sampled. For some field studies, the higher EFs reflect greater sampling of 
smoldering fires (e.g., as reported by Yokelson et al. (2013)) and pile burns (e.g., as reported by 
Travis et al., 2023)). No laboratory data were omitted as a result of these comparisons. 590 

Figure 4: NEIVA temperate forest EFs (gaseous non-methane organic compounds, inorganic gases, methane) vs. EF data 
reported by Permar et al. (2021) from the WE-CAN field study. The equation is for the linear fit (not shown). 

 
Figure 5: NEIVA temperate forest EFs (gaseous non-methane organic compounds, inorganic gases, methane) vs. EF 
reported by Gkatzelis et al. (2023) from the FIREX-AQ field study. The equation is for the linear fit (not shown). 595 
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4.3 Comparisons of Recommended EFs with EF Compilations of Akagi et al. 2011 and 
Andreae 2019 
 
In 2019, Andreae (2019) published an update of the 2001 Andreae and Merlet (2001) EF 
compilation. Field data from over 370 publications were evaluated and the number of species 600 
included was increased from 93 to 121. Andreae (2019) compared EFs for a subset of compounds 
and constituents with Akagi et al. (2011). That comparison is expanded here, with an added 
emphasis on NMOC_g. Figure 6 is similar to Figure 2 of Andreae (2019) and shows a comparison 
of NEIVA-based recommended EFs for selected inorganic gases and particulate constituents with 
Akagi et al. (2011) (green markers) and with Andreae (2019) (orange markers) for three fire types 605 
(represented by the different marker symbols). There appear to be no systematic biases with regard 
to specific EFs and specific fuel types. For many of the comparisons shown, the agreement is 
within a factor of two (indicated by the dashed lines). The methane EF for crop residue in the 
NEIVA recommended EF dataset is lower than both Andreae (2019) and Akagi et al. (2011) likely 
due to the inclusion of more data from loose burning in the field. In addition, the OC EFs are higher 610 
than Andreae (2019) for crop residue, which is likely due to inclusion of the Travis et al. (2023) 
data, in which the burns occurred under relatively wet conditions, promoting more smoldering 
combustion. The BC EFs in the NEIVA recommended EF dataset are lower than Andreae (2019) 
for temperate forest and significantly so for peat. The significantly lower BC EFs for peat in the 
NEIVA recommended EF dataset are largely due to exclusion of thermal EC data, which can result 615 
in artificially high EC/BC EFs due to charring of OC. Figures S6-S13 show additional comparisons 
between NEIVA and Andreae EF datasets for the most abundant compounds in temperate forest, 
peat, and crop residue fire types. 

 

Figure 6: Ratio of recommended EFs based on NEIVA to EFs based on Akagi et al. (2011) (orange) and Andreae (2019) 620 
(green) to for selected gases and particulate constituents in temperate forest, crop residue, and peat fire types. Agreement 
within a factor of two is shown by the dashed lines; PM2.5

* includes PM1-5. 
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Figure 7: Number of compounds represented in NMOC_g (top panel) and total NMOC_g EF (bottom panel) in Akagi et al. 
(2011), Andreae (2019), and NEIVA. Andreae (2019) reported the total NMOC_g EF from Akagi et al. (2011); here, the 625 
total NMOC_g EF based on Andreae (2019) is the sum of individually reported NMOCs plus reported non-specified “VOC” 
(the latter shown by hashes).  

The inclusion of laboratory data in NEIVA leads to an unprecedented increase in the number of 
individual NMOC_g represented for globally-relevant fuels and fire types. In Figure 7, the number 
of NMOC_g (top panel) and total NMOC_g EF (bottom panel) are compared with Akagi et al. 630 
(2011) and with Andreae (2019) across the 12 fuel and fire types updated in NEIVA (pasture 
maintenance and charcoal-making were not updated). Andreae (2019) does not include data for 
two of these fire types, chaparral (shrubland) and cookstoves. While the previously published 
compilations include approximately 100-200 NMOC_g for most fire types (excluding 
cookstoves), NEIVA includes more compounds in nine of the fourteen fire types, with > 400 635 
NMOC_g for six of the fire types.  Further, except for tropical forest, the increase in the number 
of NMOC_g represented nearly eliminates the unknown NMOC_g EF approximated by Akagi et 
al. (2011)  (the total of which was also reported by Andreae (2019)). The differences between the 
total NMOC_g EF based on Akagi et al. (2011)  and based on NEIVA largely arise from the extent 
to which this unknown fraction was under- or over-estimated (which has not been investigated for 640 
tropical forest since Akagi et al. (2011)). For a few less-sampled fire types, Andreae (2019) has a 
slightly higher total EF NMOC_g than NEIVA due to inclusion of summed non-specified VOCs.  
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In NEIVA there is still some fraction of NMOC_g, ≤ 5% for most fire types, for which the 
molecular formula is known but compound class cannot be assigned (“unidentified”).  

In Fig. 7, it can be seen that for some fire types (e.g., boreal forest, crop residue, dung burning) 645 
although the number of NMOC_g EF represented in NEIVA increases by a factor of four or more, 
the NMOC_g EF is less than the Akagi et al. (2011) total including estimated unknowns. In Figures 
8-10, the total number of compounds that are required to represent 90% of the NMOC_g EF in 
NEIVA is shown for boreal forest, crop residue, and dung burning, respectively. Analogous figures 
for other fuel and fire types are in the SI (S14-S17). The threshold of 90% was chosen arbitrarily. 650 
The figures illustrate that inclusion of ~100 compounds represents the majority of the total 
NMOC_g EF, and thus the NMOC_g EFs in Fig. 7b vary less than the number of compounds in 
Fig.7a. Although a large number of compounds have small EFs, collectively they represent a non-
negligible fraction of the total NMOC_g. Further, some representation of their chemical and 
physical properties will be required for accurate predictions of smoke composition and 655 
concentration and of the effects of smoke on atmospheric composition, air quality, and climate. 
 

 

Figure 8: Number of compounds needed to represent 90% of the total boreal forest NMOC_g EF. 
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 660 
Figure 9: Number of compounds needed to represent 90% of the total crop residue NMOC_g EF. 
 

 

Figure 10: Number of compounds needed to represent 90% of the total dung burning NMOC_g EF. 

 665 
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A more detailed comparison between Akagi et al. (2011) and NEIVA is shown in Figure 11. The 
EF is summed by individual compounds that are matched between the two datasets and individual 
compounds that are unmatched between the two datasets (i.e., appear in the NEIVA database but 670 
not in Akagi et al. (2011)). Also shown is a total EF representing unknown compounds in Akagi 
et al. (2011) and unidentified compounds in NEIVA (formula known but no functional group or 
structural assignment). For boreal forest, the summed NMOC_g EF for matched compounds is 
lower in NEIVA than in Akagi due to the increased weighting of smoldering fires in Akagi et al. 
(2011). For temperate forest and for chaparral, the unknown EF in Akagi is similar to the 675 
unmatched EF in NEIVA, suggesting a reasonable approximation of unknowns for these fire types 
by Akagi et al. (2011). For crop residue, the EF for matched compounds is lower in NEIVA than 
in Akagi due to the reduced weighting of pile burns in NEIVA. For peat, the EF for matched 
compounds is lower in NEIVA than Akagi due to the inclusion of new EF data from several studies 
which are lower than those reported by Christian et al. (2010) and compiled in Akagi et al. (2011). 680 
There are no differences between the matched and unmatched compounds for tropical forest 
because no new NMOC_g data were added. 
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Figure 11: Comparison of the summed NMOC_g for compounds that are matched and unmatched (i.e., in NEIVA but not 
in Akagi et al. (2011)) between NEIVA and Akagi et al. (2011), and the summed NMOC_g  that were unknown 685 
(approximated) in Akagi et al. (2011) and are unidentified (formula but no functional group, structural assignment) in 
NEIVA. The middle and right-hand column of each chart compare total unknown NMOC_g mass estimated Akagi et al. 
(2011) to the mass of newly identified species included in this work.  
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4.4 Implications for Atmospheric Composition and Chemistry 
 690 
Representation of a greater diversity of NMOC_g has a number of potential implications for 
predictions of atmospheric composition, chemistry, and associated effects (e.g., Xu et al., 2021; 
Schwantes et al., 2022). The magnitude of the effects will depend on model complexity and 
resolution, and will be further investigated in forthcoming manuscripts. In lieu of a detailed 
modeling analysis, features of the distributions of NMOC_g are presented here that can affect 695 
predictions of atmospheric composition and chemistry. The ability to generate property 
distributions for individual compounds and representative model surrogates is enabled by the 
chemical mechanism and property dataset that are linked to the EF datasets using unique IDs.   

The volatility distribution of organic compounds, represented here by decadally spaced bins of 
saturation vapor concentration (C*),  is important for predictions of SOA formation and deposition. 700 
Figures 12 and 13 show the volatility distribution of NMOC_g normalized to the  total NMOG in 
each inventory for temperate forest and crop residue fires based on NEIVA, Andreae (2019), and 
the EPA SPECIATE 5.2 database (Simon et al., 2010; Bray et al., 2019; SPECIATE, 2023) for 
temperate forest (profile 95424) and crop residue (profile 5564). The compounds are grouped by 
their C* values in logarithmic bins. As demonstrated by Hatch et al. (2017), improved speciation 705 
of NMOC_g leads to inclusion of lower volatility compounds than are currently represented in 
emissions inventories. Relative to the NEIVA database, the distributions of compounds in Andreae 
(2019) and the EPA SPECIATE 5.2 database (Simon et al., 2010; Bray et al., 2019; SPECIATE, 
2023) are skewed towards higher volatility bins and the intermediate volatility compounds 
(IVOCs, 3.5 < log C* < 6.5) are underrepresented and in some cases entirely absent.   710 
 

 
Figure 12: Normalized volatility distribution of temperate forest NMOC_g EFs using NEIVA compared with Andreae ( 
2019) and the EPA SPECIATE (Simon et al., 2010; Bray et al., 2019; SPECIATE, 2023) profile for western wildfire 
(#95424). 715 

https://doi.org/10.5194/egusphere-2024-633
Preprint. Discussion started: 7 May 2024
c© Author(s) 2024. CC BY 4.0 License.



27 
 

 

 

Figure 13: Normalized volatility distribution of temperate forest NMOC_g EFs using NEIVA compared with Andreae ( 
2019) and the EPA SPECIATE (Simon et al., 2010; Bray et al., 2019; SPECIATE, 2023) profile for crop/agriculture residue 
(#55644). 720 

For many types of modeling, while some NMOC_g are explicitly represented, most are mapped 
to model surrogate species that are specific to the chemical mechanism being used. In NEIVA 
v1.0, the NMOC_g compounds were mapped to surrogate species for the following chemical 
mechanisms: SAPRC-07/-07 toxics (Carter, 2010), SAPRC-18 (Carter, 2020), SAPRC-22 (Carter, 
2023a); MOZART-T1(Emmons et al., 2020); and GEOS-Chem (Bey et al., 2001; Carter et al., 725 
2022). The number of model surrogates used to represent these compounds is mechanism 
dependent and listed in Table S18. Figures 14 and 15 show the relative distribution, based on mole 
fraction, of NMOC_g mapped to SAPRC-07 model compounds for temperate forest and crop 
residue. The distributions shown here are independent of the number of compounds represented in 
each EF compilation and of the total NMOC_g EF, but are dependent on the identities of the 730 
individual compounds and their relative contributions to the total NMOC_g EF in each inventory. 
For compounds that are listed as “unspeciated” or “unidentified”, that mass was distributed equally 
among the model lumped categories as is typically done in model applications, though more 
recently published data (e.g., Stockwell et al., 2015; Koss et al., 2018) included here suggest the 
unidentified species are primarily high molecular mass oxygenated species consistent with the shift 735 
in C* shown in Figs. 12 and 13.  
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Figure 14: NMOC_g mapped to SAPRC-07 model surrogate species based on NEIVA compared with Andreae ( 2019) and 
the EPA SPECIATE (Simon et al., 2010; Bray et al., 2019; SPECIATE, 2023) profile for western wildfire (95424). 
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 740 
Figure 15: NMOC_g mapped to SAPRC-07 model surrogate species based on NEIVA compared with Andreae ( 2019) and 
the EPA SPECIATE (Simon et al., 2010; Bray et al., 2019; SPECIATE, 2023)  profile crop/agriculture residue (#55644). 

The compounds represented in NEIVA, Andreae (2019), and the EPA SPECIATE 5.2 database 
(Simon et al., 2010; Bray et al., 2019; SPECIATE, 2023), have distinctly different profiles when 
mapped to the 37 SAPRC-07 model species. Figures 16 and 17 show the calculated OH reactivity 745 
(OHR) as influenced by the different model surrogate distributions shown in Figures 14 and 15 for 
temperate forest and crop residue, respectively. The sizes of the charts are scaled by the total OHR 
(s-1) calculated for a representative NMOC_g mixing ratio of ~90 ppb. The OH reaction rate 
constants were based on published literature for the respective chemical mechanisms and were not 
recalculated to represent the mixture of compounds mapped to each surrogate. The top 8 model 750 
species with the largest contributions to OHR are explicitly shown, and the contributions of the 
remaining 29 model species are summed and represented as “others”. The OHR calculated using 
the NEIVA-based distribution of model compounds is ~50-60% and ~60-90% higher than the 
OHR calculated using the Andreae (2019) and the EPA SPECIATE (Simon et al., 2010; Bray et 
al., 2019; SPECIATE, 2023) distributions for temperate forest and crop residue, respectively. This 755 
is largely driven by the greater mole fractions of model species OLE2 (more reactive alkenes, kOH 
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> 4.8 × 10-11 cm3 molec-1 s-1) and IPRD (unsaturated aldehydes) in both fire types, and additionally 
CRES (oxygenated aromatic hydrocarbons including phenols and cresols, but not furan or furan 
derivatives) in temperate forest.  

 760 

Figure 16: OH reactivity calculated using the surrogate species distributions in Fig. 14; chart size is scaled to the OH 
reactivity value. 

 

 

 765 
Figure 17: OH reactivity calculated using the surrogate species distributions in Fig. 15; chart size is scaled to the OH 
reactivity value. 

5. Database Products 

The NEIVA GitHub repository includes all of the database files in ‘.sql’ and ‘.csv’ format, and 
associated Python scripts (executable using the Python package neivapy) that were used to 770 
create the datasets, which also can be used to create new datasets upon the addition of new data, 
and to query the datasets. Jupyter notebooks are additionally shared in the NEIVA GitHub 
repository that demonstrate the features of the database, including adding new data and generating 
new datasets (add_new_data.ipynb) and example functions for querying the 
data(NEIVA_query_mysql.ipynb, NEIVA_py_functions.ipynb). These 775 
notebooks allow users to setup the NEIVA database in a Google Colab environment, execute 
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MySQL syntax, apply the neivapy functions, and download data. A full list of functions is 
provided in S9 (see Table S24). Some example functions are shown below. 

5.1 Display information 

The functions highlighted in this section are used to access and display information and labels. 780 
 
table_info(database, fire_type). This function returns a list of table names along 
with associated information such as measurement type, publication DOI, pollutant category for a  
specified database name (legacy database (ldb), raw database (rdb), and primary database (pdb), 
in acronym format (ldb, rdb, pdb) and fire type.  785 
 

Table 5: The output of the table_info()function when using the parameters- rdb, garbage burning.  

table_name measurement
_type fire_type pollutant_ 

category study source doi 

rdb_gb_ 
yokelson13 

lab garbage burning inorganic gas, 
methane,  
NMOC_g, PM 
size  

yokelson13 Table S1 doi.org/10.
5194/acp-
13-89-2013 

rdb_goetz18 field dung burning, cookstove, 
crop residue, garbage 
burning, charcoal burning 

PM size, PM 
organic, PM 
elemental, PM 
ion 

goetz18 Supplement 
section 3 
and 4 

doi.org/10.
5194/acp-
18-14653-
2018 

rdb_ 
jayarathne18 

field garbage burning, 
cookstove, dung burning, 
crop residue, open 
cooking peat 

PM size, PM 
organic, PM 
elemental, PM 
ion, PM metal, 
NMOC_p 

jayarathne18 Table 2, 3.2 
Emission of 
OC, EC and 
WSOC 

doi.org/10.
5194/acp-
18-2585-
2018 

rdb_ 
stockwell15 

lab crop residue, boreal 
forest, chaparral, 
cookstove, open cooking, 
temperate forest, peat, 
garbage burning 

inorganic gas, 
methane, 
NMOC_g 

stockwell15 Table S2 doi.org/10.
5194/acp-
15-845-
2015 

rdb_ 
stockwell16 

lab, field dung burning, cookstove, 
open cooking, charcoal 
burning, crop residue, 
garbage burning, peat 

inorganic gas, 
methane,  
NMOC_g, PM 
elemental, PM 
optical property 

stockwell16 Table S8, 
Table S7, 
Table S9, 
Table 6 

doi.org/10.
5194/acp-
16-11043-
2016 

 
summary_table(fire_type, measurement_type). This function returns a list of 
emission factor column names in the integrated EF table along with information such as MCE, 
measurement type (lab or field study), fuel type, and additional information for specific fire types 790 
if available (e.g., cookstove name). 
 

Table 6: The output of the summary_table()function when using the parameters- peat, field. 
efcol measurement_type MCE fuel_type study 

EF_peat_jayarathne18 field 0.78 indonesian peat jayarathne18 
EF_tropical_peat_roulston18 field 0.83 indonesian peat roulston18 
EF_tropical_peat_smith17 field 0.80 indonesian peat smith17 
EF_peat_stockwell16 field 0.77 indonesian peat stockwell16 
EF_peat_north_carolina_pokhrel16 field 0.72 north carolina peat pokhrel16 
EF_peat_canada_pokhrel16 field 0.80 canada peat pokhrel16 
EF_peat_indonesia_pokhrel16 field 0.81 indonesian peat pokhrel16 
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5.2 Query emission factor data 

The functions highlighted here are used for querying EF data.  
 795 
select_pm_data(fire_type, table_name). This function returns the EFs in all PM 
subcategories (e.g., PM size, PM organic, PM elemental, PM ion, PM metal, NMOC_p and PM 
optical property) for the specified fire type. In the example below, tables are separated for easier 
viewing and PM metal and NMOC_p tables are in the SI (S9) due to their length. 
 800 

Table 7: The output of select_pm_data()function when using the parameters- peat, integrated EF. The 
pollutant category-PM size is presented. 
EF columns PM2.5 
EF_peat_jayarathne18 1.73E+01 
EF_tropical_peat_roulston18 2.77E+01 
EF_russia_watson19 4.26E+01 
EF_siberia_watson19 3.39E+01 
EF_northern_alaska_watson19 2.40E+01 
EF_evergladesNP_florida_watson19 2.36E+01 
EF_malaysia_watson19 2.24E+01 

 
Table 8: The output of select_pm_data()function when using the parameters- peat, integrated EF. The 
pollutant category- PM organic is presented. 

EF columns OC water-soluble OC 
fraction 

water-insoluble 
OC fraction 

EF_akagi11_indonesian_peat_christian03 6.02E+00     
EF_peat_jayarathne18 1.24E+01 1.98E+00 1.04E+01 
EF_peat_stockwell16       
EF_russia_watson19 2.51E+01 1.55E+01   
EF_siberia_watson19 2.60E+01 8.65E+00   
EF_northern_alaska_watson19 1.74E+01 6.69E+00   
EF_evergladesNP_florida_watson19 1.90E+01 7.76E+00   
EF_malaysia_watson19 1.80E+01 3.60E+00   

 
 

Table 9: The output of select_pm_data()function when using the parameters- peat, integrated EF. The 
pollutant category- PM elemental is presented. 
EF columns BC EC 
EF_akagi11_indonesian_peat_christian03 4.00E-02   
EF_peat_jayarathne18   2.40E-01 
EF_peat_stockwell16 1.00E-02   
EF_russia_watson19   7.70E-01 
EF_siberia_watson19   6.90E-01 
EF_northern_alaska_watson19   6.00E-01 
EF_evergladesNP_florida_watson19   7.80E-01 
EF_malaysia_watson19   2.80E-01 

  

https://doi.org/10.5194/egusphere-2024-633
Preprint. Discussion started: 7 May 2024
c© Author(s) 2024. CC BY 4.0 License.



33 
 

 805 
Table 11: The output of select_pm_data()function when using the parameters- peat, integrated EF. The pollutant 
category- PM ion is presented. (continued) 
mm formula compound EF_peat_jayarathne18 EF_russia_watson19 EF_siberia_watson19 
88.02 Cl- chloride 7.27E-02 8.72E-02 4.62E-02 
35.45 NO3- nitrate 2.80E-03 7.58E-02 4.68E-02 
62.01 O4P-3 phosphate    
94.97 O4S-2 sulfate 2.44E-02 9.50E-02 9.52E-02 
96.07 Na sodium    
22.99 H4N+ ammonium 8.82E-02 5.02E-02 7.50E-03 
18.04 K potassium  1.47E-02 4.58E-02 
39.10 Mg magnesium    
24.31 Ca calcium  1.07E-02  
40.08 Na+ sodium ion 9.00E-04 7.10E-03 1.41E-02 
22.99 K+ potassium ion 4.50E-03 2.98E-02 7.30E-03 
39.10 Mg+2 magnesium ion    
24.31 Ca+2 calcium ion    
40.08 Cl2 chlorine  6.30E-02 3.26E-02 

 
Table 12: The output of select_pm_data()function when using the parameters- peat, integrated EF. The pollutant 
category- PM optical property is presented. 
compound EF_peat_stoc

kwell16 
EF_peat_nort
h_carolina_ 
pokhrel16 

EF_peat_cana
da_pokhrel16 

EF_peat_indo
nesia_pokhrel
16 

EF_peat_kali
mantan_mixe
d_sites_selimo
vic18 

EF Babs 870 (m2 kg 1) 2.61E-02      1.23E-02 
EF Bscat 870 (m 2 kg 1) 1.83E+01       3.14E+00 
EF Babs 405 (m2 kg1) 1.35E+00         
EF Bscat 405 (m2 kg1) 5.06E+01         
EF Babs 405 just BrC (m2 kg1) 1.30E+00         
EF Babs 405 just BC (m2 kg1) 5.40E-02         
SSA 870 nm 9.98E-01       9.96E-01 
SSA 405 nm 9.74E-01 9.43E-01 9.41E-01 9.34E-01   
AAE 4.97E+00 6.85E+00 6.25E+00 7.24E+00   
SSA 532   9.90E-01 9.93E-01 9.91E-01   
SSA 660   9.93E-01 9.94E-01 9.91E-01   

 
  

Table 10: The output of select_pm_data()function when using the parameters- peat, integrated EF. The pollutant 
category- PM ion is presented. 
mm formula compound EF_northern_alaska_ 

watson19 
EF_evergladesNP_flori
da_watson19 

EF_malaysia_watso
n19 

88.02 Cl- chloride 5.77E-02 5.64E-02 3.02E-02 
35.45 NO3- nitrate 4.60E-02 4.38E-02 2.36E-02 
62.01 O4P-3 phosphate    
94.97 O4S-2 sulfate 8.24E-02 1.81E-01 3.36E-02 
96.07 Na sodium    
22.99 H4N+ ammonium 1.58E-02 6.00E-04 5.00E-04 
18.04 K potassium 9.90E-03 6.20E-03 8.30E-03 
39.10 Mg magnesium    
24.31 Ca calcium 6.40E-03  6.00E-04 
40.08 Na+ sodium ion 7.30E-03 7.90E-03 3.80E-03 
22.99 K+ potassium ion 7.40E-03 1.61E-01 8.60E-03 
39.10 Mg+2 magnesium ion    
24.31 Ca+2 calcium ion    
40.08 Cl2 chlorine 3.32E-02 5.56E-02 1.80E-02 
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ef_sorted_by_property(chem, model_surrogate, property_variable). 
This function returns the individual NMOC_g EFs sorted by the specified property variable in 810 
ascending order. The NMOC_g is filtered by the specified fire type, chemical mechanism, and 
model surrogate.  
 

Table 13: The output of ef_sorted_by_property()function when using the parameters- S22, XYNL, hc. 
mm formula compound AVG_ 

temperate_ 
forest 

N_ 
temperate_ 
forest 

STD_ 
temperate_ 
forest 

S22 hc 

122 C7H6O2 Salicylaldehyde 0.07 4 0.04 XYNL 6.00E-06 
138 C8H10O2 Creosol 0.3 7 0.19 XYNL 1.00E-06 
124 C7H8O2 2-methoxyphenol 0.48 8 0.31 XYNL 1.00E-06 
122 C8H10O 2,5-dimethyl phenol 0.09 2 0.07 XYNL 1.00E-06 
154 C8H10O3 Syringol 0.08 7 0.07 XYNL 2.00E-07 
110 C6H6O2 Resorcinol 1.49 3 0.83 XYNL 1.00E-10 

5.3 Query NMOC_g speciation profiles 

The functions highlighted here are used for querying attributes of the NMOC_g speciation 815 
profiles.  
 
voc_profile(chem, fire_type). This function returns the EF, moles, and mole fraction 
by model surrogate for the specified chemical mechanism and fire type.  
 820 

Table 14: The output of voc_profile ()function when using the parameters- GEOSChem, peat. 

GEOSChem !𝐄𝐅 weighted_mm !𝐦𝐨𝐥𝐞s mole_fraction 
PRPE 1.25E+01 100.96 1.20E-01 1.30E-01 
MOH 3.70E+00 31.00 1.20E-01 1.20E-01 
ACTA 5.51E+00 60.00 9.00E-02 1.00E-01 
C2H6 2.53E+00 30.00 8.00E-02 9.00E-02 
ALK4 7.24E+00 105.08 7.00E-02 7.00E-02 
C3H8 4.42E+00 69.67 6.00E-02 7.00E-02 
C2H4 1.54E+00 28.00 5.00E-02 6.00E-02 
CH2O 1.37E+00 29.50 5.00E-02 5.00E-02 
ALD2 1.82E+00 44.00 4.00E-02 4.00E-02 
CSL 4.41E+00 130.55 3.00E-02 3.00E-02 
XYLE 3.77E+00 121.06 3.00E-02 3.00E-02 
TOLU 3.64E+00 120.76 3.00E-02 3.00E-02 
GLYC 1.53E+00 60.00 3.00E-02 3.00E-02 
MVK 1.99E+00 80.67 2.00E-02 3.00E-02 
BENZ 1.33E+00 78.00 2.00E-02 2.00E-02 
HAC 1.26E+00 74.00 2.00E-02 2.00E-02 
ACET 9.40E-01 58.00 2.00E-02 2.00E-02 
OCS 7.30E-01 60.00 1.00E-02 1.00E-02 
MEK 1.16E+00 107.89 1.00E-02 1.00E-02 
ISOP 6.60E-01 68.00 1.00E-02 1.00E-02 
HCOOH 4.20E-01 46.00 9.00E-03 1.00E-02 
EOH 3.50E-01 46.00 8.00E-03 8.00E-03 
MGLY 4.80E-01 79.00 6.00E-03 6.00E-03 
MACR 3.60E-01 63.00 6.00E-03 6.00E-03 
RCHO 5.10E-01 101.40 5.00E-03 5.00E-03 
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BALD 4.60E-01 128.00 4.00E-03 4.00E-03 
MTPA 2.50E-01 136.00 2.00E-03 2.00E-03 
R4N2 1.20E-01 114.50 1.00E-03 1.00E-03 
NAP 1.20E-01 128.00 9.00E-04 1.00E-03 
MTPO 1.70E-01 192.67 9.00E-04 9.00E-04 
PYAC 6.00E-02 88.00 7.00E-04 7.00E-04 
DMS 4.00E-02 62.00 6.00E-04 7.00E-04 
CH3Br 3.00E-02 94.00 3.00E-04 3.00E-04 
CH3I 2.00E-02 141.00 2.00E-04 2.00E-04 
MP 2.00E-02 118.00 2.00E-04 2.00E-04 
 
weighted_property( fire_type, chem). This function calculates the EF-weighted 
molar mass (mm), OH rate constant (kOH), logarithm of saturation concentration (cstar), and 
vapor pressure (vp) for the specified chemical mechanism and fire type. 
 825 

Table 15: The output of  weighted_property()function when using the parameters- boreal forest, MOZART-T1. 
MOZT1 mm kOH cstar vp 
BIGENE 75.64 6.00E-11 9.09 1067.17 
CH3OH 31.00 9.00E-13 8.88 127.00 
C2H4 28.21 8.00E-12 10.34 50000.00 
CH3COOH 60.00 7.00E-13 7.64 15.70 
CH2O 30.00 8.00E-12 9.78 3890.00 
NROG 57.06 2.00E-12 9.87 1231.96 
TOLUENE 92.62 3.00E-11 7.56 100.42 
CH3CHO 44.00 1.00E-11 9.55 902.00 
C2H6 30.00 2.00E-13 10.61 30000.00 
C3H6 42.06 3.00E-11 10.06 8543.36 
XYLENES 111.96 6.00E-11 7.24 33.77 
MEK 95.92 2.00E-11 7.54 23.71 
PHENOL 95.47 3.00E-11 6.81 0.34 
C2H2 26.59 1.00E-12 10.27 40000.00 
CH3COCH3 58.01 2.00E-13 9.06 229.83 
GLYALD 60.00 1.00E-11 7.40 0.91 
BIGALK 99.90 3.00E-11 8.43 341.32 
BENZENE 78.03 1.00E-12 8.35 92.82 
HCOOH 46.00 5.00E-13 7.79 42.60 
BPIN 136.00 6.00E-11 7.49 2.72 
C3H8 44.53 3.00E-12 10.06 6953.16 
CH3COCHO 72.00 1.00E-11 8.64 121.00 
CRESOL 128.67 6.00E-11 5.83 0.09 
ISOP 68.00 1.00E-10 8.99 550.00 
APIN 136.00 7.00E-11 7.48 4.11 
MTERP 131.49 2.00E-10 7.71 3.72 
HYAC 74.00 3.00E-12 7.09 1.74 
MVK 70.00 2.00E-11 8.47 91.30 
BZALD 115.48 2.00E-11 6.04 0.83 
LIMON 136.00 2.00E-10 8.47 1.30 
MYRC 136.00 2.00E-10 7.17 2.18 
MACR 70.00 3.00E-11 8.71 155.00 
C2H5OH 46.00 3.00E-12 8.63 59.30 
BCARY 203.83 2.00E-10 6.01 0.03 
TERPROD1 196.00 1.00E-11 5.93 0.23 
ALKNIT 109.04 7.00E-13 7.99 46.57 
BIGENE 75.64 6.00E-11 9.09 1067.17 
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6. Conclusions 
 
NEIVA represents the most comprehensive EF compilation for globally-relevant fuel types, and 830 
uniquely includes selected laboratory data. NEIVA was created by integrating EF data from Akagi 
et al. (2011) and 30 papers published since the 2014 and 2015 updates to Akagi. The most 
significant expansion of data occurred for temperate forest, peat, and crop residue fires. EF data 
are stored in several datasets that represent varying levels of data processing, merging, and 
averaging. All datasets can be accessed through the NEIVA GitHub site. NEIVA has been 835 
structured so that new EF data can easily be added and recommended averages recalculated. EF 
data can be flexibly queried with varying levels of detail from the individual study level to 
averaged across all studies for a given fuel or fire type, and from the individual compound or 
constituent level to representative model surrogate species. In addition, NEIVA has been 
structured to enable efficient inclusion of EF data into chemical mechanisms allowing for better 840 
attribution of biomass burning emissions and impacts in future model studies. 
 
Inclusion of adjusted laboratory data increases the number of data points and number of 
compounds represented without introducing variability or uncertainty outside of what is expected 
and what has been observed in field studies. The number of NMOC_g represented in NEIVA is 845 
up to an order of magnitude higher than in the most recent EF compilations. Inclusion of this more 
diverse set of NMOC_g changes property distributions that can affect predictions of atmospheric 
composition and chemistry, illustrated here using volatility and OHR. Further, mapping this more 
diverse set of NMOC_g to model surrogates leads to distinct differences in the surrogate 
distributions when compared with other existing compilations that are likely to affect multiscale 850 
model predictions. NEIVA has a better representation of IVOCs, resulting in a shift in the volatility 
distribution to lower volatilities, with the lowest volatility bin shifted by up to three orders of 
magnitude. In addition, the NEIVA NMOC_g speciation profiles when mapped to SAPRC-07 
model surrogates resulted in higher OHR by 40-90%, which likely is conservative since the kOH 
values were not updated to represent measured compound distributions and the greater 855 
NMOC_g/CO ratio for some fuel types was not considered.  
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Code and Data Availability 860 
The NEIVA datasets (SQL and CSV formats), Python script files used to generate the datasets, 
and Jupyter notebooks with instructions for adding new data and examples for querying the 
datasets and are freely available on GitHub (https://github.com/NEIVA-BB-Emissions-
Inventory/NEIVAv1.0; last accessed February 2024). The datasets are also permanently archived 
on Zenodo via Binte Shahid et al. (2024) with the link https://doi.org/10.5281/zenodo.10721105 865 
under the GNU General Public License version 2.0 or later.  
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